1
|
Khosroshahi PA, Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111081. [PMID: 39002925 DOI: 10.1016/j.pnpbp.2024.111081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia is a complex psychiatric disorder, and genetic and environmental factors have been implicated in its development. Dysregulated glutamatergic and dopaminergic transmission pathways are involved in schizophrenia development. Besides genetic mutations, epigenetic dysregulation has a considerable role in dysregulating molecular pathways involved in schizophrenia. MicroRNAs (miRNAs) are small, non-coding RNAs that target specific mRNAs and inhibit their translation into proteins. As epigenetic factors, miRNAs regulate many genes involved in glutamate and dopamine signaling pathways; thereby, their dysregulation can contribute to the development of schizophrenia. Secretion of specific miRNAs from damaged cells into body fluids can make them one of the ideal non-invasive biomarkers in the early diagnosis of schizophrenia. Also, understanding the molecular mechanisms of miRNAs in schizophrenia pathogenesis can pave the way for developing novel treatments for patients with schizophrenia. In this study, we reviewed the glutamatergic and dopaminergic pathophysiology and highlighted the role of miRNA dysregulation in schizophrenia development. Besides, we shed light on the significance of circulating miRNAs for schizophrenia diagnosis and the recent findings on the miRNA-based treatment for schizophrenia.
Collapse
Affiliation(s)
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Liu M, Wang L, Zhang Y, Dong H, Wang C, Chen Y, Qian Q, Zhang N, Wang S, Zhao G, Zhang Z, Lei M, Wang S, Zhao Q, Liu F. Investigating the shared genetic architecture between depression and subcortical volumes. Nat Commun 2024; 15:7647. [PMID: 39223129 PMCID: PMC11368965 DOI: 10.1038/s41467-024-52121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Depression, a widespread and highly heritable mental health condition, profoundly affects millions of individuals worldwide. Neuroimaging studies have consistently revealed volumetric abnormalities in subcortical structures associated with depression. However, the genetic underpinnings shared between depression and subcortical volumes remain inadequately understood. Here, we investigate the extent of polygenic overlap using the bivariate causal mixture model (MiXeR), leveraging summary statistics from the largest genome-wide association studies for depression (N = 674,452) and 14 subcortical volumetric phenotypes (N = 33,224). Additionally, we identify shared genomic loci through conditional/conjunctional FDR analyses. MiXeR shows that subcortical volumetric traits share a substantial proportion of genetic variants with depression, with 44 distinct shared loci identified by subsequent conjunctional FDR analysis. These shared loci are predominantly located in intronic regions (58.7%) and non-coding RNA intronic regions (25.4%). The 269 protein-coding genes mapped by these shared loci exhibit specific developmental trajectories, with the expression level of 55 genes linked to both depression and subcortical volumes, and 30 genes linked to cognitive abilities and behavioral symptoms. These findings highlight a shared genetic architecture between depression and subcortical volumetric phenotypes, enriching our understanding of the neurobiological underpinnings of depression.
Collapse
Affiliation(s)
- Mengge Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Geriatrics and Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoyang Dong
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Caihong Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qian Qian
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Nannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoshu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhihui Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghuan Lei
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Sijia Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Qiyu Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
3
|
Treccarichi S, Failla P, Vinci M, Musumeci A, Gloria A, Vasta A, Calabrese G, Papa C, Federico C, Saccone S, Calì F. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes (Basel) 2024; 15:306. [PMID: 38540364 PMCID: PMC10970690 DOI: 10.3390/genes15030306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
The UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans. Whole-exome sequencing analysis unveiled two compound heterozygous causative mutations within the UNC5C gene in a patient diagnosed with psychiatric disorders. In silico analysis demonstrated that neither of the observed variants affected the allosteric linkage between UNC5C and NTN1. In fact, these mutations are located within crucial cytoplasmic domains, specifically ZU5 and the region required for the netrin-mediated axon repulsion of neuronal growth cones. These domains play a critical role in forming the supramodular protein structure and directly interact with microtubules, thereby ensuring the functionality of the axon repulsion process. We emphasize that these mutations disrupt the aforementioned processes, thereby associating the UNC5C gene with psychiatric disorders for the first time and expanding the number of genes related to psychiatric disorders. Further research is required to validate the correlation of the UNC5C gene with psychiatric disorders, but we suggest including it in the genetic analysis of patients with psychiatric disorders.
Collapse
Affiliation(s)
- Simone Treccarichi
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Pinella Failla
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Antonino Musumeci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Angelo Gloria
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Anna Vasta
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Giuseppe Calabrese
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Carla Papa
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| | - Concetta Federico
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy;
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (S.T.); (P.F.); (M.V.); (A.M.); (A.G.); (A.V.); (G.C.); (C.P.); (F.C.)
| |
Collapse
|
4
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
5
|
Cline MM, Juarez B, Hunker A, Regiarto EG, Hariadi B, Soden ME, Zweifel LS. Netrin-1 regulates the balance of synaptic glutamate signaling in the adult ventral tegmental area. eLife 2023; 12:e83760. [PMID: 36927614 PMCID: PMC10023152 DOI: 10.7554/elife.83760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The axonal guidance cue netrin-1 serves a critical role in neural circuit development by promoting growth cone motility, axonal branching, and synaptogenesis. Within the adult mouse brain, expression of the gene encoding (Ntn1) is highly enriched in the ventral midbrain where it is expressed in both GABAergic and dopaminergic neurons, but its function in these cell types in the adult system remains largely unknown. To address this, we performed viral-mediated, cell-type specific CRISPR-Cas9 mutagenesis of Ntn1 in the ventral tegmental area (VTA) of adult mice. Ntn1 loss-of-function in either cell type resulted in a significant reduction in excitatory postsynaptic connectivity. In dopamine neurons, the reduced excitatory tone had a minimal phenotypic behavioral outcome; however, reduced glutamatergic tone on VTA GABA neurons induced behaviors associated with a hyperdopaminergic phenotype. Simultaneous loss of Ntn1 function in both cell types largely rescued the phenotype observed in the GABA-only mutagenesis. These findings demonstrate an important role for Ntn1 in maintaining excitatory connectivity in the adult midbrain and that a balance in this connectivity within two of the major cell types of the VTA is critical for the proper functioning of the mesolimbic system.
Collapse
Affiliation(s)
- Marcella M Cline
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Molecular and Cellular Biology Program, University of WashingtonSeattleUnited States
| | - Barbara Juarez
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Avery Hunker
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Ernesto G Regiarto
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Bryan Hariadi
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Marta E Soden
- Department of Pharmacology, University of WashingtonSeattleUnited States
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
6
|
Song X, Li R, Wang K, Bai Y, Xiao Y, Wang YP. Joint Sparse Collaborative Regression on Imaging Genetics Study of Schizophrenia. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1137-1146. [PMID: 35503837 PMCID: PMC10321021 DOI: 10.1109/tcbb.2022.3172289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The imaging genetics approach generates large amount of high dimensional and multi-modal data, providing complementary information for comprehensive study of Schizophrenia, a complex mental disease. However, at the same time, the variety of these data in structures, resolutions, and formats makes their integrative study a forbidding task. In this paper, we propose a novel model called Joint Sparse Collaborative Regression (JSCoReg), which can extract class-specific features from different health conditions/disease classes. We first evaluate the performance of feature selection in terms of Receiver operating characteristic curve and the area under the ROC curve in the simulation experiment. We demonstrate that the JSCoReg model can achieve higher accuracy compared with similar models including Joint Sparse Canonical Correlation Analysis and Sparse Collaborative Regression. We then applied the JSCoReg model to the analysis of schizophrenia dataset collected from the Mind Clinical Imaging Consortium. The JSCoReg enables us to better identify biomarkers associated with schizophrenia, which are verified to be both biologically and statistically significant.
Collapse
Affiliation(s)
- Xueli Song
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Rongpeng Li
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Kaiming Wang
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Yuntong Bai
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | - Yuzhu Xiao
- School of Sciences, Chang’an University, Xi’an, 710064, China
| | - Yu-ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
7
|
Wang Z, Su L, Wu T, Sun L, Sun Z, Wang Y, Li P, Cui G. Inhibition of MicroRNA-182/183 Cluster Ameliorates Schizophrenia by Activating the Axon Guidance Pathway and Upregulating DCC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9411276. [PMID: 36406766 PMCID: PMC9671740 DOI: 10.1155/2022/9411276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/14/2022] [Indexed: 09/21/2023]
Abstract
Schizophrenia (SZ) is a complex disorder caused by a variety of genetic and environmental factors. Mounting evidence suggests the involvement of microRNAs (miRNAs) in the pathology of SZ. Accordingly, the current study set out to investigate the possible implication of the miR-182/183 cluster, as well as its associated mechanism in the progression of SZ. Firstly, rat models of SZ were established by intraperitoneal injection of MK-801. Moreover, rat primary hippocampal neurons were exposed to MK-801 to simulate injury of hippocampal neurons. The expression of miR-182/183 or its putative target gene DCC was manipulated to examine their effects on SZ in vitro and in vivo. It was found that miR-182 and miR-183 were both highly expressed in peripheral blood of SZ patients and hippocampal tissues of SZ rats. In addition, the miR-182/183 cluster could target DDC and downregulate the expression of DDC. On the other hand, inhibition of the miR-182/183 cluster ameliorated SZ, as evidenced by elevated serum levels of NGF and BDNF, along with reductions in spontaneous activity, serum GFAP levels, and hippocampal neuronal apoptosis. Additionally, DCC was found to activate the axon guiding pathway and influence synaptic activity in hippocampal neurons. Collectively, our findings highlighted that inhibition of the miR-182/183 cluster could potentially attenuate SZ through DCC-dependent activation of the axon guidance pathway. Furthermore, inhibition of the miR-182/183 cluster may represent a potential target for the SZ treatment.
Collapse
Affiliation(s)
- Zhichao Wang
- Department of Academic Research, Qiqihar Medical University, Qiqihar 161000, China
| | - Lin Su
- Jiangxi Provincial Key Laboratory of Preventive Medicine School of Public Health, Nanchang University, Nanchang 330006, China
| | - Tong Wu
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Lei Sun
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Zhenghai Sun
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Yuchen Wang
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Ping Li
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| | - Guangcheng Cui
- Department of Psychology, Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
8
|
Zhang Y, Zhang H, Xiao L, Bai Y, Calhoun VD, Wang YP. Multi-Modal Imaging Genetics Data Fusion via a Hypergraph-Based Manifold Regularization: Application to Schizophrenia Study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2263-2272. [PMID: 35320094 PMCID: PMC9661879 DOI: 10.1109/tmi.2022.3161828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent studies show that multi-modal data fusion techniques combine information from diverse sources for comprehensive diagnosis and prognosis of complex brain disorder, often resulting in improved accuracy compared to single-modality approaches. However, many existing data fusion methods extract features from homogeneous networs, ignoring heterogeneous structural information among multiple modalities. To this end, we propose a Hypergraph-based Multi-modal data Fusion algorithm, namely HMF. Specifically, we first generate a hypergraph similarity matrix to represent the high-order relationships among subjects, and then enforce the regularization term based upon both the inter- and intra-modality relationships of the subjects. Finally, we apply HMF to integrate imaging and genetics datasets. Validation of the proposed method is performed on both synthetic data and real samples from schizophrenia study. Results show that our algorithm outperforms several competing methods, and reveals significant interactions among risk genes, environmental factors and abnormal brain regions.
Collapse
|
9
|
Casas BS, Arancibia-Altamirano D, Acevedo-La Rosa F, Garrido-Jara D, Maksaev V, Pérez-Monje D, Palma V. It takes two to tango: Widening our understanding of the onset of schizophrenia from a neuro-angiogenic perspective. Front Cell Dev Biol 2022; 10:946706. [PMID: 36092733 PMCID: PMC9448889 DOI: 10.3389/fcell.2022.946706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a chronic debilitating mental disorder characterized by perturbations in thinking, perception, and behavior, along with brain connectivity deficiencies, neurotransmitter dysfunctions, and loss of gray brain matter. To date, schizophrenia has no cure and pharmacological treatments are only partially efficacious, with about 30% of patients describing little to no improvement after treatment. As in most neurological disorders, the main descriptions of schizophrenia physiopathology have been focused on neural network deficiencies. However, to sustain proper neural activity in the brain, another, no less important network is operating: the vast, complex and fascinating vascular network. Increasing research has characterized schizophrenia as a systemic disease where vascular involvement is important. Several neuro-angiogenic pathway disturbances have been related to schizophrenia. Alterations, ranging from genetic polymorphisms, mRNA, and protein alterations to microRNA and abnormal metabolite processing, have been evaluated in plasma, post-mortem brain, animal models, and patient-derived induced pluripotent stem cell (hiPSC) models. During embryonic brain development, the coordinated formation of blood vessels parallels neuro/gliogenesis and results in the structuration of the neurovascular niche, which brings together physical and molecular signals from both systems conforming to the Blood-Brain barrier. In this review, we offer an upfront perspective on distinctive angiogenic and neurogenic signaling pathways that might be involved in the biological causality of schizophrenia. We analyze the role of pivotal angiogenic-related pathways such as Vascular Endothelial Growth Factor and HIF signaling related to hypoxia and oxidative stress events; classic developmental pathways such as the NOTCH pathway, metabolic pathways such as the mTOR/AKT cascade; emerging neuroinflammation, and neurodegenerative processes such as UPR, and also discuss non-canonic angiogenic/axonal guidance factor signaling. Considering that all of the mentioned above pathways converge at the Blood-Brain barrier, reported neurovascular alterations could have deleterious repercussions on overall brain functioning in schizophrenia.
Collapse
|
10
|
Cahill S, Chandola T, Hager R. Genetic Variants Associated With Resilience in Human and Animal Studies. Front Psychiatry 2022; 13:840120. [PMID: 35669264 PMCID: PMC9163442 DOI: 10.3389/fpsyt.2022.840120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Resilience is broadly defined as the ability to maintain or regain functioning in the face of adversity and is influenced by both environmental and genetic factors. The identification of specific genetic factors and their biological pathways underpinning resilient functioning can help in the identification of common key factors, but heterogeneities in the operationalisation of resilience have hampered advances. We conducted a systematic review of genetic variants associated with resilience to enable the identification of general resilience mechanisms. We adopted broad inclusion criteria for the definition of resilience to capture both human and animal model studies, which use a wide range of resilience definitions and measure very different outcomes. Analyzing 158 studies, we found 71 candidate genes associated with resilience. OPRM1 (Opioid receptor mu 1), NPY (neuropeptide Y), CACNA1C (calcium voltage-gated channel subunit alpha1 C), DCC (deleted in colorectal carcinoma), and FKBP5 (FKBP prolyl isomerase 5) had both animal and human variants associated with resilience, supporting the idea of shared biological pathways. Further, for OPRM1, OXTR (oxytocin receptor), CRHR1 (corticotropin-releasing hormone receptor 1), COMT (catechol-O-methyltransferase), BDNF (brain-derived neurotrophic factor), APOE (apolipoprotein E), and SLC6A4 (solute carrier family 6 member 4), the same allele was associated with resilience across divergent resilience definitions, which suggests these genes may therefore provide a starting point for further research examining commonality in resilience pathways.
Collapse
Affiliation(s)
- Stephanie Cahill
- Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Humanities, Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
| | - Tarani Chandola
- Faculty of Humanities, Cathie Marsh Institute for Social Research, The University of Manchester, Manchester, United Kingdom
- Methods Hub, Department of Sociology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Reinmar Hager
- Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Klune CB, Jin B, DeNardo LA. Linking mPFC circuit maturation to the developmental regulation of emotional memory and cognitive flexibility. eLife 2021; 10:e64567. [PMID: 33949949 PMCID: PMC8099425 DOI: 10.7554/elife.64567] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.
Collapse
Affiliation(s)
- Cassandra B Klune
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Neuroscience Interdepartmental Graduate Program, UCLALos AngelesUnited States
| | - Benita Jin
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
- Molecular, Cellular and Integrative Physiology Graduate Program, UCLALos AngelesUnited States
| | - Laura A DeNardo
- Physiology Department, David Geffen School of Medicine, UCLALos AngelesUnited States
| |
Collapse
|
12
|
MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Semin Cell Dev Biol 2021; 118:83-91. [PMID: 33933350 DOI: 10.1016/j.semcdb.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
In this review, we examine the role of microRNAs in the development of the prefrontal cortex (PFC) in adolescence and in individual differences in vulnerability to mental illness. We describe results from clinical and preclinical research indicating that adolescence coincides with drastic changes in local microRNA expression, including microRNAs that control gene networks involved in PFC and cognitive refinement. We highlight that altered levels of microRNAs in the PFC are associated with psychopathologies of adolescent onset, notably depression and schizophrenia. We show that microRNAs can be measured non-invasively in peripheral samples and could serve as longitudinal physiological readouts of brain expression and psychiatric risk in youth.
Collapse
|
13
|
Vassilev P, Pantoja-Urban AH, Giroux M, Nouel D, Hernandez G, Orsini T, Flores C. Unique effects of social defeat stress in adolescent male mice on the Netrin-1/DCC pathway, prefrontal cortex dopamine and cognition (Social stress in adolescent vs. adult male mice). eNeuro 2021; 8:ENEURO.0045-21.2021. [PMID: 33619036 PMCID: PMC8051112 DOI: 10.1523/eneuro.0045-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
For some individuals, social stress is a risk factor for psychiatric disorders characterised by adolescent onset, prefrontal cortex (PFC) dysfunction and cognitive impairments. Social stress may be particularly harmful during adolescence when dopamine (DA) axons are still growing to the PFC, rendering them sensitive to environmental influences. The guidance cue Netrin-1 and its receptor, DCC, coordinate to control mesocorticolimbic DA axon targeting and growth during this age. Here we adapted the accelerated social defeat (AcSD) paradigm to expose male mice to social stress in either adolescence or adulthood and categorised them as "resilient" or "susceptible" based on social avoidance behaviour. We examined whether stress would alter the expression of DCC and Netrin-1 in mesolimbic dopamine regions and would have enduring consequences on PFC dopamine connectivity and cognition. While in adolescence the majority of mice are resilient but exhibit risk-taking behaviour, AcSD in adulthood leads to a majority of susceptible mice without altering anxiety-like traits. In adolescent, but not adult mice, AcSD dysregulates DCC and Netrin-1 expression in mesolimbic DA regions. These molecular changes in adolescent mice are accompanied by changes in PFC DA connectivity. Following AcSD in adulthood, cognitive function remains unaffected, but all mice exposed to AcSD in adolescence show deficits in inhibitory control when they reach adulthood. These findings indicate that exposure to AcSD in adolescence vs. adulthood has substantially different effects on brain and behaviour and that stress-induced social avoidance in adolescence does not predict vulnerability to deficits in cognitive performance.Significance statement During adolescence, dopamine circuitries undergo maturational changes which may render them particularly vulnerable to social stress. While social stress can be detrimental to adolescents and adults, it may engage different mechanisms and impact different domains, depending on age. The accelerated social defeat (AcSD) model implemented here allows exposing adolescent and adult male mice to comparable social stress levels. AcSD in adulthood leads to a majority of socially avoidant mice. However, the predominance of AcSD-exposed adolescent mice does not develop social avoidance, and these resilient mice show risk-taking behaviour. Nonetheless, in adolescence only, AcSD dysregulates Netrin-1/DCC expression in mesolimbic dopamine regions, possibly disrupting mesocortical dopamine and cognition. The unique adolescent responsiveness to stress may explain increased psychopathology risk at this age.
Collapse
Affiliation(s)
- Philip Vassilev
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Michel Giroux
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | | | - Taylor Orsini
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada
| |
Collapse
|
14
|
Morgunova A, Pokhvisneva I, Nolvi S, Entringer S, Wadhwa P, Gilmore J, Styner M, Buss C, Sassi RB, Hall GBC, O'Donnell KJ, Meaney MJ, Silveira PP, Flores CA. DCC gene network in the prefrontal cortex is associated with total brain volume in childhood. J Psychiatry Neurosci 2021; 46:E154-E163. [PMID: 33206040 PMCID: PMC7955849 DOI: 10.1503/jpn.200081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genetic variation in the guidance cue DCC gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. We created an expression-based polygenic risk score (ePRS) based on the DCC coexpression gene network in the prefrontal cortex, hypothesizing that it would be associated with individual differences in total brain volume. METHODS We filtered single nucleotide polymorphisms (SNPs) from genes coexpressed with DCC in the prefrontal cortex obtained from an adult postmortem donors database (BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting gene expression in the prefrontal cortex, multiplied by their allele number based on an individual's genotype data, and then summarized into an ePRS. We evaluated associations between the DCC ePRS and total brain volume in children in 2 community-based cohorts: the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we calculated a conventional PRS based on a genome-wide association study of total brain volume. RESULTS Higher ePRS was associated with higher total brain volume in children 8 to 10 years old (β = 0.212, p = 0.043; n = 88). The conventional PRS at several different thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI study showed an association between the ePRS and newborn total brain volume (β = 0.101, p = 0.048; n = 80). The genes included in the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function. LIMITATIONS The relatively small sample size and age differences between the main and replication cohorts were limitations. CONCLUSION Our findings suggest that the DCC coexpression network in the prefrontal cortex is critically involved in whole brain development during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment.
Collapse
Affiliation(s)
- Alice Morgunova
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Irina Pokhvisneva
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Saara Nolvi
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Sonja Entringer
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Pathik Wadhwa
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - John Gilmore
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Martin Styner
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Claudia Buss
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Roberto Britto Sassi
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Geoffrey B C Hall
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Kieran J O'Donnell
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Michael J Meaney
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Patricia P Silveira
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| | - Cecilia A Flores
- From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall)
| |
Collapse
|
15
|
Wang M, Huang TZ, Fang J, Calhoun VD, Wang YP. Integration of Imaging (epi)Genomics Data for the Study of Schizophrenia Using Group Sparse Joint Nonnegative Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:1671-1681. [PMID: 30762565 PMCID: PMC7781159 DOI: 10.1109/tcbb.2019.2899568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Schizophrenia (SZ) is a complex disease. Single nucleotide polymorphism (SNP), brain activity measured by functional magnetic resonance imaging (fMRI) and DNA methylation are all important biomarkers that can be used for the study of SZ. To our knowledge, there has been little effort to combine these three datasets together. In this study, we propose a group sparse joint nonnegative matrix factorization (GSJNMF) model to integrate SNP, fMRI, and DNA methylation for the identification of multi-dimensional modules associated with SZ, which can be used to study regulatory mechanisms underlying SZ at multiple levels. The proposed GSJNMF model projects multiple types of data onto a common feature space, in which heterogeneous variables with large coefficients on the same projected bases are used to identify multi-dimensional modules. We also incorporate group structure information available from each dataset. The genomic factors in such modules have significant correlations or functional associations with several brain activities. At the end, we have applied the method to the analysis of real data collected from the Mind Clinical Imaging Consortium (MCIC) for the study of SZ and identified significant biomarkers. These biomarkers were further used to discover genes and corresponding brain regions, which were confirmed to be significantly associated with SZ.
Collapse
Affiliation(s)
- Min Wang
- School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- School of Information Technology, Jiangxi University of Finance and Economics, Nanchang, Jiangxi, 330013, China
| | - Ting-Zhu Huang
- School of Mathematical Sciences/Research Center for Image and Vision Computing, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
| | - Jian Fang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vince D. Calhoun
- The Mind Research Network, University of New Mexico, NM 87131, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- Corresponding author.
| |
Collapse
|
16
|
Li HJ, Qu N, Hui L, Cai X, Zhang CY, Zhong BL, Zhang SF, Chen J, Xia B, Wang L, Jia QF, Li W, Chang H, Xiao X, Li M, Li Y. Further confirmation of netrin 1 receptor (DCC) as a depression risk gene via integrations of multi-omics data. Transl Psychiatry 2020; 10:98. [PMID: 32184385 PMCID: PMC7078234 DOI: 10.1038/s41398-020-0777-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies (GWAS) of major depression and its relevant biological phenotypes have been extensively conducted in large samples, and transcriptome-wide analyses in the tissues of brain regions relevant to pathogenesis of depression, e.g., dorsolateral prefrontal cortex (DLPFC), have also been widely performed recently. Integrating these multi-omics data will enable unveiling of depression risk genes and even underlying pathological mechanisms. Here, we employ summary data-based Mendelian randomization (SMR) and integrative risk gene selector (iRIGS) approaches to integrate multi-omics data from GWAS, DLPFC expression quantitative trait loci (eQTL) analyses and enhancer-promoter physical link studies to prioritize high-confidence risk genes for depression, followed by independent replications across distinct populations. These integrative analyses identify multiple high-confidence depression risk genes, and numerous lines of evidence supporting pivotal roles of the netrin 1 receptor (DCC) gene in this illness across different populations. Our subsequent explorative analyses further suggest that DCC significantly predicts neuroticism, well-being spectrum, cognitive function and putamen structure in general populations. Gene expression correlation and pathway analyses in DLPFC further show that DCC potentially participates in the biological processes and pathways underlying synaptic plasticity, axon guidance, circadian entrainment, as well as learning and long-term potentiation. These results are in agreement with the recent findings of this gene in neurodevelopment and psychiatric disorders, and we thus further confirm that DCC is an important susceptibility gene for depression, and might be a potential target for new antidepressants.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China.
| |
Collapse
|
17
|
Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: Novel roles for netrin-1 in synaptic plasticity and memory formation in the adult brain. J Physiol 2020; 599:493-505. [PMID: 32017127 DOI: 10.1113/jp278704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Adult neural plasticity engages mechanisms that change synapse structure and function, yet many of the underlying events bear a striking similarity to processes that occur during the initial establishment of neural circuits during development. It is a long-standing hypothesis that the molecular mechanisms critical for neural development may also regulate synaptic plasticity related to learning and memory in adults. Netrins were initially described as chemoattractant guidance cues that direct cell and axon migration during embryonic development, yet they continue to be expressed by neurons in the adult brain. Recent findings have identified roles for netrin-1 in synaptogenesis during postnatal maturation, and in synaptic plasticity in the adult mammalian brain, regulating AMPA glutamate receptor trafficking at excitatory synapses. These findings provide an example of a conserved developmental guidance cue that is expressed by neurons in the adult brain and functions as a key regulator of activity-dependent synaptic plasticity. Notably, in humans, genetic polymorphisms in netrin-1 and its receptors have been linked to neurodevelopmental and neurodegenerative disorders. The molecular mechanisms associated with the synaptic function of netrin-1 therefore present new therapeutic targets for neuropathologies associated with memory dysfunction. Here, we summarize recent findings that link netrin-1 signalling to synaptic plasticity, and discuss the implications of these discoveries for the neurobiological basis of memory consolidation.
Collapse
Affiliation(s)
- Stephen D Glasgow
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Edward S Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, H3A 0C7, Canada
| |
Collapse
|
18
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
19
|
Hasbi A, Madras BK, Bergman J, Kohut S, Lin Z, Withey SL, George SR. Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons. iScience 2020; 23:100794. [PMID: 31972514 PMCID: PMC6971351 DOI: 10.1016/j.isci.2019.100794] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term cannabis users manifest deficits in dopaminergic functions, reflecting Δ9-tetrahydrocannabinol (THC)-induced neuroadaptive dysfunctional dopamine signaling, similar to those observed upon dopamine D1-D2 heteromer activation. The molecular mechanisms remain largely unknown. We show evolutionary and regional differences in D1-D2 heteromer abundance in mammalian striatum. Importantly, chronic THC increased the number of D1-D2 heteromer-expressing neurons, and the number of heteromers within individual neurons in adult monkey striatum. The majority of these neurons displayed a phenotype co-expressing the characteristic markers of both striatonigral and striatopallidal neurons. Furthermore, THC increased D1-D2-linked calcium signaling markers (pCaMKIIα, pThr75-DARPP-32, BDNF/pTrkB) and inhibited cyclic AMP signaling (pThr34-DARPP-32, pERK1/2, pS845-GluA1, pGSK3). Cannabidiol attenuated most but not all of these THC-induced neuroadaptations. Targeted pathway analyses linked these changes to neurological and psychological disorders. These data underline the importance of the D1-D2 receptor heteromer in cannabis use-related disorders, with THC-induced changes likely responsible for the reported adverse effects observed in heavy long-term users.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Stephen Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Sarah L Withey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
20
|
Zhuo C, Wang D, Zhou C, Chen C, Li J, Tian H, Li S, Ji F, Liu C, Chen M, Zhang L. Double-Edged Sword of Tumour Suppressor Genes in Schizophrenia. Front Mol Neurosci 2019; 12:1. [PMID: 30809121 PMCID: PMC6379290 DOI: 10.3389/fnmol.2019.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SCZ) is a common psychiatric disorder with polygenetic pathogenesis. Among the many identified candidate genes and loci, the group of tumour suppressor genes has drawn our interest. In this mini-review article, we describe evidence of a correlation between major tumour suppressor genes and SCZ development. Genetic mutations ranging from single nucleotide polymorphisms to large structural alterations have been found in tumour-related genes in patients with SCZ. Epigenetic mechanisms, including DNA methylation/acetylation and microRNA regulation of tumour suppressor genes, have also been implicated in SCZ. Beyond genetic correlations, we hope to establish causal relationships between tumour suppressor gene function and SCZ risk. Accumulating evidence shows that tumour suppressor genes may mediate cell survival and neural development, both of which contribute to SCZ aetiology. Moreover, converging intracellular signalling pathways indicate a role of tumour suppressor genes in SCZ pathogenesis. Tumour suppressor gene function may mediate a direct link between neural development and function and psychiatric disorders, including SCZ. A deeper understanding of how neural cell development is affected by tumour suppressors may lead to improved anti-psychotic drugs.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Dawei Wang
- Department of Neuroimaging Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Chunhua Zhou
- Department of Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jie Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Hongjun Tian
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China
| | - Shen Li
- Genetics Laboratory, Department of Neuroimaging, Department of Psychiatry, Nankai University Affiliated Anding Hospital, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatric Genetics, Tianjin Medical University, Tianjin, China
| | - Feng Ji
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Min Chen
- Psychiatric Genetic Laboratory, Department of Psychiatry, Jining Medical University, Jining, China
| | - Li Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Luo N, Sui J, Chen J, Zhang F, Tian L, Lin D, Song M, Calhoun VD, Cui Y, Vergara VM, Zheng F, Liu J, Yang Z, Zuo N, Fan L, Xu K, Liu S, Li J, Xu Y, Liu S, Lv L, Chen J, Chen Y, Guo H, Li P, Lu L, Wan P, Wang H, Wang H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. A Schizophrenia-Related Genetic-Brain-Cognition Pathway Revealed in a Large Chinese Population. EBioMedicine 2018; 37:471-482. [PMID: 30341038 PMCID: PMC6284414 DOI: 10.1016/j.ebiom.2018.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In the past decades, substantial effort has been made to explore the genetic influence on brain structural/functional abnormalities in schizophrenia, as well as cognitive impairments. In this work, we aimed to extend previous studies to explore the internal mediation pathway among genetic factor, brain features and cognitive scores in a large Chinese dataset. METHODS Gray matter (GM) volume, fractional amplitude of low-frequency fluctuations (fALFF), and 4522 schizophrenia-susceptible single nucleotide polymorphisms (SNP) from 905 Chinese subjects were jointly analyzed, to investigate the multimodal association. Based on the identified imaging-genetic pattern, correlations with cognition and mediation analysis were then conducted to reveal the potential mediation pathways. FINDINGS One linked imaging-genetic pattern was identified to be group discriminative, which was also associated with working memory performance. Particularly, GM reduction in thalamus, putamen and bilateral temporal gyrus in schizophrenia was associated with fALFF decrease in medial prefrontal cortex, both were also associated with genetic factors enriched in neuron development, synapse organization and axon pathways, highlighting genes including CSMD1, CNTNAP2, DCC, GABBR2 etc. This linked pattern was also replicated in an independent cohort (166 subjects), which although showed certain age and clinical differences with the discovery cohort. A further mediation analysis suggested that GM alterations significantly mediated the association from SNP to fALFF, while fALFF mediated the association from SNP and GM to working memory performance. INTERPRETATION This study has not only verified the impaired imaging-genetic association in schizophrenia, but also initially revealed a potential genetic-brain-cognition mediation pathway, indicating that polygenic risk factors could exert impact on phenotypic measures from brain structure to function, thus could further affect cognition in schizophrenia.
Collapse
Affiliation(s)
- Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Mind Research Network & LBERI, Albuquerque, NM 87106, USA; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China.
| | - Jiayu Chen
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA
| | | | - Lin Tian
- Wuxi Mental Health Center, Wuxi 214000, China
| | - Dongdong Lin
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA
| | - Ming Song
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vince D Calhoun
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA; Department of Electrical and Computer Engineer, The University of New, Albuquerque, NM 87131, USA
| | - Yue Cui
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Fanfan Zheng
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Liu
- The Mind Research Network & LBERI, Albuquerque, NM 87106, USA
| | - Zhenyi Yang
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaibin Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfeng Liu
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Li
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xu
- Department of Psychiatry, First Clinical Medical College, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Sha Liu
- Department of Psychiatry, First Clinical Medical College, First Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian 463000, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huiling Wang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China,; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Department of Psychology, Xinxiang Medical University, Xinxiang 453002, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing 100191, China; Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing 100191, China; Center for Life Sciences, PKU-IDG, McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Institute of Automation, Beijing 100190, China.
| |
Collapse
|
22
|
Smeland OB, Wang Y, Frei O, Li W, Hibar DP, Franke B, Bettella F, Witoelar A, Djurovic S, Chen CH, Thompson PM, Dale AM, Andreassen OA. Genetic Overlap Between Schizophrenia and Volumes of Hippocampus, Putamen, and Intracranial Volume Indicates Shared Molecular Genetic Mechanisms. Schizophr Bull 2018; 44:854-864. [PMID: 29136250 PMCID: PMC6007549 DOI: 10.1093/schbul/sbx148] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizophrenia (SCZ) is associated with differences in subcortical brain volumes and intracranial volume (ICV). However, little is known about the underlying etiology of these brain alterations. Here, we explored whether brain structure volumes and SCZ share genetic risk factors. Using conditional false discovery rate (FDR) analysis, we integrated genome-wide association study (GWAS) data on SCZ (n = 82315) and GWAS data on 7 subcortical brain volumes and ICV (n = 11840). By conditioning the FDR on overlapping associations, this statistical approach increases power to discover genetic loci. To assess the credibility of our approach, we studied the identified loci in larger GWAS samples on ICV (n = 26577) and hippocampal volume (n = 26814). We observed polygenic overlap between SCZ and volumes of hippocampus, putamen, and ICV. Based on conjunctional FDR < 0.05, we identified 2 loci shared between SCZ and ICV implicating genes FOXO3 (rs10457180) and ITIH4 (rs4687658), 2 loci shared between SCZ and hippocampal volume implicating SLC4A10 (rs4664442) and SPATS2L (rs1653290), and 2 loci shared between SCZ and volume of putamen implicating DCC (rs4632195) and DLG2 (rs11233632). The loci shared between SCZ and hippocampal volume or ICV had not reached significance in the primary GWAS on brain phenotypes. Proving our point of increased power, 2 loci did reach genome-wide significance with ICV (rs10457180) and hippocampal volume (rs4664442) in the larger GWAS. Three of the 6 identified loci are novel for SCZ. Altogether, the findings provide new insights into the relationship between SCZ and brain structure volumes, suggesting that their genetic architectures are not independent.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Neurosciences, University of California San Diego, La Jolla, CA,To whom correspondence should be addressed; Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Kirkeveien 166, 0424 Oslo, Norway; tel: +1-858-568-4915, fax: +47-230-273-33, e-mail:
| | - Yunpeng Wang
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Department of Radiology, University of California San Diego, La Jolla, CA,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Wen Li
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Derrek P Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands,Department of Psychiatry, Radboud University Medical Center, Nijmegen, the Netherlands,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Francesco Bettella
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Aree Witoelar
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway,NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Chi-Hua Chen
- Department of Radiology, University of California San Diego, La Jolla, CA,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA
| | - Anders M Dale
- Department of Neurosciences, University of California San Diego, La Jolla, CA,Department of Radiology, University of California San Diego, La Jolla, CA,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, CA,Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Varshney A, Benedetti K, Watters K, Shankar R, Tatarakis D, Coto Villa D, Magallanes K, Agenor V, Wung W, Farah F, Ali N, Le N, Pyle J, Farooqi A, Kieu Z, Bremer M, VanHoven M. The receptor protein tyrosine phosphatase CLR-1 is required for synaptic partner recognition. PLoS Genet 2018; 14:e1007312. [PMID: 29742100 PMCID: PMC5942785 DOI: 10.1371/journal.pgen.1007312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/19/2018] [Indexed: 11/19/2022] Open
Abstract
During neural circuit formation, most axons are guided to complex environments, coming into contact with multiple potential synaptic partners. However, it is critical that they recognize specific neurons with which to form synapses. Here, we utilize the split GFP-based marker Neuroligin-1 GFP Reconstitution Across Synaptic Partners (NLG-1 GRASP) to visualize specific synapses in live animals, and a circuit-specific behavioral assay to probe circuit function. We demonstrate that the receptor protein tyrosine phosphatase (RPTP) clr-1 is necessary for synaptic partner recognition (SPR) between the PHB sensory neurons and the AVA interneurons in C. elegans. Mutations in clr-1/RPTP result in reduced NLG-1 GRASP fluorescence and impaired behavioral output of the PHB circuit. Temperature-shift experiments demonstrate that clr-1/RPTP acts early in development, consistent with a role in SPR. Expression and cell-specific rescue experiments indicate that clr-1/RPTP functions in postsynaptic AVA neurons, and overexpression of clr-1/RPTP in AVA neurons is sufficient to direct additional PHB-AVA synaptogenesis. Genetic analysis reveals that clr-1/RPTP acts in the same pathway as the unc-6/Netrin ligand and the unc-40/DCC receptor, which act in AVA and PHB neurons, respectively. This study defines a new mechanism by which SPR is governed, and demonstrates that these three conserved families of molecules, with roles in neurological disorders and cancer, can act together to regulate communication between cells.
Collapse
Affiliation(s)
- Aruna Varshney
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Kelli Benedetti
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Katherine Watters
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Raakhee Shankar
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - David Tatarakis
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Doris Coto Villa
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Khristina Magallanes
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Venia Agenor
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - William Wung
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Fatima Farah
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Nebat Ali
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Nghi Le
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Jacqueline Pyle
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Amber Farooqi
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Zanett Kieu
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
| | - Martina Bremer
- Department of Mathematics and Statistics, San Jose State University, San Jose, CA, United States of America
| | - Miri VanHoven
- Department of Biological Sciences, San Jose State University, San Jose, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mesocorticolimbic Connectivity and Volumetric Alterations in DCC Mutation Carriers. J Neurosci 2018; 38:4655-4665. [PMID: 29712788 DOI: 10.1523/jneurosci.3251-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/29/2018] [Accepted: 04/07/2018] [Indexed: 01/25/2023] Open
Abstract
The axon guidance cue receptor DCC (deleted in colorectal cancer) plays a critical role in the organization of mesocorticolimbic pathways in rodents. To investigate whether this occurs in humans, we measured (1) anatomical connectivity between the substantia nigra/ventral tegmental area (SN/VTA) and forebrain targets, (2) striatal and cortical volumes, and (3) putatively associated traits and behaviors. To assess translatability, morphometric data were also collected in Dcc-haploinsufficient mice. The human volunteers were 20 DCC+/- mutation carriers, 16 DCC+/+ relatives, and 20 DCC+/+ unrelated healthy volunteers (UHVs; 28 females). The mice were 11 Dcc+/- and 16 wild-type C57BL/6J animals assessed during adolescence and adulthood. Compared with both control groups, the human DCC+/- carriers exhibited the following: (1) reduced anatomical connectivity from the SN/VTA to the ventral striatum [DCC+/+: p = 0.0005, r(effect size) = 0.60; UHV: p = 0.0029, r = 0.48] and ventral medial prefrontal cortex (DCC+/+: p = 0.0031, r = 0.53; UHV: p = 0.034, r = 0.35); (2) lower novelty-seeking scores (DCC+/+: p = 0.034, d = 0.82; UHV: p = 0.019, d = 0.84); and (3) reduced striatal volume (DCC+/+: p = 0.0009, d = 1.37; UHV: p = 0.0054, d = 0.93). Striatal volumetric reductions were also present in Dcc+/- mice, and these were seen during adolescence (p = 0.0058, d = 1.09) and adulthood (p = 0.003, d = 1.26). Together these findings provide the first evidence in humans that an axon guidance gene is involved in the formation of mesocorticolimbic circuitry and related behavioral traits, providing mechanisms through which DCC mutations might affect susceptibility to diverse neuropsychiatric disorders.SIGNIFICANCE STATEMENT Opportunities to study the effects of axon guidance molecules on human brain development have been rare. Here, the identification of a large four-generational family that carries a mutation to the axon guidance molecule receptor gene, DCC, enabled us to demonstrate effects on mesocorticolimbic anatomical connectivity, striatal volumes, and personality traits. Reductions in striatal volumes were replicated in DCC-haploinsufficient mice. Together, these processes might influence mesocorticolimbic function and susceptibility to diverse neuropsychiatric disorders.
Collapse
|
25
|
Hu W, Lin D, Cao S, Liu J, Chen J, Calhoun VD, Wang YP. Adaptive Sparse Multiple Canonical Correlation Analysis With Application to Imaging (Epi)Genomics Study of Schizophrenia. IEEE Trans Biomed Eng 2018; 65:390-399. [PMID: 29364120 PMCID: PMC5826588 DOI: 10.1109/tbme.2017.2771483] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Finding correlations across multiple data sets in imaging and (epi)genomics is a common challenge. Sparse multiple canonical correlation analysis (SMCCA) is a multivariate model widely used to extract contributing features from each data while maximizing the cross-modality correlation. The model is achieved by using the combination of pairwise covariances between any two data sets. However, the scales of different pairwise covariances could be quite different and the direct combination of pairwise covariances in SMCCA is unfair. The problem of "unfair combination of pairwise covariances" restricts the power of SMCCA for feature selection. In this paper, we propose a novel formulation of SMCCA, called adaptive SMCCA, to overcome the problem by introducing adaptive weights when combining pairwise covariances. Both simulation and real-data analysis show the outperformance of adaptive SMCCA in terms of feature selection over conventional SMCCA and SMCCA with fixed weights. Large-scale numerical experiments show that adaptive SMCCA converges as fast as conventional SMCCA. When applying it to imaging (epi)genetics study of schizophrenia subjects, we can detect significant (epi)genetic variants and brain regions, which are consistent with other existing reports. In addition, several significant brain-development related pathways, e.g., neural tube development, are detected by our model, demonstrating imaging epigenetic association may be overlooked by conventional SMCCA. All these results demonstrate that adaptive SMCCA are well suited for detecting three-way or multiway correlations and thus can find widespread applications in multiple omics and imaging data integration.
Collapse
Affiliation(s)
- Wenxing Hu
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| | - Dongdong Lin
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Shaolong Cao
- Department of Bioinformatics & Computational Biology, UT MD Anderson Cancer Center, Houston, TX
| | - Jingyu Liu
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Jiayu Chen
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Vince D. Calhoun
- Mind Research Network and Dept. of ECE, University of New Mexico, Albuquerque, NM, 87106
| | - Yu-Ping Wang
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
26
|
Theofanopoulou C, Gastaldon S, O’Rourke T, Samuels BD, Messner A, Martins PT, Delogu F, Alamri S, Boeckx C. Self-domestication in Homo sapiens: Insights from comparative genomics. PLoS One 2017; 12:e0185306. [PMID: 29045412 PMCID: PMC5646786 DOI: 10.1371/journal.pone.0185306] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023] Open
Abstract
This study identifies and analyzes statistically significant overlaps between selective sweep screens in anatomically modern humans and several domesticated species. The results obtained suggest that (paleo-)genomic data can be exploited to complement the fossil record and support the idea of self-domestication in Homo sapiens, a process that likely intensified as our species populated its niche. Our analysis lends support to attempts to capture the "domestication syndrome" in terms of alterations to certain signaling pathways and cell lineages, such as the neural crest.
Collapse
Affiliation(s)
- Constantina Theofanopoulou
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
| | - Simone Gastaldon
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- School of Psychology, University of Padova, Padova, Italy
| | - Thomas O’Rourke
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Bridget D. Samuels
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, United States of America
| | - Angela Messner
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Francesco Delogu
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Saleh Alamri
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
| | - Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute for Complex Systems, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
27
|
Making Dopamine Connections in Adolescence. Trends Neurosci 2017; 40:709-719. [PMID: 29032842 DOI: 10.1016/j.tins.2017.09.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 12/13/2022]
Abstract
A dramatic maturational process ongoing in adolescence is prefrontal cortex development, including its dopamine innervation. Dopamine axons grow from the striatum to the prefrontal cortex, the only known case of long-distance axon growth during adolescence. This is coordinated by the Netrin-1 guidance cue receptor DCC (deleted in colorectal cancer), which in turn controls the intrinsic development of the prefrontal cortex itself. Stimulant drugs in adolescence alter DCC in dopamine neurons and, in turn prefrontal cortex maturation, impacting cognitive abilities. Variations in DCC expression are linked to psychiatric conditions of prefrontal cortex dysfunction, and microRNA regulation of DCC may be key to determining adolescent vulnerability or resilience. Since early interventions are proving to effectively ameliorate disease outcome, the Netrin-1 system is a promising therapeutic target.
Collapse
|
28
|
Plooster M, Menon S, Winkle CC, Urbina FL, Monkiewicz C, Phend KD, Weinberg RJ, Gupton SL. TRIM9-dependent ubiquitination of DCC constrains kinase signaling, exocytosis, and axon branching. Mol Biol Cell 2017; 28:2374-2385. [PMID: 28701345 PMCID: PMC5576901 DOI: 10.1091/mbc.e16-08-0594] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022] Open
Abstract
In the presence of netrin, tripartite motif protein 9 (TRIM9) promotes deleted in colorectal cancer (DCC) clustering, but TRIM9-dependent ubiquitination of DCC is reduced. Loss of ubiquitination promotes an interaction between DCC and FAK and FAK activation. FAK activation is required for the progression from SNARE assembly to exocytic vesicle fusion, which supplies membrane material for axon branching. Extracellular netrin-1 and its receptor deleted in colorectal cancer (DCC) promote axon branching in developing cortical neurons. Netrin-dependent morphogenesis is preceded by multimerization of DCC, activation of FAK and Src family kinases, and increases in exocytic vesicle fusion, yet how these occurrences are linked is unknown. Here we demonstrate that tripartite motif protein 9 (TRIM9)-dependent ubiquitination of DCC blocks the interaction with and phosphorylation of FAK. Upon netrin-1 stimulation TRIM9 promotes DCC multimerization, but TRIM9-dependent ubiquitination of DCC is reduced, which promotes an interaction with FAK and subsequent FAK activation. We found that inhibition of FAK activity blocks elevated frequencies of exocytosis in vitro and elevated axon branching in vitro and in vivo. Although FAK inhibition decreased soluble N-ethylmaleimide attachment protein receptor (SNARE)-mediated exocytosis, assembled SNARE complexes and vesicles adjacent to the plasma membrane increased, suggesting a novel role for FAK in the progression from assembled SNARE complexes to vesicle fusion in developing murine neurons.
Collapse
Affiliation(s)
- Melissa Plooster
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Cortney C Winkle
- Neurobiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Fabio L Urbina
- Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caroline Monkiewicz
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristen D Phend
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 .,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
29
|
Patthey C, Tong YG, Tait CM, Wilson SI. Evolution of the functionally conserved DCC gene in birds. Sci Rep 2017; 7:42029. [PMID: 28240293 PMCID: PMC5327406 DOI: 10.1038/srep42029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the loss of conserved genes is critical for determining how phenotypic diversity is generated. Here we focus on the evolution of DCC, a gene that encodes a highly conserved neural guidance receptor. Disruption of DCC in animal models and humans results in major neurodevelopmental defects including commissural axon defects. Here we examine DCC evolution in birds, which is of particular interest as a major model system in neurodevelopmental research. We found the DCC containing locus was disrupted several times during evolution, resulting in both gene losses and faster evolution rate of salvaged genes. These data suggest that DCC had been lost independently twice during bird evolution, including in chicken and zebra finch, whereas it was preserved in many other closely related bird species, including ducks. Strikingly, we observed that commissural axon trajectory appeared similar regardless of whether DCC could be detected or not. We conclude that the DCC locus is susceptible to genomic instability leading to independent disruptions in different branches of birds and a significant influence on evolution rate. Overall, the phenomenon of loss or molecular evolution of a highly conserved gene without apparent phenotype change is of conceptual importance for understanding molecular evolution of key biological processes.
Collapse
Affiliation(s)
- Cedric Patthey
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| | - Yong Guang Tong
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| | | | - Sara Ivy Wilson
- Umeå Center for Molecular Medicine, Umeå University, 901-87 Umeå, Sweden
| |
Collapse
|
30
|
Pokinko M, Grant A, Shahabi F, Dumont Y, Manitt C, Flores C. Dcc haploinsufficiency regulates dopamine receptor expression across postnatal lifespan. Neuroscience 2017; 346:182-189. [PMID: 28108253 DOI: 10.1016/j.neuroscience.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
Adolescence is a period during which the medial prefrontal cortex (mPFC) undergoes significant remodeling. The netrin-1 receptor, deleted in colorectal cancer (DCC), controls the extent and organization of mPFC dopamine connectivity during adolescence and in turn directs mPFC functional and structural maturation. Dcc haploinsufficiency leads to increased mPFC dopamine input, which causes improved cognitive processing and resilience to behavioral effects of stimulant drugs of abuse. Here we examine the effects of Dcc haploinsufficiency on the dynamic expression of dopamine receptors in forebrain targets of C57BL6 mice. We conducted quantitative receptor autoradiography experiments with [3H]SCH-23390 or [3H]raclopride to characterize D1 and D2 receptor expression in mPFC and striatal regions in male Dcc haploinsufficient and wild-type mice. We generated autoradiograms at early adolescence (PND21±1), mid-adolescence (PND35±2), and adulthood (PND75±15). C57BL6 mice exhibit overexpression and pruning of D1, but not D2, receptors in striatal regions, and a lack of dopamine receptor pruning in the mPFC. We observed age- and region-specific differences in D1 and D2 receptor density between Dcc haploinsufficient and wild-type mice. Notably, neither group shows the typical pattern of mPFC dopamine receptor pruning in adolescence, but adult haploinsufficient mice show increased D2 receptor density in the mPFC. These results show that DCC receptors contribute to the dynamic refinement of D1 and D2 receptor expression in striatal regions across adolescence. The age-dependent expression of dopamine receptor in C57BL6 mice shows marked differences from previous characterizations in rats.
Collapse
Affiliation(s)
- Matthew Pokinko
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Alanna Grant
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Florence Shahabi
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Yvan Dumont
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Colleen Manitt
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada.
| | - Cecilia Flores
- Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montréal, Québec H4H 1R3, Canada; Department of Psychiatry, McGill University, 1033 Pine Avenue West, Montréal, Québec H3A 1A1, Canada.
| |
Collapse
|
31
|
Li Y, Qiao X, Yin F, Guo H, Huang X, Lai J, Wei S. A Population-Based Study of Four Genes Associated with Heroin Addiction in Han Chinese. PLoS One 2016; 11:e0163668. [PMID: 27676367 PMCID: PMC5038970 DOI: 10.1371/journal.pone.0163668] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/11/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that variants in FAT atypical cadherin 3 (FAT3), kinectin 1 (KTN1), discs large homolog2 (DLG2) and deleted in colorectal cancer (DCC) genes influence the structure of the human mesolimbic reward system. We conducted a systematic analysis of the potential functional single nucleotide polymorphisms (SNPs) in these genes associated with heroin addiction. We scanned the functional regions of these genes and identified 20 SNPs for genotyping by using the SNaPshot method. A total of 1080 samples, comprising 523 cases and 557 controls, were analyzed. We observed that DCC rs16956878, rs12607853, and rs2292043 were associated with heroin addiction. The T alleles of rs16956878 (p = 0.0004) and rs12607853 (p = 0.002) were significantly enriched in the case group compared with the controls. A lower incidence of the C allele of rs2292043 (p = 0.002) was observed in the case group. In block 2 of DCC (rs2292043-rs12607853-rs16956878), the frequency of the T-T-T haplotype was significantly higher in the case group than in the control group (p = 0.024), and fewer C-C-C haplotypes (p = 0.006) were detected in the case group. DCC may be an important candidate gene in heroin addiction, and rs16956878, rs12607853, and rs2292043 may be risk factors, thereby providing a basis for further genetic and biological research.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Xiaomeng Qiao
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Hao Guo
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Xin Huang
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, PR China
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Key Laboratory of Ministry of Public Health for Forensic Science, Xi’an, PR China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, PR China
- * E-mail:
| |
Collapse
|
32
|
Murphy E, Benítez-Burraco A. Bridging the Gap between Genes and Language Deficits in Schizophrenia: An Oscillopathic Approach. Front Hum Neurosci 2016; 10:422. [PMID: 27601987 PMCID: PMC4993770 DOI: 10.3389/fnhum.2016.00422] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 08/08/2016] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is characterized by marked language deficits, but it is not clear how these deficits arise from the alteration of genes related to the disease. The goal of this paper is to aid the bridging of the gap between genes and schizophrenia and, ultimately, give support to the view that the abnormal presentation of language in this condition is heavily rooted in the evolutionary processes that brought about modern language. To that end we will focus on how the schizophrenic brain processes language and, particularly, on its distinctive oscillatory profile during language processing. Additionally, we will show that candidate genes for schizophrenia are overrepresented among the set of genes that are believed to be important for the evolution of the human faculty of language. These genes crucially include (and are related to) genes involved in brain rhythmicity. We will claim that this translational effort and the links we uncover may help develop an understanding of language evolution, along with the etiology of schizophrenia, its clinical/linguistic profile, and its high prevalence among modern populations.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| | | |
Collapse
|
33
|
Rappaz B, Lai Wing Sun K, Correia JP, Wiseman PW, Kennedy TE. FLIM FRET Visualization of Cdc42 Activation by Netrin-1 in Embryonic Spinal Commissural Neuron Growth Cones. PLoS One 2016; 11:e0159405. [PMID: 27482713 PMCID: PMC4970703 DOI: 10.1371/journal.pone.0159405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/02/2016] [Indexed: 12/29/2022] Open
Abstract
Netrin-1 is an essential extracellular chemoattractant that signals through its receptor DCC to guide commissural axon extension in the embryonic spinal cord. DCC directs the organization of F-actin in growth cones by activating an intracellular protein complex that includes the Rho GTPase Cdc42, a critical regulator of cell polarity and directional migration. To address the spatial distribution of signaling events downstream of netrin-1, we expressed the FRET biosensor Raichu-Cdc42 in cultured embryonic rat spinal commissural neurons. Using FLIM-FRET imaging we detected rapid activation of Cdc42 in neuronal growth cones following application of netrin-1. Investigating the signaling mechanisms that control Cdc42 activation by netrin-1, we demonstrate that netrin-1 rapidly enriches DCC at the leading edge of commissural neuron growth cones and that netrin-1 induced activation of Cdc42 in the growth cone is blocked by inhibiting src family kinase signaling. These findings reveal the activation of Cdc42 in embryonic spinal commissural axon growth cones and support the conclusion that src family kinase activation downstream of DCC is required for Cdc42 activation by netrin-1.
Collapse
Affiliation(s)
- Benjamin Rappaz
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
| | - Karen Lai Wing Sun
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - James P. Correia
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Paul W. Wiseman
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Physics, McGill University, Montreal, QC, H3A 2T8, Canada
- Department of Chemistry, McGill University, Montreal, QC, H3A 0B8, Canada
| | - Timothy E. Kennedy
- Program in NeuroEngineering, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| |
Collapse
|
34
|
Degenhardt F, Niklowitz P, Szymczak S, Jacobs G, Lieb W, Menke T, Laudes M, Esko T, Weidinger S, Franke A, Döring F, Onur S. Genome-wide association study of serum coenzyme Q10 levels identifies susceptibility loci linked to neuronal diseases. Hum Mol Genet 2016; 25:2881-2891. [PMID: 27149984 DOI: 10.1093/hmg/ddw134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/15/2016] [Accepted: 04/18/2016] [Indexed: 11/14/2022] Open
Abstract
Coenzyme Q10 (CoQ10) is a lipophilic redox molecule that is present in membranes of almost all cells in human tissues. CoQ10 is, amongst other functions, essential for the respiratory transport chain and is a modulator of inflammatory processes and gene expression. Rare monogenetic CoQ10 deficiencies show noticeable symptoms in tissues (e.g. kidney) and cell types (e.g. neurons) with a high energy demand. To identify common genetic variants influencing serum CoQ10 levels, we performed a fixed effects meta-analysis in two independent cross-sectional Northern German cohorts comprising 1300 individuals in total. We identified two genome-wide significant susceptibility loci. The best associated single nucleotide polymorphism (SNP) was rs9952641 (P value = 1.31 × 10 -8, β = 0.063, CI0.95 [0.041, 0.085]) within the COLEC12 gene on chromosome 18. The SNP rs933585 within the NRXN-1 gene on chromosome 2 also showed genome wide significance (P value = 3.64 × 10 -8, β = -0.034, CI0.95 [-0.046, -0.022]). Both genes have been previously linked to neuronal diseases like Alzheimer's disease, autism and schizophrenia. Among our 'top-10' associated variants, four additional loci with known neuronal connections showed suggestive associations with CoQ10 levels. In summary, this study demonstrates that serum CoQ10 levels are associated with common genetic loci that are linked to neuronal diseases.
Collapse
Affiliation(s)
- Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Petra Niklowitz
- Children's Hospital Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Gunnar Jacobs
- Institute of Epidemiology and Biobank PopGen, Christian-Albrechts-University of Kiel, Niemannsweg 11, Haus 1, 24105 Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Christian-Albrechts-University of Kiel, Niemannsweg 11, Haus 1, 24105 Kiel, Germany
| | - Thomas Menke
- Children's Hospital Datteln, Witten/Herdecke University, Dr.-Friedrich-Steiner Str. 5, 45711 Datteln, Germany
| | - Matthias Laudes
- Department of Internal Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Haus 6, 24105 Kiel, Germany
| | - Tõnu Esko
- Estonian Research Center, University of Tartu, Riia 23b, 51010, Tartu, Estland
| | - Stephan Weidinger
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Kiel, Schittenhelmstraße 7, 24105 Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Frank Döring
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Simone Onur
- Division of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
35
|
An Association Study Between Genetic Polymorphisms in Functional Regions of Five Genes and the Risk of Schizophrenia. J Mol Neurosci 2016; 59:366-75. [PMID: 27055860 DOI: 10.1007/s12031-016-0751-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/28/2016] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe mental disorder that is likely to be strongly determined by genetic factors. To identify markers of disks, large homolog 2 (DLG2), FAT atypical cadherin 3 (FAT3), kinectin1 (KTN1), deleted in colorectal carcinoma (DCC), and glycogen synthase kinase-3β (GSK3β) that contribute to the genetic susceptibility to schizophrenia, we systematically screened for polymorphisms in the functional regions of these genes. A total of 22 functional single-nucleotide polymorphisms (SNPs) in 940 Chinese subjects were genotyped using SNaPshot. The results first suggested that the allelic and genotypic frequencies of the DCC polymorphism rs2229080 were nominally associated with schizophrenia. The patients were significantly less likely to be CC homozygous (P = 0.005, odds ratio [OR] = 0.635, 95 % confidence interval [95 % CI] = 0.462-0.873), and the schizophrenia subjects exhibited lower frequency of the C allele (P = 0.024, OR = 0.811, 95 % CI = 0.676-0.972). Regarding GSK3β, there was a significant difference in genotype distribution of rs3755557 between schizophrenia and healthy control subjects (P = 0.009). The patients exhibited a significantly lower frequency of the T allele of rs3755557 (P = 0.002, OR = 0.654, 95 % CI = 0.498-0.860). Our results point to the polymorphisms of DCC and GSK3β as contributors to the genetic basis of individual differences in the susceptibility to schizophrenia.
Collapse
|
36
|
Membrane Trafficking in Neuronal Development: Ins and Outs of Neural Connectivity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 322:247-80. [PMID: 26940520 DOI: 10.1016/bs.ircmb.2015.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During development, neurons progress through rapid yet stereotypical shape changes to achieve proper neuronal connectivity. This morphological progression requires carefully orchestrated plasma membrane expansion, insertion of membrane components including receptors for extracellular cues into the plasma membrane and removal and trafficking of membrane materials and proteins to specific locations. This review outlines the cellular machinery of membrane trafficking that play an integral role in neuronal cell shape change and function from initial neurite formation to pathway navigation and synaptogenesis.
Collapse
|
37
|
Antoine-Bertrand J, Duquette PM, Alchini R, Kennedy TE, Fournier AE, Lamarche-Vane N. p120RasGAP Protein Mediates Netrin-1 Protein-induced Cortical Axon Outgrowth and Guidance. J Biol Chem 2015; 291:4589-602. [PMID: 26710849 DOI: 10.1074/jbc.m115.674846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 12/23/2022] Open
Abstract
The receptor deleted in colorectal cancer (DCC) mediates the attraction of growing axons to netrin-1 during brain development. In response to netrin-1 stimulation, DCC becomes a signaling platform to recruit proteins that promote axon outgrowth and guidance. The Ras GTPase-activating protein (GAP) p120RasGAP inhibits Ras activity and mediates neurite retraction and growth cone collapse in response to repulsive guidance cues. Here we show an interaction between p120RasGAP and DCC that positively regulates netrin-1-mediated axon outgrowth and guidance in embryonic cortical neurons. In response to netrin-1, p120RasGAP is recruited to DCC in growth cones and forms a multiprotein complex with focal adhesion kinase and ERK. We found that Ras/ERK activities are elevated aberrantly in p120RasGAP-deficient neurons. Moreover, the expression of p120RasGAP Src homology 2 (SH2)-SH3-SH2 domains, which interact with the C-terminal tail of DCC, is sufficient to restore netrin-1-dependent axon outgrowth in p120RasGAP-deficient neurons. We provide a novel mechanism that exploits the scaffolding properties of the N terminus of p120RasGAP to tightly regulate netrin-1/DCC-dependent axon outgrowth and guidance.
Collapse
Affiliation(s)
- Judith Antoine-Bertrand
- From the Department of Anatomy and Cell Biology and Cancer Research Program, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, H4A 3J1 Canada and
| | - Philippe M Duquette
- From the Department of Anatomy and Cell Biology and Cancer Research Program, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, H4A 3J1 Canada and
| | - Ricardo Alchini
- the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4 Canada
| | - Timothy E Kennedy
- the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4 Canada
| | - Alyson E Fournier
- the Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec, H3A 2B4 Canada
| | - Nathalie Lamarche-Vane
- From the Department of Anatomy and Cell Biology and Cancer Research Program, Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, H4A 3J1 Canada and
| |
Collapse
|
38
|
DeGeer J, Kaplan A, Mattar P, Morabito M, Stochaj U, Kennedy TE, Debant A, Cayouette M, Fournier AE, Lamarche-Vane N. Hsc70 chaperone activity underlies Trio GEF function in axon growth and guidance induced by netrin-1. J Cell Biol 2015; 210:817-32. [PMID: 26323693 PMCID: PMC4555821 DOI: 10.1083/jcb.201505084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1-induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase-deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1-induced Rac1 activation. Hsc70 was required for netrin-1-mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.
Collapse
Affiliation(s)
- Jonathan DeGeer
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Andrew Kaplan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada
| | - Morgane Morabito
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Timothy E Kennedy
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Anne Debant
- Centre de Recherche de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, UMR5237, University of Montpellier, Montpellier 34293, France
| | - Michel Cayouette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, Quebec H2W 1R7, Canada Department of Medicine, Université de Montréal, Montreal, Quubec H3T 1J4, Canada
| | - Alyson E Fournier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Nathalie Lamarche-Vane
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada The Research Institute of McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
39
|
Pokinko M, Moquin L, Torres-Berrío A, Gratton A, Flores C. Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Psychopharmacology (Berl) 2015; 232:3719-29. [PMID: 26264903 DOI: 10.1007/s00213-015-4032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022]
Abstract
RATIONALE Signaling through the netrin-1 receptor, deleted in colorectal cancer (DCC), in dopamine neurons controls the extent of their innervation to the medial prefrontal cortex (mPFC) during adolescence. In mice, dcc haploinsufficiency results in increased mPFC dopamine innervation and concentrations in adulthood. In turn, dcc haploinsufficiency leads to resilience to the effects of stimulant drugs of abuse on dopamine release in the nucleus accumbens and behavior. OBJECTIVES First, we set out to determine whether increased mPFC dopamine innervation causes blunted behavioral responses to amphetamine in adult dcc haploinsufficient mice. Second, we investigated whether unc5c, another netrin-1 receptor expressed by dopamine neurons, is involved in these effects. Third, we assessed whether haploinsufficiency of netrin-1 itself leads to blunted behavioral responding to amphetamine, whether this phenotype emerges before or after adolescence and whether increased mPFC dopamine input is the underlying mechanism. RESULTS Adult, but not adolescent, dcc, unc5c and netrin-1 haploinsufficient mice exhibit blunted behavioral responses to amphetamine. Furthermore, adult dcc, unc5c, and netrin-1 haploinsufficient mice have exaggerated mPFC dopamine concentrations in comparison to their wild-type littermates. Importantly, resilience to amphetamine-induced behavioral activation in all the three mouse models is abolished by selective dopamine depletion in the medial prefrontal cortex. CONCLUSIONS dcc, unc5c, or netrin-1 haploinsufficiency leads to increased dopamine content in the mPFC and to resilience against amphetamine-induced behavioral activation. Our findings raise the hypothesis that DCC, UNC5C, and netrin-1 act in concert to organize the adolescent development of mesocortical dopamine innervation and, in turn, determine behavioral responses to drugs of abuse.
Collapse
Affiliation(s)
- Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
40
|
Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol Psychiatry 2015; 20:795-809. [PMID: 25450230 PMCID: PMC4486649 DOI: 10.1038/mp.2014.147] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Collapse
|
41
|
C. elegans Punctin Clusters GABAA Receptors via Neuroligin Binding and UNC-40/DCC Recruitment. Neuron 2015; 86:1407-19. [DOI: 10.1016/j.neuron.2015.05.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/13/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
|
42
|
Narayanan B, Ethridge LE, O'Neil K, Dunn S, Mathew I, Tandon N, Calhoun VD, Ruaño G, Kocherla M, Windemuth A, Clementz BA, Tamminga CA, Sweeney JA, Keshavan MS, Pearlson GD. Genetic Sources of Subcomponents of Event-Related Potential in the Dimension of Psychosis Analyzed From the B-SNIP Study. Am J Psychiatry 2015; 172:466-78. [PMID: 25615564 PMCID: PMC4455958 DOI: 10.1176/appi.ajp.2014.13101411] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Biological risk factors underlying psychosis are poorly understood. Biological underpinnings of the dimension of psychosis can be derived using genetic associations with intermediate phenotypes such as subcomponents of auditory event-related potentials (ERPs). Various ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder are heritable and are expressed in unaffected relatives, although studies investigating genetic contributions to ERP abnormalities are limited. The authors used a novel parallel independent component analysis (para-ICA) to determine which empirically derived gene clusters are associated with data-driven ERP subcomponents, assuming a complex etiology underlying psychosis. METHOD The authors examined the multivariate polygenic association of ERP subcomponents from 64-channel auditory oddball data in 144 individuals with schizophrenia, 210 psychotic bipolar disorder probands, and 95 healthy individuals from the multisite Bipolar-Schizophrenia Network on Intermediate Phenotypes study. Data were reduced by principal components analysis to two target and one standard ERP waveforms. Multivariate association of compressed ERP waveforms with a set of 20,329 single-nucleotide polymorphisms (SNPs) (reduced from a 1-million-SNP array) was examined using para-ICA. Genes associated with SNPs were further examined using pathway analysis tools. RESULTS Para-ICA identified four ERP components that were significantly correlated with three genetic components. Enrichment analysis revealed complement immune response pathway and multiple processes that significantly mediate ERP abnormalities in psychosis, including synaptic cell adhesion, axon guidance, and neurogenesis. CONCLUSIONS This study identified three genetic components comprising multiple genes mediating ERP subcomponent abnormalities in schizophrenia and psychotic bipolar disorder. The data suggest a possible polygenic structure comprising genes influencing key neurodevelopmental processes, neural circuitry, and brain function mediating biological pathways plausibly associated with psychosis.
Collapse
Affiliation(s)
- Balaji Narayanan
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Lauren E. Ethridge
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Kasey O'Neil
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Sabra Dunn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106
| | - Ian Mathew
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Neeraj Tandon
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131,The Mind Research Network, Albuquerque, NM-87106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| | - Gualberto Ruaño
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | - Mohan Kocherla
- Genetics Research Center, Hartford Hospital, Hartford, CT-06106,Genomas Inc, Hartford, CT-06106
| | | | | | - Carol A. Tamminga
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - John A. Sweeney
- Department of Psychiatry, UT Southwestern Medical School, Dallas, TX-75390
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA-02215 and
| | - Godfrey D. Pearlson
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT-06106,Departments of Psychiatry & Neurobiology, Yale University School of Medicine, New Haven, CT-06520
| |
Collapse
|
43
|
Amphetamine in adolescence disrupts the development of medial prefrontal cortex dopamine connectivity in a DCC-dependent manner. Neuropsychopharmacology 2015; 40:1101-12. [PMID: 25336209 PMCID: PMC4367452 DOI: 10.1038/npp.2014.287] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/04/2014] [Accepted: 10/15/2014] [Indexed: 01/25/2023]
Abstract
Initiation of drug use during adolescence is a strong predictor of both the incidence and severity of addiction throughout the lifetime. Intriguingly, adolescence is a period of dynamic refinement in the organization of neuronal connectivity, in particular medial prefrontal cortex (mPFC) dopamine circuitry. The guidance cue receptor, DCC (deleted in colorectal cancer), is highly expressed by dopamine neurons and orchestrates their innervation to the mPFC during adolescence. Furthermore, we have shown that amphetamine in adolescence regulates DCC expression in dopamine neurons. Drugs in adolescence may therefore induce their enduring behavioral effects via DCC-mediated disruption in mPFC dopamine development. In this study, we investigated the impact of repeated exposure to amphetamine during adolescence on both the development of mPFC dopamine connectivity and on salience attribution to drug context in adulthood. We compare these effects to those induced by adult exposure to an identical amphetamine regimen. Finally, we determine whether DCC signaling within dopamine neurons is necessary for these events. Exposure to amphetamine in adolescence, but not in adulthood, leads to an increase in the span of dopamine innervation to the mPFC, but a reduction of presynaptic sites present on these axons. Amphetamine treatment in adolescence, but not in adulthood, also produces an increase in salience attribution to a previously drug-paired context in adulthood. Remarkably, DCC signaling within dopamine neurons is required for both of these effects. Drugs of abuse in adolescence may therefore induce their detrimental behavioral consequences by disrupting mesocortical dopamine development through alterations in the DCC signaling cascade.
Collapse
|
44
|
Winkle CC, McClain LM, Valtschanoff JG, Park CS, Maglione C, Gupton SL. A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching. ACTA ACUST UNITED AC 2014; 205:217-32. [PMID: 24778312 PMCID: PMC4003241 DOI: 10.1083/jcb.201311003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Localized plasma membrane expansion during axon branching mediated by Netrin-1 occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion. Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.
Collapse
Affiliation(s)
- Cortney C Winkle
- Neuroscience Center and Curriculum in Neurobiology, 2 Department of Cell Biology and Physiology, and 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | | | | | | |
Collapse
|
45
|
Haloperidol treatment downregulates DCC expression in the ventral tegmental area. Neurosci Lett 2014; 575:58-62. [PMID: 24861518 DOI: 10.1016/j.neulet.2014.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/26/2014] [Accepted: 05/14/2014] [Indexed: 11/23/2022]
Abstract
A core feature in the pathophysiology of schizophrenia is abnormal development and function of mesocorticolimbic dopamine (DA) circuitry. We have previously shown that variations in the function of the netrin-1 receptor, deleted in colorectal cancer (DCC), result in changes to the development, organization and ongoing plasticity of DA circuitry. In rodents, repeated exposure to the indirect DA-agonist, amphetamine upregulates DCC expression in the ventral tegmental area (VTA), but not in DA terminal regions. This elevation in DCC expression is associated with increased vulnerability to developing and maintaining sensitized mesolimbic DA function. Antipsychotic medications remain the best treatment option for managing the symptoms in schizophrenia. The peak effects of these medications are gradual, suggesting that a therapeutic component of antipsychotic treatment involves structural reorganization. Here we assessed whether repeated exposure to typical and atypical antipsychotics could also regulate DCC. Adult mice were orally administered haloperidol, clozapine, or risperidone via their drinking water for 4 weeks. Levels of DCC were measured by Western blot analysis of tissue punches of the VTA, medial prefrontal cortex, nucleus accumbens, and dorsal striatum. Haloperidol decreased DCC levels by approximately 50% in the VTA, but not in DA targets. Furthermore, haloperidol did not alter UNC-5 homologue levels, another family of netrin-1 receptors, confirming that its effects target DCC-mediated netrin-1 signaling specifically. The atypical antipsychotics did not alter DCC expression. These results suggest that typical antipsychotics induce selective functional reorganization in the VTA via DCC-mediated netrin-1 signaling.
Collapse
|
46
|
Abstract
Roundabout receptors (Robo) and their Slit ligands were discovered in the 1990s and found to be key players in axon guidance. Slit was initially described s an extracellular matrix protein that was expressed by midline glia in Drosophila. A few years later, it was shown that, in vertebrates and invertebrates, Slits acted as chemorepellents for axons crossing the midline. Robo proteins were originally discovered in Drosophila in a mutant screen for genes involved in the regulation of midline crossing. This ligand-receptor pair has since been implicated in a variety of other neuronal and non-neuronal processes ranging from cell migration to angiogenesis, tumourigenesis and even organogenesis of tissues such as kidneys, lungs and breasts.
Collapse
|
47
|
dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Transl Psychiatry 2013; 3:e338. [PMID: 24346136 PMCID: PMC4030324 DOI: 10.1038/tp.2013.105] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023] Open
Abstract
Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.
Collapse
|
48
|
Auger ML, Schmidt ERE, Manitt C, Dal-Bo G, Pasterkamp RJ, Flores C. unc5c haploinsufficient phenotype: striking similarities with the dcc haploinsufficiency model. Eur J Neurosci 2013; 38:2853-63. [PMID: 23738838 DOI: 10.1111/ejn.12270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/08/2013] [Accepted: 05/03/2013] [Indexed: 01/28/2023]
Abstract
DCC and UNC5 homologs (UNC5H) are guidance cue receptors highly expressed by mesocorticolimbic dopamine neurons. We have shown that dcc heterozygous mice exhibit increased dopamine, but not norepinephrine, innervation and function in medial prefrontal cortex. Concomitantly, dcc heterozygotes show blunted mesolimbic dopamine release and behavioral responses to stimulant drugs. These changes appear only in adulthood. Recently, we found an adolescent emergence of UNC5H expression by dopamine neurons and co-expression of DCC and UNC5H by single dopamine cells. Here, we demonstrate selective expression of unc5 homolog c mRNA by dopamine neurons in adulthood. We show that unc5c haploinsufficiency results in diminished amphetamine-induced locomotion in male and female mice. This phenotype is identical to that produced by dcc haploinsufficiency and is observed after adolescence. Notably, and similar to dcc haploinsufficiency, unc5c haploinsufficiency leads to dramatic increases in tyrosine hydroxylase expression in the medial prefrontal cortex, but not in the nucleus accumbens. In contrast, medial prefrontal cortex dopamine-β-hydroxylase expression is not altered. We confirmed that UNC5C protein is reduced in the ventral tegmental area of unc5c heterozygous mice, but that DCC expression in this region remains unchanged. UNC5C receptors may also play a role in dopamine function and influence sensitivity to behavioral effects of stimulant drugs of abuse, at least upon first exposure. The striking similarities between the dcc and the unc5c haploinsufficient phenotypes raise the possibility that functions mediated by DCC/UNC5C complexes may be at play.
Collapse
Affiliation(s)
- Meagan L Auger
- Department of Psychiatry and of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Verdun, QC, Canada, H4H 1R3
| | | | | | | | | | | |
Collapse
|