1
|
Laricchiuta D, Papi M, Decandia D, Panuccio A, Cutuli D, Peciccia M, Mazzeschi C, Petrosini L. The role of glial cells in mental illness: a systematic review on astroglia and microglia as potential players in schizophrenia and its cognitive and emotional aspects. Front Cell Neurosci 2024; 18:1358450. [PMID: 38419655 PMCID: PMC10899480 DOI: 10.3389/fncel.2024.1358450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Schizophrenia is a complex and severe mental disorder that affects approximately 1% of the global population. It is characterized by a wide range of symptoms, including delusions, hallucinations, disorganized speech and behavior, and cognitive impairment. Recent research has suggested that the immune system dysregulation may play a significant role in the pathogenesis of schizophrenia, and glial cells, such as astroglia and microglia known to be involved in neuroinflammation and immune regulation, have emerged as potential players in this process. The aim of this systematic review is to summarize the glial hallmarks of schizophrenia, choosing as cellular candidate the astroglia and microglia, and focusing also on disease-associated psychological (cognitive and emotional) changes. We conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed, Scopus, and Web of Science for articles that investigated the differences in astroglia and microglia in patients with schizophrenia, published in the last 5 years. The present systematic review indicates that changes in the density, morphology, and functioning of astroglia and microglia may be involved in the development of schizophrenia. The glial alterations may contribute to the pathogenesis of schizophrenia by dysregulating neurotransmission and immune responses, worsening cognitive capabilities. The complex interplay of astroglial and microglial activation, genetic/epigenetic variations, and cognitive assessments underscores the intricate relationship between biological mechanisms, symptomatology, and cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Martina Papi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Davide Decandia
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Debora Cutuli
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Maurizio Peciccia
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Claudia Mazzeschi
- Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
| | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
2
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
3
|
Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry 2023; 13:386. [PMID: 38092734 PMCID: PMC10719376 DOI: 10.1038/s41398-023-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Romain Rey
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, Bron, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
4
|
Ayilara GO, Owoyele BV. Neuroinflammation and microglial expression in brains of social-isolation rearing model of schizophrenia. IBRO Neurosci Rep 2023; 15:31-41. [PMID: 37359498 PMCID: PMC10285239 DOI: 10.1016/j.ibneur.2023.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a psychiatric disorder with a global prevalence of approximately 0.45%. It is considered a mental illness, with negative symptoms, positive symptoms, and cognitive dysfunction. The outcomes of studies on the role of microglia and neuroinflammation have been conflicting. In addition, there is a poor understanding of the sex differences in microglial expression and neuroinflammation markers in the prefrontal cortex, hippocampus, and nucleus accumbens. Understanding the exact roles of neuroinflammation may guide the development of efficient therapeutic drugs that can address the negative, positive, and cognitive symptoms of the disease. We examined the effect of social isolation rearing on schizophrenia-related behaviours in male and female BALB/c mice. The social-isolation rearing protocol started on post-natal day (PND) 21, lasting for 35 days. Animals were assigned to four cohorts, consisting of five animals per group. On PND 56, animals were assessed for behavioural changes. We used enzyme-linked immunosorbent assays to investigate the expression of nuclear factor kappa B (NF-κB), tumour necrosis factor-α (TNF-α), and Interleukin-1β (IL-1β) in the hippocampus, nucleus accumbens, and prefrontal cortex. Immunohistochemistry was used to assess the expression of microglia in the three brain regions. Our study showed that isolation rearing led to increasing locomotion, heightened anxiety, depression, and a reduced percentage of prepulse inhibition. There was a significant increase (p < 0.05) in anxiety in the female isolation mice compared to male isolation mice. Furthermore, isolation rearing significantly increased microglia count (p < 0.05) in the hippocampus, nucleus accumbens, and prefrontal cortex, only in the male group. There was microglial hyper-activation as evident in the downregulation of CX3CR1 in both male and female social-isolation groups. Male social-isolation mice showed a significant increase (p < 0.05) in neuroinflammation markers only in the nucleus accumbens while the female social-isolation mice showed a significant increase (p < 0.05) in neuroinflammation markers in both the nucleus accumbens and hippocampus. The study showed that therapeutic interventions aimed at modulating CX3CR1 activity and reducing inflammation may be beneficial for patients with schizophrenia.
Collapse
|
5
|
Nguyen KD, Amerio A, Aguglia A, Magnani L, Parise A, Conio B, Serafini G, Amore M, Costanza A. Microglia and Other Cellular Mediators of Immunological Dysfunction in Schizophrenia: A Narrative Synthesis of Clinical Findings. Cells 2023; 12:2099. [PMID: 37626909 PMCID: PMC10453550 DOI: 10.3390/cells12162099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Schizophrenia is a complex psychiatric condition that may involve immune system dysregulation. Since most putative disease mechanisms in schizophrenia have been derived from genetic association studies and fluid-based molecular analyses, this review aims to summarize the emerging evidence on clinical correlates to immune system dysfunction in this psychiatric disorder. We conclude this review by attempting to develop a unifying hypothesis regarding the relative contributions of microglia and various immune cell populations to the development of schizophrenia. This may provide important translational insights that can become useful for addressing the multifaceted clinical presentation of schizophrenia.
Collapse
Affiliation(s)
- Khoa D. Nguyen
- Department of Microbiology and Immunology, Stanford University, Palo Alto, CA 94305, USA;
- Tranquis Therapeutics, Palo Alto, CA 94065, USA
| | - Andrea Amerio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Andrea Aguglia
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Luca Magnani
- Department of Psychiatry, San Maurizio Hospital of Bolzano, 39100 Bolzano, Italy;
| | - Alberto Parise
- Geriatric-Rehabilitation Department, University Hospital of Parma, 43126 Parma, Italy;
| | - Benedetta Conio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy; (A.A.); (A.A.); (B.C.); (G.S.); (M.A.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Costanza
- Department of Psychiatry, Adult Psychiatry Service, University Hospitals of Geneva (HUG), 1207 Geneva, Switzerland
- Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), 6900 Lugano, Switzerland
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Zhuo C, Tian H, Song X, Jiang D, Chen G, Cai Z, Ping J, Cheng L, Zhou C, Chen C. Microglia and cognitive impairment in schizophrenia: translating scientific progress into novel therapeutic interventions. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:42. [PMID: 37429882 DOI: 10.1038/s41537-023-00370-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023]
Abstract
Cognitive impairment is a core clinical feature of schizophrenia, exerting profound adverse effects on social functioning and quality of life in a large proportion of patients with schizophrenia. However, the mechanisms underlying the pathogenesis of schizophrenia-related cognitive impairment are not well understood. Microglia, the primary resident macrophages in the brain, have been shown to play important roles in psychiatric disorders, including schizophrenia. Increasing evidence has revealed excessive microglial activation in cognitive deficits related to a broad range of diseases and medical conditions. Relative to that about age-related cognitive deficits, current knowledge about the roles of microglia in cognitive impairment in neuropsychiatric disorders, such as schizophrenia, is limited, and such research is in its infancy. Thus, we conducted this review of the scientific literature with a focus on the role of microglia in schizophrenia-associated cognitive impairment, aiming to gain insight into the roles of microglial activation in the onset and progression of such impairment and to consider how scientific advances could be translated to preventive and therapeutic interventions. Research has demonstrated that microglia, especially those in the gray matter of the brain, are activated in schizophrenia. Upon activation, microglia release key proinflammatory cytokines and free radicals, which are well-recognized neurotoxic factors contributing to cognitive decline. Thus, we propose that the inhibition of microglial activation holds potential for the prevention and treatment of cognitive deficits in patients with schizophrenia. This review identifies potential targets for the development of new treatment strategies and eventually the improvement of care for these patients. It might also help psychologists and clinical investigators in planning future research.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, 300222, Tianjin, China.
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China.
| | - Hongjun Tian
- Key Laboratory of Sensory Information Processing Abnormalities in Schizophrenia (SIPAS-Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Medical University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China
- Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Jing Ping
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Chunmian Chen
- Department of Psychiatry, Wenzhou Seventh peoples Hospital, Wenzhou, China
| |
Collapse
|
7
|
Mawson ER, Morris BJ. A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110773. [PMID: 37116354 DOI: 10.1016/j.pnpbp.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.
Collapse
Affiliation(s)
- Eleanor R Mawson
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
8
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
9
|
Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology 2023; 48:151-167. [PMID: 36056106 PMCID: PMC9700830 DOI: 10.1038/s41386-022-01426-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Over the last five decades, a large body of evidence has accrued for structural and metabolic brain alterations in schizophrenia. Here we provide an overview of these findings, focusing on measures that have traditionally been thought to reflect synaptic spine density or synaptic activity and that are relevant for understanding if there is lower synaptic density in the disorder. We conducted literature searches to identify meta-analyses or other relevant studies in patients with chronic or first-episode schizophrenia, or in people at high genetic or clinical risk for psychosis. We identified 18 meta-analyses including over 50,000 subjects in total, covering: structural MRI measures of gyrification index, grey matter volume, grey matter density and cortical thickness, neurite orientation dispersion and density imaging, PET imaging of regional glucose metabolism and magnetic resonance spectroscopy measures of N-acetylaspartate. We also review preclinical evidence on the relationship between ex vivo synaptic measures and structural MRI imaging, and PET imaging of synaptic protein 2A (SV2A). These studies show that schizophrenia is associated with lower grey matter volumes and cortical thickness, accelerated grey matter loss over time, abnormal gyrification patterns, and lower regional SV2A levels and metabolic markers in comparison to controls (effect sizes from ~ -0.11 to -1.0). Key regions affected include frontal, anterior cingulate and temporal cortices and the hippocampi. We identify several limitations for the interpretation of these findings in terms of understanding synaptic alterations. Nevertheless, taken with post-mortem findings, they suggest that schizophrenia is associated with lower synaptic density in some brain regions. However, there are several gaps in evidence, in particular whether SV2A findings generalise to other cohorts.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Connor Cummings
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Clare Hall (College), University of Cambridge, Cambridge, UK
| | - George E Chapman
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
10
|
Li J, Wang Y, Yuan X, Kang Y, Song X. New insight in the cross-talk between microglia and schizophrenia: From the perspective of neurodevelopment. Front Psychiatry 2023; 14:1126632. [PMID: 36873215 PMCID: PMC9978517 DOI: 10.3389/fpsyt.2023.1126632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Characterized by psychotic symptoms, negative symptoms and cognitive deficits, schizophrenia had a catastrophic effect on patients and their families. Multifaceted reliable evidence indicated that schizophrenia is a neurodevelopmental disorder. Microglia, the immune cells in central nervous system, related to many neurodevelopmental diseases. Microglia could affect neuronal survival, neuronal death and synaptic plasticity during neurodevelopment. Anomalous microglia during neurodevelopment may be associated with schizophrenia. Therefore, a hypothesis proposes that the abnormal function of microglia leads to the occurrence of schizophrenia. Nowadays, accumulating experiments between microglia and schizophrenia could afford unparalleled probability to assess this hypothesis. Herein, this review summarizes the latest supporting evidence in order to shed light on the mystery of microglia in schizophrenia.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- College of First Clinical, Chongqing Medical University, Chongqing, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan International Joint Laboratory of Biological Psychiatry, Zhengzhou, China.,Henan Psychiatric Transformation Research Key Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Rodrigues-Neves AC, Ambrósio AF, Gomes CA. Microglia sequelae: brain signature of innate immunity in schizophrenia. Transl Psychiatry 2022; 12:493. [PMID: 36443303 PMCID: PMC9705537 DOI: 10.1038/s41398-022-02197-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Schizophrenia is a psychiatric disorder with significant impact on individuals and society. The current pharmacologic treatment, which principally alleviates psychosis, is focused on neurotransmitters modulation, relying on drugs with severe side effects and ineffectiveness in a significant percentage of cases. Therefore, and due to difficulties inherent to diagnosis and treatment, it is vital to reassess alternative cellular and molecular drug targets. Distinct risk factors - genetic, developmental, epigenetic, and environmental - have been associated with disease onset and progression, giving rise to the proposal of different pathophysiological mechanisms and putative pharmacological targets. Immunity is involved and, particularly microglia - innate immune cells of the central nervous system, critically involved in brain development - have captured attention as cellular players. Microglia undergo marked morphologic and functional alterations in the human disease, as well as in animal models of schizophrenia, as reported in several original papers. We cluster the main findings of clinical studies by groups of patients: (1) at ultra-high risk of psychosis, (2) with a first episode of psychosis or recent-onset schizophrenia, and (3) with chronic schizophrenia; in translational studies, we highlight the time window of appearance of particular microglia alterations in the most well studied animal model in the field (maternal immune activation). The organization of clinical and translational findings based on schizophrenia-associated microglia changes in different phases of the disease course may help defining a temporal pattern of microglia changes and may drive the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- A. Catarina Rodrigues-Neves
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - António. F. Ambrósio
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
| | - Catarina A. Gomes
- grid.8051.c0000 0000 9511 4342Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal ,grid.8051.c0000 0000 9511 4342Univ Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| |
Collapse
|
12
|
Monji A, Mizoguchi Y. Neuroinflammation in Late-Onset Schizophrenia: Viewing from the Standpoint of the Microglia Hypothesis. Neuropsychobiology 2022; 81:98-103. [PMID: 34515181 DOI: 10.1159/000517861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Abstract
Schizophrenia develops mainly in adolescence, but late-onset schizophrenia (LOS) is not uncommon. According to the international consensus, schizophrenia which develops over 40 years old is called LOS and psychosis which develops over 60 years old is called very late-onset schizophrenia-like psychosis (VLOS). Compared to early-onset schizophrenia (EOS) that develops before the age of 40 years, LOS and VLOS are reported to be more common in women, and there are clinically clear differences such as less involvement of genetic factors than EOS. This review outlines the abnormalities of the neuroimmune system in the pathophysiology of LOS, especially focusing on the role of microglia.
Collapse
Affiliation(s)
- Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
13
|
Gober R, Ardalan M, Shiadeh SMJ, Duque L, Garamszegi SP, Ascona M, Barreda A, Sun X, Mallard C, Vontell RT. Microglia activation in postmortem brains with schizophrenia demonstrates distinct morphological changes between brain regions. Brain Pathol 2022; 32:e13003. [PMID: 34297453 PMCID: PMC8713533 DOI: 10.1111/bpa.13003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 12/18/2022] Open
Abstract
Schizophrenia (SCZ) is a psychiatric disorder that can include symptoms of disorganized speech and thoughts with uncertain underlying mechanisms possibly linked to over-activated microglia. In this study, we used brain samples from sixteen donors with SCZ and thirteen control donors to assess the differential activation of microglia by quantifying density and 3D reconstruction of microglia stained with ionized calcium-binding adaptor molecule-1 (Iba1). Our samples consisted of sections from the frontal, temporal, and cingulate cortical gray matter, subcortical white matter regions (SCWM), and included the anterior corpus callosum. In the first series of studies, we performed a density analysis followed by a spatial analysis to ascertain the microglial density, distribution, and soma size in SCZ brains. Second, we performed a series of morphological quantification techniques to investigate the arborization patterns of the microglia in SCZ. The results demonstrated an increase in microglia density in the cortical gray matter regions in SCZ cases, while in the SCWM, there was a significant increase in microglia density in the frontal and temporal, but not in the other brain regions of interest (ROIs). Spatial analysis using the "nearest neighbor" demonstrated that there was no effect in "clustering", but there were shorter distances between microglia seen in the SCZ cases. The morphological measures showed that there was a region-dependent increase in the microglia soma size in the SCZ cases while the Sholl analysis revealed a significant decrease in the microglia arborization in the SCZ cases across all the ROI's studied. An in-depth 3D reconstruction of microglia in Brodmann area 9 cortical region found that there was a significant association between age and reduced microglial arborization in the SCZ cases. This region-dependent age association can help determine whether longitudinal changes in microglial activation across age are brain region-dependent, which may point to potential therapeutic targets.
Collapse
Affiliation(s)
- Ryan Gober
- Brain Endowment BankUniversity of MiamiMiamiFLUSA
| | - Maryam Ardalan
- Centre for Perinatal Medicine and HealthInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical MedicineTranslational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Centre for Perinatal Medicine and HealthInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical MedicineTranslational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Linda Duque
- Brain Endowment BankUniversity of MiamiMiamiFLUSA
| | | | | | | | - Xiaoyan Sun
- Brain Endowment BankUniversity of MiamiMiamiFLUSA
| | - Carina Mallard
- Centre for Perinatal Medicine and HealthInstitute of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
14
|
Zhang L, Verwer RWH, Zhao J, Huitinga I, Lucassen PJ, Swaab DF. Changes in glial gene expression in the prefrontal cortex in relation to major depressive disorder, suicide and psychotic features. J Affect Disord 2021; 295:893-903. [PMID: 34706460 DOI: 10.1016/j.jad.2021.08.098] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/17/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND To establish whether major depressive disorder (MDD), suicidal behaviors and psychotic features contribute to glial alterations in the human prefrontal cortex. MATERIALS AND METHODS We compared mRNA expression using real-time qPCR of 17 glia related genes in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate cortex (ACC) between 24 patients with MDD and 12 well-matched controls without psychiatric or neurological diseases. The MDD group was subdivided into i) MDD who died of suicide (MDD-S) or natural causes (MDD-NS) and ii) MDD with or without psychotic features (MDD-P and MDD-NP). The results were followed up with confounder factor analysis. RESULTS Astrocyte gene aldehyde dehydrogenase-1 L1 (ALDH1L1) showed an increased expression in the DLPFC of MDD-NS and the ACC of MDD-NP. S100 calcium-binding protein B (S100B) was upregulated in the DLPFC of MDD compared to the controls. Microglial markers CD11B and purinergic receptor 12 (P2RY12) both showed decreased expression in the ACC of MDD-NS. CD68 was increased in the DLPFC of MDD in both, MDD-S and MDD-P, compared to the controls. In addition, there was increased translocator protein (TSPO) expression in the DLPFC of MDD, especially MDD-NS. In the ACC, this gene had a lower expression in MDD-P than in MDD-NP. Myelin basic protein (MBP) mRNA in the DLPFC increased in MDD, in relation to psychotic features, but not to suicide. LIMITATIONS Sample volumes are relatively small. CONCLUSIONS Different glial functions in MDD were related to specific brain area, suicide or psychotic features.
Collapse
Affiliation(s)
- Lin Zhang
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| | - Ronald W H Verwer
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| | - Juan Zhao
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Group, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands; Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Dick F Swaab
- Neuropsychiatric Disorders Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, University of Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, the Netherlands.
| |
Collapse
|
15
|
Maini K, Hollier JW, Gould H, Bollich V, John LaForge J, Cornett EM, Edinoff AN, Kaye AM, Kaye AD. Lumateperone tosylate, A Selective and Concurrent Modulator of Serotonin, Dopamine, and Glutamate, in the Treatment of Schizophrenia. Health Psychol Res 2021; 9:24932. [PMID: 34746489 DOI: 10.52965/001c.24932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 11/06/2022] Open
Abstract
Purpose of Review This is a comprehensive review of the literature regarding the use of Lumateperone tosylate for schizophrenia. This review presents the background, evidence, and indications for the use of lumateperone tosylate in the treatment of schizophrenia. Recent Findings Schizophrenia is a chronic mental health disorder that affects approximately 3.3 million people in the United States. Its symptoms, which must be present more than six months, are comprised of disorganized behavior and speech, a diminished capacity to comprehend reality, hearing voices unheard by others, seeing things unseen by others, delusions, decreased social commitment, and decreased motivation. The majority of these symptoms can be managed with antipsychotic medication. Lumateperone is a selective and concurrent modulator of serotonin, dopamine, and glutamate, which all mediate or modulate serious mental illness. Summary Schizophrenia is a complex, severe mental illness that affects how the brain processes information. There are many medications used to treat schizophrenia. One antipsychotic agent, lumateperone tosylate, is a newer agent that the FDA recently approved. The most common adverse effects are shown to be mild such as somnolence, constipation, sedation, and fatigue, with the 42 mg recommended dose. Lumateperone tosylate is an FDA-approved drug that can be given only at the 42mg dose once daily with no titration requirements.
Collapse
Affiliation(s)
| | | | - Haley Gould
- Louisiana State University Shreveport School of Medicine, Shreveport, LA
| | - Victoria Bollich
- Louisiana State University Shreveport School of Medicine, Shreveport, LA
| | - John John LaForge
- Louisiana State University Shreveport School of Medicine, Shreveport, LA
| | | | | | - Adam M Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | | |
Collapse
|
16
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Laskaris L, Mancuso S, Shannon Weickert C, Zalesky A, Chana G, Wannan C, Bousman C, Baune BT, McGorry P, Pantelis C, Cropley VL. Brain morphology is differentially impacted by peripheral cytokines in schizophrenia-spectrum disorder. Brain Behav Immun 2021; 95:299-309. [PMID: 33838248 DOI: 10.1016/j.bbi.2021.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/13/2021] [Accepted: 04/03/2021] [Indexed: 01/28/2023] Open
Abstract
Deficits in brain morphology are one of the most widely replicated neuropathological features in schizophrenia-spectrum disorder (SSD), although their biological underpinnings remain unclear. Despite the existence of hypotheses by which peripheral inflammation may impact brain structure, few studies have examined this relationship in SSD. This study aimed to establish the relationship between peripheral markers of inflammation and brain morphology and determine whether such relationships differed across healthy controls and individuals with first episode psychosis (FEP) and chronic schizophrenia. A panel of 13 pro- and anti-inflammatory cytokines were quantified from serum in 175 participants [n = 84 Healthy Controls (HC), n = 40 FEP, n = 51 Chronic SCZ]. We first performed a series of permutation tests to identify the cytokines most consistently associated with brain structural regions. Using moderation analysis, we then determined the extent to which individual variation in select cytokines, and their interaction with diagnostic status, predicted variation in brain structure. We found significant interactions between cytokine level and diagnosis on brain structure. Diagnostic status significantly moderated the relationship of IFNγ, IL4, IL5 and IL13 with frontal thickness, and of IFNγ and IL5 and total cortical volume. Specifically, frontal thickness was positively associated with IFNγ, IL4, IL5 and IL13 cytokine levels in the healthy control group, whereas pro-inflammatory cytokines IFNγ and IL5 were associated with lower total cortical volume in the FEP group. Our findings suggest that while there were no relationships detected in chronic schizophrenia, the relationship between peripheral inflammatory markers and select brain regions are differentially impacted in FEP and healthy controls. Longitudinal investigations are required to determine whether the relationship between brain structure and peripheral inflammation changes over time.
Collapse
Affiliation(s)
- Liliana Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Australia; Department of Psychiatry, The University of Melbourne, Australia.
| | - Sam Mancuso
- Department of Psychiatry, The University of Melbourne, Australia; Translational Clinical Psychology Research Unit, Institute for Social Neuroscience, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick NSW 2031, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne
| | - Gursharan Chana
- Department of Medicine, Royal Melbourne Hospital, Royal Parade, Melbourne, Australia
| | - Cassandra Wannan
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Australia; Department of Psychiatry, The University of Melbourne, Australia
| | - Chad Bousman
- Departments of Medical Genetics, Psychiatry, Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Bernhard T Baune
- Department of Psychiatry, The University of Melbourne, Australia; Department of Psychiatry, University of Münster, Germany; Florey Institute for Neurosciences and Mental Health, Parkville, VIC Australia
| | - Patrick McGorry
- Orygen, National Centre of Excellence in Youth Mental Health, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Australia; Department of Psychiatry, The University of Melbourne, Australia; North Western Mental Health, Melbourne Health, Parkville, VIC Australia; Florey Institute for Neurosciences and Mental Health, Parkville, VIC Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Australia; Department of Psychiatry, The University of Melbourne, Australia; Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia
| |
Collapse
|
18
|
Dinesh AA, Islam J, Khan J, Turkheimer F, Vernon AC. Effects of Antipsychotic Drugs: Cross Talk Between the Nervous and Innate Immune System. CNS Drugs 2020; 34:1229-1251. [PMID: 32975758 DOI: 10.1007/s40263-020-00765-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
Converging lines of evidence suggest that activation of microglia (innate immune cells in the central nervous system [CNS]) is present in a subset of patients with schizophrenia. The extent to which antipsychotic drug treatment contributes to or combats this effect remains unclear. To address this question, we reviewed the literature for evidence that antipsychotic exposure influences brain microglia as indexed by in vivo neuroimaging and post-mortem studies in patients with schizophrenia and experimental animal models. We found no clear evidence from clinical studies for an effect of antipsychotics on either translocator protein (TSPO) radioligand binding (an in vivo neuroimaging measure of putative gliosis) or markers of brain microglia in post-mortem studies. In experimental animals, where drug and illness effects may be differentiated, we also found no clear evidence for consistent effects of antipsychotic drugs on TSPO radioligand binding. By contrast, we found evidence that chronic antipsychotic exposure may influence central microglia density and morphology. However, these effects were dependent on the dose and duration of drug exposure and whether an immune stimulus was present or not. In the latter case, antipsychotics were generally reported to suppress expression of inflammatory cytokines and inducible inflammatory enzymes such as cyclooxygenase and microglia activation. No clear conclusions could be drawn with regard to any effect of antipsychotics on brain microglia from current clinical data. There is evidence to suggest that antipsychotic drugs influence brain microglia in experimental animals, including possible anti-inflammatory actions. However, we lack detailed information on how these drugs influence brain microglia function at the molecular level. The clinical relevance of the animal data with regard to beneficial treatment effects and detrimental side effects of antipsychotic drugs also remains unknown, and further studies are warranted.
Collapse
Affiliation(s)
- Ayushi Anna Dinesh
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Juned Islam
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Javad Khan
- School of Medicine, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Centre for Neuroimaging Sciences, De Crespigny Park, London, SE5 8AF, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, United Kingdom.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, 5 Cutcombe Road, London, SE5 9RT, United Kingdom.
| |
Collapse
|
19
|
Raman F, Grandhi S, Murchison CF, Kennedy RE, Landau S, Roberson ED, McConathy J. Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER) Methodology for Research and Clinical Brain PET Applications. J Alzheimers Dis 2020; 70:1241-1257. [PMID: 31322571 DOI: 10.3233/jad-190329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tools for efficient evaluation of amyloid- and tau-PET images are needed in both clinical and research settings. OBJECTIVE This study was designed to validate a semi-automated image analysis methodology, called Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER). We tested BLAzER using two different segmentation platforms, FreeSurfer (FS) and Neuroreader (NR), for regional brain PET quantification in participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. METHODS 127 amyloid-PET and 55 tau-PET studies with volumetric MRIs were obtained from ADNI. The BLAzER methodology utilizes segmentation of MR images by FS or NR, then visualizes and quantifies regional brain PET data using FDA-cleared software (MIM), enabling quality control to ensure optimal registration and to detect segmentation errors. RESULTS BLAzER analysis required ∼5 min plus segmentation time. BLAzER using FS segmentation showed strong agreement with ADNI for global amyloid-PET standardized uptake value ratios (SUVRs) (r = 0.9922, p < 0.001) and regional tau-PET SUVRs across all Braak staging regions (r > 0.97, p < 0.001) with high inter-operator reproducibility (ICC > 0.97) and nearly identical dichotomization as amyloid-positive or -negative (2 discrepant cases out of 127). Comparing FS versus NR segmentation with BLAzER, global SUVRs were strongly correlated for amyloid-PET (r = 0.9841, p < 0.001), but were systematically higher (4% on average) with NR, likely due to more inclusion of white matter with NR-defined regions. CONCLUSIONS BLAzER provides an efficient methodology for regional brain PET quantification. FDA-cleared components and visualization of registration reduce barriers between research and clinical applications.
Collapse
Affiliation(s)
- Fabio Raman
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameera Grandhi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles F Murchison
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard E Kennedy
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
20
|
Comer AL, Carrier M, Tremblay MÈ, Cruz-Martín A. The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation. Front Cell Neurosci 2020; 14:274. [PMID: 33061891 PMCID: PMC7518314 DOI: 10.3389/fncel.2020.00274] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a disorder with a heterogeneous etiology involving complex interplay between genetic and environmental risk factors. The immune system is now known to play vital roles in nervous system function and pathology through regulating neuronal and glial development, synaptic plasticity, and behavior. In this regard, the immune system is positioned as a common link between the seemingly diverse genetic and environmental risk factors for schizophrenia. Synthesizing information about how the immune-brain axis is affected by multiple factors and how these factors might interact in schizophrenia is necessary to better understand the pathogenesis of this disease. Such knowledge will aid in the development of more translatable animal models that may lead to effective therapeutic interventions. Here, we provide an overview of the genetic risk factors for schizophrenia that modulate immune function. We also explore environmental factors for schizophrenia including exposure to pollution, gut dysbiosis, maternal immune activation and early-life stress, and how the consequences of these risk factors are linked to microglial function and dysfunction. We also propose that morphological and signaling deficits of the blood-brain barrier, as observed in some individuals with schizophrenia, can act as a gateway between peripheral and central nervous system inflammation, thus affecting microglia in their essential functions. Finally, we describe the diverse roles that microglia play in response to neuroinflammation and their impact on brain development and homeostasis, as well as schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Ashley L. Comer
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Alberto Cruz-Martín
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
- Neurophotonics Center, Boston University, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, United States
| |
Collapse
|
21
|
In Vivo TSPO Signal and Neuroinflammation in Alzheimer's Disease. Cells 2020; 9:cells9091941. [PMID: 32839410 PMCID: PMC7565089 DOI: 10.3390/cells9091941] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) in in vivo imaging has attempted to demonstrate the presence of neuroinflammatory reactions by measuring the 18 kDa translocator protein (TSPO) expression in many diseases of the central nervous system. We focus on two pathological conditions for which neuropathological studies have shown the presence of neuroinflammation, which translates in opposite in vivo expression of TSPO. Alzheimer's disease has been the most widely assessed with more than forty preclinical and clinical studies, showing overall that TSPO is upregulated in this condition, despite differences in the topography of this increase, its time-course and the associated cell types. In the case of schizophrenia, a reduction of TSPO has instead been observed, though the evidence remains scarce and contradictory. This review focuses on the key characteristics of TSPO as a biomarker of neuroinflammation in vivo, namely, on the cellular origin of the variations in its expression, on its possible biological/pathological role and on its variations across disease phases.
Collapse
|
22
|
Downer OM, Marcus RE, Zürcher NR, Hooker JM. Tracing the History of the Human Translocator Protein to Recent Neurodegenerative and Psychiatric Imaging. ACS Chem Neurosci 2020; 11:2192-2200. [PMID: 32662626 DOI: 10.1021/acschemneuro.0c00362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human 18 kDa translocator protein (TSPO) has been widely used as a measure of glial activation in health and disease. With the continuous progress of radiotracers with increased affinity and selectivity, associations between TSPO expression, disease severity, and progression have been examined, particularly in neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). However, findings in psychiatric disorders have prompted reassessment of the interpretation of regional TSPO expression differences in the brain, specifically with respect to potential neuroinflammatory components. This "mini" Review aims to guide readers through the complexity of TSPO imaging research by identifying the successes, challenges, and promising new directions of the field. We will provide a brief history of how TSPO imaging has evolved over the last three decades and present lessons learned in the context of neurodegenerative and psychiatric disorders.
Collapse
Affiliation(s)
- Olivia M. Downer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Rachel E.G. Marcus
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Nicole R. Zürcher
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
23
|
Berdyyeva T, Xia C, Taylor N, He Y, Chen G, Huang C, Zhang W, Kolb H, Letavic M, Bhattacharya A, Szardenings AK. PET Imaging of the P2X7 Ion Channel with a Novel Tracer [ 18F]JNJ-64413739 in a Rat Model of Neuroinflammation. Mol Imaging Biol 2020; 21:871-878. [PMID: 30632003 DOI: 10.1007/s11307-018-01313-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The P2X7 receptor, an adenosine triphosphate (ATP)-gated purinoreceptor, has emerged as one of the key players in neuroinflammatory processes. Therefore, developing a positron emission tomography (PET) tracer for imaging of P2X7 receptors in vivo presents a promising approach to diagnose, monitor, and study neuroinflammation in a variety of brain disorders. To fulfill the goal of developing a P2X7 PET ligand as a biomarker of neuroinflammation, [18F]JNJ-64413739 has been recently disclosed. PROCEDURES We evaluated [18F]JNJ-64413739 in a rat model of neuroinflammation induced by an intracerebral injection of lipopolysaccharide (LPS). In vivo brain uptake was determined by PET imaging. Upregulation of neuroinflammatory biomarkers was determined by quantitative polymerase chain reaction (qPCR). Distribution of the tracer in the brain was determined by ex vivo autoradiography (ARG). The specificity of [18F]JNJ-64413739 was confirmed by performing blocking experiments with the P2X7 antagonist JNJ-54175446. RESULTS Brain regions of rats injected with LPS had a significantly increased uptake (34 % ± 3 % s.e.m., p = 0.036, t test, standardized uptake value measured over the entire scanning period) of [18F]JNJ-64413739 relative to the corresponding brain regions of control animals injected with phosphate-buffered saline (PBS). The uptake in the contralateral regions and cerebellum was not significantly different between the groups of animals. The increase in uptake of [18F]JNJ-64413739 at the LPS-injected site observed by PET imaging was concordant with ex vivo ARG, upregulation of neuroinflammatory biomarkers, and elevated P2X7 expression levels. CONCLUSIONS While further work is needed to study [18F]JNJ-64413739 in other types of neuroinflammation, the current results favorably characterize [18F]JNJ-64413739 as a potential PET tracer of central neuroinflammation.
Collapse
Affiliation(s)
- Tamara Berdyyeva
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Chunfang Xia
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Natalie Taylor
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yingbo He
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Gang Chen
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Chaofeng Huang
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Wei Zhang
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hartmuth Kolb
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael Letavic
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Anindya Bhattacharya
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To give an update on recent imaging studies probing positron emission tomography (PET) as a tool for improving biomarker-guided diagnosis of neuropsychiatric disorders. RECENT FINDINGS Several studies confirmed the value of imaging of regional neuronal activity and imaging of dopaminergic, serotonergic, and other neuroreceptor function in the diagnostic process of neuropsychiatric disorders, particularly schizophrenia, depression/bipolar disorder, substance use disorders, obsessive compulsive disorders (OCD), and attention-deficit/hyperactivity disorder. Additionally, imaging brain microglial activation using translocator protein 18 kDa (TSPO) radiotracer allows for unique in-vivo insights into pathophysiological neuroinflammatory changes underlying schizophrenia, affective disorders, and OCD. SUMMARY The role of PET imaging in the biomarker-guided diagnostic process of neuropsychiatric disorders has been increasingly acknowledged in recent years. Future prospective studies are needed to define the value of PET imaging for diagnosis, treatment decisions, and prognosis in neuropsychiatric disorders.
Collapse
|
25
|
Cavaliere C, Tramontano L, Fiorenza D, Alfano V, Aiello M, Salvatore M. Gliosis and Neurodegenerative Diseases: The Role of PET and MR Imaging. Front Cell Neurosci 2020; 14:75. [PMID: 32327973 PMCID: PMC7161920 DOI: 10.3389/fncel.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
Glial activation characterizes most neurodegenerative and psychiatric diseases, often anticipating clinical manifestations and macroscopical brain alterations. Although imaging techniques have improved diagnostic accuracy in many neurological conditions, often supporting diagnosis, prognosis prediction and treatment outcome, very few molecular imaging probes, specifically focused on microglial and astrocytic activation, have been translated to a clinical setting. In this context, hybrid positron emission tomography (PET)/magnetic resonance (MR) scanners represent the most advanced tool for molecular imaging, combining the functional specificity of PET radiotracers (e.g., targeting metabolism, hypoxia, and inflammation) to both high-resolution and multiparametric information derived by MR in a single imaging acquisition session. This simultaneity of findings achievable by PET/MR, if useful for reciprocal technical adjustments regarding temporal and spatial cross-modal alignment/synchronization, opens still debated issues about its clinical value in neurological patients, possibly incompliant and highly variable from a clinical point of view. While several preclinical and clinical studies have investigated the sensitivity of PET tracers to track microglial (mainly TSPO ligands) and astrocytic (mainly MAOB ligands) activation, less studies have focused on MR specificity to this topic (e.g., through the assessment of diffusion properties and T2 relaxometry), and only few exploiting the integration of simultaneous hybrid acquisition. This review aims at summarizing and critically review the current state about PET and MR imaging for glial targets, as well as the potential added value of hybrid scanners for characterizing microglial and astrocytic activation.
Collapse
|
26
|
V. Giridharan V, Scaini G, Colpo GD, Doifode T, F. Pinjari O, Teixeira AL, Petronilho F, Macêdo D, Quevedo J, Barichello T. Clozapine Prevents Poly (I:C) Induced Inflammation by Modulating NLRP3 Pathway in Microglial Cells. Cells 2020; 9:E577. [PMID: 32121312 PMCID: PMC7140445 DOI: 10.3390/cells9030577] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a complex psychiatric disorder that exhibits an interconnection between the immune system and the brain. Experimental and clinical studies have suggested the presence of neuroinflammation in schizophrenia. In the present study, the effect of antipsychotic drugs, including clozapine, risperidone, and haloperidol (10, 20 and 20 μM, respectively), on the production of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-17, IL-18, INF-γ, and TNF-α was investigated in the unstimulated and polyriboinosinic-polyribocytidilic acid [poly (I:C)]-stimulated primary microglial cell cultures. In the unstimulated cultures, clozapine, risperidone, and haloperidol did not influence the cytokine levels. Nevertheless, in cell cultures under strong inflammatory activation by poly (I:C), clozapine reduced the levels of IL-1α, IL-1β, IL-2, and IL-17. Risperidone and haloperidol both reduced the levels of IL-1α, IL-1β, IL-2, and IL-17, and increased the levels of IL-6, IL-10, INF-γ, and TNF-α. Based on the results that were obtained with the antipsychotic drugs and observing that clozapine presented with a more significant anti-inflammatory effect, clozapine was selected for the subsequent experiments. We compared the profile of cytokine suppression obtained with the use of NLRP3 inflammasome inhibitor, CRID3 to that obtained with clozapine, to test our hypothesis that clozapine inhibits the NLRP3 inflammasome. Clozapine and CRID3 both reduced the IL-1α, IL-1β, IL-2, and IL-17 levels. Clozapine reduced the level of poly (I:C)-activated NLRP3 expression by 57%, which was higher than the reduction thay was seen with CRID3 treatment (45%). These results suggest that clozapine might exhibit anti-inflammatory effects by inhibiting NLRP3 inflammasome and this activity is not typical with the use of other antipsychotic drugs under the conditions of strong microglial activation.
Collapse
Affiliation(s)
- Vijayasree V. Giridharan
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Gabriela D. Colpo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Tejaswini Doifode
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Omar F. Pinjari
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Antônio L. Teixeira
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC 88700-000, Brazil;
| | - Danielle Macêdo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP 14000-000, Brazil;
| | - João Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC 88800-000, Brazil
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA
| | - Tatiana Barichello
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77054, USA; (V.V.G.); (G.S.); (G.D.C.); (T.D.); (O.F.P.); (A.L.T.); (J.Q.)
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, SC 88800-000, Brazil
| |
Collapse
|
27
|
Yoviene Sykes LA, Ferrara M, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Perkins DO, Mathalon DH, Seidman LJ, Tsuang MT, Walker EF, McGlashan TH, Woodberry KA, Powers AR, Ponce AN, Cahill JD, Pollard JM, Srihari VH, Woods SW. Predictive validity of conversion from the clinical high risk syndrome to frank psychosis. Schizophr Res 2020; 216:184-191. [PMID: 31864837 PMCID: PMC7239715 DOI: 10.1016/j.schres.2019.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023]
Abstract
Although the clinical high risk for psychosis (CHR) paradigm has become well-established over the past two decades, one key component has received surprisingly little investigative attention: the predictive validity of the criteria for conversion or transition to frank psychosis. The current study evaluates the predictive validity of the transition to psychosis as measured by the Structured Interview for Psychosis-Risk Syndromes (SIPS) in CHR individuals. Participants included 33 SIPS converters and 399 CHR non-converters both from the North American Prodromal Longitudinal Study (NAPLS-2), as well as a sample of 67 separately ascertained first-episode psychosis (FEP) patients from the STEP program. Comparisons were made at baseline and one-year follow-up on demographic, diagnostic stability (SCID), and available measurement domains relating to severity of illness (psychotropic medication, psychosocial treatment, and resource utilization). Principal findings are: 1) a large majority of cases in both SIPS converters (n = 27/33, 81.8%) and FEP (n = 57/67, 85.1%) samples met criteria for continued psychosis at one-year follow-up; 2) follow-up prescription rates for current antipsychotic medication were higher in SIPS converters (n = 17/32, 53.1%) compared to SIPS non-converters (n = 81/397, 20.4%), and similar as compared to FEP cases (n = 39/65, 60%); and 3) at follow-up, SIPS converters had higher rates of resource utilization (psychiatric hospitalizations, day hospital admissions, and ER visits) than SIPS non-converters and were similar to FEP in most categories. The results suggest that the SIPS definition of psychosis onset carries substantial predictive validity. Limitations and future directions are discussed.
Collapse
Affiliation(s)
- Laura A Yoviene Sykes
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America.
| | - Maria Ferrara
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America; Dipartimento di Salute Mentale e Dipendenze Patologiche, AUSL Modena, Modena, Italy
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychology and Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States of America
| | | | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States of America
| | - Barbara A Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, Long Island, NY, United States of America
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States of America
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, San Francisco, CA, United States of America
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Ming T Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, United States of America
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, United States of America
| | - Thomas H McGlashan
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Kristen A Woodberry
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America; Center for Psychiatric Research, Maine Medical Center, Portland, ME, United States of America
| | - Albert R Powers
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Allison N Ponce
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - John D Cahill
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Jessica M Pollard
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Vinod H Srihari
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| | - Scott W Woods
- Department of Psychiatry and Connecticut Mental Health Center, Yale University, New Haven, CT, United States of America
| |
Collapse
|
28
|
Abstract
IMPORTANCE Schizophrenia is a common, severe mental illness that most clinicians will encounter regularly during their practice. This report provides an overview of the clinical characteristics, epidemiology, genetics, neuroscience, and psychopharmacology of schizophrenia to provide a basis to understand the disorder and its treatment. This educational review is integrated with a clinical case to highlight how recent research findings can inform clinical understanding. OBSERVATIONS The first theme considered is the role of early-life environmental and genetic risk factors in altering neurodevelopmental trajectories to predispose an individual to the disorder and leading to the development of prodromal symptoms. The second theme is the role of cortical excitatory-inhibitory imbalance in the development of the cognitive and negative symptoms of the disorder. The third theme considers the role of psychosocial stressors, psychological factors, and subcortical dopamine dysfunction in the onset of the positive symptoms of the disorder. The final theme considers the mechanisms underlying treatment for schizophrenia and common adverse effects of treatment. CONCLUSIONS AND RELEVANCE Schizophrenia has a complex presentation with a multifactorial cause. Nevertheless, advances in neuroscience have identified roles for key circuits, particularly involving frontal, temporal, and mesostriatal brain regions, in the development of positive, negative, and cognitive symptoms. Current pharmacological treatments operate using the same mechanism, blockade of dopamine D2 receptor, which contribute to their adverse effects. However, the circuit mechanisms discussed herein identify novel potential treatment targets that may be of particular benefit in symptom domains not well served by existing medications.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom.,Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tiago Reis Marques
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom.,Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, United Kingdom.,Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, United Kingdom.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Ellis JK, Walker EF, Goldsmith DR. Selective Review of Neuroimaging Findings in Youth at Clinical High Risk for Psychosis: On the Path to Biomarkers for Conversion. Front Psychiatry 2020; 11:567534. [PMID: 33173516 PMCID: PMC7538833 DOI: 10.3389/fpsyt.2020.567534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
First episode psychosis (FEP), and subsequent diagnosis of schizophrenia or schizoaffective disorder, predominantly occurs during late adolescence, is accompanied by a significant decline in function and represents a traumatic experience for patients and families alike. Prior to first episode psychosis, most patients experience a prodromal period of 1-2 years, during which symptoms first appear and then progress. During that time period, subjects are referred to as being at Clinical High Risk (CHR), as a prodromal period can only be designated in hindsight in those who convert. The clinical high-risk period represents a critical window during which interventions may be targeted to slow or prevent conversion to psychosis. However, only one third of subjects at clinical high risk will convert to psychosis and receive a formal diagnosis of a primary psychotic disorder. Therefore, in order for targeted interventions to be developed and applied, predicting who among this population will convert is of critical importance. To date, a variety of neuroimaging modalities have identified numerous differences between CHR subjects and healthy controls. However, complicating attempts at predicting conversion are increasingly recognized co-morbidities, such as major depressive disorder, in a significant number of CHR subjects. The result of this is that phenotypes discovered between CHR subjects and healthy controls are likely non-specific to psychosis and generalized for major mental illness. In this paper, we selectively review evidence for neuroimaging phenotypes in CHR subjects who later converted to psychosis. We then evaluate the recent landscape of machine learning as it relates to neuroimaging phenotypes in predicting conversion to psychosis.
Collapse
Affiliation(s)
- Justin K Ellis
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
30
|
Robertson OD, Coronado NG, Sethi R, Berk M, Dodd S. Putative neuroprotective pharmacotherapies to target the staged progression of mental illness. Early Interv Psychiatry 2019; 13:1032-1049. [PMID: 30690898 DOI: 10.1111/eip.12775] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022]
Abstract
AIM Neuropsychiatric disorders including depression, bipolar and schizophrenia frequently exhibit a neuroprogressive course from prodrome to chronicity. There are a range of agents exhibiting capacity to attenuate biological mechanisms associated with neuroprogression. This review will update the evidence for putative neuroprotective agents including clinical efficacy, mechanisms of action and limitations in current assessment tools, and identify novel agents with neuroprotective potential. METHOD Data for this review were sourced from online databases PUBMED, Embase and Web of Science. Only data published since 2012 were included in this review, no data were excluded based on language or publication origin. RESULTS Each of the agents reviewed inhibit one or multiple pathways of neuroprogression including: inflammatory gene expression and cytokine release, oxidative and nitrosative stress, mitochondrial dysfunction, neurotrophin dysregulation and apoptotic signalling. Some demonstrate clinical efficacy in preventing neural damage or loss, relapse or cognitive/functional decline. Agents include: the psychotropic medications lithium, second generation antipsychotics and antidepressants; other pharmacological agents such as minocycline, aspirin, cyclooxygenase-2 inhibitors, statins, ketamine and alpha-2-delta ligands; and others such as erythropoietin, oestrogen, leptin, N-acetylcysteine, curcumin, melatonin and ebselen. CONCLUSIONS Signals of evidence of clinical neuroprotection are evident for a number of candidate agents. Adjunctive use of multiple agents may present a viable avenue to clinical realization of neuroprotection. Definitive prospective studies of neuroprotection with multimodal assessment tools are required.
Collapse
Affiliation(s)
- Oliver D Robertson
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia
| | - Nieves G Coronado
- Unidad de Gestión Clinica Salud Mental, Hospital Universitario Virgen del Rocio, Sevilla, Spain
| | - Rickinder Sethi
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia.,Department of Psychiatry, Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Seetal Dodd
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Mental Health, Drugs and Alcohol Services, University Hospital Geelong, Barwon Health, Geelong, Victoria, Australia.,Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia.,Mood Disorders Research Program, Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
31
|
Romain K, Eriksson A, Onyon R, Kumar M. The psychosis risk timeline: can we improve our preventive strategies? Part 3: primary common pathways and preventive strategies. BJPSYCH ADVANCES 2019. [DOI: 10.1192/bja.2019.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SUMMARYPsychosis is a recognised feature of several psychiatric disorders and it causes patients significant distress and morbidity. It is therefore important to keep knowledge of possible risk factors for psychosis up to date and to have an overview model on which further learning can be structured. This article concludes a three-part series. It gives a review of evidence regarding common pathways by which many risk factors come together to influence the development of psychosis and finalises our suggested overview model, a psychosis risk timeline. The three primary pathways considered are based on the major themes identified in this narrative review of recent literature and they focus on neurological, neurochemical and inflammatory changes. We link each back to the factors discussed in the first and second parts of this series that alter psychosis risk through different mechanisms and at different stages throughout life. We then consider and summarise key aspects of this complex topic with the aim of providing current and future clinicians with a model on which to build their knowledge and begin to access and understand current psychosis research and implications for future preventive work.LEARNING OBJECTIVESAfter reading this article you will be able to:
•give an overview of common pathways thought to link identified risk factors with psychosis development•understand neurochemical, neurostructural and inflammatory changes associated with psychosis•demonstrate increased knowledge of possible preventive strategies.DECLARATION OF INTERESTNone.
Collapse
|
32
|
Pace-Schott EF, Amole MC, Aue T, Balconi M, Bylsma LM, Critchley H, Demaree HA, Friedman BH, Gooding AEK, Gosseries O, Jovanovic T, Kirby LA, Kozlowska K, Laureys S, Lowe L, Magee K, Marin MF, Merner AR, Robinson JL, Smith RC, Spangler DP, Van Overveld M, VanElzakker MB. Physiological feelings. Neurosci Biobehav Rev 2019; 103:267-304. [DOI: 10.1016/j.neubiorev.2019.05.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022]
|
33
|
Cuprizone-treated mice, a possible model of schizophrenia, highlighting the simultaneous abnormalities of GABA, serine and glycine in hippocampus. Schizophr Res 2019; 210:326-328. [PMID: 31296416 DOI: 10.1016/j.schres.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/28/2019] [Accepted: 06/16/2019] [Indexed: 12/29/2022]
|
34
|
Ghadery C, Best LA, Pavese N, Tai YF, Strafella AP. PET Evaluation of Microglial Activation in Non-neurodegenerative Brain Diseases. Curr Neurol Neurosci Rep 2019; 19:38. [PMID: 31139952 PMCID: PMC6538572 DOI: 10.1007/s11910-019-0951-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF THE REVIEW Microglial cell activation is an important component of neuroinflammation, and it is generally well accepted that chronic microglial activation is indicative of accumulating tissue damage in neurodegenerative conditions, particularly in the earlier stages of disease. Until recently, there has been less focus on the role of neuroinflammation in other forms of neurological and neuropsychiatric conditions. Through this review, we hope to demonstrate the important role TSPO PET imaging has played in illuminating the pivotal role of neuroinflammation and microglial activation underpinning these conditions. RECENT FINDINGS TSPO is an 18 kDa protein found on the outer membrane of mitochondria and can act as a marker of microglial activation using nuclear imaging. Through the development of radiopharmaceuticals targeting TSPO, researchers have been able to better characterise the spatial-temporal evolution of chronic neurological conditions, ranging from the focal autoimmune reactions seen in multiple sclerosis to the Wallerian degeneration at remote parts of the brain months following acute cerebral infarction. Development of novel techniques to investigate neuroinflammation within the central nervous system, for the purposes of diagnosis and therapeutics, has flourished over the past few decades. TSPO has proven itself a robust and sensitive biomarker of microglial activation and neuroimaging affords a minimally invasive technique to characterise neuroinflammatory processes in vivo.
Collapse
Affiliation(s)
- Christine Ghadery
- The Edmond J. Safra Program in Parkinson's Disease & Movement Disorder Unit, Toronto Western Hospital & Krembil Research Institute, University Health Network; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Best
- Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, UK.
| | - Nicola Pavese
- Clinical Ageing Research Unit, Newcastle University, Campus for Ageing and Vitality, Westgate Road, Newcastle Upon Tyne, UK
- PET centre, University of Aarhus Denmark, Aarhus, Denmark
| | - Yen Foung Tai
- Imperial College London South Kensington Campus, London, UK
| | - Antonio P Strafella
- The Edmond J. Safra Program in Parkinson's Disease & Movement Disorder Unit, Toronto Western Hospital & Krembil Research Institute, University Health Network; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, Fu T, Worringer K, Brown HE, Wang J, Kaykas A, Karmacharya R, Goold CP, Sheridan SD, Perlis RH. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 2019; 22:374-385. [PMID: 30718903 DOI: 10.1038/s41593-018-0334-7] [Citation(s) in RCA: 465] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals.
Collapse
Affiliation(s)
- Carl M Sellgren
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA. .,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Jessica Gracias
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bradley Watmuff
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jonathan D Biag
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Jessica M Thanos
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Ting Fu
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | | | - Hannah E Brown
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer Wang
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ajamete Kaykas
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Rakesh Karmacharya
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | | | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA. .,Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Hafizi S, Guma E, Koppel A, Da Silva T, Kiang M, Houle S, Wilson AA, Rusjan PM, Chakravarty MM, Mizrahi R. TSPO expression and brain structure in the psychosis spectrum. Brain Behav Immun 2018; 74:79-85. [PMID: 29906515 PMCID: PMC6289857 DOI: 10.1016/j.bbi.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023] Open
Abstract
Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18 kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic-naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [18F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [18F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [18F]FEPPA VT (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [18F]FEPPA VT and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis.
Collapse
Affiliation(s)
- Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Elisa Guma
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Alex Koppel
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
37
|
Bloomfield PS, Bonsall D, Wells L, Dormann D, Howes O, De Paola V. The effects of haloperidol on microglial morphology and translocator protein levels: An in vivo study in rats using an automated cell evaluation pipeline. J Psychopharmacol 2018; 32:1264-1272. [PMID: 30126329 DOI: 10.1177/0269881118788830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Altered microglial markers and morphology have been demonstrated in patients with schizophrenia in post-mortem and in vivo studies. However, it is unclear if changes are due to antipsychotic treatment. AIMS Here we aimed to determine whether antipsychotic medication affects microglia in vivo. METHODS To investigate this we administered two clinically relevant doses (0.05 mg n=12 and 2.5 mg n=7 slow-release pellets, placebo n=20) of haloperidol, over 2 weeks, to male Sprague Dawley rats to determine the effect on microglial cell density and morphology (area occupied by processes and microglial cell area). We developed an analysis pipeline for the automated assessment of microglial cells and used lipopolysaccharide (LPS) treatment ( n=13) as a positive control for analysis. We also investigated the effects of haloperidol ( n=9) or placebo ( n=10) on the expression of the translocator protein 18 kDa (TSPO) using autoradiography with [3H]PBR28, a TSPO ligand used in human positron emission tomography (PET) studies. RESULTS Here we demonstrated that haloperidol at either dose does not alter microglial measures compared with placebo control animals ( p > 0.05). Similarly there was no difference in [3H]PBR28 binding between placebo and haloperidol tissue ( p > 0.05). In contrast, LPS was associated with greater cell density ( p = 0.04) and larger cell size ( p = 0.01). CONCLUSION These findings suggest that haloperidol does not affect microglial cell density, morphology or TSPO expression, indicating that clinical study alterations are likely not the consequence of antipsychotic treatment. The automated cell evaluation pipeline was able to detect changes in microglial morphology induced by LPS and is made freely available for future use.
Collapse
Affiliation(s)
- Peter S Bloomfield
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - David Bonsall
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Lisa Wells
- 3 Imanova Centre for Imaging Sciences, London, UK
| | - Dirk Dormann
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Oliver Howes
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK.,4 The Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, UK
| | - Vincenzo De Paola
- 1 MRC London Institute of Medical Sciences, Hammersmith Hospital, London, UK.,2 Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
38
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
39
|
Torous J, Keshavan M. Clinical Highlights in this issue. Schizophr Res 2018; 195:1-2. [PMID: 29734577 DOI: 10.1016/j.schres.2018.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|