1
|
Chouinard VA, Du F, Chen X, Tusuzian E, Ren B, Anderson J, Cuklanz K, Feizi W, Zhou S, Weerasekera A, Cohen BM, Öngür D, Lewandowski KE. Cognitive Impairment in Psychotic Disorders Is Associated with Brain Reductive Stress and Impaired Energy Metabolism as Measured by 31P Magnetic Resonance Spectroscopy. Schizophr Bull 2025:sbaf003. [PMID: 39869459 DOI: 10.1093/schbul/sbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
BACKGROUND AND HYPOTHESIS Convergent evidence shows the presence of brain metabolic abnormalities in psychotic disorders. This study examined brain reductive stress and energy metabolism in people with psychotic disorders with impaired or average range cognition. We hypothesized that global cognitive impairment would be associated with greater brain metabolic dysregulation. STUDY DESIGN Participants with affective and non-affective psychosis (n = 62) were administered the MATRICS Consensus Cognitive Battery (MCCB) and underwent a 31P-magnetic resonance spectroscopy scan at 4T. We used a cluster-analysis approach to identify 2 clusters of participants with and without cognitive dysfunction. We compared clusters on brain redox balance or reductive stress, measured by the ratio of nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH, in addition to creatine kinase (CK) enzymatic activity and pH. STUDY RESULTS The mean (SD) age of participants was 25.1 (6.3) years. The mean NAD+/NADH ratio differed between groups, with lower NAD+/NADH ratio, suggesting more reductive stress, in the impaired cognitive cluster (t = -2.60, P = .01). There was also a significant reduction in CK activity in the impaired cognitive cluster (t = -2.19, P = .03). Intracellular pH did not differ between the 2 cluster groups (t = 1.31, P = .19). The clusters did not significantly differ on severity of mood and psychotic symptomatology or other measures of illness severity. CONCLUSIONS Our results demonstrate that psychotic disorders with greater cognitive impairment have greater brain metabolic dysregulation, with more reductive stress and decrease in energy metabolic rate markers. This provides new evidence for the potential of emerging metabolic therapies to treat cognitive deficits in psychotic disorders.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Emma Tusuzian
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
- Department of Biostatistics, McLean Hospital, Belmont, MA, United States
| | - Jacey Anderson
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Kyle Cuklanz
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
| | - Wirya Feizi
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Shuqin Zhou
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Akila Weerasekera
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Kathryn E Lewandowski
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Chouinard VA, Feizi W, Chen X, Ren B, Lewandowski KE, Anderson J, Prete S, Tusuzian E, Cuklanz K, Zhou S, Bolton P, Stein A, Cohen BM, Du F, Öngür D. Intranasal Insulin Increases Brain Glutathione and Enhances Antioxidant Capacity in Healthy Participants but Not in Those With Early Psychotic Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00355-0. [PMID: 39617344 DOI: 10.1016/j.bpsc.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 02/05/2025]
Abstract
BACKGROUND We examined the acute effects of intranasal insulin on cognitive function and brain glutathione (GSH), a central factor in resistance to oxidative stress, in both participants with early psychosis and healthy control (HC) participants. METHODS Twenty-one patients with early-stage psychotic disorders and 18 HC participants underwent magnetic resonance spectroscopy (MRS) scans and cognitive assessments before and after administration of intranasal insulin 40 IU. We conducted proton MRS (1H-MRS) in the prefrontal cortex at 4T to measure GSH and glutamate metabolites. We assessed cognition using the Brief Assessment of Cognition in Schizophrenia symbol coding, digit sequencing, and verbal fluency tasks, in addition to the Stroop task. RESULTS The mean (SD) age of participants was 25.7 (4.6) years; 51.3% were female. There were no significant group differences at baseline in age, sex, body mass index, homeostatic model assessment of insulin resistance (HOMA-IR), or cognition. Patients had higher baseline GSH (p < .001) and glutamate (p = .007). After insulin administration, GSH increased in HC participants (mean change, 0.15; 95% CI 0.03 to 0.26; p = .015), but not in patients. Symbol coding improved in both patients (0.74; 95% CI 0.37 to 1.11; p < .001) and HC participants (0.83; 95% CI 0.58 to 1.09; p < .001), and verbal fluency improved in HC participants (0.43; 95% CI 0.14 to 0.72; p = .006). Lower baseline HOMA-IR was associated with greater change in GSH (coefficient -0.22; 95% CI -0.40 to -0.04; p = .017). CONCLUSIONS Intranasal insulin increased brain GSH in HC participants, but not in patients with early psychotic disorders. These novel findings demonstrate that intranasal insulin enhances antioxidant capacity and resilience to oxidative stress in HC individuals in contrast to an absent antioxidant response in those with early psychotic disorders.
Collapse
Affiliation(s)
- Virginie-Anne Chouinard
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Wirya Feizi
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Xi Chen
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Boyu Ren
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Department of Biostatistics, McLean Hospital, Belmont, Massachusetts
| | - Kathryn E Lewandowski
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jacey Anderson
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Steven Prete
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Emma Tusuzian
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Kyle Cuklanz
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Shuqin Zhou
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Paula Bolton
- Psychiatric Neurotherapeutics Program, McLean Hospital, Boston, Massachusetts
| | - Abigail Stein
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts
| | - Bruce M Cohen
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
Sarnyai Z, Ben-Shachar D. Schizophrenia, a disease of impaired dynamic metabolic flexibility: A new mechanistic framework. Psychiatry Res 2024; 342:116220. [PMID: 39369460 DOI: 10.1016/j.psychres.2024.116220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Schizophrenia is a chronic, neurodevelopmental disorder with unknown aetiology and pathophysiology that emphasises the role of neurotransmitter imbalance and abnormalities in synaptic plasticity. The currently used pharmacological approach, the antipsychotic drugs, which have limited efficacy and an array of side-effects, have been developed based on the neurotransmitter hypothesis. Recent research has uncovered systemic and brain abnormalities in glucose and energy metabolism, focusing on altered glycolysis and mitochondrial oxidative phosphorylation. These findings call for a re-conceptualisation of schizophrenia pathophysiology as a progressing bioenergetics failure. In this review, we provide an overview of the fundamentals of brain bioenergetics and the changes identified in schizophrenia. We then propose a new explanatory framework positing that schizophrenia is a disease of impaired dynamic metabolic flexibility, which also reconciles findings of abnormal glucose and energy metabolism in the periphery and in the brain along the course of the disease. This evidence-based framework and testable hypothesis has the potential to transform the way we conceptualise this debilitating condition and to develop novel treatment approaches.
Collapse
Affiliation(s)
- Zoltán Sarnyai
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel; Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Department of Psychiatry, Rambam Health Campus, Haifa, Israel.
| |
Collapse
|
4
|
Meng X, Zhang S, Zhou S, Ma Y, Yu X, Guan L. Putative Risk Biomarkers of Bipolar Disorder in At-risk Youth. Neurosci Bull 2024; 40:1557-1572. [PMID: 38710851 PMCID: PMC11422403 DOI: 10.1007/s12264-024-01219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/08/2024] [Indexed: 05/08/2024] Open
Abstract
Bipolar disorder is a highly heritable and functionally impairing disease. The recognition and intervention of BD especially that characterized by early onset remains challenging. Risk biomarkers for predicting BD transition among at-risk youth may improve disease prognosis. We reviewed the more recent clinical studies to find possible pre-diagnostic biomarkers in youth at familial or (and) clinical risk of BD. Here we found that putative biomarkers for predicting conversion to BD include findings from multiple sample sources based on different hypotheses. Putative risk biomarkers shown by perspective studies are higher bipolar polygenetic risk scores, epigenetic alterations, elevated immune parameters, front-limbic system deficits, and brain circuit dysfunction associated with emotion and reward processing. Future studies need to enhance machine learning integration, make clinical detection methods more objective, and improve the quality of cohort studies.
Collapse
Affiliation(s)
- Xinyu Meng
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shengmin Zhang
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Shuzhe Zhou
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Yantao Ma
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xin Yu
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lili Guan
- Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
5
|
Rog J, Wingralek Z, Nowak K, Grudzień M, Grunwald A, Banaszek A, Karakula-Juchnowicz H. The Potential Role of the Ketogenic Diet in Serious Mental Illness: Current Evidence, Safety, and Practical Advice. J Clin Med 2024; 13:2819. [PMID: 38792361 PMCID: PMC11122005 DOI: 10.3390/jcm13102819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that mimics the physiological state of fasting. The potential therapeutic effects in many chronic conditions have led to the gaining popularity of the KD. The KD has been demonstrated to alleviate inflammation and oxidative stress, modulate the gut microbiota community, and improve metabolic health markers. The modification of these factors has been a potential therapeutic target in serious mental illness (SMI): bipolar disorder, major depressive disorder, and schizophrenia. The number of clinical trials assessing the effect of the KD on SMI is still limited. Preliminary research, predominantly case studies, suggests potential therapeutic effects, including weight gain reduction, improved carbohydrate and lipid metabolism, decrease in disease-related symptoms, increased energy and quality of life, and, in some cases, changes in pharmacotherapy (reduction in number or dosage of medication). However, these findings necessitate further investigation through larger-scale clinical trials. Initiation of the KD should occur in a hospital setting and with strict care of a physician and dietitian due to potential side effects of the diet and the possibility of exacerbating adverse effects of pharmacotherapy. An increasing number of ongoing studies examining the KD's effect on mental disorders highlights its potential role in the adjunctive treatment of SMI.
Collapse
Affiliation(s)
- Joanna Rog
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 66 Str., 02-787 Warsaw, Poland
| | - Zuzanna Wingralek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Katarzyna Nowak
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Monika Grudzień
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Arkadiusz Grunwald
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Agnieszka Banaszek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| | - Hanna Karakula-Juchnowicz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Głuska 1 Str., 20-469 Lublin, Poland; (Z.W.); (K.N.); (M.G.); (A.B.); (H.K.-J.)
| |
Collapse
|
6
|
Stein A, Zhu C, Du F, Öngür D. Magnetic Resonance Spectroscopy Studies of Brain Energy Metabolism in Schizophrenia: Progression from Prodrome to Chronic Psychosis. Curr Psychiatry Rep 2023; 25:659-669. [PMID: 37812338 DOI: 10.1007/s11920-023-01457-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW Schizophrenia (SZ) is a debilitating mental illness; existing treatments are partially effective and associated with significant side effect burden, largely due to our limited understanding of disease mechanisms and the trajectory of disease progression. Accumulating evidence suggests that metabolic changes associated with glucose metabolism, mitochondrial dysfunction, and redox imbalance play an important role in the pathophysiology of schizophrenia. However, the molecular mechanisms associated with these abnormalities in the brains of schizophrenia patients and the ways in which they change over time remain unclear. This paper aims to review the current literature on molecular mechanisms and in vivo magnetic resonance spectroscopy (MRS) studies of impaired energy metabolism in patients at clinical high risk for psychosis, with first-episode SZ, and with chronic SZ. Our review covers research related to high-energy phosphate metabolism, lactate, intracellular pH, redox ratio, and the antioxidant glutathione. RECENT FINDINGS Both first-episode and chronic SZ patients display a significant reduction in creatine kinase reaction activity and redox (NAD + /NADH) ratio in the prefrontal cortex. Chronic, but not first-episode, SZ patients also show a trend toward increased lactate levels and decreased pH value. These findings suggest a progressive shift from oxidative phosphorylation to glycolysis for energy production over the course of SZ, which is associated with redox imbalance and mitochondrial dysfunction. Accumulating evidence indicates that aberrant brain energy metabolism associated with mitochondrial dysfunction and redox imbalance plays a critical role in SZ and will be a promising target for future treatments.
Collapse
Affiliation(s)
- Abigail Stein
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA
| | - Chenyanwen Zhu
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA.
- McLean Imaging Center, McLean Hospital, Belmont, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, 02478, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
8
|
Zou Y, Heyn C, Grigorian A, Tam F, Andreazza AC, Graham SJ, Maclntosh BJ, Goldstein BI. Measuring Brain Temperature in Youth Bipolar Disorder Using a Novel Magnetic Resonance Imaging Approach: A Proof-of-concept Study. Curr Neuropharmacol 2023; 21:1355-1366. [PMID: 36946483 PMCID: PMC10324328 DOI: 10.2174/1570159x21666230322090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND There is evidence of alterations in mitochondrial energy metabolism and cerebral blood flow (CBF) in adults and youth with bipolar disorder (BD). Brain thermoregulation is based on the balance of heat-producing metabolism and heat-dissipating mechanisms, including CBF. OBJECTIVE To examine brain temperature, and its relation to CBF, in relation to BD and mood symptom severity in youth. METHODS This study included 25 youth participants (age 17.4 ± 1.7 years; 13 BD, 12 control group (CG)). Magnetic resonance spectroscopy data were acquired to obtain brain temperature in the left anterior cingulate cortex (ACC) and the left precuneus. Regional estimates of CBF were provided by arterial spin labeling imaging. Analyses used general linear regression models, covarying for age, sex, and psychiatric medications. RESULTS Brain temperature was significantly higher in BD compared to CG in the precuneus. A higher ratio of brain temperature to CBF was significantly associated with greater depression symptom severity in both the ACC and precuneus within BD. Analyses examining the relationship of brain temperature or CBF with depression severity score did not reveal any significant finding in the ACC or the precuneus. CONCLUSION The current study provides preliminary evidence of increased brain temperature in youth with BD, in whom reduced thermoregulatory capacity is putatively associated with depression symptom severity. Evaluation of brain temperature and CBF in conjunction may provide valuable insight beyond what can be gleaned by either metric alone. Larger prospective studies are warranted to further evaluate brain temperature and its association with CBF concerning BD.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bradley J. Maclntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I. Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, M5T 1R8, ON, Canada
| |
Collapse
|
9
|
Mayén-Lobo YG, Alcaraz-Zubeldia M, Montellano DJDOD, Motilla-Frías BA, García-Manteca MY, Ortega-Vázquez A, Aviña-Cervantes CL, Crail-Meléndez ED, Ríos C, López-López M, Monroy-Jaramillo N. Influence of glutathione-related genetic variants in oxidative stress profile of Mexican patients with psychotic disorders. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2022; 45:117-126. [PMID: 36318479 PMCID: PMC10154007 DOI: 10.47626/1516-4446-2022-2783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/27/2022] [Indexed: 05/04/2023]
Abstract
OBJECTIVE Patients with psychotic disorders (PD) exhibit divergent outcomes in their clinical trajectories, which in part may result from glutathione (GSH)-related high-risk genotypes affecting their clinical course. We aimed to determine clozapine pharmacokinetic parameters, GSH levels, GSH peroxidase (GPx) activity, variants of genes involved in the synthesis and metabolism of GSH and its association with PD in Mexican patients on clozapine treatment and controls. METHODS 75 PD patients on clozapine therapy and 40 paired healthy controls were included. Plasma clozapine/N-desmethylclozapine, GSH concentrations and GPx activity were determined, along with genotyping of GCLC and GSTP1 variants and copy number variations of GSTP1, GSTT1 and GSTM1. Clinical, molecular and biochemical data were analyzed by a logistic regression model. RESULTS GSH levels were significantly reduced and, conversely, GPx activity was higher in PD patients compared to controls. GCLC_GAG-7/9 genotype (OR=4.3, CI95=1.40-14.31, p=0.019) and hetero-/homozygous genotypes of GCLC_rs761142 (OR=6.09, CI95=1.93-22.59, p=0.003) were found as risk factors for psychosis. The genetic variants were not related to clozapine/N-desmethylclozapine levels or to metabolic ratio. CONCLUSIONS GCLC variants were associated with the oxidative stress profile of PD patients raising opportunities for intervention to improve their antioxidant defenses. Further studies with larger samples should explore this proposal.
Collapse
Affiliation(s)
- Yerye G Mayén-Lobo
- Master's Program in Pharmaceutical Sciences, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Mireya Alcaraz-Zubeldia
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery (NINN), Manuel Velasco Suárez, Mexico City, Mexico
| | | | - Blanca A Motilla-Frías
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Mayumi Y García-Manteca
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Carlos L Aviña-Cervantes
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Edgar D Crail-Meléndez
- Department of Psychiatry, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - Camilo Ríos
- Department of Neurochemistry, National Institute of Neurology and Neurosurgery (NINN), Manuel Velasco Suárez, Mexico City, Mexico. Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Marisol López-López
- Department of Biological Systems, Metropolitan Autonomous University, Campus Xochimilco, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- Department of Genetics, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
10
|
Multinuclear MRI in Drug Discovery. Molecules 2022; 27:molecules27196493. [PMID: 36235031 PMCID: PMC9572840 DOI: 10.3390/molecules27196493] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.
Collapse
|
11
|
Das SC, Hjelm BE, Rollins BL, Sequeira A, Morgan L, Omidsalar AA, Schatzberg AF, Barchas JD, Lee FS, Myers RM, Watson SJ, Akil H, Bunney WE, Vawter MP. Mitochondria DNA copy number, mitochondria DNA total somatic deletions, Complex I activity, synapse number, and synaptic mitochondria number are altered in schizophrenia and bipolar disorder. Transl Psychiatry 2022; 12:353. [PMID: 36042222 PMCID: PMC9427957 DOI: 10.1038/s41398-022-02127-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dysfunction is a neurobiological phenomenon implicated in the pathophysiology of schizophrenia and bipolar disorder that can synergistically affect synaptic neurotransmission. We hypothesized that schizophrenia and bipolar disorder share molecular alterations at the mitochondrial and synaptic levels. Mitochondria DNA (mtDNA) copy number (CN), mtDNA common deletion (CD), mtDNA total deletion, complex I activity, synapse number, and synaptic mitochondria number were studied in the postmortem human dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus (STG), primary visual cortex (V1), and nucleus accumbens (NAc) of controls (CON), and subjects with schizophrenia (SZ), and bipolar disorder (BD). The results showed (i) the mtDNA CN is significantly higher in DLPFC of both SZ and BD, decreased in the STG of BD, and unaltered in V1 and NAc of both SZ and BD; (ii) the mtDNA CD is significantly higher in DLPFC of BD while unaltered in STG, V1, and NAc of both SZ and BD; (iii) The total deletion burden is significantly higher in DLPFC in both SZ and BD while unaltered in STG, V1, and NAc of SZ and BD; (iv) Complex I activity is significantly lower in DLPFC of both SZ and BD, which is driven by the presence of medications, with no alteration in STG, V1, and NAc. In addition, complex I protein concentration, by ELISA, was decreased across three cortical regions of SZ and BD subjects; (v) The number of synapses is decreased in DLPFC of both SZ and BD, while the synaptic mitochondria number was significantly lower in female SZ and female BD compared to female controls. Overall, these findings will pave the way to understand better the pathophysiology of schizophrenia and bipolar disorder for therapeutic interventions.
Collapse
Affiliation(s)
- Sujan C. Das
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Brooke E. Hjelm
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA USA
| | - Brandi L. Rollins
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Adolfo Sequeira
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Ling Morgan
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Audrey A. Omidsalar
- grid.42505.360000 0001 2156 6853Department of Translational Genomics, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA USA
| | - Alan F. Schatzberg
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA USA
| | - Jack D. Barchas
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medical College, Ithaca, NJ USA
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medical College, Ithaca, NJ USA
| | - Richard M. Myers
- grid.417691.c0000 0004 0408 3720HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Stanley J. Watson
- grid.214458.e0000000086837370The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Huda Akil
- grid.214458.e0000000086837370The Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - William E. Bunney
- grid.266093.80000 0001 0668 7243Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| | - Marquis P. Vawter
- grid.266093.80000 0001 0668 7243Functional Genomics Laboratory, Department of Psychiatry & Human Behavior, University of California, Irvine, CA USA
| |
Collapse
|
12
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
13
|
Fadel LC, Patel IV, Romero J, Tan IC, Kesler SR, Rao V, Subasinghe SAAS, Ray RS, Yustein JT, Allen MJ, Gibson BW, Verlinden JJ, Fayn S, Ruggiero N, Ortiz C, Hipskind E, Feng A, Iheanacho C, Wang A, Pautler RG. A Mouse Holder for Awake Functional Imaging in Unanesthetized Mice: Applications in 31P Spectroscopy, Manganese-Enhanced Magnetic Resonance Imaging Studies, and Resting-State Functional Magnetic Resonance Imaging. BIOSENSORS 2022; 12:616. [PMID: 36005011 PMCID: PMC9406174 DOI: 10.3390/bios12080616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/28/2023]
Abstract
Anesthesia is often used in preclinical imaging studies that incorporate mouse or rat models. However, multiple reports indicate that anesthesia has significant physiological impacts. Thus, there has been great interest in performing imaging studies in awake, unanesthetized animals to obtain accurate results without the confounding physiological effects of anesthesia. Here, we describe a newly designed mouse holder that is interfaceable with existing MRI systems and enables awake in vivo mouse imaging. This holder significantly reduces head movement of the awake animal compared to previously designed holders and allows for the acquisition of improved anatomical images. In addition to applications in anatomical T2-weighted magnetic resonance imaging (MRI), we also describe applications in acquiring 31P spectra, manganese-enhanced magnetic resonance imaging (MEMRI) transport rates and resting-state functional magnetic resonance imaging (rs-fMRI) in awake animals and describe a successful conditioning paradigm for awake imaging. These data demonstrate significant differences in 31P spectra, MEMRI transport rates, and rs-fMRI connectivity between anesthetized and awake animals, emphasizing the importance of performing functional studies in unanesthetized animals. Furthermore, these studies demonstrate that the mouse holder presented here is easy to construct and use, compatible with standard Bruker systems for mouse imaging, and provides rigorous results in awake mice.
Collapse
Affiliation(s)
- Lindsay C. Fadel
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ivany V. Patel
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- School of Humanities, Rice University, Houston, TX 77005, USA
| | - Jonathan Romero
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
| | - I-Chih Tan
- Bioengineering Core, Advanced Technology Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shelli R. Kesler
- School of Nursing, University of Texas at Austin, Austin, TX 78712, USA
| | - Vikram Rao
- School of Nursing, University of Texas at Austin, Austin, TX 78712, USA
| | | | - Russell S. Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason T. Yustein
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing, Houston, TX 77030, USA
- Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Brian W. Gibson
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justin J. Verlinden
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Augustana College, Rock Island, IL 61201, USA
| | - Stanley Fayn
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicole Ruggiero
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Caitlyn Ortiz
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Elizabeth Hipskind
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aaron Feng
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chijindu Iheanacho
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex Wang
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robia G. Pautler
- Department Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Small Animal Imaging Facility, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
14
|
Khan MM. Disrupted leptin-fatty acid biosynthesis is an early manifestation of metabolic abnormalities in schizophrenia. World J Psychiatry 2022; 12:827-842. [PMID: 35978970 PMCID: PMC9258274 DOI: 10.5498/wjp.v12.i6.827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) and impaired energy expenditure (IEE) are irreparable metabolic comorbidities in schizophrenia. Although mechanism(s) underlying IR and IEE remains unclear, leptin and fatty acid signaling, which has profound influence on insulin secretion/sensitivity, glucose metabolism and energy expenditure, could be disrupted. However, no association of plasma leptin with erythrocyte membrane fatty acids, body mass index (BMI), and psychotic symptoms in the same cohort of untreated patients with first-episode psychosis (FEP) or medicated patients with chronic schizophrenia (CSZ) is presented before. These studies are crucial for deciphering the role of leptin and fatty acids in the development of IR and IEE in schizophrenia.
AIM To determine the association between plasma leptin, erythrocyte membrane fatty acids, particularly, saturated fatty acids (SFAs), BMI and psychotic symptoms in patients with FEP and CSZ.
METHODS In this study, twenty-two drug naive patients with FEP, twenty-one CSZ patients treated with atypical antipsychotic drugs, and fourteen healthy control (CNT) subjects were analyzed. Plasma leptin was measured using sandwich mode enzyme-linked immunosorbent assay. Erythrocyte membrane SFAs were measured using ultrathin capillary gas chromatography. BMI was calculated by using the formula: weight (kg)/height (m2). Psychiatric symptoms were evaluated at baseline using brief psychiatric rating scale (BPRS), and positive and negative syndrome scale (PANSS). The total BPRS scores, positive and negative symptom scores (PANSS-PSS and PANSS-NSS, respectively) were recorded. Pearson correlation coefficient (r) analyses were performed to find the nature and strength of association between plasma leptin, PANSS scores, BMI and SFAs, particularly, palmitic acid (PA).
RESULTS In patients with FEP, plasma leptin not BMI was significantly lower (P = 0.034), whereas, erythrocyte membrane SFAs were significantly higher (P < 0.005) compared to the CNT subjects. Further, plasma leptin showed negative correlation with erythrocyte membrane SFAs-PA (r = −0.4972, P = 0.001), PANSS-PSS (r = −0.4034, P = 0.028), and PANSS-NSS (r = −0.3487, P = 0.048). However, erythrocyte membrane SFAs-PA showed positive correlation with PANSS-PSS (r = 0.5844, P = 0.0034) and PANSS-NSS (r = 0.5380, P = 0.008). In CSZ patients, plasma leptin, BMI, and erythrocyte membrane SFAs, all were significantly higher (P < 0.05) compared to the CNT subjects. Plasma leptin showed positive correlation with BMI (r = 0.312, P = 0.032) but not with PANSS scores or erythrocyte membrane SFAs-PA. However, erythrocyte membrane SFAs-PA showed positive correlation with PANSS-NSS only (r = 0.4729, P = 0.031). Similar changes in the plasma leptin and erythrocyte membrane SFAs have also been reported in individuals at ultra-high risk of developing psychosis; therefore, the above findings suggest that leptin-fatty acid biosynthesis could be disrupted before the onset of psychosis in schizophrenia.
CONCLUSION Disrupted leptin-fatty acid biosynthesis/signaling could be an early manifestation of metabolic comorbidities in schizophrenia. Large-scale studies are warranted to validate the above findings.
Collapse
Affiliation(s)
- Mohammad M Khan
- Laboratory of Translational Neurology and Molecular Psychiatry, Department of Biotechnology, Era's Lucknow Medical College and Hospital, and Faculty of Science, Era University, Lucknow 226003, India
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
15
|
Robbins JP, Solito E. Does Neuroinflammation Underlie the Cognitive Changes Observed With Dietary Interventions? Front Neurosci 2022; 16:854050. [PMID: 35620671 PMCID: PMC9127342 DOI: 10.3389/fnins.2022.854050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary interventions, such as calorie restriction and ketogenic diet, have been extensively studied in ageing research, including in cognitive decline. Epidemiological studies indicate beneficial effects of certain dietary regimes on mental health, including mood disorders and dementia. However, randomised-controlled trials (the gold-standard of evidence-based medicine) on calorie restriction diets and the ketogenic diet have yet to show clinically convincing effects in neuropsychiatric disorders. This review will examine the quality of studies and evidence base for the ketogenic and calorie restriction diets in common neuropsychiatric conditions, collating findings from preclinical experiments, case reports or small clinical studies, and randomised controlled clinical trials. The major cellular mechanisms that mediate the effects of these dietary interventions on brain health include neuroinflammation, neuroprotection, and neuromodulation. We will discuss the studies that have investigated the roles of these pathways and their interactions. Popularity of the ketogenic and calorie restriction diets has grown both in the public domain and in psychiatry research, allowing for informed review of the efficacy, the limitations, and the side effects of these diets in specific patient populations. In this review we will summarise the clinical evidence for these diets in neuropsychiatry and make suggestions to improve clinical translation of future research studies.
Collapse
Affiliation(s)
- Jacqueline P. Robbins
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
16
|
Sedivy P, Dusilova T, Hajek M, Burian M, Krššák M, Dezortova M. In Vitro 31P MR Chemical Shifts of In Vivo-Detectable Metabolites at 3T as a Basis Set for a Pilot Evaluation of Skeletal Muscle and Liver 31P Spectra with LCModel Software. Molecules 2021; 26:molecules26247571. [PMID: 34946652 PMCID: PMC8703310 DOI: 10.3390/molecules26247571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Most in vivo 31P MR studies are realized on 3T MR systems that provide sufficient signal intensity for prominent phosphorus metabolites. The identification of these metabolites in the in vivo spectra is performed by comparing their chemical shifts with the chemical shifts measured in vitro on high-field NMR spectrometers. To approach in vivo conditions at 3T, a set of phantoms with defined metabolite solutions were measured in a 3T whole-body MR system at 7.0 and 7.5 pH, at 37 °C. A free induction decay (FID) sequence with and without 1H decoupling was used. Chemical shifts were obtained of phosphoenolpyruvate (PEP), phosphatidylcholine (PtdC), phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), glycerophosphoetanolamine (GPE), uridine diphosphoglucose (UDPG), glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), 2,3-diphosphoglycerate (2,3-DPG), nicotinamide adenine dinucleotide (NADH and NAD+), phosphocreatine (PCr), adenosine triphosphate (ATP), adenosine diphosphate (ADP), and inorganic phosphate (Pi). The measured chemical shifts were used to construct a basis set of 31P MR spectra for the evaluation of 31P in vivo spectra of muscle and the liver using LCModel software (linear combination model). Prior knowledge was successfully employed in the analysis of previously acquired in vivo data.
Collapse
Affiliation(s)
- Petr Sedivy
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Tereza Dusilova
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Milan Hajek
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Martin Burian
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
- High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Monika Dezortova
- MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21 Prague, Czech Republic; (P.S.); (T.D.); (M.H.); (M.B.)
- Correspondence: ; Tel.: +420-23605-5245
| |
Collapse
|
17
|
Vlaikou AM, Nussbaumer M, Komini C, Lambrianidou A, Konidaris C, Trangas T, Filiou MD. Exploring the crosstalk of glycolysis and mitochondrial metabolism in psychiatric disorders and brain tumours. Eur J Neurosci 2021; 53:3002-3018. [PMID: 33226682 DOI: 10.1111/ejn.15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Konidaris
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
18
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
19
|
Gizewski ER, Steiger R, Waibel M, Pereverzyev S, Sommer PJD, Siedentopf C, Grams AE, Lenhart L, Singewald N. Short-term meditation training influences brain energy metabolism: A pilot study on 31 P MR spectroscopy. Brain Behav 2021; 11:e01914. [PMID: 33300668 PMCID: PMC7821578 DOI: 10.1002/brb3.1914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Meditation is increasingly attracting interest among neuroimaging researchers for its relevance as a cognitive enhancement technique and several cross-sectional studies have indicated cerebral changes. This longitudinal study applied a distinct and standardized meditative technique with a group of volunteers in a short-term training program to analyze brain metabolic changes. METHODS The effect of 7 weeks of meditation exercises (focused attention meditation, FAM) was assessed on 27 healthy volunteers. Changes in cerebral energy metabolism were investigated using 31 P-MR spectroscopy. Metabolite ratios were compared before (T1) and after training (T2). Additional questionnaire assessments were included. RESULTS The participants performed FAM daily. Depression and anxiety scores revealed a lower level of state anxiety at T2 compared to T1. From T1 to T2, energy metabolism ratios showed the following differences: PCr/ATP increased right occipitally; Pi/ATP decreased bilaterally in the basal ganglia and temporal lobe on the right; PCr/Pi increased in occipital lobe bilaterally, in the basal ganglia and in the temporal lobe on the right side. The pH decreased temporal on the left side and frontal in the right side. The observed changes in the temporal areas and basal ganglia may be interpreted as a higher energetic state, whereas the frontal and occipital areas showed changes that may be related to a down-regulation in ATP turnover, energy state, and oxidative capacity. CONCLUSIONS The results of the current study indicate for the first time in a longitudinal study that even short-term training in FAM may have considerable effects on brain energy state with different local energy management in specific brain regions. Especially higher energetic state in basal ganglia may represent altered function in their central role in complex cerebral distributed networks including frontal and temporal areas. Further studies including different forms of relaxation techniques should be performed for more specific and reliable insights.
Collapse
Affiliation(s)
- Elke R Gizewski
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | | | - Sergiy Pereverzyev
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Patrick J D Sommer
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christian Siedentopf
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Astrid E Grams
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Lukas Lenhart
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria.,Neuroimaging Research Core Facility, Medical University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Center for Molecular Biosciences Innsbruck (CMBI), Department of Pharmacology and Toxicology, Leopold Franzens University, Innsbruck, Austria
| |
Collapse
|
20
|
Yuksel C, Chen X, Chouinard VA, Nickerson LD, Gardner M, Cohen T, Öngür D, Du F. Abnormal Brain Bioenergetics in First-Episode Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgaa073. [PMID: 33554120 PMCID: PMC7848946 DOI: 10.1093/schizbullopen/sgaa073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Converging evidence indicates impaired brain energy metabolism in schizophrenia and other psychotic disorders. Creatine kinase (CK) is pivotal in providing adenosine triphosphate in the cell and maintaining its levels when energy demand is increased. However, the activity of CK has not been investigated in patients with first-episode schizophrenia spectrum disorders. METHODS Using in vivo phosphorus magnetization transfer spectroscopy, we measured CK first-order forward rate constant (k f ) in the frontal lobe, in patients with first-episode psychosis (FEP; n = 16) and healthy controls (n = 34), at rest. RESULTS CK k f was significantly reduced in FEP compared to healthy controls. There were no differences in other energy metabolism-related measures, including phosphocreatine (PCr) or ATP, between groups. We also found increase in glycerol-3-phosphorylcholine, a putative membrane breakdown product, in patients. CONCLUSIONS The results of this study indicate that brain bioenergetic abnormalities are already present early in the course of schizophrenia spectrum disorders. Future research is needed to identify the relationship of reduced CK k f with psychotic symptoms and to test treatment alternatives targeting this pathway. Increased glycerol-3-phosphorylcholine is consistent with earlier studies in medication-naïve patients and later studies in first-episode schizophrenia, and suggest enhanced synaptic pruning.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | | | | | | | | | - Dost Öngür
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Fei Du
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
21
|
Cuenoud B, Ipek Ö, Shevlyakova M, Beaumont M, Cunnane SC, Gruetter R, Xin L. Brain NAD Is Associated With ATP Energy Production and Membrane Phospholipid Turnover in Humans. Front Aging Neurosci 2020; 12:609517. [PMID: 33390929 PMCID: PMC7772416 DOI: 10.3389/fnagi.2020.609517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The brain requires a large amount of energy, mostly derived from the metabolism of glucose, which decreases substantially with age and neurological diseases. While mounting evidence in model organisms illustrates the central role of brain nicotinamide adenine dinucleotide (NAD) for maintaining energy homeostasis, similar data are sparse in humans. This study explores the correlations between brain NAD, energy production and membrane phospholipid metabolism by 31-phosphorous magnetic resonance spectroscopy (31P-MRS) across 50 healthy participants including a young (mean age 27.1-year-old) and middle-aged (mean age 56.4-year-old) group. The analysis revealed that brain NAD level and NAD+/NADH redox ratio were positively associated with ATP level and the rate of energy production, respectively. Moreover, a metabolic network linking NAD with membrane phospholipid metabolism, energy production, and aging was identified. An inverted trend between age and NAD level was detected. These results pave the way for the use of 31P-MRS as a powerful non-invasive tool to support the development of new therapeutic interventions targeting NAD associated phospho-metabolic pathways in brain aging and neurological diseases.
Collapse
Affiliation(s)
| | - Özlem Ipek
- School of Biomedical Imaging & Imaging Sciences, King's College London, London, United Kingdom
| | - Maya Shevlyakova
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke and Research Center on Aging, Sherbrooke, QC, Canada
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B. NAD + metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther 2020; 5:227. [PMID: 33028824 PMCID: PMC7539288 DOI: 10.1038/s41392-020-00311-7] [Citation(s) in RCA: 458] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its metabolites function as critical regulators to maintain physiologic processes, enabling the plastic cells to adapt to environmental changes including nutrient perturbation, genotoxic factors, circadian disorder, infection, inflammation and xenobiotics. These effects are mainly achieved by the driving effect of NAD+ on metabolic pathways as enzyme cofactors transferring hydrogen in oxidation-reduction reactions. Besides, multiple NAD+-dependent enzymes are involved in physiology either by post-synthesis chemical modification of DNA, RNA and proteins, or releasing second messenger cyclic ADP-ribose (cADPR) and NAADP+. Prolonged disequilibrium of NAD+ metabolism disturbs the physiological functions, resulting in diseases including metabolic diseases, cancer, aging and neurodegeneration disorder. In this review, we summarize recent advances in our understanding of the molecular mechanisms of NAD+-regulated physiological responses to stresses, the contribution of NAD+ deficiency to various diseases via manipulating cellular communication networks and the potential new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wei Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Peter Ernst Huber
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Xiaobo Zhou
- First Department of Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
- CCU Molecular and Radiation Oncology, German Cancer Research Center; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Choi CH, Hong SM, Felder J, Shah NJ. The state-of-the-art and emerging design approaches of double-tuned RF coils for X-nuclei, brain MR imaging and spectroscopy: A review. Magn Reson Imaging 2020; 72:103-116. [DOI: 10.1016/j.mri.2020.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
|
24
|
Wankhar W, Syiem D, Pakyntein CL, Thabah D, Sunn SE. Effect of 5-HT 2C receptor agonist and antagonist on chronic unpredictable stress (CUS) - Mediated anxiety and depression in adolescent Wistar albino rat: Implicating serotonin and mitochondrial ETC-I function in serotonergic neurotransmission. Behav Brain Res 2020; 393:112780. [PMID: 32579979 DOI: 10.1016/j.bbr.2020.112780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022]
Abstract
Anxiety and depression are among the major neuropsychiatric disorders worldwide, and yet the etiologies of these disorders remain unclear to date. Chronic unpredictable stress (CUS) procedure mimics several behavioral characteristics such as anxiety and depression in rodents. Using this animal model, we have attempted to understand the serotonergic system in the hippocampus and prefrontal cortex, while using the 5-HT2CR agonist and antagonist in evaluating 5-HT2C receptor neurotransmission. A decrease in serotonin (5-HT) level, tryptophan hydroxylase-2 activity and, 5-HT2CR receptor protein down-regulation in the CUS exposed group, explains the involvement of 5-HT and 5-HT2CR neurotransmission in the genesis of anxiety and depression. Besides, the oxidative stress - attenuated electrolyte imbalance via decrease ATPase pump activity, and compromised oxidative phosphorylation via decrease ETC-I activity are some of the underlying factors affecting neuronal cell survival and serotonergic neurotransmission. To complement our finding, altered behavioral performance scored in the open field test, elevated plus maze test, and the forced swim test, when exposed to CUS is indicative or consistent with anxiety, depression, emotional and locomotor status of the animals. Keeping these findings in mind, treatment with 5-HT2CR agonist (1-Methylpsilocin at 0.7 mg/kg), and 5-HT2CR antagonist (RS-102221 hydrochloride at 1 mg/kg) displayed varying results. One prominent finding was the anxiolytic ability of the 5-HT2CR agonist and the anti-depressive ability of the 5-HT2CR antagonist on the 7th-day treatment. Though the exact mechanism of action is not clear, their ability to equilibrate brain redox status, restoring Ca2+ level via Ca2+ATPase pump activity, and sustaining the mitochondrial bioenergetics can all be accounted for facilitating neurogenesis and the serotonergic system.
Collapse
Affiliation(s)
- Wankupar Wankhar
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India.
| | - Donkupar Syiem
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| | - Careen Liza Pakyntein
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| | - Daiahun Thabah
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| | - Shelareen Ediemi Sunn
- Department of Biochemistry, North Eastern Hill University, Shillong, 793 022, Meghalaya, India
| |
Collapse
|
25
|
Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res 2020; 223:29-42. [PMID: 32958361 DOI: 10.1016/j.schres.2020.09.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
Though the pathophysiology of schizophrenia remains poorly understood, altered brain energy metabolism is increasingly implicated. Here, we conduct meta-analyses of the available human studies measuring lactate or pH in schizophrenia brain and discuss the accumulating evidence for increased lactate and decreased pH in schizophrenia brain and evidence linking these to negative and cognitive symptom severity. Meta-analysis of six postmortem studies revealed a significant increase in lactate in schizophrenia brain while meta-analysis of 14 magnetic resonance spectroscopy studies did not reveal a significant change in brain pH in schizophrenia. However, only five of these studies were likely sufficiently powered to detect differences in brain pH, and meta-analysis of these five studies found a nonsignificant decrease in pH in schizophrenia brain. Next, we discuss evidence for altered brain energy metabolism in schizophrenia and how this may underlie a buildup of lactate and decreased pH. This alteration, similar to the Warburg effect extensively described in cancer biology, involves diminished tricarboxylic acid cycle and oxidative phosphorylation along with a shift toward increased reliance on glycolysis for energy production. We then explore the role that mitochondrial dysfunction, oxidative stress, and hypoxia-related changes in gene expression likely play in this shift in brain energy metabolism and address the functional consequences of lowered brain pH in schizophrenia including alterations in neurotransmitter regulation, mRNA stability, and overall patterns of gene expression. Finally, we discuss how altered energy metabolism in schizophrenia brain may serve as an effective target in the treatment of this illness.
Collapse
Affiliation(s)
- Brandon S Pruett
- University of Alabama at Birmingham, Birmingham, AL, United States of America.
| | | |
Collapse
|
26
|
Romeo B, Petillion A, Martelli C, Benyamina A. Magnetic resonance spectroscopy studies in subjects with high risk for psychosis: A meta-analysis and review. J Psychiatr Res 2020; 125:52-65. [PMID: 32203740 DOI: 10.1016/j.jpsychires.2020.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Even though anomalies on brain metabolites have been found in schizophrenia, researches about subjects with high risk (HR) show heterogeneous results. Thus, this meta-analysis aims to characterize the metabolic profile of HR subjects, first, compared to controls (HC) and then compared to people with schizophrenia. METHODS After a systematic database search, means and standard deviations were extracted to calculate standardized mean differences (SMD). Cerebral metabolites levels were compared between HR subjects and HC or patients with schizophrenia in all regions of interest investigated in included studies. Meta-regressions were performed to explore the influence of demographic and clinical variables on metabolites level's SMDs. RESULTS Thirty-nine studies were included in this meta-analysis. A higher level of glutamine + glutamate (Glx) was found in the medial prefrontal cortex (mPFC) (p < 0.01) and potentially in the basal ganglia (p = 0,05) as well as a higher level of myo-inositol (mI) in the dorsolateral prefrontal cortex (DLPFC) (p = 0.04) in HR subjects compared to HC. A higher level of choline (Cho) was found in people with schizophrenia compared to HR subjects in the DLPFC (p < 0.001) and the medial temporal lobe (p = 0.02). Meta-regression analyses showed negative associations between SMD for Cho concentration, the percentage of females or the age (p = 0.01). CONCLUSIONS The present meta-analysis provides evidence that some brain metabolites concentrations are disrupted before the transition to psychosis and could be considered like a vulnerability.
Collapse
Affiliation(s)
- Bruno Romeo
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France.
| | - Amelie Petillion
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France
| | - Catherine Martelli
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France; Institut National de la Santé et de la Recherche Médicale U1000, Research unit, NeuroImaging and Psychiatry, Paris Sud University- Paris Saclay University, Paris Descartes University, Digiteo Labs, Bâtiment 660, Gif-sur- Yvette, France
| | - Amine Benyamina
- APHP, Paul Brousse Hospital, Department of Psychiatry and Addictology, F-94800, Villejuif, France; Unité Psychiatrie-Comorbidités-Addictions-Unité de Recherche, PSYCOMADD Université Paris Sud - AP-HP, Université Paris Saclay, France
| |
Collapse
|
27
|
Valiente-Pallejà A, Torrell H, Alonso Y, Vilella E, Muntané G, Martorell L. Increased blood lactate levels during exercise and mitochondrial DNA alterations converge on mitochondrial dysfunction in schizophrenia. Schizophr Res 2020; 220:61-68. [PMID: 32327316 DOI: 10.1016/j.schres.2020.03.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/13/2020] [Accepted: 03/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mitochondrial dysfunction and an elevation of lactate are observed in patients with schizophrenia (SZ). However, it is unknown whether mitochondrial dysfunction is associated with the presence of mitochondrial DNA (mtDNA) alterations and comorbid clinical conditions. We aimed to identify systemic mitochondrial abnormalities in blood samples of patients with SZ that may have a high impact on the brain due to its high bioenergetic requirements. METHODS Case/control study between 57 patients with SZ and 33 healthy controls (HCs). We measured lactate levels at baseline, during 15 min of exercise (at 5, 10 and 15 min) and at rest. We also evaluated the presence of clinical conditions associated with mitochondrial disorders (CAMDs), measured the neutrophil to lymphocyte ratio (NLR, a subclinical inflammatory marker), and analyzed mtDNA variation and copy number. RESULTS Linear models adjusting for covariates showed that patients with SZ exhibited higher elevation of lactate than HCs during exercise but not at baseline or at rest. In accordance, patients showed higher number of CAMDs and lower mtDNA copy number. Interestingly, CAMDs correlated with both lactate levels and mtDNA copy number, which in turn correlated with the NLR. Finally, we identified 13 putative pathogenic variants in the mtDNA of 11 participants with SZ not present in HCs, together with a lactate elevation during exercise that was significantly higher in these 11 carriers than in the noncarriers. CONCLUSIONS These results are consistent with systemic mitochondrial malfunctioning in SZ and pinpoint lactate metabolism and mtDNA as targets for potential therapeutic treatments.
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain
| | - Helena Torrell
- Center for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT Technology Centre of Catalonia, Unique Scientific and Technical Infrastructures, Reus, Spain, 43204 Reus, Catalonia, Spain
| | - Yolanda Alonso
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain; Institute of Evolutionary Biology (IBE), Spanish National Research Council (CSIC), Universitat Pompeu Fabra (UPF), E08003 Barcelona, Catalonia, Spain.
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM), Universitat Rovira I Virgili (URV), E43206 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), E43204 Reus, Catalonia, Spain; Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), E43204 Reus, Catalonia, Spain.
| |
Collapse
|
28
|
Ren J, Malloy CR, Sherry AD. Quantitative measurement of redox state in human brain by 31 P MRS at 7T with spectral simplification and inclusion of multiple nucleotide sugar components in data analysis. Magn Reson Med 2020; 84:2338-2351. [PMID: 32385936 DOI: 10.1002/mrm.28306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 03/16/2020] [Accepted: 04/10/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE To develop a simplified method for quantitative measurement of NAD+ /NADH (nicotinamide adenine dinucleotides) levels in human brain by 31 P MRS without interference from the α-ATP signal and with inclusion of multiple UDP-sugar components. METHODS Simple pulse-acquire 31 P MR spectra were collected at 7T with and without a frequency-selective inversion pulse to remove the dominant α-ATP signal from the underlying NAD(H) signal. Careful inspection of the 31 P signal at -9.8 ppm previously assigned to UDP-glucose revealed multiple UDP-sugar components that must also be considered when deconvoluting the NAD(H) signal to quantify NAD+ and NADH. Finally, the overlapping NAD(H) and UDP(G) resonances were deconvoluted into individual components using Voigt lineshape analysis and UDP(G) modeling. RESULTS The inversion-based spectral editing method enabled clean separation of the NAD(H) signal from the otherwise dominant α-ATP signal. In addition, the upfield signal near -9.8 ppm appears more "quartet-like" than a simple doublet consistent with contributions from other nucleotide sugars such as UDP-galactose, UDP-N-acetyl-galactosamine, and UDP-N-acetyl-glucosamine in addition to UDP-glucose. Deconvolution of the combined NAD(H) and UDP(G) signals showed that the measured NAD+ /NAD ratio was heavily influenced by UDP(G) modeling (7.5 ± 1.8 when the UDP(G) signal was fitted as multiple doublets versus 5.3 ± 0.6 when a simplified pseudo doublet model was used). In a test/re-test experiments separated by 2 weeks, consistent NAD+ /NADH ratios were measured in the brain of seven human subjects. CONCLUSIONS The NAD+ /NADH ratio in human brain can be measured using 31 P MR spectra simplified by spectral editing and with inclusion of multiple UDP-sugar components in the data analysis.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,VA North Texas Health Care System, Dallas, TX, USA
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Chemistry & Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
29
|
Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF, Maes M. The compensatory antioxidant response system with a focus on neuroprogressive disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109708. [PMID: 31351160 DOI: 10.1016/j.pnpbp.2019.109708] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
Major antioxidant responses to increased levels of inflammatory, oxidative and nitrosative stress (ONS) are detailed. In response to increasing levels of nitric oxide, S-nitrosylation of cysteine thiol groups leads to post-transcriptional modification of many cellular proteins and thereby regulates their activity and allows cellular adaptation to increased levels of ONS. S-nitrosylation inhibits the function of nuclear factor kappa-light-chain-enhancer of activated B cells, toll-like receptor-mediated signalling and the activity of several mitogen-activated protein kinases, while activating nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2); in turn, the redox-regulated activation of Nrf2 leads to increased levels and/or activity of key enzymes and transporter systems involved in the glutathione system. The Nrf2/Kelch-like ECH-associated protein-1 axis is associated with upregulation of NAD(P)H:quinone oxidoreductase 1, which in turn has anti-inflammatory effects. Increased Nrf2 transcriptional activity also leads to activation of haem oxygenase-1, which is associated with upregulation of bilirubin, biliverdin and biliverdin reductase as well as increased carbon monoxide signalling, anti-inflammatory and antioxidant activity. Associated transcriptional responses, which may be mediated by retrograde signalling owing to elevated hydrogen peroxide, include the unfolded protein response (UPR), mitohormesis and the mitochondrial UPR; the UPR also results from increasing levels of mitochondrial and cytosolic reactive oxygen species and reactive nitrogen species leading to nitrosylation, glutathionylation, oxidation and nitration of crucial cysteine and tyrosine causing protein misfolding and the development of endoplasmic reticulum stress. It is shown how these mechanisms co-operate in forming a co-ordinated rapid and prolonged compensatory antioxidant response system.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Basant K Puri
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom
| | - Adam J Walker
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry, The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ken Walder
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Chiara C Bortolasci
- CMMR Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Wolfgang Marx
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada.
| | - Michael Maes
- IMPACT Strategic Research Centre, Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
30
|
Ben-Shachar D. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. J Neural Transm (Vienna) 2019; 127:159-168. [PMID: 31848775 DOI: 10.1007/s00702-019-02120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) and schizophrenia (SZ) are two CNS disorders in which dysfunctions in the dopaminergic system and mitochondria are major pathologies. The symptomology of both, PD a neurodegenerative disorder and SZ a neurodevelopmental disorder, is completely different. However, the pharmacological treatment of each of the diseases can cause a shift of symptoms into those characteristic of the other disease. In this review, I describe a pathological interaction between dopamine and mitochondria in both disorders, which due to differences in the extent of oxidative stress leads either to cell death and tissue degeneration as in PD substantia nigra pars compacta or to distorted neuronal activity, imbalanced neuronal circuitry and abnormal behavior and cognition in SZ. This review is in the honor of Moussa Youdim who introduced me to the secrets of research work. His enthusiasm, curiosity and novelty-seeking inspired me throughout my career. Thank you Moussa.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, and B. Rappaport Faculty of Medicine Technion-Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
31
|
Abstract
Patients with psychotic disorders are at high risk for type 2 diabetes mellitus, and there is increasing evidence that patients display glucose metabolism abnormalities before significant antipsychotic medication exposure. In the present study, we examined insulin action by quantifying insulin sensitivity in first-episode psychosis (FEP) patients and unaffected siblings, compared to healthy individuals, using a physiological-based model and comprehensive assessment battery. Twenty-two unaffected siblings, 18 FEP patients, and 15 healthy unrelated controls were evaluated using a 2-h oral glucose tolerance test (OGTT), with 7 samples of plasma glucose and serum insulin concentration measurements. Insulin sensitivity was quantified using the oral minimal model method. Lipid, leptin, free fatty acids, and inflammatory marker levels were also measured. Anthropometric, nutrient, and activity assessments were conducted; total body composition and fat distribution were determined using whole-body dual-energy X-ray absorptiometry. Insulin sensitivity significantly differed among groups (F = 6.01 and 0.004), with patients and siblings showing lower insulin sensitivity, compared to controls (P = 0.006 and 0.002, respectively). Body mass index, visceral adipose tissue area (cm2), lipids, leptin, free fatty acids, inflammatory markers, and activity ratings were not significantly different among groups. There was a significant difference in nutrient intake with lower total kilocalories/kilogram body weight in patients, compared to siblings and controls. Overall, the findings suggest that familial abnormal glucose metabolism or a primary insulin signaling pathway abnormality is related to risk for psychosis, independent of disease expression and treatment effects. Future studies should examine underlying biological mechanisms of insulin signaling abnormalities in psychotic disorders.
Collapse
|
32
|
Ifhar LS, Ene HM, Ben-Shachar D. Impaired heme metabolism in schizophrenia-derived cell lines and in a rat model of the disorder: Possible involvement of mitochondrial complex I. Eur Neuropsychopharmacol 2019; 29:577-589. [PMID: 30948194 DOI: 10.1016/j.euroneuro.2019.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
Abstract
Accumulating data point to heme involvement in neuropsychiatric disorders. Heme plays a role in major cellular processes such as signal transduction, protein complex assembly and regulation of transcription and translation. Its synthesis involves the mitochondria, which dysfunction, specifically that of the complex I (Co-I) of the electron transport chain is involved in the pathophysiology of schizophrenia (SZ). Here we aimed to demonstrate that deficits in Co-I affect heme metabolism. We show a significant decrease in heme levels in Co-I deficient SZ-derived EBV transformed lymphocytes (lymphoblastoid cell lines - LCLs) as compared to healthy subjects-derived cells (n = 9/cohort). Moreover, protein levels assessed by immunoblotting and mRNA levels assessed by qRT-PCR of heme catabolic enzyme, heme Oxygenase 1 (HO-1), and protein levels of heme downstream target phosphorylated eukaryotic initiation factor 2-alpha (Peif2a/eif2a) were significantly elevated in SZ-derived cells. In contrast, protein and mRNA levels of heme synthesis rate limiting enzyme aminolevulinic acid synthase-1 (ALAS1) were unchanged in SZ derived LCLs. In addition, inhibition of Co-I by rotenone in healthy subjects-derived LCLs (n = 4/cohort) exhibited an initial increase followed by a later decrease in heme levels. These findings were associated with opposite changes in heme's downstream target and HO-1 level, similar to our findings in SZ-derived cells. We also show a brain region specific pattern of impairment in Co-I subunits and in HO-1 and PeIF2α/eIF2α in the Poly-IC rat model of SZ (n = 6/cohort). Our results provide evidence for a link between CoI and heme metabolism both in-vitro and in-vivo suggesting its contribution to SZ pathophysiology.
Collapse
Affiliation(s)
- Lee S Ifhar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion IIT, POB 9649, Haifa 31096 Israel
| | - Hila M Ene
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion IIT, POB 9649, Haifa 31096 Israel
| | - Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion IIT, POB 9649, Haifa 31096 Israel.
| |
Collapse
|
33
|
Kraeuter AK, van den Buuse M, Sarnyai Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res 2019; 206:244-250. [PMID: 30466960 DOI: 10.1016/j.schres.2018.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/25/2018] [Accepted: 11/12/2018] [Indexed: 01/15/2023]
Abstract
Recent transcriptomic, proteomic and metabolomics studies have highlighted an abnormal cerebral glucose and energy metabolism as one of the potential pathophysiological mechanisms of schizophrenia. This raises the possibility that a metabolically-based intervention might have therapeutic value in the management of schizophrenia, a notion supported by our recent results that a low carbohydrate/high-fat therapeutic ketogenic diet (KD) prevented a variety of behavioural abnormalities induced by pharmacological inhibition of NMDA glutamate receptors. Here we asked if the beneficial effects of KD can be generalised to impaired prepulse inhibition of startle (PPI), a translationally validated endophenotype of schizophrenia, in a pharmacological model in mice. Furthermore, we addressed the issue of whether the effect of KD is linked to the calorie-restricted state typical of the initial phase of KD. We fed male C57BL/6 mice a KD for 7 weeks and tested PPI at 3 and 7 weeks, in the presence and absence of a significant digestible energy deficit, respectively. We used an NMDA receptor hypo-function model of schizophrenia induced by acute injection of dizocilpine (MK-801). We found that KD effectively prevented MK-801-induced PPI impairments at both 3 and 7 weeks, irrespective of the presence or absence of digestible energy deficit. Furthermore, there was a lack of correlation between PPI and body weight changes. These results support the efficacy of the therapeutic KD in a translational model of schizophrenia and furthermore provide evidence against the role of calorie restriction in its mechanism of action.
Collapse
Affiliation(s)
- Ann-Katrin Kraeuter
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Maarten van den Buuse
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia; School of Psychology and Public Health, LaTrobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia
| | - Zoltán Sarnyai
- Laboratory of Psychiatric Neuroscience, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
34
|
Xin L, Ipek Ö, Beaumont M, Shevlyakova M, Christinat N, Masoodi M, Greenberg N, Gruetter R, Cuenoud B. Nutritional Ketosis Increases NAD +/NADH Ratio in Healthy Human Brain: An in Vivo Study by 31P-MRS. Front Nutr 2018; 5:62. [PMID: 30050907 PMCID: PMC6052097 DOI: 10.3389/fnut.2018.00062] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/22/2018] [Indexed: 12/22/2022] Open
Abstract
Ketones represent an important alternative fuel for the brain under glucose hypo-metabolic conditions induced by neurological diseases or aging, however their metabolic consequences in healthy brain remain unclear. Here we report that ketones can increase the redox NAD+/NADH ratio in the resting brain of healthy young adults. As NAD is an important energetic and signaling metabolic modulator, these results provide mechanistic clues on how nutritional ketosis might contribute to the preservation of brain health.
Collapse
Affiliation(s)
- Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Özlem Ipek
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Maya Shevlyakova
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | | | - Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, Lausanne, Switzerland
| | | | - Rolf Gruetter
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
35
|
Dogan AE, Yuksel C, Du F, Chouinard VA, Öngür D. Brain lactate and pH in schizophrenia and bipolar disorder: a systematic review of findings from magnetic resonance studies. Neuropsychopharmacology 2018; 43:1681-1690. [PMID: 29581538 PMCID: PMC6006165 DOI: 10.1038/s41386-018-0041-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 11/09/2022]
Abstract
Converging evidence from molecular to neuroimaging studies suggests brain energy metabolism abnormalities in both schizophrenia and bipolar disorder. One emerging hypothesis is: decreased oxidative phosphorylation leading to accumulation of lactic acid from glycolysis and subsequent acidification of tissue. In this regard, integrating lactate and pH data from magnetic resonance spectroscopy (MRS) studies in both diseases may help us understand underlying neurobiological mechanisms. In order to achieve this goal, we performed a systematic search of case-control studies examining brain lactate or pH among schizophrenia and/or bipolar patients by using MRS. Medline/Pubmed and EBSCO databases were searched separately for both diseases and outcomes. Our search yielded 33 studies in total composed of 7 lactate and 26 pH studies. In bipolar disorder, 5 out of 6 studies have found elevated lactate levels especially in the cingulate cortex and 4 out of 13 studies reported reduced pH in the frontal lobe. In contrast, in schizophrenia a single study has examined lactate and reported elevation, while only 2 out of 13 studies examining pH have reported reduction in this measure. There were no consistent patterns for the relationship between lactate or pH levels and medication use, disease type, mood state, and other clinical variables. We highlight the need for future studies combining 1H-MRS and 31P-MRS approaches, using longitudinal designs to examine lactate and pH in disease progression across both schizophrenia and bipolar disorders.
Collapse
Affiliation(s)
| | - Cagri Yuksel
- McLean Hospital, 115 Mill Street, Belmont, MA, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Fei Du
- McLean Hospital, 115 Mill Street, Belmont, MA, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Virginie-Anne Chouinard
- McLean Hospital, 115 Mill Street, Belmont, MA, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA
| | - Dost Öngür
- McLean Hospital, 115 Mill Street, Belmont, MA, USA.
- Harvard Medical School, 25 Shattuck Street, Boston, MA, USA.
| |
Collapse
|
36
|
Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front Neurosci 2018; 12:386. [PMID: 29928190 PMCID: PMC5997778 DOI: 10.3389/fnins.2018.00386] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human and animal studies suggest an intriguing link between mitochondrial diseases and depression. Although depression has historically been linked to alterations in monoaminergic pharmacology and adult hippocampal neurogenesis, new data increasingly implicate broader forms of dampened plasticity, including plasticity within the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also regulate brain function through oxidative stress and apoptosis. In this paper, we make the case that mitochondrial dysfunction could play an important role in the pathophysiology of depression. Alterations in mitochondrial functions such as oxidative phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress and apoptosis, may precede the development of depressive symptoms. However, the data in relation to antidepressant drug effects are contradictory: some studies reveal they have no effect on mitochondrial function or even potentiate dysfunction, whereas other studies show more beneficial effects. Overall, the data suggest an intriguing link between mitochondrial function and depression that warrants further investigation. Mitochondria could be targeted in the development of novel antidepressant drugs, and specific forms of mitochondrial dysfunction could be identified as biomarkers to personalize treatment and aid in early diagnosis by differentiating between disorders with overlapping symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
37
|
Konradi C, Öngür D. Role of mitochondria and energy metabolism in schizophrenia and psychotic disorders. Schizophr Res 2017; 187:1-2. [PMID: 28705531 DOI: 10.1016/j.schres.2017.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/01/2017] [Accepted: 07/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- C Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA.
| | - D Öngür
- Psychotic Disorders Division, McLean Hospital, Belmont, MA, USA.; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|