1
|
Yao Y, Zhang S, Wang B, Lin X, Zhao G, Deng H, Chen Y. Neural dysfunction underlying working memory processing at different stages of the illness course in schizophrenia: a comparative meta-analysis. Cereb Cortex 2024; 34:bhae267. [PMID: 38960703 DOI: 10.1093/cercor/bhae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Schizophrenia, as a chronic and persistent disorder, exhibits working memory deficits across various stages of the disorder, yet the neural mechanisms underlying these deficits remain elusive with inconsistent neuroimaging findings. We aimed to compare the brain functional changes of working memory in patients at different stages: clinical high risk, first-episode psychosis, and long-term schizophrenia, using meta-analyses of functional magnetic resonance imaging studies. Following a systematic literature search, 56 whole-brain task-based functional magnetic resonance imaging studies (15 for clinical high risk, 16 for first-episode psychosis, and 25 for long-term schizophrenia) were included. The separate and pooled neurofunctional mechanisms among clinical high risk, first-episode psychosis, and long-term schizophrenia were generated by Seed-based d Mapping toolbox. The clinical high risk and first-episode psychosis groups exhibited overlapping hypoactivation in the right inferior parietal lobule, right middle frontal gyrus, and left superior parietal lobule, indicating key lesion sites in the early phase of schizophrenia. Individuals with first-episode psychosis showed lower activation in left inferior parietal lobule than those with long-term schizophrenia, reflecting a possible recovery process or more neural inefficiency. We concluded that SCZ represent as a continuum in the early stage of illness progression, while the neural bases are inversely changed with the development of illness course to long-term course.
Collapse
Affiliation(s)
- Yuhao Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Shufang Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Boyao Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyong Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Gaofeng Zhao
- Department of Psychiatry, Shandong Daizhuang Hospital, Jinning, China
| | - Hong Deng
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
- Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Okada H, Sawamura D, Kunita K, Ogasawara H, Maeda K, Morimoto T, Ikeda N. Prefrontal activation during simulated driving in people with schizophrenia: A functional near-infrared spectroscopy study. Psychiatry Res 2023; 326:115285. [PMID: 37327651 DOI: 10.1016/j.psychres.2023.115285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
People with schizophrenia (PWS) could be at risk when driving, yet this remains to be confirmed. In this study, we used functional near-infrared spectroscopy (fNIRS) and a driving simulator to assess potential driving skill difficulties as reflected by brain activity in PWS and compared them with those of healthy controls (HCs). Twenty PWS and 20 HCs were evaluated. Four tasks were performed: 50-kph and 100-kph sudden braking and 50-kph left and right curve tasks. The hemodynamic activity and driving performance of the two groups were compared. No significant differences were found in the performance of the four tasks. However, significant differences in hemodynamic activity were observed in the left and right dorsolateral prefrontal cortex (DLPFC) during the 100-kph sudden braking task. In addition, a significant negative correlation was found between brake reaction time and brain activity in the left DLPFC during the 100-kph sudden braking task in both groups. The brain mechanisms involved in processing the mental load associated with driving a car are possibly similar in PWS and HCs. Our results suggest that PWS may be able to drive their vehicles safely in the community.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Rehabilitation of Sciences, Hokkaido University, Kita 14-jo Nishi 5-chome, Kita-ku, Sapporo, Hokkaido, Japan.
| | - Daisuke Sawamura
- Department of Rehabilitation of Sciences, Hokkaido University, Kita 14-jo Nishi 5-chome, Kita-ku, Sapporo, Hokkaido, Japan
| | - Koji Kunita
- Forensic Psychiatry Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | | | - Kentaro Maeda
- Medical Corporation Ohyachi Hospital, Sapporo, Hokkaido, Japan
| | - Takafumi Morimoto
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| | - Nozomu Ikeda
- Department of Occupational Therapy, School of Health Sciences, Sapporo Medical University, Hokkaido, Japan
| |
Collapse
|
3
|
Ma X, Yang WFZ, Zheng W, Li Z, Tang J, Yuan L, Ouyang L, Wang Y, Li C, Jin K, Wang L, Bearden CE, He Y, Chen X. Neuronal dysfunction in individuals at early stage of schizophrenia, A resting-state fMRI study. Psychiatry Res 2023; 322:115123. [PMID: 36827856 DOI: 10.1016/j.psychres.2023.115123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Schizophrenia has been associated with abnormal intrinsic brain activity, involving various cognitive impairments. Qualitatively similar abnormalities are seen in individuals at ultra-high risk (UHR) for psychosis. In this study, resting-state fMRI (rs-fMRI) data were collected from 44 drug-naïve first-episode schizophrenia (Dn-FES) patients, 48 UHR individuals, and 40 healthy controls (HCs). The fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo), and functional connectivity (FC), were performed to evaluate resting brain function. A support vector machine (SVM) was applied for classification analysis. Compared to HCs, both clinical groups showed increased fALFF in the central executive network (CEN), decreased ReHo in the ventral visual pathway (VVP) and decreased FC in temporal-sensorimotor regions. Excellent performance was achieved by using fALFF value in distinguishing both FES (sensitivity=83.21%, specificity=80.58%, accuracy=81.37%, p=0.009) and UHR (sensitivity=75.88%, specificity=85.72%, accuracy=80.72%, p<0.001) from HC group. Moreover, the study highlighted the importance of frontal and temporal alteration in the pathogenesis of schizophrenia. However, no fMRI features were observed that could well distinguish Dn-FES from UHR group. To conclude, fALFF in the CEN may provide potential power for identifying individuals at the early stage of schizophrenia and the alteration in the frontal and temporal lobe may be important to these individuals.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, United States
| | - Winson Fu Zun Yang
- Department of Psychological Sciences, Texas Tech University, Lubbock, United States
| | - Wenxiao Zheng
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Department of Clinical Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zongchang Li
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Jinsong Tang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Liu Yuan
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Lijun Ouyang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Yujue Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China
| | - Chunwang Li
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Ke Jin
- Department of Radiology, Hunan Children's Hospital, Changsha, China
| | - Lingyan Wang
- Department of Deratology&Traditional Chinese Medicine, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital)
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, United States
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; National Technology Institute of Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, No.139, Renmin Rd, Second Xiangya Hospital, Changsha, Hunan, China; Mental Health Institute of Central South University, Changsha, Hunan, China; National Clinical Research Center for Mental Disorders, Changsha, Hunan, China; National Technology Institute of Mental Disorders, Changsha, Hunan, China; Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China; Hunan Medical Center for Mental Health, Changsha, Hunan, China.
| |
Collapse
|
4
|
Gribkoff VK, Kaczmarek LK. The Difficult Path to the Discovery of Novel Treatments in Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2023; 30:255-285. [PMID: 36928854 PMCID: PMC10599454 DOI: 10.1007/978-3-031-21054-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
CNS diseases, including psychiatric disorders, represent a significant opportunity for the discovery and development of new drugs and therapeutic treatments with the potential to have a significant impact on human health. CNS diseases, however, present particular challenges to therapeutic discovery efforts, and psychiatric diseases/disorders may be among the most difficult. With specific exceptions such as psychostimulants for ADHD, a large number of psychiatric patients are resistant to existing treatments. In addition, clinicians have no way of knowing which psychiatric patients will respond to which drugs. By definition, psychiatric diagnoses are syndromal in nature; determinations of efficacy are often self-reported, and drug discovery is largely model-based. While such models of psychiatric disease are amenable to screening for new drugs, whether cellular or whole-animal based, they have only modest face validity and, more importantly, predictive validity. Multiple academic, pharmaceutical industry, and government agencies are dedicated to the translation of new findings about the neurobiology of major psychiatric disorders into the discovery and advancement of novel therapies. The collaboration of these agencies provide a pathway for developing new therapeutics. These efforts will be greatly helped by recent advances in understanding the genetic bases of psychiatric disorders, the ongoing search for diagnostic and therapy-responsive biomarkers, and the validation of new animal models.
Collapse
Affiliation(s)
- Valentin K Gribkoff
- Department of Internal Medicine, Section on Endocrinology, Yale University School of Medicine, New Haven, CT, USA.
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Meram ED, Baajour S, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Haddad L, Amirsadri A, Stanley JA, Diwadkar VA. The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia. Netw Neurosci 2023; 7:184-212. [PMID: 37333998 PMCID: PMC10270714 DOI: 10.1162/netn_a_00278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 07/21/2023] Open
Abstract
There is a paucity of graph theoretic methods applied to task-based data in schizophrenia (SCZ). Tasks are useful for modulating brain network dynamics, and topology. Understanding how changes in task conditions impact inter-group differences in topology can elucidate unstable network characteristics in SCZ. Here, in a group of patients and healthy controls (n = 59 total, 32 SCZ), we used an associative learning task with four distinct conditions (Memory Formation, Post-Encoding Consolidation, Memory Retrieval, and Post-Retrieval Consolidation) to induce network dynamics. From the acquired fMRI time series data, betweenness centrality (BC), a metric of a node's integrative value was used to summarize network topology in each condition. Patients showed (a) differences in BC across multiple nodes and conditions; (b) decreased BC in more integrative nodes, but increased BC in less integrative nodes; (c) discordant node ranks in each of the conditions; and (d) complex patterns of stability and instability of node ranks across conditions. These analyses reveal that task conditions induce highly variegated patterns of network dys-organization in SCZ. We suggest that the dys-connection syndrome that is schizophrenia, is a contextually evoked process, and that the tools of network neuroscience should be oriented toward elucidating the limits of this dys-connection.
Collapse
Affiliation(s)
- Emmanuel D. Meram
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shahira Baajour
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Asadur Chowdury
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - John Kopchick
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Patricia Thomas
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Usha Rajan
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dalal Khatib
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Caroline Zajac-Benitez
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Luay Haddad
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alireza Amirsadri
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey A. Stanley
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| | - Vaibhav A. Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Brain Imaging Research Division, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
6
|
Associations between polygenic risk, negative symptoms, and functional connectome topology during a working memory task in early-onset schizophrenia. SCHIZOPHRENIA 2022; 8:54. [PMID: 35853905 PMCID: PMC9261080 DOI: 10.1038/s41537-022-00260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022]
Abstract
Working memory (WM) deficit in schizophrenia is thought to arise from a widespread neural inefficiency. However, we do not know if this deficit results from the illness-related genetic risk and influence the symptom burden in various domains, especially in patients who have an early onset illness. We used graph theory to examine the topology of the functional connectome in 99 subjects (27 early-onset schizophrenia (EOS), 24 asymptomatic siblings, and 48 healthy subjects) during an n-back task, and calculated their polygenic risk score (PRS) for susceptibility to schizophrenia. Linear regression analysis was used to test associations of the PRS, clinical symptoms, altered connectomic properties, and WM accuracy in EOS. Indices of small-worldness and segregation were elevated in EOS during the WM task compared with the other two groups; these connectomic aberrations correlated with increased PRS and negative symptoms. In patients with higher polygenic risk, WM performance was lower only when both the connectomic aberrations and the burden of negative symptoms were higher. Negative symptoms had a stronger moderating role in this relationship. Our findings suggest that the aberrant connectomic topology is a feature of WM task performance in schizophrenia; this relates to higher polygenic risk score as well as higher burden of negative symptoms. The deleterious effects of polygenic risk on cognition are played out via its effects on the functional connectome, as well as negative symptoms.
Collapse
|
7
|
Zovetti N, Bellani M, Chowdury A, Alessandrini F, Zoccatelli G, Perlini C, Ricciardi GK, Marzi CA, Diwadkar VA, Brambilla P. Inefficient white matter activity in Schizophrenia evoked during intra and inter-hemispheric communication. Transl Psychiatry 2022; 12:449. [PMID: 36244980 PMCID: PMC9573867 DOI: 10.1038/s41398-022-02200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Intensive cognitive tasks induce inefficient regional and network responses in schizophrenia (SCZ). fMRI-based studies have naturally focused on gray matter, but appropriately titrated visuo-motor integration tasks reliably activate inter- and intra-hemispheric white matter pathways. Such tasks can assess network inefficiency without demanding intensive cognitive effort. Here, we provide the first application of this framework to the study of white matter functional responses in SCZ. Event-related fMRI data were acquired from 28 patients (nine females, mean age 43.3, ±11.7) and 28 age- and gender-comparable controls (nine females, mean age 42.1 ± 10.1), using the Poffenberger paradigm, a rapid visual detection task used to induce intra- (ipsi-lateral visual and motor cortex) or inter-hemispheric (contra-lateral visual and motor cortex) transfer. fMRI data were pre- and post-processed to reliably isolate activations in white matter, using probabilistic tractography-based white matter tracts. For intra- and inter-hemispheric transfer conditions, SCZ evinced hyper-activations in longitudinal and transverse white matter tracts, with hyper-activation in sub-regions of the corpus callosum primarily observed during inter-hemispheric transfer. Evidence for the functional inefficiency of white matter was observed in conjunction with small (~50 ms) but significant increases in response times. Functional inefficiencies in SCZ are (1) observable in white matter, with the degree of inefficiency contextually related to task-conditions, and (2) are evoked by simple detection tasks without intense cognitive processing. These cumulative results while expanding our understanding of this dys-connection syndrome, also extend the search of biomarkers beyond the traditional realm of fMRI studies of gray matter.
Collapse
Affiliation(s)
- Niccolò Zovetti
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Verona, Italy.
| | - Asadur Chowdury
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Franco Alessandrini
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Giada Zoccatelli
- grid.411475.20000 0004 1756 948XNeuroradiology Department, Azienda Ospedaliera Universitaria Integrata di Verona, Verona, Italy
| | - Cinzia Perlini
- grid.5611.30000 0004 1763 1124Department of Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Psychology, University of Verona, Verona, Italy
| | - Giuseppe K. Ricciardi
- Pathology and Diagnostics, Section of Neuroradiology, Hospital Trust Verona, Verona, Italy
| | - Carlo A. Marzi
- grid.5611.30000 0004 1763 1124Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy ,National Institute of Neuroscience, Verona, Italy
| | - Vaibhav A. Diwadkar
- grid.254444.70000 0001 1456 7807Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI USA
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. .,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
| |
Collapse
|
8
|
Gallucci J, Tan T, Schifani C, Dickie EW, Voineskos AN, Hawco C. Greater individual variability in functional brain activity during working memory performance in Schizophrenia Spectrum Disorders (SSD). Schizophr Res 2022; 248:21-31. [PMID: 35908378 DOI: 10.1016/j.schres.2022.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 10/16/2022]
Abstract
Heterogeneity has been a persistent challenge in understanding Schizophrenia Spectrum Disorders (SSD). Traditional case-control comparisons often show variable results, and may not map well onto individuals. To better understand heterogeneity and group differences in SSD compared to typically developing controls (TDC), we examined variability in functional brain activity during a working memory (WM) task with known deficits in SSD. Neuroimaging and behavioural data were extracted from two datasets collectively providing 34 TDC and 56 individuals with SSD (n = 90). Functional activity in response to an N-Back WM task (3-Back vs 1-Back) was examined between and within groups. Individual variability was calculated via the correlational distance of fMRI activity maps between participants; mean correlational distance from one participant to all others was defined as a 'variability score'. Greater individual variability in functional activity was found in SSD compared to TDC (p = 0.00090). At the group level, a case-control comparison suggested SSD had reduced activity in task positive and task negative networks. However, when SSD were divided into high and low variability subgroups, the low variability groups showed no differences relative to TDC while the high variability group showed little activity at the group level. Our results imply prior case-control differences may be driven by a subgroup of SSD who do not show specific impairments but instead show more 'idiosyncratic' activity patterns. In SSD but not TDC, variability was also related to cognitive performance and age. This novel approach focusing on individual variability has important implications for understanding the neurobiology of SSD.
Collapse
Affiliation(s)
- Julia Gallucci
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Thomas Tan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christin Schifani
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Erin W Dickie
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Adam Yaple Z, Tolomeo S, Yu R. Spatial and chronic differences in neural activity in medicated and unmedicated schizophrenia patients. Neuroimage Clin 2022; 35:103029. [PMID: 35569228 PMCID: PMC9112098 DOI: 10.1016/j.nicl.2022.103029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/10/2022] [Accepted: 04/28/2022] [Indexed: 11/07/2022]
Abstract
The medicated schizophrenia group yielded concordant activity among three right lateralized frontal clusters and a left lateralized parietal cluster. The unmedicated schizophrenia group yielded concordant activity among right lateralized frontal-parietal regions. A neural compensatory mechanism in schizophrenia.
A major caveat with investigations on schizophrenic patients is the difficulty to control for medication usage across samples as disease-related neural differences may be confounded by medication usage. Following a thorough literature search (632 records identified), we included 37 studies with a total of 740 medicated schizophrenia patients and 367 unmedicated schizophrenia patients. Here, we perform several meta-analyses to assess the neurofunctional differences between medicated and unmedicated schizophrenic patients across fMRI studies to determine systematic regions associated with medication usage. Several clusters identified by the meta-analysis on the medicated group include three right lateralized frontal clusters and a left lateralized parietal cluster, whereas the unmedicated group yielded concordant activity among right lateralized frontal-parietal regions. We further explored the prevalence of activity within these regions across illness duration and task type. These findings suggest a neural compensatory mechanism across these regions both spatially and chronically, offering new insight into the spatial and temporal dynamic neural differences among medicated and unmedicated schizophrenia patients.
Collapse
Affiliation(s)
| | - Serenella Tolomeo
- Social and Cognitive Computing Department, Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore, Singapore
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China; Department of Physics, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
10
|
Sklar AL, Coffman BA, Salisbury DF. Fronto-parietal network function during cued visual search in the first-episode schizophrenia spectrum. J Psychiatr Res 2021; 141:339-345. [PMID: 34304038 PMCID: PMC8364882 DOI: 10.1016/j.jpsychires.2021.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
Cognitive impairments account for significant morbidity in schizophrenia and are present at disease onset. Controlled processes are particularly susceptible and may contribute to pervasive selective attention deficits. The present study assessed fronto-parietal attention network (FPAN) functioning during cue presentation on a visual search task in first-episode schizophrenia spectrum patients (FE) and its relation to symptom burden and community functioning. Brain activity was recorded with magnetoencephalography from 38 FE and 38 healthy controls (HC) during blocks of pop-out and serial search target detection. Activity during cue presentation was compared between groups across bilateral FPAN regions (frontal eye fields (FEF), inferior frontal gyrus (IFG), midcingulate cortex (MCC), and intraparietal sulcus (IPS)). FE exhibited greater right hemisphere IFG activity despite worse performance relative to HC. Performance and FPAN activity were not correlated in HC. Among FE, however, stronger activity within right hemisphere FEF and IFG was associated with faster responses. Stronger right IPS and left IFG activity in patients was also associated with reduced negative symptoms and improved community functioning, respectively. Increased reliance on the FPAN for task completion suggests an inefficient cognitive control network and might reflect a compensation for impaired attentional deployment during target detection, a strategy employed by those with less severe illness. These findings represent a critical step towards identifying the neural substrates of negative symptoms and impaired neurocognition at disease onset.
Collapse
Affiliation(s)
- Alfredo L Sklar
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Sanford N, Woodward TS. Functional Delineation of Prefrontal Networks Underlying Working Memory in Schizophrenia: A Cross-data-set Examination. J Cogn Neurosci 2021; 33:1880-1908. [PMID: 34375420 DOI: 10.1162/jocn_a_01726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Working memory (WM) impairment in schizophrenia substantially impacts functional outcome. Although the dorsolateral pFC has been implicated in such impairment, a more comprehensive examination of brain networks comprising pFC is warranted. The present research used a whole-brain, multi-experiment analysis to delineate task-related networks comprising pFC. Activity was examined in schizophrenia patients across a variety of cognitive demands. METHODS One hundred schizophrenia patients and 102 healthy controls completed one of four fMRI tasks: a Sternberg verbal WM task, a visuospatial WM task, a Stroop set-switching task, and a thought generation task (TGT). Task-related networks were identified using multi-experiment constrained PCA for fMRI. Effects of task conditions and group differences were examined using mixed-model ANOVA on the task-related time series. Correlations between task performance and network engagement were also performed. RESULTS Four spatially and temporally distinct networks with pFC activation emerged and were postulated to subserve (1) internal attention, (2) auditory-motor attention, (3) motor responses, and (4) task energizing. The "energizing" network-engaged during WM encoding and diminished in patients-exhibited consistent trend relationships with WM capacity across different data sets. The dorsolateral-prefrontal-cortex-dominated "internal attention" network exhibited some evidence of hypoactivity in patients, but was not correlated with WM performance. CONCLUSIONS Multi-experiment analysis allowed delineation of task-related, pFC-anchored networks across different cognitive constructs. Given the results with respect to the early-responding "energizing" network, WM deficits in schizophrenia may arise from disruption in the "energization" process described by Donald Stuss' model of pFC functions.
Collapse
Affiliation(s)
| | - Todd S Woodward
- University of British Columbia, Vancouver, Canada.,BC Mental Health and Substance Use Services Research Institute, Vancouver, Canada
| |
Collapse
|
12
|
Kowalczyk OS, Pauls AM, Fusté M, Williams SCR, Hazelgrove K, Vecchio C, Seneviratne G, Pariante CM, Dazzan P, Mehta MA. Neurocognitive correlates of working memory and emotional processing in postpartum psychosis: an fMRI study. Psychol Med 2021; 51:1724-1732. [PMID: 32174288 DOI: 10.1017/s0033291720000471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Postpartum psychosis (PP) is a severe postpartum disorder. While working memory and emotional processing-related brain function are consistently impaired in psychoses unrelated to the puerperium, no studies have investigated them in PP. METHODS Twenty-four women at risk of developing PP (11 developed an episode - PE; 13 remained well - NPE) and 20 healthy postpartum women completed two functional magnetic resonance imaging tasks within a year of delivery: working memory (n-back) and emotional face recognition (fearful faces). We compared women at-risk of PP to controls, as well as NPE, PE, and controls to test for potential effects of a PP episode occurrence. RESULTS Women at-risk of PP and PE showed hyperactivation of lateral visual areas, precuneus, and posterior cingulate during the n-back task. The at-risk group as a whole, as well as the PE and NPE groups, showed hyperconnectivity of the right dorsolateral prefrontal cortex (DLPFC) with various parieto-occipito-temporo-cerebellar regions compared to controls during several n-back conditions. Increases in connectivity between the right DLPFC and ipsilateral middle temporal gyrus were observed in the PE group compared to NPE during 2-back. During the fearful faces task, at-risk women as a group showed hyperactivation of fronto-cingulo-subcortical regions, and hypoconnectivity between the left amygdala and ipsilateral occipito-parietal regions compared to controls. No significant performance differences were observed. CONCLUSIONS These results present preliminary evidence of a differential nature of functional brain abnormalities in PP compared to the typically observed reduced connectivity with the DLPFC in psychoses unrelated to puerperium, such as bipolar disorder.
Collapse
Affiliation(s)
- Olivia S Kowalczyk
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Astrid M Pauls
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Montserrat Fusté
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- CIBERSAM, Centro de Investigación Biomédica en Red de Salud Mental, Madrid, Spain
| | - Steven C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Katie Hazelgrove
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Section of Stress, Psychiatry and Immunology and Perinatal Psychiatry, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
| | - Costanza Vecchio
- Section of Stress, Psychiatry and Immunology and Perinatal Psychiatry, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
| | - Gertrude Seneviratne
- Section of Stress, Psychiatry and Immunology and Perinatal Psychiatry, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
| | - Carmine M Pariante
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
- Section of Stress, Psychiatry and Immunology and Perinatal Psychiatry, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neurosciences, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Barraclough M, McKie S, Parker B, Elliott R, Bruce IN. The effects of disease activity on neuronal and behavioural cognitive processes in systemic lupus erythematosus. Rheumatology (Oxford) 2021; 61:195-204. [PMID: 33760068 DOI: 10.1093/rheumatology/keab256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Factors common across many chronic diseases, such as fatigue and depression affect cognitive dysfunction (CD) but the effect of systemic lupus erythematosus (SLE) disease activity on CD remains unclear. We aimed to explore the effects of disease activity in SLE on cognitive function whilst taking into consideration other potential mediators. METHODS Two groups of SLE patients were recruited; stable/low disease activity (SLE-S, n = 36) and active disease (SLE-F, n = 26). The SLE-F group were studied during a flare; with a second visit when disease activity had reduced. In addition to demographic, clinical and psychiatric data, CD was measured using a computerised battery of tests (CANTAB®). fMRI was used to examine neuronal responses to working memory and emotional processing tasks. RESULTS No differences between the groups/visits were found using the CANTAB® battery. The fMRI results showed that the SLE-F group had a less attenuated response in the medial prefrontal cortex (a default mode network-DMN region) compared with the SLE-S group during the working memory task (p = 0.012). Exploratory correlations within the SLE-F group showed associations between neuronal responses and depression, cognitive fatigue, disease activity measures and IL-6. CONCLUSION Functional brain processes but not cognitive behavioural measures were affected by disease activity. Flaring SLE patients were less able to suppress DMN regions during a working memory task. This could reflect emotional interference during cognitive tasks and may cause cognitive fatigue. A number of factors are associated with brain function in flaring patients, which has potential implications for holistic treatments.
Collapse
Affiliation(s)
- Michelle Barraclough
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK and NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Shane McKie
- FBMH Platform Sciences, Enabling Technologies & Infrastructure, FBMH Research & Innovation, The University of Manchester & Manchester Academic Health Science Centre, Manchester, UK
| | - Ben Parker
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK and NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, The University of Manchester, Manchester, UK
| | - Ian N Bruce
- Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK and NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
14
|
Potvin S, Giguère CÉ, Mendrek A. Functional Connectivity During Visuospatial Processing in Schizophrenia: A Classification Study Using Lasso Regression. Neuropsychiatr Dis Treat 2021; 17:1077-1087. [PMID: 33888984 PMCID: PMC8055358 DOI: 10.2147/ndt.s304434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Robust evidence shows that schizophrenia is associated with significant cognitive impairments, including deficits in visuospatial abilities. While other cognitive domains have sparked several functional neuroimaging studies in schizophrenia, only a few brain activation studies have examined the neural correlates of visuospatial abilities in schizophrenia. PURPOSE Here, we propose to perform a functional connectivity study on visuospatial processing in schizophrenia, and to determine the classification accuracy of the observed alterations. METHODS Thirty-nine schizophrenia patients and 42 healthy controls were scanned using functional magnetic resonance imaging while performing a mental rotation task. Task-based functional connectivity was examined using a region-of-interest (ROI) to ROI approach, as implemented in the CONN Toolbox. ROIs were selected from a previous meta-analysis on mental rotation. Logistic regression with Lasso regularization was performed, using train-test cross-validation. RESULTS Schizophrenia was associated with a complex pattern of dysconnectivity between the superior, middle and inferior frontal gyrus, the precentral gyrus, the superior parietal lobule (SPL) and the inferior lateral occipital cortex. The classification accuracy was 86.1%. Mental rotation performance was predicted by the dysconnectivity between the right and left superior frontal gyrus (SFG), as well as between the left SFG and left SPL. CONCLUSION The results of the current study highlight that visuospatial processing is useful for examining the widespread dysconnectivity between executive, motor and visual brain regions in schizophrenia. We also demonstrate that very good classification accuracy can be achieved using visuospatial-related functional connectivity data.
Collapse
Affiliation(s)
- Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada.,Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Charles-Édouard Giguère
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montreal, Quebec, Canada
| | - Adrianna Mendrek
- Department of Psychology, Bishop's University, Lennoxville, Quebec, Canada
| |
Collapse
|
15
|
Sklar AL, Coffman BA, Haas G, Ghuman A, Cho R, Salisbury DF. Inefficient visual search strategies in the first-episode schizophrenia spectrum. Schizophr Res 2020; 224:126-132. [PMID: 33097368 PMCID: PMC7722051 DOI: 10.1016/j.schres.2020.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 08/05/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Knowledge is lacking regarding deficits in selective attention and their underlying biological mechanisms during early stages of schizophrenia. The present study examined the N2pc, a neurophysiological index of covert spatial attention, and its cortical sources at first psychotic episode in the schizophrenia spectrum (FESz). METHODS Neurophysiological responses measured simultaneously with magnetoencephalography (MEG) and electroencephalography (EEG) during pop-out and serial search tasks were compared between 32 FESz and 32 matched healthy controls (HC). Mean scalp-recorded N2pc was measured from a cluster of posterior-lateral EEG electrodes. Cortical source-resolved MEG activity contributing to the N2pc signal was derived for the intraparietal sulcus (IPS) and lateral occipital complex (LOC). RESULTS Group differences in EEG N2pc varied by task demand. FESz exhibited reduced N2pc amplitude during pop-out (p < .01), but not serial search (p = .11). Furthermore, group differences in N2pc-related MEG cortical activity varied by task demand and cortical region. Compared to HC, FESz exhibited greater IPS during serial search (p < .01). DISCUSSION Reductions in EEG N2pc amplitude indicate an impairment of visuo-spatial attention evident at an individual's first psychotic episode, specifically during conditions emphasizing bottom-up processing. Examination of its cortical sources with MEG revealed that, compared to HC, FESz engaged parietal structures to a greater extent during the serial search condition. This pattern suggests a less efficient, more resource intensive strategy employed by FESz in response to a minimal demand on attention. The greater reliance on this controlled attentional network may negatively impact real-world functions with much greater complexity and attentional demands.
Collapse
Affiliation(s)
- Alfredo L Sklar
- Clinical Neurophysiology Research Laboratory, UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Brian A Coffman
- Clinical Neurophysiology Research Laboratory, UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gretchen Haas
- UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA; VA Pittsburgh Healthcare System and VISN 4 MIRECC, U.S. Dept of Veterans Affairs, Pittsburgh, PA, USA
| | - Avniel Ghuman
- Laboratory of Cognitive Neurodynamics, Department of Neurosurgery, Presbyterian Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Raymond Cho
- Department of Psychiatry, Baylor College of Medicine and Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - Dean F Salisbury
- Clinical Neurophysiology Research Laboratory, UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Western Psychiatric Hospital, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Yang J, Ouyang X, Tao H, Pu W, Fan Z, Zeng C, Huang X, Chen X, Liu J, Liu Z, Palaniyappan L. Connectomic signatures of working memory deficits in depression, mania, and euthymic states of bipolar disorder. J Affect Disord 2020; 274:190-198. [PMID: 32469803 DOI: 10.1016/j.jad.2020.05.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND Working memory (WM) deficit is a feature persistently reported across mania, depression, and euthymic periods of bipolar disorder (BD). WM capacity relates to distributed brain regions that are systemically organized at the connectome level. It is not clear whether the same disruption of this network-level organization underlies the WM impairment seen in different phases of BD. METHODS We used graph theory to examine the topology of the functional connectome in different granularity in 143 subjects (72 with BD [32 depression; 15 mania; 25 euthymic] and 71 healthy controls) during a n-back task. Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. RESULTS Altered topological properties characterised by an increase in small-worldness of the whole-brain connectome, were specific for bipolar depressed, but not in manic and euthymic states. Depressed subjects showed a shift in the distribution of the number of connections per brain region (degree) within the connectome during WM task. Increased small-worldness related to worse WM accuracy in patients with more severe depression, anxiety and illness burden. LIMITATIONS We used only 2-back load, limiting our ability to study the parametric effects of task demand. CONCLUSIONS We demonstrate a putative state-dependent mechanistic link between connectome topology, hub re-distribution and impaired n-back performance in bipolar disorder. The aberrant task-dependent modulation of the connectome relates to worse WM performance especially when anxiety and depression are prominent in BD.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China.
| | - Xuan Ouyang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Haojuan Tao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, PR China; Medical Psychological Institute of Central South University, Changsha, PR China
| | - Zebin Fan
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Can Zeng
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xiaojun Huang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Xudong Chen
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Jun Liu
- Department of Radiology, the Second Xiangya hospital, Central South University, Changsha, PR China.
| | - Zhening Liu
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China.
| | - Lena Palaniyappan
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, PR China; Department of Psychiatry, University of Western Ontario, London, ON, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
17
|
Yang J, Pu W, Wu G, Chen E, Lee E, Liu Z, Palaniyappan L. Connectomic Underpinnings of Working Memory Deficits in Schizophrenia: Evidence From a replication fMRI study. Schizophr Bull 2020; 46:916-926. [PMID: 32016430 PMCID: PMC7345823 DOI: 10.1093/schbul/sbz137] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Working memory (WM) deficit is a key feature of schizophrenia that relates to a generalized neural inefficiency of extensive brain areas. To date, it remains unknown how these distributed regions are systemically organized at the connectome level and how the disruption of such organization brings about the WM impairment seen in schizophrenia. METHODS We used graph theory to examine the neural efficiency of the functional connectome in different granularity in 155 patients with schizophrenia and 96 healthy controls during a WM task. These analyses were repeated in another independent dataset (81 patients and 54 controls). Linear regression analysis was used to test associations of altered graph properties, clinical symptoms, and WM accuracy in patients. A machine-learning approach was adopted to study the ability of multivariate connectome features from one dataset to discriminate patients from controls in the second dataset. RESULTS Small-worldness of the whole-brain connectome was significantly increased in schizophrenia during the WM task; this increase is related to better (though subpar) WM accuracy in patients with more severe negative symptom burden. There was a shift in the degree distribution to a more homogeneous form in patients. The machine-learning approach classified a new set of patients from controls with 84.3% true-positivity rate for schizophrenia and 71.6% overall accuracy. CONCLUSIONS We demonstrate a putative mechanistic link between connectome topology, hub redistribution, and impaired n-back performance in schizophrenia. The task-dependent modulation of the connectome relates to, but remains inefficient in, improving the performance above par in the presence of severe negative symptoms.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Weidan Pu
- Medical Psychological Center, the Second Xiangya Hospital, Central South University, Changsha, P.R. China
- Medical Psychological Institute of Central South University, Changsha, P.R. China
| | - Guowei Wu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Eric Chen
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Edwin Lee
- Department of Psychiatry, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhening Liu
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
| | - Lena Palaniyappan
- Institute of Mental Health, Second Xiangya Hospital, Central South University, Changsha, PR China
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
18
|
Herman AB, Brown EG, Dale CL, Hinkley LB, Subramaniam K, Houde JF, Fisher M, Vinogradov S, Nagarajan SS. The Visual Word Form Area compensates for auditory working memory dysfunction in schizophrenia. Sci Rep 2020; 10:8881. [PMID: 32483253 PMCID: PMC7264140 DOI: 10.1038/s41598-020-63962-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/28/2020] [Indexed: 11/23/2022] Open
Abstract
Auditory working memory impairments feature prominently in schizophrenia. However, the existence of altered and perhaps compensatory neural dynamics, sub-serving auditory working memory, remains largely unexplored. We compared the dynamics of induced high gamma power (iHGP) across cortex in humans during speech-sound working memory in individuals with schizophrenia (SZ) and healthy comparison subjects (HC) using magnetoencephalography (MEG). SZ showed similar task performance to HC while utilizing different brain regions. During encoding of speech sounds, SZ lacked the correlation of iHGP with task performance in posterior superior temporal gyrus (STGp) that was observed in healthy subjects. Instead, SZ recruited the visual word form area (VWFA) during both stimulus encoding and response preparation. Importantly, VWFA activity during encoding correlated with the magnitude of SZ hallucinations, task performance and an independent measure of verbal working memory. These findings suggest that VWFA plasticity is harnessed to compensate for STGp dysfunction in schizophrenia patients with hallucinations.
Collapse
Affiliation(s)
- Alexander B Herman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- UCB-UCSF Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G Brown
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Corby L Dale
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Leighton B Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Karuna Subramaniam
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - John F Houde
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa Fisher
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- San Francisco Veterans' Affairs Medical Center, San Francisco, CA, United States
| | - Sophia Vinogradov
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States
- San Francisco Veterans' Affairs Medical Center, San Francisco, CA, United States
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
19
|
Task-merging for finer separation of functional brain networks in working memory. Cortex 2020; 125:246-271. [DOI: 10.1016/j.cortex.2019.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 01/21/2023]
|
20
|
Murphy O, Hoy K, Wong D, Bailey N, Fitzgerald P, Segrave R. Individuals with depression display abnormal modulation of neural oscillatory activity during working memory encoding and maintenance. Biol Psychol 2019; 148:107766. [DOI: 10.1016/j.biopsycho.2019.107766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
|
21
|
Shafritz KM, Ikuta T, Greene A, Robinson DG, Gallego J, Lencz T, DeRosse P, Kingsley PB, Szeszko PR. Frontal lobe functioning during a simple response conflict task in first-episode psychosis and its relationship to treatment response. Brain Imaging Behav 2019; 13:541-553. [PMID: 29744804 DOI: 10.1007/s11682-018-9876-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prior functional magnetic resonance imaging (fMRI) studies have investigated the neural mechanisms underlying cognitive control in patients with psychosis with findings of both hypo- and hyperfrontality. One factor that may contribute to inconsistent findings is the use of complex and polyfactorial tasks to investigate frontal lobe functioning. In the current study we employed a simple response conflict task during fMRI to examine differences in brain activation between patients experiencing their first-episode of psychosis (n = 33) and age- and sex-matched healthy volunteers (n = 33). We further investigated whether baseline brain activation among patients predicted changes in symptom severity and treatment response following 12 weeks of controlled antipsychotic treatment. During the task subjects were instructed to press a response button on the same side or opposite side of a circle that appeared on either side of a central fixation point. Imaging data revealed that for the contrast of opposite-side vs. same-side, patients showed significantly greater activation compared with healthy volunteers in the anterior cingulate cortex and intraparietal sulcus. Among patients, greater baseline anterior cingulate cortex, temporal-parietal junction, and superior temporal cortex activation predicted greater symptom reduction and therapeutic response following treatment. All findings remained significant after covarying for task performance. Intact performance on this relatively parsimonious task was associated with frontal hyperactivity suggesting the need for patients to utilize greater neural resources to achieve task performance comparable to healthy individuals. Moreover, frontal hyperactivity observed using a simple fMRI task may provide a biomarker for predicting treatment response in first-episode psychosis.
Collapse
Affiliation(s)
- Keith M Shafritz
- Department of Psychology, Hofstra University, Hempstead, NY, USA. .,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, Oxford, MS, USA
| | - Allison Greene
- Department of Psychology, Hofstra University, Hempstead, NY, USA
| | - Delbert G Robinson
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Division of Psychiatry Research, Northwell Health System, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Juan Gallego
- Weill Cornell Medical College, New York, NY, USA.,New York-Presbyterian Hospital/Westchester Division, White Plains, NY, USA
| | - Todd Lencz
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Division of Psychiatry Research, Northwell Health System, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Pamela DeRosse
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Division of Psychiatry Research, Northwell Health System, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Peter B Kingsley
- Department of Radiology, North Shore University Hospital, Manhasset, NY, USA
| | - Philip R Szeszko
- James J. Peters VA Medical Center, Mental Illness Research Education Clinical Center, Bronx, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Dezhina Z, Ranlund S, Kyriakopoulos M, Williams SCR, Dima D. A systematic review of associations between functional MRI activity and polygenic risk for schizophrenia and bipolar disorder. Brain Imaging Behav 2019; 13:862-877. [PMID: 29748770 PMCID: PMC6538577 DOI: 10.1007/s11682-018-9879-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic factors account for up to 80% of the liability for schizophrenia (SCZ) and bipolar disorder (BD). Genome-wide association studies have successfully identified several genes associated with increased risk for both disorders. This has allowed researchers to model the aggregate effect of genes associated with disease status and create a polygenic risk score (PGRS) for each individual. The interest in imaging genetics using PGRS has grown in recent years, with several studies now published. We have conducted a systematic review to examine the effects of PGRS of SCZ, BD and cross psychiatric disorders on brain function and connectivity using fMRI data. Results indicate that the effect of genetic load for SCZ and BD on brain function affects task-related recruitment, with frontal areas having a more prominent role, independent of task. Additionally, the results suggest that the polygenic architecture of psychotic disorders is not regionally confined but impacts on the task-dependent recruitment of multiple brain regions. Future imaging genetics studies with large samples, especially population studies, would be uniquely informative in mapping the spatial distribution of the genetic risk to psychiatric disorders on brain processes during various cognitive tasks and may lead to the discovery of biological pathways that could be crucial in mediating the link between genetic factors and alterations in brain networks.
Collapse
Affiliation(s)
- Zalina Dezhina
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Siri Ranlund
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marinos Kyriakopoulos
- National and Specialist Acorn Lodge Inpatient Children Unit, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Psychology, School of Arts and Social Sciences, City, University of London, 10 Northampton Square, London, EC1V 0HB, UK.
| |
Collapse
|
23
|
Ichinose M, Park S. Mechanisms Underlying Visuospatial Working Memory Impairments in Schizophrenia. Curr Top Behav Neurosci 2019; 41:345-367. [PMID: 31407240 DOI: 10.1007/7854_2019_99] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Working memory deficits are observed in the vast majority of individuals diagnosed with schizophrenia and those at risk for the disorder. Working memory impairments are present during the prodromal stage and persist throughout the course of schizophrenia. Given the importance of cognition in functional outcome, working memory deficits are an important therapeutic target for schizophrenia. This chapter examines mechanisms underlying working memory deficits in schizophrenia, focusing on the roles of perception and attention in the encoding process. Lastly, we present a comprehensive discussion of neural oscillation and internal noise in the context of the etiology of working memory deficits in schizophrenia and introduce noninvasive treatment strategies that could improve encoding processes.
Collapse
Affiliation(s)
- Megan Ichinose
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Sohee Park
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
24
|
Kustermann T, Popov T, Miller GA, Rockstroh B. Verbal working memory-related neural network communication in schizophrenia. Psychophysiology 2018; 55:e13088. [DOI: 10.1111/psyp.13088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/31/2018] [Accepted: 03/12/2018] [Indexed: 12/23/2022]
Affiliation(s)
| | - Tzvetan Popov
- Department of Psychology; University of Konstanz; Konstanz Germany
| | - Gregory A. Miller
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences; University of California Los Angeles; Los Angeles California USA
| | | |
Collapse
|
25
|
Zhou Y, Zeidman P, Wu S, Razi A, Chen C, Yang L, Zou J, Wang G, Wang H, Friston KJ. Altered intrinsic and extrinsic connectivity in schizophrenia. NEUROIMAGE-CLINICAL 2017; 17:704-716. [PMID: 29264112 PMCID: PMC5726753 DOI: 10.1016/j.nicl.2017.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/25/2017] [Accepted: 12/03/2017] [Indexed: 01/12/2023]
Abstract
Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia. A first use of hierarchical modeling of effective connectivity to characterize large-scale networks in schizophrenia. Intrinsic and extrinsic effective connectivity involving prefrontal regions were abnormal in schizophrenia. Diagnostic connections could predict the severity of clinical symptoms and cognition in schizophrenia.
Collapse
Affiliation(s)
- Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101,China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK.
| | - Peter Zeidman
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| | - Shihao Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Adeel Razi
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK; Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liuqing Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilin Zou
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Karl J Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
26
|
Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev 2017; 79:1-13. [DOI: 10.1016/j.neubiorev.2017.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
27
|
Lin PY, Wang PW, Chen CS, Yen CF. Neurocognitive function in clinically stable individuals with long-term bipolar I disorder: Comparisons with schizophrenia patients and controls. Kaohsiung J Med Sci 2017; 33:260-265. [PMID: 28433073 DOI: 10.1016/j.kjms.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
This study compared the levels of the five domains of neurocognitive function-executive function, attention, memory, verbal comprehension, and perceptual organization-among clinically stable individuals with long-term bipolar I disorder, individuals with long-term schizophrenia, and a group of controls. We recruited a total of 93 clinically stable individuals with bipolar I disorder, 94 individuals with schizophrenia, and 106 controls in this study. Their neurocognitive function was measured using a series of neurocognitive function tests: the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III), Line Cancellation Test, Visual Form Discrimination, Controlled Oral Word Association Test, Wisconsin Card Sorting Test, Continuous Performance Task, and Wechsler Memory Scale-Third Edition. Neurocognitive function was compared among the three groups through a multivariate analysis of variance. The results indicated that when the effect of age was controlled, clinically stable individuals with bipolar I disorder and those with schizophrenia demonstrated poor neurocognitive function on all tests except for the WAIS-III Similarity and Information and the Line Cancellation Test. The individuals with bipolar I disorder had similar levels of neurocognitive function compared with the schizophrenia group, but higher levels of neurocognitive function on the WAIS-III Comprehension, Controlled Oral Word Association Test, and Wechsler Memory Scale-Third Edition Auditory Immediate and Delayed Index and Visual Immediate and Delayed Index. The conclusions of this study suggest that compared with controls, individuals with long-term bipolar I disorder and those with long-term schizophrenia have poorer neurocognitive function, even when clinically stable. Individuals with long-term bipolar I disorder and those with long-term schizophrenia have similar levels of deficits in several domains of neurocognitive function.
Collapse
Affiliation(s)
- Pei-Yun Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Peng-Wei Wang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Sheng Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Fang Yen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, School of Medicine, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Falkenberg I, Valli I, Raffin M, Broome MR, Fusar-Poli P, Matthiasson P, Picchioni M, McGuire P. Pattern of activation during delayed matching to sample task predicts functional outcome in people at ultra high risk for psychosis. Schizophr Res 2017; 181:86-93. [PMID: 27693282 DOI: 10.1016/j.schres.2016.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Clinical outcomes in people identified as at ultra-high risk (UHR) for psychosis are remarkably heterogeneous, and are difficult to predict on the basis of the presenting clinical features. Individuals at UHR are at risk of poor functional outcome regardless of development of psychotic disorder. The aim of the present study was to assess whether there is a relationship between functional neuroimaging measures at presentation and functional outcome as measured by the GAF three years after scanning. METHODS Functional magnetic resonance imaging (fMRI) data were collected during an object working memory task in 34 ultra-high risk (UHR) subjects and 20 healthy controls. On the basis of their GAF scores at follow up, the UHR participants were divided into subgroups with good and poor functional outcomes, respectively. RESULTS At baseline, the UHR group differed from controls in showing altered frontal and cuneus/posterior cingulate activation. Significant group x task interactions were found in the left cuneus and posterior cingulate gyrus, reflecting differential responses to the task conditions. Within the UHR sample, the subgroup with a poor functional outcome exhibited altered activation in frontal, temporal and striatal regions, and reduced deactivation within default-mode network regions, relative to those with a good outcome. Within the whole UHR sample, in these regions the local task response was correlated with the GAF score at follow up. CONCLUSIONS The findings suggest a potential role of functional neuroimaging in the prediction of outcomes in people at high clinical risk of psychosis.
Collapse
Affiliation(s)
- Irina Falkenberg
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marie Raffin
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Child and Adolescent Psychiatry, Université Pierre et Marie Curie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Matthew R Broome
- Department of Psychiatry, University of Oxford, Oxford, UK; Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Pall Matthiasson
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Marco Picchioni
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
29
|
Wu S, Wang H, Chen C, Zou J, Huang H, Li P, Zhao Y, Xu Q, Zhang L, Wang H, Pandit S, Dahal S, Chen J, Zhou Y, Jiang T, Wang G. Task Performance Modulates Functional Connectivity Involving the Dorsolateral Prefrontal Cortex in Patients with Schizophrenia. Front Psychol 2017; 8:56. [PMID: 28289394 PMCID: PMC5326798 DOI: 10.3389/fpsyg.2017.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/10/2017] [Indexed: 01/25/2023] Open
Abstract
Previous studies have suggested that patients with schizophrenia and healthy controls exhibit differential activation of and connectivity involving the dorsolateral prefrontal cortex (DLPFC) during working memory tasks, though their findings remain inconsistent. The functional integration perspective further suggests that working memory performance also modulates differences in functional interactions of the DLPFC between patients and controls. To explore this possibility, 45 healthy controls and 45 patients with schizophrenia were recruited to perform a 2-back task during functional magnetic resonance imaging (fMRI). Each group was further divided into two subgroups based on task performance to examine the modulatory effect of performance on functional interactions of the DLPFC, as measured via psychophysiological interaction (PPI) analyses. We observed that, in patients with schizophrenia who exhibited impaired working memory capacity and decreased brain activation/deactivation, functional interactions between the right/left DLPFC and angular cortex were decreased relative to those of healthy controls. Furthermore, we observed an interaction effect of working memory performance and diagnosis on functional connectivity between the right/left DLPFC seed region and posterior regions such as the angular cortex, fusiform gyrus, and middle occipital gyrus. This interaction effect was mainly driven by the negative correlation between functional connectivity and performance in healthy controls, and by the positive correlation in patients with schizophrenia. These results demonstrate the effects of inter-individual differences in working memory performance on functional interactions between the DLPFC and posterior regions in patients with schizophrenia as well as healthy controls, which may shed new light on the neural basis of working memory.
Collapse
Affiliation(s)
- Shihao Wu
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan UniversityWuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated DiseaseWuhan, China
| | - Cheng Chen
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Jilin Zou
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Peifu Li
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Yilin Zhao
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Qizhong Xu
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Liang Zhang
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Hesheng Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Sanjib Pandit
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Subodh Dahal
- Department of Psychiatry, Renmin Hospital of Wuhan University Wuhan, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University Wuhan, China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral Science, Institute of PsychologyBeijing, China; Department of Psychology, University of Chinese Academy of SciencesBeijing, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automatuon, Chinese Academy of SciencesBeijing, China; Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and Technology of ChinaChengdu, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan UniversityWuhan, China; Hubei Institute of Neurology and Psychiatry ResearchWuhan, China; Hubei University of Science and TechnologyXianning, China
| |
Collapse
|
30
|
Fernández-Cabello S, Valls-Pedret C, Schurz M, Vidal-Piñeiro D, Sala-Llonch R, Bargallo N, Ros E, Bartrés-Faz D. White matter hyperintensities and cognitive reserve during a working memory task: a functional magnetic resonance imaging study in cognitively normal older adults. Neurobiol Aging 2016; 48:23-33. [DOI: 10.1016/j.neurobiolaging.2016.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/08/2016] [Accepted: 08/09/2016] [Indexed: 01/16/2023]
|
31
|
Wang L, Yan Y, Wang X, Tao L, Chen Q, Bian Y, He X, Liu Y, Ding W, Yu Y, Qiu B. Executive Function Alternations of Breast Cancer Patients After Chemotherapy: Evidence From Resting-state Functional MRI. Acad Radiol 2016; 23:1264-70. [PMID: 27346235 DOI: 10.1016/j.acra.2016.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
RATIONALE AND OBJECTIVES Chemotherapy has many side effects on breast cancer patients, including cognition and other brain functions impairment, which can be studied using functional magnetic resonance imaging (fMRI). Our study aimed at investigating the executive function alternations of breast cancer patients after chemotherapy using resting-state fMRI. MATERIALS AND METHODS This study included 32 breast cancer patients (BC group) and 24 control subjects (HC group). The functional connectivity of the dorsolateral prefrontal cortex (DLPFC) of the two groups was calculated from the resting-state fMRI data, and the correlation between the strength of the right DLPFC's connectivity and the behavior performance was analyzed with two-tailed Pearson correlative analysis. RESULTS Evaluation of the capability of processing various complex cognition events showed that the executive function of the BC group was impaired after chemotherapy in comparison with the HC group. The functional connectivities of the right DLPFC with the right inferior frontal gyrus, right medial frontal gyrus, and left superior temporal gyrus in the BC group were significantly decreased in comparison with those in the HC group, respectively. The executive deficits were found correlated with the functional connectivity between the right DLPFC and the right inferior frontal gyrus. Meantime, the functional connectivity from the right DLPFC to the right middle temporal gyrus and the precuneus was compensatorily increased in the BC group, respectively. CONCLUSIONS These findings suggest that breast cancer patients after chemotherapy demonstrate executive control impairment, and provide evidence that the observed defects are correlated with alternations in the executive network of the brain.
Collapse
Affiliation(s)
- Lu Wang
- Center for Biomedical Engineering, University of Science and Technology of China, Huangshan Rd. 443, Hefei, Anhui 230027, China
| | - Yunwen Yan
- Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaofeng Wang
- Department of Automation, SSI Schaefer Systems International Limited, Nanjing Branch, Nanjing, Jiangsu, China
| | - Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Jixi Rd. 218, Hefei, Anhui 230022, China
| | - Quan Chen
- Center for Biomedical Engineering, University of Science and Technology of China, Huangshan Rd. 443, Hefei, Anhui 230027, China
| | - Yunpeng Bian
- Center for Biomedical Engineering, University of Science and Technology of China, Huangshan Rd. 443, Hefei, Anhui 230027, China
| | - Xiaoxuan He
- Center for Biomedical Engineering, University of Science and Technology of China, Huangshan Rd. 443, Hefei, Anhui 230027, China
| | - Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Huangshan Rd. 443, Hefei, Anhui 230027, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Jixi Rd. 218, Hefei, Anhui 230022, China.
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Huangshan Rd. 443, Hefei, Anhui 230027, China; Anhui Computer Application Institute of Traditional Chinese Medicine, Meishan Rd. 103, Hefei, Anhui 230038, China.
| |
Collapse
|
32
|
Pu W, Luo Q, Palaniyappan L, Xue Z, Yao S, Feng J, Liu Z. Failed cooperative, but not competitive, interaction between large-scale brain networks impairs working memory in schizophrenia. Psychol Med 2016; 46:1211-1224. [PMID: 26743997 DOI: 10.1017/s0033291715002755] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND A large-scale network named the default mode network (DMN) dynamically cooperates and competes with an external attention system (EAS) to facilitate various cognitive functioning that is prominently impaired in schizophrenia. However, it is unclear whether the cognitive deficit in schizophrenia is related to the disrupted competition and/or cooperation between these two networks. METHOD A total of 35 schizophrenia patients and 30 healthy controls were scanned using gradient-echo echo-planar imaging during n-back working memory (WM) processing. Brain activities of the DMN and EAS were measured using general linear modelling of the functional magnetic resonance imaging data. Dynamic interaction between the DMN and EAS was decomposed into two directions using Granger causality analysis. RESULTS We observed a significant failure of DMN suppression in patients with schizophrenia, which was significantly related to WM/attentional deficit. Granger causality modelling showed that in healthy controls, while the EAS inhibitorily influenced the DMN, the DMN exerted an 'excitatory' or cooperative influence back on the EAS, especially in those with lower WM accuracy. In schizophrenia, this 'excitatory' DMN→EAS influence within the reciprocal EAS-DMN loop was significantly reduced, especially in patients with WM/attentional deficit. CONCLUSIONS The dynamic interaction between the DMN and EAS is likely to be comprised of both competitive and cooperative influences. In healthy controls, both the 'inhibitory' EAS→DMN interaction and 'excitatory' DMN→EAS interaction are correlated with WM performance. In schizophrenia, reduced 'cooperative' influence from the DMN to dorsal nodes of the EAS occurs in the context of non-suppression of the DMN and may form a possible pathophysiological substrate of WM deficit and attention disorder.
Collapse
Affiliation(s)
- W Pu
- Medical Psychological Institute,Second Xiangya Hospital,Central South University,Changsha,People's Republic of China
| | - Q Luo
- School of Life Sciences,Fudan University,Shanghai,People's Republic of China
| | - L Palaniyappan
- Department of Psychiatry,Schulich School of Medicine and Dentistry,University of Western Ontario,London,Ontario,Canada
| | - Z Xue
- Institute of Mental Health,Second Xiangya Hospital,Central South University,Changsha,People's Republic of China
| | - S Yao
- Medical Psychological Institute,Second Xiangya Hospital,Central South University,Changsha,People's Republic of China
| | - J Feng
- School of Life Sciences,Fudan University,Shanghai,People's Republic of China
| | - Z Liu
- Institute of Mental Health,Second Xiangya Hospital,Central South University,Changsha,People's Republic of China
| |
Collapse
|
33
|
Dale CL, Brown EG, Fisher M, Herman AB, Dowling AF, Hinkley LB, Subramaniam K, Nagarajan SS, Vinogradov S. Auditory Cortical Plasticity Drives Training-Induced Cognitive Changes in Schizophrenia. Schizophr Bull 2016; 42:220-8. [PMID: 26152668 PMCID: PMC4681549 DOI: 10.1093/schbul/sbv087] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenia is characterized by dysfunction in basic auditory processing, as well as higher-order operations of verbal learning and executive functions. We investigated whether targeted cognitive training of auditory processing improves neural responses to speech stimuli, and how these changes relate to higher-order cognitive functions. Patients with schizophrenia performed an auditory syllable identification task during magnetoencephalography before and after 50 hours of either targeted cognitive training or a computer games control. Healthy comparison subjects were assessed at baseline and after a 10 week no-contact interval. Prior to training, patients (N = 34) showed reduced M100 response in primary auditory cortex relative to healthy participants (N = 13). At reassessment, only the targeted cognitive training patient group (N = 18) exhibited increased M100 responses. Additionally, this group showed increased induced high gamma band activity within left dorsolateral prefrontal cortex immediately after stimulus presentation, and later in bilateral temporal cortices. Training-related changes in neural activity correlated with changes in executive function scores but not verbal learning and memory. These data suggest that computerized cognitive training that targets auditory and verbal learning operations enhances both sensory responses in auditory cortex as well as engagement of prefrontal regions, as indexed during an auditory processing task with low demands on working memory. This neural circuit enhancement is in turn associated with better executive function but not verbal memory.
Collapse
Affiliation(s)
- Corby L. Dale
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA;,Northern California Institute for Research and Education (NCIRE), San Francisco Veterans’ Affairs Medical Center, San Francisco, CA;,*To whom correspondence should be addressed; Biomagnetic Imaging Laboratory Box 0628, 513 Parnassus Avenue, S362, San Francisco, CA 94143-0628, US; tel: (415) 476-6888, fax: (415) 502-4302, e-mail:
| | | | - Melissa Fisher
- Northern California Institute for Research and Education (NCIRE), San Francisco Veterans’ Affairs Medical Center, San Francisco, CA;,Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| | - Alexander B. Herman
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA;,UC Berkeley – UC San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Anne F. Dowling
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Leighton B. Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Karuna Subramaniam
- Northern California Institute for Research and Education (NCIRE), San Francisco Veterans’ Affairs Medical Center, San Francisco, CA;,Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA;,UC Berkeley – UC San Francisco Graduate Program in Bioengineering, San Francisco, CA
| | - Sophia Vinogradov
- Northern California Institute for Research and Education (NCIRE), San Francisco Veterans’ Affairs Medical Center, San Francisco, CA;,Department of Psychiatry, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
34
|
Wang L, Alpert KI, Calhoun VD, Cobia DJ, Keator DB, King MD, Kogan A, Landis D, Tallis M, Turner MD, Potkin SG, Turner JA, Ambite JL. SchizConnect: Mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration. Neuroimage 2016; 124:1155-1167. [PMID: 26142271 PMCID: PMC4651768 DOI: 10.1016/j.neuroimage.2015.06.065] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/19/2015] [Accepted: 06/23/2015] [Indexed: 02/02/2023] Open
Abstract
SchizConnect (www.schizconnect.org) is built to address the issues of multiple data repositories in schizophrenia neuroimaging studies. It includes a level of mediation--translating across data sources--so that the user can place one query, e.g. for diffusion images from male individuals with schizophrenia, and find out from across participating data sources how many datasets there are, as well as downloading the imaging and related data. The current version handles the Data Usage Agreements across different studies, as well as interpreting database-specific terminologies into a common framework. New data repositories can also be mediated to bring immediate access to existing datasets. Compared with centralized, upload data sharing models, SchizConnect is a unique, virtual database with a focus on schizophrenia and related disorders that can mediate live data as information is being updated at each data source. It is our hope that SchizConnect can facilitate testing new hypotheses through aggregated datasets, promoting discovery related to the mechanisms underlying schizophrenic dysfunction.
Collapse
Affiliation(s)
- Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA; Department of Psychiatry, University of New Mexico, Albuquerque, NM, USA; Department of Psychiatry, School of Medicine, Yale University, New Haven, CT, USA
| | - Derin J Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David B Keator
- Brain Imaging Center, University of California, Irvine, CA, USA
| | | | - Alexandr Kogan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Drew Landis
- The Mind Research Network, Albuquerque, NM, USA
| | - Marcelo Tallis
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
| | - Matthew D Turner
- Department of Computer Science, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Steven G Potkin
- Brain Imaging Center, University of California, Irvine, CA, USA; Department of Psychiatry & Human Behavior, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Jessica A Turner
- The Mind Research Network, Albuquerque, NM, USA; Department of Psychology, Georgia State University, Atlanta, GA, USA; Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA; Digital Government Research Center, University of Southern California, Los Angeles, CA, USA; Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Brandt CL, Doan NT, Tønnesen S, Agartz I, Hugdahl K, Melle I, Andreassen OA, Westlye LT. Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis. Neuroimage Clin 2015; 9:253-63. [PMID: 26509112 PMCID: PMC4576364 DOI: 10.1016/j.nicl.2015.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/17/2015] [Accepted: 08/17/2015] [Indexed: 01/01/2023]
Abstract
Schizophrenia (SZ) is a psychotic disorder with significant cognitive dysfunction. Abnormal brain activation during cognitive processing has been reported, both in task-positive and task-negative networks. Further, structural cortical and subcortical brain abnormalities have been documented, but little is known about how task-related brain activation is associated with brain anatomy in SZ compared to healthy controls (HC). Utilizing linked independent component analysis (LICA), a data-driven multimodal analysis approach, we investigated structure-function associations in a large sample of SZ (n = 96) and HC (n = 142). We tested for associations between task-positive (fronto-parietal) and task-negative (default-mode) brain networks derived from fMRI activation during an n-back working memory task, and brain structural measures of surface area, cortical thickness, and gray matter volume, and to what extent these associations differed in SZ compared to HC. A significant association (p < .05, corrected for multiple comparisons) was found between a component reflecting the task-positive fronto-parietal network and another component reflecting cortical thickness in fronto-temporal brain regions in SZ, indicating increased activation with increased thickness. Other structure-function associations across, between and within groups were generally moderate and significant at a nominal p-level only, with more numerous and stronger associations in SZ compared to HC. These results indicate a complex pattern of moderate associations between brain activation during cognitive processing and brain morphometry, and extend previous findings of fronto-temporal brain abnormalities in SZ by suggesting a coupling between cortical thickness of these brain regions and working memory-related brain activation.
Collapse
Affiliation(s)
- Christine Lycke Brandt
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Siren Tønnesen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway ; Department of Psychiatric Research, Diakonhjemmet Hospital, Diakonhjemmet, Norway ; Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden
| | - Kenneth Hugdahl
- Norwegian Centre for Mental Disorders Research, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway ; Division of Psychiatry, Haukeland University Hospital, Haukeland, Norway ; Department of Radiology, Haukeland University Hospital, Haukeland, Norway ; KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway ; Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Kogan A, Alpert K, Ambite JL, Marcus DS, Wang L. Northwestern University schizophrenia data sharing for SchizConnect: A longitudinal dataset for large-scale integration. Neuroimage 2015; 124:1196-1201. [PMID: 26087378 DOI: 10.1016/j.neuroimage.2015.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/06/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022] Open
Abstract
In this paper, we describe an instance of the Northwestern University Schizophrenia Data and Software Tool (NUSDAST), a schizophrenia-related dataset hosted at XNAT Central, and the SchizConnect data portal used for accessing and sharing the dataset. NUSDAST was built and extended upon existing, standard schemas available for data sharing on XNAT Central (http://central.xnat.org/). With the creation of SchizConnect, we were able to link NUSDAST to other neuroimaging data sources and create a powerful, federated neuroimaging resource.
Collapse
Affiliation(s)
- Alex Kogan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jose Luis Ambite
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA; Digital Government Research Center, Marina del Rey, CA, USA; Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
37
|
Abstract
Impairment on inhibitory tasks has been well documented in bipolar disorder (BD). Differences in cerebral blood flow (CBF) between BD patients and healthy comparison (HC) participants have also been reported. Few studies have examined the relationship between cognitive performance and regional CBF in this patient population. We hypothesized that group differences on an inhibitory task (the Delis-Kaplan Executive Function Scale's Color-Word Inhibition task) would be associated with differential CBF in bilateral anterior cingulate cortex (ACC), inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) regions. Whole brain resting CBF was measured using Multiphase Pseudocontinuous Arterial Spin Labeling MR imaging for 28 euthymic BD and 36 HC participants. Total gray matter (GM) CBF was measured, and regional CBF values were extracted for each region of interest (ROI) using Freesurfer-based individual parcellations. Group, CBF, and group-by-CBF interaction were examined as predictors of inhibition performance. Groups did not differ in age, gender or education. BD patients performed significantly worse on Color-Word inhibition. There were no significant group differences in CBF in either total GM or in any ROI. There was a group by CBF interaction in the bilateral ACC, right IPL and right DLPFC such that better inhibitory performance was generally associated with higher resting state CBF in BD subjects, but not HC participants. Although CBF was not abnormal in this euthymic BD sample, results confirm previous reports of inter-episode inhibitory deficits and indicate that the perfusion-cognition relationship is different in BD compared to HC individuals.
Collapse
|
38
|
Xiao Y, Lui S, Deng W, Yao L, Zhang W, Li S, Wu M, Xie T, He Y, Huang X, Hu J, Bi F, Li T, Gong Q. Altered cortical thickness related to clinical severity but not the untreated disease duration in schizophrenia. Schizophr Bull 2015; 41:201-10. [PMID: 24353097 PMCID: PMC4266280 DOI: 10.1093/schbul/sbt177] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although previous studies have reported deficits in the gray matter volume of schizophrenic patients, it remains unclear whether these deficits occur at the onset of the disease, before treatment, and whether they are progressive over the duration of untreated disease. Furthermore, the gray matter volume represents the combinations of cortical thickness and surface area; these features are believed to be influenced by different genetic factors. However, cortical thickness and surface area in antipsychotic-naive first-episode schizophrenic patients have seldom been investigated. Here, the cortical thicknesses and surface areas of 128 antipsychotic-naive first-episode schizophrenic patients were compared with 128 healthy controls. The patients exhibited significantly lower cortical thickness, primarily in the bilateral prefrontal and parietal cortex, and increased thickness in the bilateral anterior temporal lobes, left medial orbitofrontal cortex, and left cuneus. Furthermore, decreased cortical thickness was related to positive schizophrenia symptoms but not to the severity of negative symptoms and the untreated disease duration. No significant difference of surface area was observed between the 2 groups. Thus, without the confounding factors of medication and illness progression, this study provides further evidence to support anatomical deficits in the prefrontal and parietal cortex early in course of the illness. The increased thicknesses of the bilateral anterior temporal lobes may represent a compensatory factor or may be an early-course neuronal pathology caused by preapoptotic osmotic changes or hypertrophy. Furthermore, these anatomical deficits are crucial to the pathogenesis of positive symptoms and relatively stable instead of progressing during the early stages of the disease.
Collapse
Affiliation(s)
- Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China;,These authors contributed equally to the article
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China;
| | - Wei Deng
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China;,These authors contributed equally to the article
| | - Li Yao
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China;,These authors contributed equally to the article
| | - Wenjing Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China
| | - Shiguang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China
| | - Teng Xie
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China
| | - Junmei Hu
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feng Bi
- Department of Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Tao Li
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, The Center for Medical Imaging, West China Hospital of Sichuan University, 37 Guo Xuexiang, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Walton E, Liu J, Hass J, White T, Scholz M, Roessner V, Gollub R, Calhoun VD, Ehrlich S. MB-COMT promoter DNA methylation is associated with working-memory processing in schizophrenia patients and healthy controls. Epigenetics 2014; 9:1101-7. [PMID: 24837210 DOI: 10.4161/epi.29223] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many genetic studies report mixed results both for the associations between COMT polymorphisms and schizophrenia and for the effects of COMT variants on common intermediate phenotypes of the disorder. Reasons for this may include small genetic effect sizes and the modulation of environmental influences. To improve our understanding of the role of COMT in the disease etiology, we investigated the effect of DNA methylation in the MB-COMT promoter on neural activity in the dorsolateral prefrontal cortex during working memory processing as measured by fMRI - an intermediate phenotype for schizophrenia. Imaging and epigenetic data were measured in 102 healthy controls and 82 schizophrenia patients of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia. Neural activity during the Sternberg Item Recognition Paradigm was acquired with either a 3T Siemens Trio or 1.5T Siemens Sonata and analyzed using the FMRIB Software Library (FSL). DNA methylation measurements were derived from cryo-conserved blood samples. We found a positive association between MB-COMT promoter methylation and neural activity in the left dorsolateral prefrontal cortex in a model using a region-of-interest approach and could confirm this finding in a whole-brain model. This effect was independent of disease status. Analyzing the effect of MB-COMT promoter DNA methylation on a neuroimaging phenotype can provide further evidence for the importance of COMT and epigenetic risk mechanisms in schizophrenia. The latter may represent trans-regulatory or environmental risk factors that can be measured using brain-based intermediate phenotypes.
Collapse
Affiliation(s)
- Esther Walton
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany
| | - Jingyu Liu
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute; Albuquerque, NM USA
| | - Johanna Hass
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany
| | - Tonya White
- Department of Child and Adolescent Psychiatry; Erasmus University; Rotterdam, The Netherlands
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology; University of Leipzig; Leipzig, Germany; LIFE Research Center for Civilization Diseases; University of Leipzig; Leipzig, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany
| | - Randy Gollub
- Department of Psychiatry; Massachusetts General Hospital/Harvard Medical School; Boston, MA USA; MGH/MIT/HMS Martinos Center for Biomedical Imaging; Massachusetts General Hospital; Charlestown, MA USA
| | - Vince D Calhoun
- The Mind Research Network and Lovelace Biomedical and Environmental Research Institute; Albuquerque, NM USA; Department of Electrical and Computer Engineering; University of New Mexico; Albuquerque, NM USA
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry; Translational Developmental Neuroscience Section; TU Dresden; Dresden, Germany; Department of Psychiatry; Massachusetts General Hospital/Harvard Medical School; Boston, MA USA; MGH/MIT/HMS Martinos Center for Biomedical Imaging; Massachusetts General Hospital; Charlestown, MA USA
| |
Collapse
|
40
|
Dyck M, Loughead J, Gur RC, Schneider F, Mathiak K. Hyperactivation balances sensory processing deficits during mood induction in schizophrenia. Soc Cogn Affect Neurosci 2014; 9:167-75. [PMID: 23051903 PMCID: PMC3907924 DOI: 10.1093/scan/nss120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/04/2012] [Indexed: 11/14/2022] Open
Abstract
While impairments in emotion recognition are consistently reported in schizophrenia, there is some debate on the experience of emotion. Only few studies investigated neural correlates of emotional experience in schizophrenia. The present functional magnetic resonance imaging study compared a standard visual mood induction paradigm with an audiovisual method aimed at eliciting emotions more automatically. To investigate the interplay of sensory, cognitive and emotional mechanisms during emotion experience, we examined connectivity patterns between brain areas. Sixteen schizophrenia patients and sixteen healthy subjects participated in two different mood inductions (visual and audiovisual) that were administered for different emotions (happiness, sadness and neutral). Confirming the dissociation of behavioral and neural correlates of emotion experience, patients rated their mood similarly to healthy subjects but showed differences in neural activations. Sensory brain areas were activated less, increased activity emerged in higher cortical areas, particularly during audiovisual stimulation. Connectivity was increased between primary and secondary sensory processing areas in schizophrenia. These findings support the hypothesis of a deficit in filtering and processing sensory information alongside increased higher-order cognitive effort compensating for perception deficits in the affective domain. This may suffice to recover emotion experience in ratings of clinically stable patients but may fail during acute psychosis.
Collapse
Affiliation(s)
- Miriam Dyck
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany.
| | | | | | | | | |
Collapse
|
41
|
Wang L, Kogan A, Cobia D, Alpert K, Kolasny A, Miller MI, Marcus D. Northwestern University Schizophrenia Data and Software Tool (NUSDAST). Front Neuroinform 2013; 7:25. [PMID: 24223551 PMCID: PMC3819522 DOI: 10.3389/fninf.2013.00025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/12/2013] [Indexed: 11/13/2022] Open
Abstract
The schizophrenia research community has invested substantial resources on collecting, managing and sharing large neuroimaging datasets. As part of this effort, our group has collected high resolution magnetic resonance (MR) datasets from individuals with schizophrenia, their non-psychotic siblings, healthy controls and their siblings. This effort has resulted in a growing resource, the Northwestern University Schizophrenia Data and Software Tool (NUSDAST), an NIH-funded data sharing project to stimulate new research. This resource resides on XNAT Central, and it contains neuroimaging (MR scans, landmarks and surface maps for deep subcortical structures, and FreeSurfer cortical parcellation and measurement data), cognitive (cognitive domain scores for crystallized intelligence, working memory, episodic memory, and executive function), clinical (demographic, sibling relationship, SAPS and SANS psychopathology), and genetic (20 polymorphisms) data, collected from more than 450 subjects, most with 2-year longitudinal follow-up. A neuroimaging mapping, analysis and visualization software tool, CAWorks, is also part of this resource. Moreover, in making our existing neuroimaging data along with the associated meta-data and computational tools publically accessible, we have established a web-based information retrieval portal that allows the user to efficiently search the collection. This research-ready dataset meaningfully combines neuroimaging data with other relevant information, and it can be used to help facilitate advancing neuroimaging research. It is our hope that this effort will help to overcome some of the commonly recognized technical barriers in advancing neuroimaging research such as lack of local organization and standard descriptions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Alex Kogan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Derin Cobia
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicago, IL, USA
| | - Anthony Kolasny
- Department of Biomedical Engineering, Center for Imaging Science, Johns Hopkins UniversityBaltimore, MD, USA
| | - Michael I. Miller
- Department of Biomedical Engineering, Center for Imaging Science, Johns Hopkins UniversityBaltimore, MD, USA
| | - Daniel Marcus
- Department of Radiology, Washington University School of MedicineSt. Louis, MO, USA
- Department of Psychology, Washington University School of MedicineSt. Louis, MO, USA
| |
Collapse
|
42
|
Turner JA, Damaraju E, van Erp TGM, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, Bustillo J, McEwen S, Potkin SG, Fbirn, Calhoun VD. A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Front Neurosci 2013; 7:137. [PMID: 23964193 PMCID: PMC3737471 DOI: 10.3389/fnins.2013.00137] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/16/2013] [Indexed: 01/06/2023] Open
Abstract
Background: This multi-site study compares resting state fMRI amplitude of low frequency fluctuations (ALFF) and fractional ALFF (fALFF) between patients with schizophrenia (SZ) and healthy controls (HC). Methods: Eyes-closed resting fMRI scans (5:38 min; n = 306, 146 SZ) were collected from 6 Siemens 3T scanners and one GE 3T scanner. Imaging data were pre-processed using an SPM pipeline. Power in the low frequency band (0.01–0.08 Hz) was calculated both for the original pre-processed data as well as for the pre-processed data after regressing out the six rigid-body motion parameters, mean white matter (WM) and cerebral spinal fluid (CSF) signals. Both original and regressed ALFF and fALFF measures were modeled with site, diagnosis, age, and diagnosis × age interactions. Results: Regressing out motion and non-gray matter signals significantly decreased fALFF throughout the brain as well as ALFF in the cortical edge, but significantly increased ALFF in subcortical regions. Regression had little effect on site, age, and diagnosis effects on ALFF, other than to reduce diagnosis effects in subcortical regions. There were significant effects of site across the brain in all the analyses, largely due to vendor differences. HC showed greater ALFF in the occipital, posterior parietal, and superior temporal lobe, while SZ showed smaller clusters of greater ALFF in the frontal and temporal/insular regions as well as in the caudate, putamen, and hippocampus. HC showed greater fALFF compared with SZ in all regions, though subcortical differences were only significant for original fALFF. Conclusions: SZ show greater eyes-closed resting state low frequency power in frontal cortex, and less power in posterior lobes than do HC; fALFF, however, is lower in SZ than HC throughout the cortex. These effects are robust to multi-site variability. Regressing out physiological noise signals significantly affects both total and fALFF measures, but does not affect the pattern of case/control differences.
Collapse
Affiliation(s)
- Jessica A Turner
- Mind Research Network Albuquerque, NM, USA ; Department of Psychiatry, University of New Mexico Albuquerque, NM, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Squeglia LM, Pulido C, Wetherill RR, Jacobus J, Brown GG, Tapert SF. Brain response to working memory over three years of adolescence: influence of initiating heavy drinking. J Stud Alcohol Drugs 2013; 73:749-60. [PMID: 22846239 DOI: 10.15288/jsad.2012.73.749] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Many adolescents engage in heavy alcohol use. The aim of this study was to disentangle whether brain abnormalities seen in adolescent heavy drinkers are a consequence of heavy drinking, a preexisting risk factor for initiation of alcohol use, or both. METHOD Study 1 used cross-sectional functional magnetic resonance imaging (fMRI) visual working-memory (VWM) data from 15- to 19-year-olds (20 heavy drinkers, 20 controls) to identify brain regions affected by heavy adolescent alcohol use. Study 2 used longitudinal fMRI VWM data from 12- to 16-year-olds imaged before the onset of drinking and imaged again on the same scanner approximately 3 years later. Those who had transitioned into heavy drinking (n = 20) were matched to continuous nondrinkers (n = 20) on baseline alcohol risk and developmental factors (N = 40; 80 scans). RESULTS Study 1 found that heavy drinkers exhibited more frontal and parietal but less occipital activation than controls, defining the regions of interest for Study 2. In Study 2, adolescents who later transitioned into heavy drinking showed less fMRI response contrast at baseline than continuous nondrinkers, which increased after the onset of heavy drinking, in frontal (1,431 μL, p = .003; η² = .19) and parietal (810 μL, p = .005; η²= .23) regions, as in Study 1. Lower baseline activation in the frontal and parietal regions predicted subsequent substance use, more so than commonly observed predictors of youth drinking (p < .05). CONCLUSIONS Adolescents who initiated heavy drinking showed different brain activation before the onset of drinking, then less efficient information processing after high-dose alcohol use started. This suggests neural response patterns that could be risk factors for future substance use and also supports prior neuropsychological reports indicating that initiating heavy episodic drinking in adolescence may be followed by subtle alterations in brain functioning.
Collapse
Affiliation(s)
- Lindsay M Squeglia
- Department of Psychiatry, University of California San Diego, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|
44
|
Janoos F, Morocz IA, Brown G, Wells W. State-space analysis of working memory in schizophrenia: an fBIRN study. PSYCHOMETRIKA 2013; 78:279-307. [PMID: 25107617 PMCID: PMC4747099 DOI: 10.1007/s11336-012-9300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 04/03/2012] [Indexed: 05/31/2023]
Abstract
The neural correlates of working memory (WM) in schizophrenia (SZ) have been extensively studied using the multisite fMRI data acquired by the Functional Biomedical Informatics Research Network (fBIRN) consortium. Although univariate and multivariate analysis methods have been variously employed to localize brain responses under differing task conditions, important hypotheses regarding the representation of mental processes in the spatio-temporal patterns of neural recruitment and the differential organization of these mental processes in patients versus controls have not been addressed in this context. This paper uses a multivariate state-space model (SSM) to analyze the differential representation and organization of mental processes of controls and patients performing the Sternberg Item Recognition Paradigm (SIRP) WM task. The SSM is able to not only predict the mental state of the subject from the data, but also yield estimates of the spatial distribution and temporal ordering of neural activity, along with estimates of the hemodynamic response. The dynamical Bayesian modeling approach used in this study was able to find significant differences between the predictability and organization of the working memory processes of SZ patients versus healthy subjects. Prediction of some stimulus types from imaging data in the SZ group was significantly lower than controls, reflecting a greater level of disorganization/heterogeneity of their mental processes. Moreover, the changes in accuracy of predicting the mental state of the subject with respect to parametric modulations, such as memory load and task duration, may have important implications on the neurocognitive models for WM processes in both SZ and healthy adults. Additionally, the SSM was used to compare the spatio-temporal patterns of mental activity across subjects, in a holistic fashion and to derive a low-dimensional representation space for the SIRP task, in which subjects were found to cluster according to their diagnosis.
Collapse
Affiliation(s)
- Firdaus Janoos
- Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| | - Istvan A Morocz
- Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| | | | - William Wells
- Harvard Medical School and Brigham and Women’s Hospital, Boston, USA
| |
Collapse
|
45
|
Hyperfrontality and hypoconnectivity during refreshing in schizophrenia. Psychiatry Res 2013; 211:226-33. [PMID: 23137808 DOI: 10.1016/j.pscychresns.2012.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/24/2022]
Abstract
Anomalous activations of the prefrontal cortex (PFC) and posterior cerebral areas have been reported in previous studies of working memory in schizophrenia. Several interpretations have been reported: e.g., neural inefficiency, the use of different strategies and differences in the functional organization of the cerebral cortex. To better understand these abnormal activations, we investigated the cerebral bases of a working memory component process, namely refreshing (i.e., thinking briefly of a just-activated representation). Fifteen patients with schizophrenia and 15 control subjects participated in this functional magnetic resonance imaging (fMRI) study. Participants were told that whenever they saw a word on the screen, they had to read it silently to themselves (read and repeat conditions), and when they saw a dot, they had to think of the just-previous word (refresh condition). The refresh condition (in comparison with the read condition) was associated with significantly increased activation in the left inferior frontal gyrus and significantly decreased connectivity within the prefrontal cortex and between the prefrontal and parietal cortices in patients with schizophrenia in comparison with control subjects. These results suggest that prefrontal dysfunctions in schizophrenia might be related to a defective ability to initiate (rather than to execute) specific cognitive processes.
Collapse
|
46
|
Linden DE, Lancaster TM, Wolf C, Baird A, Jackson MC, Johnston SJ, Donev R, Thome J. ZNF804A genotype modulates neural activity during working memory for faces. Neuropsychobiology 2013; 67:84-92. [PMID: 23295962 PMCID: PMC3928999 DOI: 10.1159/000344001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 09/29/2012] [Indexed: 01/20/2023]
Abstract
BACKGROUND Genetic susceptibility to schizophrenia (SZ) has been suggested to influence the cortical systems supporting working memory (WM) and face processing. Genetic imaging studies link the SZ risk variant rs1344706 on the ZNF804A gene to psychosis via alterations in functional brain connectivity during WM, but no work has looked at the effects of ZNF804A on WM with face-processing components. METHODS We therefore investigated healthy controls that were genotyped for rs1344706 with a face WM task during functional magnetic resonance imaging. We suggested that variation at the rs1344706 locus would be associated with similar alterations as patients previously tested using the same WM task for faces. RESULTS The rs1344706 risk allele was indeed associated with altered activation in the right dorsolateral prefrontal (rDLPFC) cortex. We established that the rDLPFC was activated in a task-dependent manner, suggesting that the differences in activation between rs1344706 genotype groups reflected alterations in task processing. Furthermore, we demonstrated that the rDLPFC region showed significant volumetric overlap with the rDLPFC which had previously been reported to be altered during task processing for patients with SZ. CONCLUSIONS The findings support an association between rs1344706 and alterations in DLPFC activity during WM for faces. We further suggest that WM for faces may be a useful intermediate phenotype in the investigation of genetic susceptibility to psychosis.
Collapse
Affiliation(s)
- David E.J. Linden
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Bangor, UK,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Bangor, UK,David E.J. Linden, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF14 4XN (UK), E-Mail LindenD©cardiff.ac.uk
| | - Thomas M. Lancaster
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, Bangor, UK,School of Medical Sciences Neuroscience, School of Psychology, Bangor University, Bangor, UK
| | - Claudia Wolf
- Wolfson Centre for Cognitive and Clinical Neuroscience, School of Psychology, Bangor University, Bangor, UK
| | - Alison Baird
- Laboratory of Molecular Psychiatry and Pharmacology, Institute of Life Science, School of Medicine, Swansea, UK
| | - Margaret C. Jackson
- Wolfson Centre for Cognitive and Clinical Neuroscience, School of Psychology, Bangor University, Bangor, UK
| | | | - Rossen Donev
- Laboratory of Molecular Psychiatry and Pharmacology, Institute of Life Science, School of Medicine, Swansea, UK
| | - Johannes Thome
- Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
| |
Collapse
|
47
|
Jogia J, Dima D, Kumari V, Frangou S. Frontopolar cortical inefficiency may underpin reward and working memory dysfunction in bipolar disorder. World J Biol Psychiatry 2012; 13:605-15. [PMID: 21812622 DOI: 10.3109/15622975.2011.585662] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Emotional dysregulation in bipolar disorder is thought to arise from dysfunction within prefrontal cortical regions involved in cognitive control coupled with increased or aberrant activation within regions engaged in emotional processing. The aim of this study was to determine the common and distinct patterns of functional brain abnormalities during reward and working memory processing in patients with bipolar disorder. METHODS Participants were 36 euthymic bipolar disorder patients and 37 healthy comparison subjects matched for age, sex and IQ. Functional magnetic resonance imaging (fMRI) was conducted during the Iowa Gambling Task (IGT) and the n-back working memory task. RESULTS During both tasks, patients with bipolar disorder demonstrated a pattern of inefficient engagement within the ventral frontopolar prefrontal cortex with evidence of segregation along the medial-lateral dimension for reward and working memory processing, respectively. Moreover, patients also showed greater activation in the anterior cingulate cortex during the Iowa Gambling Task and in the insula during the n-back task. CONCLUSIONS Our data implicate ventral frontopolar dysfunction as a core abnormality underpinning bipolar disorder and confirm that overactivation in regions involved in emotional arousal is present even in tasks that do not typically engage emotional systems.
Collapse
Affiliation(s)
- Jigar Jogia
- Section of Neurobiology of Psychosis, Department of Psychosis Studies, Kings College London, London, UK.
| | | | | | | |
Collapse
|
48
|
Ehrlich S, Brauns S, Yendiki A, Ho BC, Calhoun V, Schulz SC, Gollub RL, Sponheim SR. Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr Bull 2012; 38:1050-62. [PMID: 21436318 PMCID: PMC3446215 DOI: 10.1093/schbul/sbr018] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have found varying relationships between cognitive functioning and brain volumes in patients with schizophrenia. However, cortical thickness may more closely reflect cytoarchitectural characteristics than gray matter density or volume estimates. Here, we aimed to compare associations between regional variation in cortical thickness and executive functions, memory, as well as verbal and spatial processing in patients with schizophrenia and healthy controls (HCs). We obtained magnetic resonance imaging and neuropsychological data for 131 patients and 138 matched controls. Automated cortical pattern matching methods allowed testing for associations with cortical thickness estimated as the shortest distance between the gray/white matter border and the pial surface at thousands of points across the entire cortical surface. Two independent measures of working memory showed robust associations with cortical thickness in lateral prefrontal cortex in HCs, whereas patients exhibited associations between working memory and cortical thickness in the right middle and superior temporal lobe. This study provides additional evidence for a disrupted structure-function relationship in schizophrenia. In line with the prefrontal inefficiency hypothesis, schizophrenia patients may engage a larger compensatory network of brain regions other than frontal cortex to recall and manipulate verbal material in working memory.
Collapse
Affiliation(s)
- Stefan Ehrlich
- Psychiatric Neuroimaging Research Program, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129-2000, USA.
| | - Stefan Brauns
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Anastasia Yendiki
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA
| | - Beng-Choon Ho
- Department of Psychiatry, University of Iowa, Iowa City, IA
| | - Vince Calhoun
- The Mind Research Network, Image Analysis and MR Research, Albuquerque, NM,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - S. Charles Schulz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Randy L. Gollub
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA,Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA
| | - Scott R. Sponheim
- Department of Psychiatry, University of Minnesota, Minneapolis, MN,Veterans Affairs Medical Center, Minneapolis, MN
| |
Collapse
|
49
|
Shad MU, Keshavan MS, Steinberg JL, Mihalakos P, Thomas BP, Motes MA, Soares JC, Tamminga CA. Neurobiology of self-awareness in schizophrenia: an fMRI study. Schizophr Res 2012; 138:113-9. [PMID: 22480958 PMCID: PMC3372627 DOI: 10.1016/j.schres.2012.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 11/16/2022]
Abstract
Self-awareness (SA) is one of the core domains of higher cortical functions and is frequently compromised in schizophrenia. Deficits in SA have been associated with functional and psychosocial impairment in this patient population. However, despite its clinical significance, only a few studies have examined the neural substrates of self-referential processing in schizophrenia. The aim of this study was to assess self-awareness in schizophrenia using a functional magnetic resonance imaging (fMRI) paradigm designed to elicit judgments of self-reference in a simulated social context. While scanned, volunteers looked at visually-displayed sentences that had the volunteer's own first name (self-directed sentence-stimulus) or an unknown other person's first name (other-directed sentence stimulus) as the grammatical subject of the sentence. The volunteers were asked to discern whether each sentence-stimulus was about the volunteer personally (during a self-referential cue epoch) or asked whether each statement was about someone else (during an other-referential cue epoch). We predicted that individuals with schizophrenia would demonstrate altered functional activation to self- and other-directed sentence-stimuli as compared to controls. Fifteen controls and seventeen schizophrenia volunteers completed clinical assessments and SA fMRI task on a 3T Philips 3.0 T Achieva system. The results showed significantly greater activation in schizophrenia compared to controls for cortical midline structures in response to self- vs. other-directed sentence-stimuli. These findings support results from earlier studies and demonstrate selective alteration in the activation of cortical midline structures associated with evaluations of self-reference in schizophrenia as compared to controls.
Collapse
Affiliation(s)
- Mujeeb U. Shad
- The University of Texas Health Science Center, Houston, TX
| | | | | | | | | | | | - Jair C. Soares
- The University of Texas Health Science Center, Houston, TX
| | | |
Collapse
|
50
|
Altered small-world brain networks in schizophrenia patients during working memory performance. PLoS One 2012. [PMID: 22701611 DOI: 10.1371/journal.pone.0038195.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Impairment of working memory (WM) performance in schizophrenia patients (SZ) is well-established. Compared to healthy controls (HC), SZ patients show aberrant blood oxygen level dependent (BOLD) activations and disrupted functional connectivity during WM performance. In this study, we examined the small-world network metrics computed from functional magnetic resonance imaging (fMRI) data collected as 35 HC and 35 SZ performed a Sternberg Item Recognition Paradigm (SIRP) at three WM load levels. Functional connectivity networks were built by calculating the partial correlation on preprocessed time courses of BOLD signal between task-related brain regions of interest (ROIs) defined by group independent component analysis (ICA). The networks were then thresholded within the small-world regime, resulting in undirected binarized small-world networks at different working memory loads. Our results showed: 1) at the medium WM load level, the networks in SZ showed a lower clustering coefficient and less local efficiency compared with HC; 2) in SZ, most network measures altered significantly as the WM load level increased from low to medium and from medium to high, while the network metrics were relatively stable in HC at different WM loads; and 3) the altered structure at medium WM load in SZ was related to their performance during the task, with longer reaction time related to lower clustering coefficient and lower local efficiency. These findings suggest brain connectivity in patients with SZ was more diffuse and less strongly linked locally in functional network at intermediate level of WM when compared to HC. SZ show distinctly inefficient and variable network structures in response to WM load increase, comparing to stable highly clustered network topologies in HC.
Collapse
|