1
|
Si S, Bi A, Yu Z, See C, Kelly S, Ambrogi S, Arango C, Baeza I, Banaj N, Berk M, Castro-Fornieles J, Crespo-Facorro B, Crouse JJ, Díaz-Caneja CM, Fett AK, Fortea A, Frangou S, Goldstein BI, Hickie IB, Janssen J, Kennedy KG, Krabbendam L, Kyriakopoulos M, MacIntosh BJ, Morgado P, Nerland S, Pascual-Diaz S, Picó-Pérez M, Piras F, Rund BR, de la Serna E, Spalletta G, Sugranyes G, Suo C, Tordesillas-Gutiérrez D, Vecchio D, Radua J, McGuire P, Thomopoulos SI, Jahanshad N, Thompson PM, Barth C, Agartz I, James A, Kempton MJ. Mapping gray and white matter volume abnormalities in early-onset psychosis: an ENIGMA multicenter voxel-based morphometry study. Mol Psychiatry 2024; 29:496-504. [PMID: 38195979 PMCID: PMC11116097 DOI: 10.1038/s41380-023-02343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Regional gray matter (GM) alterations have been reported in early-onset psychosis (EOP, onset before age 18), but previous studies have yielded conflicting results, likely due to small sample sizes and the different brain regions examined. In this study, we conducted a whole brain voxel-based morphometry (VBM) analysis in a large sample of individuals with EOP, using the newly developed ENIGMA-VBM tool. METHODS 15 independent cohorts from the ENIGMA-EOP working group participated in the study. The overall sample comprised T1-weighted MRI data from 482 individuals with EOP and 469 healthy controls. Each site performed the VBM analysis locally using the standardized ENIGMA-VBM tool. Statistical parametric T-maps were generated from each cohort and meta-analyzed to reveal voxel-wise differences between EOP and healthy controls as well as the individual-based association between GM volume and age of onset, chlorpromazine (CPZ) equivalent dose, and other clinical variables. RESULTS Compared with healthy controls, individuals with EOP showed widespread lower GM volume encompassing most of the cortex, with the most marked effect in the left median cingulate (Hedges' g = 0.55, p = 0.001 corrected), as well as small clusters of lower white matter (WM), whereas no regional GM or WM volumes were higher in EOP. Lower GM volume in the cerebellum, thalamus and left inferior parietal gyrus was associated with older age of onset. Deficits in GM in the left inferior frontal gyrus, right insula, right precentral gyrus and right superior frontal gyrus were also associated with higher CPZ equivalent doses. CONCLUSION EOP is associated with widespread reductions in cortical GM volume, while WM is affected to a smaller extent. GM volume alterations are associated with age of onset and CPZ equivalent dose but these effects are small compared to case-control differences. Mapping anatomical abnormalities in EOP may lead to a better understanding of the role of psychosis in brain development during childhood and adolescence.
Collapse
Grants
- P41 EB015922 NIBIB NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01 MH121246 NIMH NIH HHS
- R01 MH134004 NIMH NIH HHS
- P50 MH115846 NIMH NIH HHS
- U01 MH124639 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), PI19/01024, PI20/00721, JR19/00024. CIBERSAM, Madrid Regional Government (S2022/BMD-7216 (AGES 3-CM)), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No.101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number 1U01MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CAUSAL), Fundación Familia Alonso, and Fundación Alicia Koplowitz. YTOP cohort is suppoprted by The Research Council of Norway (223273, 213700, 250358, 288083); South-Eastern Norway Regional Health Authority (2017112); KG Jebsen Stiftelsen (SKGJ-MED-008).
- the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, (PI18/00976, PI20/00654, PI02100330), Ajut a la Recerca Pons Bartran, the Alicia Koplowitz Foundation, Brain and Behaviour Research Foundation (NARSAD Young Investigator Award 2017) and Strategic Research and Innovation Plan in Health (PERIS), Department of Health, Government of Catalonia.
- NHMRC Senior Principal Research Fellowship and Leadership 3 Investigator grant (1156072 and 2017131)
- Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), PI19/01024, PI20/00721, JR19/00024,. CIBERSAM, Madrid Regional Government (S2022/BMD-7216 (AGES 3-CM)), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No.101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number 1U01MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CAUSAL), Fundación Familia Alonso, and Fundación Alicia Koplowitz.
- the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III (ISCIII), co-financed by the European Union, ERDF Funds from the European Commission, “A way of making Europe”, financed by the European Union - NextGenerationEU (PMP21/00051), PI19/01024, PI20/00721, JR19/00024,. CIBERSAM, Madrid Regional Government (S2022/BMD-7216 (AGES 3-CM)), European Union Structural Funds, European Union Seventh Framework Program, European Union H2020 Program under the Innovative Medicines Initiative 2 Joint Undertaking: Project PRISM-2 (Grant agreement No.101034377), Project AIMS-2-TRIALS (Grant agreement No 777394), Horizon Europe, the National Institute of Mental Health of the National Institutes of Health under Award Number 1U01MH124639-01 (Project ProNET) and Award Number 5P50MH115846-03 (project FEP-CAUSAL), Fundación Familia Alonso, and Fundación Alicia Koplowitz.
Collapse
Affiliation(s)
- Shuqing Si
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| | - Anbreen Bi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Zhaoying Yu
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Cheryl See
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sinead Kelly
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Sonia Ambrogi
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Inmaculada Baeza
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Michael Berk
- Deakin University, Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Josefina Castro-Fornieles
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Benedicto Crespo-Facorro
- Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Department of Psychiatry, CIBERSAM, IBiS-CSIC, Sevilla, Spain
| | - Jacob J Crouse
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Anne-Kathrin Fett
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Psychology, City, University of London, London, UK
| | - Adriana Fortea
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sophia Frangou
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, CIBERSAM, Madrid, Spain
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Lydia Krabbendam
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour (IBBA) Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marinos Kyriakopoulos
- 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- 2CA-Braga Cinical Academic Center, Hospital de Braga, 4710-243, Braga, Portugal
| | - Stener Nerland
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Saül Pascual-Diaz
- Laboratory of Surgical Neuroanatomy, Universitat de Barcelona, Barcelona, Spain
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Bjørn Rishovd Rund
- Research Department, Vestre Viken Hospital Trust, 3004, Drammen, Norway
- Department of Psychology, University of Oslo, P. O. box 1094, Blindern, 0317, Oslo, Norway
| | - Elena de la Serna
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Gisela Sugranyes
- Department of Child and Adolescent Psychiatry and Psychology, 2021SGR01319, Hospital Clinic Barcelona. CIBERSAM-ISCIII. Fundació de Recerca Clínic Barcelona - August Pi i Sunyer Biomedical Research Institute (FCRB-IDIBAPS). Institute of Neuroscience, Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Chao Suo
- Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Diana Tordesillas-Gutiérrez
- Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute IDIVAL, Santander (Cantabria), Spain
- Advanced Computing and e-Science, Instituto de Física de Cantabria (UC-CSIC), Santander (Cantabria), Spain
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBERSAM, University of Barcelona, Barcelona, Spain
| | - Philip McGuire
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Anthony James
- Department of Psychiatry, University of Oxford, Oxford, UK
- Highfield Unit, Warneford Hospital, Oxford, UK
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Hui CLM, Chan EWT, Hui PWM, Tao TJ, Ho ECN, Lam BST, Wah See SH, Suen YN, Chang WC, Wa SK, Lee EHM, Chen EYH. Functional and clinical outcomes of delusional disorder and schizophrenia patients after first episode psychosis: a 4-year follow-up study. BMC Psychiatry 2023; 23:676. [PMID: 37723482 PMCID: PMC10506281 DOI: 10.1186/s12888-023-05175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Literature has typically associated delusional disorder with a poorer prognosis relative to schizophrenia, without considering the confounding effect of age despite the differential age of onset. This study therefore aims to investigate the diagnostic stability, clinical, functional, and neurocognitive differences of Chinese first-episode psychosis age-matched patients with delusional disorder and schizophrenia at four years. METHODS 71 delusional disorder and 71 age-matched schizophrenia patients were followed up for four years after their initial episode. Their symptoms, insight in psychosis, side effects of medication, medication compliance, functioning, and neurocognitive performance were assessed at four years. RESULTS At four years, 65% of DD patients maintained the same diagnosis, while the rest shifted to SZ. Only those without a diagnostic shift were included in the analysis. Delusional disorder patients (n = 46) experienced greater general psychopathology and poorer insight, but better attitude towards medication than schizophrenia patients (n = 71). Social and occupational functioning, quality of life, and cognitive functioning, however, were similar in delusional disorder and schizophrenia patients. CONCLUSIONS Results indicate that delusional disorder is less diagnostically stable than schizophrenia. Their outcomes in a Chinese population were largely similar at four years after removing the confounding age factor, implying that delusional disorder and schizophrenia may not be as distinct as previously thought.
Collapse
Affiliation(s)
- Christy Lai Ming Hui
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong.
| | - Evie Wai Ting Chan
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Priscilla Wing Man Hui
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Tiffany Junchen Tao
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Elise Chun Ning Ho
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Bertha Sze Ting Lam
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Sally Hiu Wah See
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Yi Nam Suen
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Wing Chung Chang
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Sherry Kit Wa
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Hong Kong
| | - Edwin Ho Ming Lee
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Yu Hai Chen
- Department of Psychiatry, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
3
|
Chen J, Wei Y, Xue K, Han S, Wang C, Wen B, Cheng J. The interaction between first-episode drug-naïve schizophrenia and age based on gray matter volume and its molecular analysis: a multimodal magnetic resonance imaging study. Psychopharmacology (Berl) 2023; 240:813-826. [PMID: 36719459 DOI: 10.1007/s00213-023-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Schizophrenia is a neurodevelopmental disorder characterized by progressive and widespread gray matter (GM) atrophy. Studies have shown that normal brain development has an impact on schizophrenia-induced GM alterations. However, the neuropathology and underlying molecular mechanisms of interaction between age and schizophrenia are unclear. METHODS This study enrolled 66/84 first-episode drug-naïve patients with early-onset/adult-onset schizophrenia ((EOS)/(AOS)) and matched normal controls (NC) (46 adolescents/73 adults), undergoing T1-weighted high-resolution magnetic resonance imaging. Gray matter volume (GMV) in four groups was detected using 2-way analyses of variance with diagnosis and age as factors. Then, factors-related volume maps and neurotransmitter maps were spatially correlated using JuSpace to determine the relationship to molecular structure. RESULTS Compared to AOS, EOS and adult NC had larger GMV in right middle frontal gyrus. Compared to adolescent NC, EOS and adult NC had smaller GMV in right lingual gyrus, right fusiform gyrus, and right cerebellum_6. Disease-induced GMV reductions were mainly distributed in frontal, parietal, thalamus, visual, motor cortex, and medial temporal lobe structures. Age-induced GMV alterations were mainly distributed in visual and motor cortex. The changed GMV induced by schizophrenia, age, and their interaction was related to dopaminergic and serotonergic receptors. Age is also related to glutamate receptors, and schizophrenia is also associated with GABAaergic and noradrenergic receptors. CONCLUSIONS Our results revealed the multimodal neural mechanism of interaction between disease and age. We emphasized age-related GM abnormalities of ventral stream of visual perceptual pathways and high-level cognitive brain in EOS, which may be affected by imbalance of excitatory and inhibitory neurotransmitters.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, Two Seven District, The First Affiliated Hospital of Zhengzhou University, 1St Construction of E Rd, Zhengzhou, 450052, China.
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China.
| |
Collapse
|
4
|
Fan YS, Xu Y, Li Q, Chen Y, Guo X, Yang S, Guo J, Sheng W, Wang C, Gao Q, Chen H. Systematically mapping gray matter abnormal patterns in drug-naïve first-episode schizophrenia from childhood to adolescence. Cereb Cortex 2023; 33:1452-1461. [PMID: 35396845 DOI: 10.1093/cercor/bhac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Schizophrenia originates early in neurodevelopment, underscoring the need to elaborate on anomalies in the still maturing brain of early-onset schizophrenia (EOS). METHODS Gray matter (GM) volumes were evaluated in 94 antipsychotic-naïve first-episode EOS patients and 100 typically developing (TD) controls. The anatomical profiles of changing GM deficits in EOS were detected using 2-way analyses of variance with diagnosis and age as factors, and its timing was further charted using stage-specific group comparisons. Interregional relationships of GM alterations were established using structural covariance network analyses. RESULTS Antagonistic interaction results suggested dynamic GM abnormalities of the left fusiform gyrus, inferior occipital gyrus, and lingual gyrus in EOS. These regions comprise a dominating part of the ventral stream, a ventral occipitotemporal (vOT) network engaged in early social information processing. GM abnormalities were mainly located in the vOT regions in childhood-onset patients, whereas in the rostral prefrontal cortex (rPFC) in adolescent-onset patients. Moreover, compared with TD controls, patients' GM synchronization with the ventral stream was disrupted in widespread high-order social perception regions including the rPFC and salience network. CONCLUSIONS The current findings reveal age-related anatomical abnormalities of the social perception system in pediatric patients with schizophrenia.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China
| | - Qiang Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan 030000, China
| | - Yuyan Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Siqi Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Sheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chong Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Gao
- MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, The Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation; High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
5
|
Fukao T, Ohi K, Shioiri T. Gray matter volume differences between transgender men and cisgender women: A voxel-based morphometry study. Aust N Z J Psychiatry 2022; 56:535-541. [PMID: 33726551 DOI: 10.1177/0004867421998801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Gender dysphoria (GD) is characterized by distress due to inconsistency between gender identity and biological sex. Individuals with GD often desire to be the other gender, which is called transgender. Although altered brain volumes in transgender people, particularly transgender women, have been reported, the particular brain regions have been inconsistent among studies. This study aimed to investigate neuroanatomical differences in transgender men without physical interventions. METHOD T1-weighted magnetic resonance images (MRIs) were acquired in 21 transgender men and 21 cisgender women matched for biological sex and age. Whole-brain comparisons using voxel-based morphometry (VBM) were performed to identify gray matter volume (GMV) differences between transgender men and cisgender women. RESULTS Transgender men showed greater GMV in the right posterior cingulate gyrus (PFWE-corr = 3.06×10-6) and the left occipital pole (PFWE-corr = 0.017) and lower GMV in the left middle temporal gyrus (PFWE-corr = 0.017) than cisgender women. Even after including serum sex hormone levels as covariates, the posterior cingulate gyrus was still significant (PFWE-corr < 0.05). In contrast, the occipital pole and the middle temporal gyrus were not significant after controlling for the sex hormone levels (PFWE-corr > 0.05), especially affected by testosterone but not estradiol. CONCLUSION These findings suggest that transgender men have altered brain structure. We suggest that larger posterior midline structures may contribute to sensitivity to self-referential processing through altered visual perception in transgender people.
Collapse
Affiliation(s)
- Taku Fukao
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazutaka Ohi
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Toshiki Shioiri
- Department of Psychiatry and Psychotherapy, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Clinical Brain Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
6
|
Soldevila-Matías P, Schoretsanitis G, Tordesillas-Gutierrez D, Cuesta MJ, de Filippis R, Ayesa-Arriola R, González-Vivas C, Setién-Suero E, Verdolini N, Sanjuán J, Radua J, Crespo-Facorro B. Neuroimaging correlates of insight in non-affective psychosis: A systematic review and meta-analysis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2022; 15:117-133. [PMID: 35840278 DOI: 10.1016/j.rpsmen.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/01/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis. METHODS This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps. RESULTS A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight). CONCLUSION Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain; Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; National Reference Center for Psychosocial Care for People with Serious Mental Disorder (CREAP), Valencia, Spain
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Diana Tordesillas-Gutierrez
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain.
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Renato de Filippis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Psychiatry Unit Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Rosa Ayesa-Arriola
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Carlos González-Vivas
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel Street, 12-0, 08036 Barcelona, Spain
| | - Julio Sanjuán
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| | - Joaquim Radua
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
7
|
Insula volumes in first-episode and chronic psychosis: A longitudinal MRI study. Schizophr Res 2022; 241:14-23. [PMID: 35074528 DOI: 10.1016/j.schres.2021.12.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/21/2021] [Accepted: 12/28/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alterations in insular grey matter (GM) volume has been consistently reported for affective and non-affective psychoses both in chronic and first-episode patients, ultimately suggesting that the insula might represent a good region to study in order to assess the longitudinal course of psychotic disorders. Therefore, in this longitudinal Magnetic Resonance Imaging (MRI) study, we aimed at further investigating the key role of insular volumes in psychosis. MATERIAL AND METHODS 68 First-Episode Psychosis (FEP) patients, 68 patients with Schizophrenia (SCZ), 47 Bipolar Disorder (BD) patients, and 94 Healthy Controls (HC) were enrolled and underwent a 1.5 T MRI evaluation. A subsample of 99 subjects (10 HC, 23 BD, 29 SCZ, 37 FEP) was rescanned after 2,53 ± 1,68 years. The insular cortex was manually traced and then divided into an anterior and posterior portion. Group and correlation analyses were then performed both at baseline and at follow-up. RESULTS At baseline, greater anterior and lower posterior insular GM volumes were observed in chronic patients. At follow-up, we found that FEP patients had a significant GM volume increase from baseline to follow-up, especially in the posterior insula whereas chronic patients showed a relative stability. Finally, significant negative correlations between illness severity and pharmacological treatment and insular GM volumes were observed in the whole group of psychotic patients. CONCLUSIONS The longitudinal assessment of both chronic and first-episode patients allowed us to detect a complex pattern of GM abnormalities in selective sub-portions of insular volumes, ultimately suggesting that this structure could represent a key biological marker of psychotic disorders.
Collapse
|
8
|
Guo P, Hu S, Jiang X, Zheng H, Mo D, Cao X, Zhu J, Zhong H. Associations of Neurocognition and Social Cognition With Brain Structure and Function in Early-Onset Schizophrenia. Front Psychiatry 2022; 13:798105. [PMID: 35222115 PMCID: PMC8866448 DOI: 10.3389/fpsyt.2022.798105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cognitive impairment is a core feature of schizophrenia that is more serious in patients with early-onset schizophrenia (EOS). However, the neuroimaging basis of cognitive functions, including neurocognition and social cognition, remains unclear in patients with EOS. METHODS Forty-three patients with EOS underwent structural and resting state functional magnetic resonance imaging scans. Brain structure and function were evaluated through the analysis of brain gray matter volume (GMV) and amplitude of low-frequency fluctuations (ALFF). They underwent comprehensive assessments for neurocognition (verbal memory, verbal expression, attention, and executive function) and social cognition (theory of mind and attributional bias). Correlation analyses were conducted to detect the potential link between cognitive function indices and brain imaging parameters. RESULTS First, neurocognition was linked to brain structure characterized by higher immediate recall scores associated with increased GMV in the left temporal pole, higher verbal fluency scores associated with increased GMV in the left temporal pole: middle temporal gyrus, and higher Stroop-word scores associated with increased GMV in the right middle frontal gyrus. Second, social cognition was related to brain function characterized by lower sense of reality scores associated with increased ALFF in the left precentral gyrus, higher scores of accidental hostility bias associated with increased ALFF in the right middle temporal gyrus, and higher scores of accidental aggression bias associated with increased ALFF in the left precentral gyrus. CONCLUSION These findings may add to the existing knowledge about the cognitive function-brain relationship. They may have clinical significance for studying the mechanism of neurocognitive and social cognitive impairment in patients with EOS and providing potential neural targets for their treatment and intervention.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Shuwen Hu
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Xiaolu Jiang
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Hongyu Zheng
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Daming Mo
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Xiaomei Cao
- Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhong
- Department of Child and Adolescent Mental Disorder, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China.,Department of Child and Adolescent Mental Disorder, Anhui Mental Health Center, Hefei, China
| |
Collapse
|
9
|
Li X, Liu N, Yang C, Zhang W, Lui S. Cerebellar gray matter volume changes in patients with schizophrenia: A voxel-based meta-analysis. Front Psychiatry 2022; 13:1083480. [PMID: 36620665 PMCID: PMC9814486 DOI: 10.3389/fpsyt.2022.1083480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In schizophrenia, the structural changes in the cerebellum are associated with patients' cognition and motor deficits. However, the findings are inconsistent owing to the heterogeneity in sample size, magnetic resonance imaging (MRI) scanners, and other factors among them. In this study, we conducted a meta-analysis to characterize the anatomical changes in cerebellar subfields in patients with schizophrenia. METHODS Systematic research was conducted to identify studies that compare the gray matter volume (GMV) differences in the cerebellum between patients with schizophrenia and healthy controls with a voxel-based morphometry (VBM) method. A coordinate-based meta-analysis was adopted based on seed-based d mapping (SDM) software. An exploratory meta-regression analysis was conducted to associate clinical and demographic features with cerebellar changes. RESULTS Of note, 25 studies comprising 996 patients with schizophrenia and 1,109 healthy controls were included in the present meta-analysis. In patients with schizophrenia, decreased GMVs were demonstrated in the left Crus II, right lobule VI, and right lobule VIII, while no increased GMV was identified. In the meta-regression analysis, the mean age and illness duration were negatively associated with the GMV in the left Crus II in patients with schizophrenia. CONCLUSION The most significant structural changes in the cerebellum are mainly located in the posterior cerebellar hemisphere in patients with schizophrenia. The decreased GMVs of these regions might partly explain the cognitive deficits and motor symptoms in patients with schizophrenia.
Collapse
Affiliation(s)
- Xing Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Naici Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Chengmin Yang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Iliuta FP, Manea MC, Budisteanu M, Andrei E, Linca F, Rad F, Cergan R, Ciobanu AM. Magnetic resonance imaging of brain anomalies in adult and pediatric schizophrenia patients: Experience of a Romanian tertiary hospital. Exp Ther Med 2021; 22:1098. [PMID: 34504552 PMCID: PMC8383773 DOI: 10.3892/etm.2021.10532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/29/2021] [Indexed: 11/27/2022] Open
Abstract
Schizophrenia is a severe mental illness with a significant impact on the life of both the patient and the patient's family. Magnetic resonance imaging has proven a useful tool for studying structural changes of the brain in schizophrenia. However, interpreting the published literature presents several challenges. Despite thorough research in recent years, which has included anatomopathological, imaging, electrophysiological, and genetic studies, the intimate pathophysiological mechanisms of this disease are not yet fully elucidated. The present study included patients with schizophrenia diagnosed in the psychiatric clinics from the ‘Prof. Dr. Alexandru Obregia’ Clinical Psychiatry Hospital between September 2019 and December 2020. Three Tesla magnetic resonance neuroimaging studies were performed. In a significant number of cases, the neuroimaging studies showed association of cerebral modifications such as enlargement of the Virchow spaces, lesions of the white matter with demyelinating appearance, and inflammatory sinus reactions. Cortical atrophy and hemosiderotic spots were present in a statistically significant proportion in the patient group with an age range of 29-61 years. MRI is indicated as a useful technique in the follow-up process of schizophrenia patients. However, whether the anomalies revealed in this disorder can be utilised as diagnostic biomarkers is still being debated.
Collapse
Affiliation(s)
- Floris Petru Iliuta
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Mihnea Costin Manea
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Department of Psychiatry and Psychology, Faculty of Dental Medicine, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Magdalena Budisteanu
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Laboratory of Medical Genetics, 'Victor Babes' National Institute of Pathology, 050096 Bucharest, Romania.,Department of Medical Genetics, Faculty of Medicine, 'Titu Maiorescu' University, 031593 Bucharest, Romania
| | - Emanuela Andrei
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Florentina Linca
- Psychiatry Research Laboratory, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Florina Rad
- Department of Child and Adolescent Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Discipline of Child and Adolescent Psychiatry, Department of Neurosciences, 050474 Bucharest, Romania
| | - Romica Cergan
- Department of Anatomy, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Radiology and Imaging, Clinical Hospital of Orthopedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Adela Magdalena Ciobanu
- Department of Psychiatry, 'Prof. Dr. Alexandru Obregia' Clinical Hospital of Psychiatry, 041914 Bucharest, Romania.,Discipline of Psychiatry, Department of Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
11
|
Soldevila-Matías P, Schoretsanitis G, Tordesillas-Gutierrez D, Cuesta MJ, de Filippis R, Ayesa-Arriola R, González-Vivas C, Setién-Suero E, Verdolini N, Sanjuán J, Radua J, Crespo-Facorro B. Neuroimaging correlates of insight in non-affective psychosis: A systematic review and meta-analysis. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021; 15:S1888-9891(21)00067-7. [PMID: 34271162 DOI: 10.1016/j.rpsm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Neurological correlates of impaired insight in non-affective psychosis remain unclear. This study aimed to review and meta-analyze the studies assessing the grey matter volumetric correlates of impaired insight in non-affective psychosis. METHODS This study consisted of a systematic review of 23 studies, and a meta-analysis with SDM-PSI of the 11 studies that were whole-brain and reported maps or peaks of correlation of studies investigating the grey matter volumetric correlates of insight assessments of non-affective psychosis, PubMed and OVID datasets were independently reviewed for articles reporting neuroimaging correlates of insight in non-affective psychosis. Quality assessment was realized following previous methodological approaches for the ABC quality assessment test of imaging studies, based on two main criteria: the statistical power and the multidimensional assessment of insight. Study peaks of correlation between grey matter volume and insight were used to recreate brain correlation maps. RESULTS A total of 418 records were identified through database searching. Of these records, twenty-three magnetic resonance imaging (MRI) studies that used different insight scales were included. The quality of the evidence was high in 11 studies, moderate in nine, and low in three. Patients with reduced insight showed decreases in the frontal, temporal (specifically in superior temporal gyrus), precuneus, cingulate, insula, and occipital lobes cortical grey matter volume. The meta-analysis indicated a positive correlation between grey matter volume and insight in the right insula (i.e., the smaller the grey matter, the lower the insight). CONCLUSION Several brain areas might be involved in impaired insight in patients with non-affective psychoses. The methodologies employed, such as the applied insight scales, may have contributed to the considerable discrepancies in the findings.
Collapse
Affiliation(s)
- Pau Soldevila-Matías
- Department of Basic Psychology, Faculty of Psychology, University of Valencia, Valencia, Spain; Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; National Reference Center for Psychosocial Care for People with Serious Mental Disorder (CREAP), Valencia, Spain
| | - Georgios Schoretsanitis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA
| | - Diana Tordesillas-Gutierrez
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain.
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Renato de Filippis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York, USA; Psychiatry Unit Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Rosa Ayesa-Arriola
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Carlos González-Vivas
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain
| | - Esther Setién-Suero
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| | - Norma Verdolini
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel Street, 12-0, 08036 Barcelona, Spain
| | - Julio Sanjuán
- Research Institute of Clinic University Hospital of Valencia (INCLIVA), Valencia, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Department of Psychiatric, University of Valencia, School of Medicine, Valencia, Spain
| | - Joaquim Radua
- CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Benedicto Crespo-Facorro
- Marqués de Valdecilla University Hospital, Department of Radiology, IDIVAL, Santander, Spain; Marqués de Valdecilla University Hospital, Department of Psychiatry, School of Medicine, University of Cantabria, IDIVAL, Santander, Spain; CIBERSAM, Biomedical Research Network on Mental Health Area, Madrid, Spain
| |
Collapse
|
12
|
Vieira S, Gong Q, Scarpazza C, Lui S, Huang X, Crespo-Facorro B, Tordesillas-Gutierrez D, de la Foz VOG, Setien-Suero E, Scheepers F, van Haren NE, Kahn R, Reis Marques T, Ciufolini S, Di Forti M, Murray RM, David A, Dazzan P, McGuire P, Mechelli A. Neuroanatomical abnormalities in first-episode psychosis across independent samples: a multi-centre mega-analysis. Psychol Med 2021; 51:340-350. [PMID: 31858920 PMCID: PMC7893510 DOI: 10.1017/s0033291719003568] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/10/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neuroanatomical abnormalities in first-episode psychosis (FEP) tend to be subtle and widespread. The vast majority of previous studies have used small samples, and therefore may have been underpowered. In addition, most studies have examined participants at a single research site, and therefore the results may be specific to the local sample investigated. Consequently, the findings reported in the existing literature are highly heterogeneous. This study aimed to overcome these issues by testing for neuroanatomical abnormalities in individuals with FEP that are expressed consistently across several independent samples. METHODS Structural Magnetic Resonance Imaging data were acquired from a total of 572 FEP and 502 age and gender comparable healthy controls at five sites. Voxel-based morphometry was used to investigate differences in grey matter volume (GMV) between the two groups. Statistical inferences were made at p < 0.05 after family-wise error correction for multiple comparisons. RESULTS FEP showed a widespread pattern of decreased GMV in fronto-temporal, insular and occipital regions bilaterally; these decreases were not dependent on anti-psychotic medication. The region with the most pronounced decrease - gyrus rectus - was negatively correlated with the severity of positive and negative symptoms. CONCLUSIONS This study identified a consistent pattern of fronto-temporal, insular and occipital abnormalities in five independent FEP samples; furthermore, the extent of these alterations is dependent on the severity of symptoms and duration of illness. This provides evidence for reliable neuroanatomical alternations in FEP, expressed above and beyond site-related differences in anti-psychotic medication, scanning parameters and recruitment criteria.
Collapse
Affiliation(s)
- Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Diana Tordesillas-Gutierrez
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Víctor Ortiz-García de la Foz
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Esther Setien-Suero
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Madrid, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Floor Scheepers
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - René Kahn
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Simone Ciufolini
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marta Di Forti
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anthony David
- UCL Institute of Mental Health, University College London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Kaur A, Basavanagowda DM, Rathod B, Mishra N, Fuad S, Nosher S, Alrashid ZA, Mohan D, Heindl SE. Structural and Functional Alterations of the Temporal lobe in Schizophrenia: A Literature Review. Cureus 2020; 12:e11177. [PMID: 33262914 PMCID: PMC7689947 DOI: 10.7759/cureus.11177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia is a severe chronic mental illness leading to social and occupational dysfunction. Our primary focus in this review article was to analyze further the structural and functional alterations of the temporal lobe in patients with schizophrenia, which might contribute to the associated manifestations we often see in this illness. Our goal was to see if there was any correlation between temporal lobe abnormalities, more specifically, alterations in brain volume and specific symptoms such as auditory and language processing, etc. There is a positive correlation between volume alterations and thoughts disorders in the temporal lobe in the majority of studies. However, superior temporal gyrus volume has also been correlated negatively with the severity of hallucinations and thought disorders in some studies. We utilized Medical Subject Heading (MeSH) search strategy via PubMed database in our articles search yielding 241 papers. After the application of specific inclusion and exclusion criteria, a final number of 30 was reviewed. The involvement of the temporal lobe and its gray and white matter volume alterations in schizophrenia is quite apparent from our research; however, the exact mechanism of the underlying biological process is not thoroughly studied yet. Therefore, further research on larger cohorts combining different imaging modalities including volumetry, diffusion tensor, and functional imaging is required to explain how the progressive brain changes affect the various structural, functional, and metabolic activities of the temporal lobe in schizophrenia.
Collapse
Affiliation(s)
- Arveen Kaur
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Deepak M Basavanagowda
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Bindu Rathod
- Psychiatry and Behavioral Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Nupur Mishra
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sehrish Fuad
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sadia Nosher
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Zaid A Alrashid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Devyani Mohan
- Surgery, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Stacey E Heindl
- Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Medicine, Avalon University School of Medicine, Willemstad, CUW
| |
Collapse
|
14
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
15
|
Tordesillas-Gutierrez D, Ayesa-Arriola R, Delgado-Alvarado M, Robinson JL, Lopez-Morinigo J, Pujol J, Dominguez-Ballesteros ME, David AS, Crespo-Facorro B. The right occipital lobe and poor insight in first-episode psychosis. PLoS One 2018; 13:e0197715. [PMID: 29856773 PMCID: PMC5983855 DOI: 10.1371/journal.pone.0197715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022] Open
Abstract
Lack of insight is a core feature of non-affective psychosis and has been associated with poorer outcomes. Brain abnormalities underlying lack of insight have been suggested, mostly in the frontal lobe, although previous research showed mixed results. We used a voxel-based morphometry (VBM) analysis in 108 first-episode non-affective psychosis patients to investigate the pattern of brain structural abnormalities related to lack of insight. In addition, 77 healthy volunteers were compared with the patients classified as having poor and good insight. The shortened version of the Scale to Assess Unawareness of Mental Disorder was used to evaluate insight. Patients with poor insight (n = 68) compared with patients with good insight (n = 40) showed a single significant cluster (kc = 5834; PcFWE = 0.001) of reduced grey matter volume (GMV) in the right occipital lobe extending to its lateral and medial surfaces, the cuneus, and the middle temporal gyrus. In addition, GMV at this cluster showed a negative correlation with the score of the SUMD (r = -0.305; p = 0.001). When comparing patients with poor insight with healthy subjects overall reductions of GMV were found, mainly in frontal and occipital lobes. Hence, poor insight in non-affective psychosis seems to be associated with specific brain abnormalities in the right occipital and temporal cortical regions. Dysfunction in any combination of these areas may contribute to lack of insight in non-affective psychosis. Specifically, the 'right' hemisphere dysfunction underlying impaired insight in our sample is consistent with previously reported similarities between lack of insight in psychosis and anosognosia in neurological disorders.
Collapse
Affiliation(s)
- Diana Tordesillas-Gutierrez
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain
- * E-mail:
| | - Rosa Ayesa-Arriola
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| | - Manuel Delgado-Alvarado
- Neuroimaging Unit, Technological Facilities,Valdecilla Biomedical Research Institute IDIVAL, Santander, Cantabria, Spain
| | - Jennifer L. Robinson
- Department of Psychology, Auburn University, Auburn, Alabama, United States of America
- Department of Electrical and Computer Engineering, Auburn University, Auburn University Magnetic Resonance Imaging Research Center, Auburn, Alabama, United States of America
- Department of Kinesiology, Auburn University, Auburn, Alabama, United States of America
| | - Javier Lopez-Morinigo
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Jesus Pujol
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain
- MRI Research Unit, Hospital del Mar, Barcelona, Spain
| | | | - Anthony S. David
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Benedicto Crespo-Facorro
- CIBERSAM, Centro Investigación Biomédica en Red de Salud Mental, Santander, Spain
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
| |
Collapse
|
16
|
Davies G, Rae CL, Garfinkel SN, Seth AK, Medford N, Critchley HD, Greenwood K. Impairment of perceptual metacognitive accuracy and reduced prefrontal grey matter volume in first-episode psychosis. Cogn Neuropsychiatry 2018; 23:165-179. [PMID: 29485348 DOI: 10.1080/13546805.2018.1444597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Metacognition, or "thinking about thinking", is a higher-order thought process that allows for the evaluation of perceptual processes for accuracy. Metacognitive accuracy is associated with the grey matter volume (GMV) in the prefrontal cortex (PFC), an area also impacted in schizophrenia. The present study set out to investigate whether deficits in metacognitive accuracy are present in the early stages of psychosis. METHODS Metacognitive accuracy in first-episode psychosis (FEP) was assessed on a perceptual decision-making task and their performance compared to matched healthy control participants (N = 18). A novel signal detection theory approach was used to model metacognitive sensitivity independently from objective perceptual performance. A voxel-based morphometry investigation was also conducted on GMV. RESULTS We found that the FEP group demonstrated significantly worse metacognitive accuracy compared to controls (p = .039). Importantly, GMV deficits were also observed in the superior frontal gyrus. The findings suggest a specific deficit in this processing domain to exist at first episode; however, no relationship was found between GMV and metacognitive accuracy. CONCLUSIONS Our findings support the notion that an inability to accurately scrutinise perception may underpin functional deficits observed in later schizophrenia; however, the exact neural basis of metacognitive deficits in FEP remains elusive.
Collapse
Affiliation(s)
- Geoff Davies
- a School of Psychology , University of Sussex , Brighton , UK.,b Sussex Partnership NHS Foundation Trust , Brighton , UK
| | - Charlotte L Rae
- c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Sarah N Garfinkel
- c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Anil K Seth
- c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,e School of Engineering & Informatics , University of Sussex , Brighton , UK
| | - Nick Medford
- b Sussex Partnership NHS Foundation Trust , Brighton , UK.,c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Hugo D Critchley
- b Sussex Partnership NHS Foundation Trust , Brighton , UK.,c Sackler Centre for Consciousness Science , University of Sussex , Brighton , UK.,d Neuroscience , Brighton & Sussex Medical School , Brighton , UK
| | - Kathryn Greenwood
- a School of Psychology , University of Sussex , Brighton , UK.,b Sussex Partnership NHS Foundation Trust , Brighton , UK
| |
Collapse
|
17
|
Progressive cortical reorganisation: A framework for investigating structural changes in schizophrenia. Neurosci Biobehav Rev 2017; 79:1-13. [DOI: 10.1016/j.neubiorev.2017.04.028] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 12/27/2022]
|
18
|
Del Casale A, Kotzalidis GD, Rapinesi C, Sorice S, Girardi N, Ferracuti S, Girardi P. Functional Magnetic Resonance Imaging Correlates of First-Episode Psychoses during Attentional and Memory Task Performance. Neuropsychobiology 2017; 74:22-31. [PMID: 27698323 DOI: 10.1159/000448620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The nature of the alteration of the response to cognitive tasks in first-episode psychosis (FEP) still awaits clarification. We used activation likelihood estimation, an increasingly used method in evaluating normal and pathological brain function, to identify activation changes in functional magnetic resonance imaging (fMRI) studies of FEP during attentional and memory tasks. METHODS We included 11 peer-reviewed fMRI studies assessing FEP patients versus healthy controls (HCs) during performance of attentional and memory tasks. RESULTS Our database comprised 290 patients with FEP, matched with 316 HCs. Between-group analyses showed that HCs, compared to FEP patients, exhibited hyperactivation of the right middle frontal gyrus (Brodmann area, BA, 9), right inferior parietal lobule (BA 40), and right insula (BA 13) during attentional task performances and hyperactivation of the left insula (BA 13) during memory task performances. CONCLUSIONS Right frontal, parietal, and insular dysfunction during attentional task performance and left insular dysfunction during memory task performance are significant neural functional FEP correlates.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Shen Z, Cheng Y, Yang S, Dai N, Ye J, Liu X, Lu J, Li N, Liu F, Lu Y, Sun X, Xu X. Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. NEUROIMAGE-CLINICAL 2016; 12:492-498. [PMID: 27668175 PMCID: PMC5026687 DOI: 10.1016/j.nicl.2016.08.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 07/30/2016] [Accepted: 08/19/2016] [Indexed: 12/25/2022]
Abstract
Objective Little is known about the pathological mechanism of early adult onset depression (EOD) and later adult onset depression (LOD). We seek to determine whether grey matter volume (GMV) change in EOD and LOD are different, which could also delineate EOD and LOD. Methods In present study, 147 first-episode, drug-naive patients with major depressive disorder (MDD), age between 18 and 45, were divided into two groups on the basis of age of MDD onset: the early adult onset group (age 18–29) and the later adult onset group (age 30–44), and a total of 130 gender-, and age-, matched healthy controls (HC) were also divided into two groups which fit for each patient group. Magnetic resonance imaging was conducted on all subjects. The voxel-based morphometry (VBM) approach was employed to analyze the images. Results Widespread abnormalities of GMV throughout parietal, temporal, limbic regions, occipital cortex and cerebellum were observed in MDD patients. Compare to young HC, reduced GMV in right fusiform gyrus, right middle temporal gyrus, vermis III and increased GMV in right middle occipital gyrus were seen in the EOD group. In contrast, relative to old HC, decreased GMV in the right hippocampus and increased GMV in the left middle temporal gyrus were observed in the LOD group. Compared to the LOD group, the EOD group had smaller GMV in right posterior cingulate cortex. There was no significant correlation between GMV of the right posterior cingulate cortex and the score of the depression rating scale in patients group. Conclusions The GMV of the brain areas that were related to mood regulation was decreased in the first-episode, drug-naive adult patients with MDD. Adult patients with EOD and LOD exhibited different GMV changes relative to each age-matched comparison group, suggesting depressed adult patients with different age-onset might have different pathological mechanism. Grey matter volume widely decreased in the drug-naive adult patients with MDD. Depressed patients with different age-onset have different grey matter change. 30 years old is an appropriate cutoff age for different age-onset depression.
Collapse
Affiliation(s)
- Zonglin Shen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Shuran Yang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Nan Dai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jing Ye
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiaoyan Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jin Lu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Na Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yi Lu
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xuejin Sun
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| |
Collapse
|
20
|
Pina-Camacho L, Del Rey-Mejías Á, Janssen J, Bioque M, González-Pinto A, Arango C, Lobo A, Sarró S, Desco M, Sanjuan J, Lacalle-Aurioles M, Cuesta MJ, Saiz-Ruiz J, Bernardo M, Parellada M. Age at First Episode Modulates Diagnosis-Related Structural Brain Abnormalities in Psychosis. Schizophr Bull 2016; 42:344-57. [PMID: 26371339 PMCID: PMC4753597 DOI: 10.1093/schbul/sbv128] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Brain volume and thickness abnormalities have been reported in first-episode psychosis (FEP). However, it is unclear if and how they are modulated by brain developmental stage (and, therefore, by age at FEP as a proxy). This is a multicenter cross-sectional case-control brain magnetic resonance imaging (MRI) study. Patients with FEP (n = 196), 65.3% males, with a wide age at FEP span (12-35 y), and healthy controls (HC) (n = 157), matched for age, sex, and handedness, were scanned at 6 sites. Gray matter volume and thickness measurements were generated for several brain regions using FreeSurfer software. The nonlinear relationship between age at scan (a proxy for age at FEP in patients) and volume and thickness measurements was explored in patients with schizophrenia spectrum disorders (SSD), affective psychoses (AFP), and HC. Earlier SSD cases (ie, FEP before 15-20 y) showed significant volume and thickness deficits in frontal lobe, volume deficits in temporal lobe, and volume enlargements in ventricular system and basal ganglia. First-episode AFP patients had smaller cingulate cortex volume and thicker temporal cortex only at early age at FEP (before 18-20 y). The AFP group also had age-constant (12-35-y age span) volume enlargements in the frontal and parietal lobe. Our study suggests that age at first episode modulates the structural brain abnormalities found in FEP patients in a nonlinear and diagnosis-dependent manner. Future MRI studies should take these results into account when interpreting samples with different ages at onset and diagnosis.
Collapse
Affiliation(s)
| | - Ángel Del Rey-Mejías
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain;,Department of Methodology, School of Psychology, Universidad Complutense, Madrid, Spain
| | - Joost Janssen
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Miquel Bioque
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clínic, Barcelona, Spain
| | - Ana González-Pinto
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Universitario de Álava (Sede Santiago), EHU/University of the Basque Country, Vitoria, Spain
| | - Celso Arango
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | - Antonio Lobo
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Medicine and Psychiatry, Hospital Clínico, University of Zaragoza, IIS Aragón, Zaragoza, Spain
| | - Salvador Sarró
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,FIDMAG Hermanas Hospitalarias,Barcelona, Spain
| | - Manuel Desco
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain;,Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, IiSGM, Madrid, Spain
| | - Julio Sanjuan
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Clinic, University of Valencia, INCLIVA, Valencia, Spain
| | - Maria Lacalle-Aurioles
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, Madrid, Spain;,Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Manuel J. Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - Jerónimo Saiz-Ruiz
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Department of Psychiatry, Hospital Ramon y Cajal, IRYCIS, Universidad de Alcala, Madrid, Spain
| | - Miguel Bernardo
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Barcelona Clínic Schizophrenia Unit, Neurosciences Institute, Hospital Clínic, Barcelona, Spain;,Department of Psychiatry and Clinical Psychobiology, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Mara Parellada
- Ciber del Area de Salud Mental (CIBERSAM), Spain;,Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón, School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | | |
Collapse
|
21
|
Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2015; 20:213-24. [PMID: 26166588 PMCID: PMC4710336 DOI: 10.17712/nsj.2015.3.20140757] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia.
Collapse
Affiliation(s)
- Hassaan Tohid
- Center for Mind and Brain, UC Davis, CA, United States of America. E-mail:
| | | | | |
Collapse
|
22
|
Kaleda VG. [Youth-onset schizophrenia: psychopathology, clinical presentation and therapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:26-33. [PMID: 26978249 DOI: 10.17116/jnevro201511511226-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper reviews the clinical presentations and pathogenetic features of youth-onset schizophrenia with onset at the age of 16-25 years old. The clinical presentation of the disease in young people is different in comparison to adult patients. Psychopathological and biological characteristics of the first episode, the course of «progressive» schizophrenia and «malignant youth schizophrenia» in the pubertal period are described. Early diagnosis and prevention of disease manifestation are discussed. Recommendations on therapeutic measures at different stages of the endogenous process in this age are presented. The most important future goals of research in this field are formulated.
Collapse
|