1
|
Giampetruzzi E, Walker EF, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Woods SW, LoPilato AM. Impact of adverse childhood experiences on risk for internalizing psychiatric disorders in youth at clinical high-risk for psychosis. Psychiatry Res 2024; 342:116214. [PMID: 39368239 DOI: 10.1016/j.psychres.2024.116214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Research has established that adverse childhood experiences (ACEs) confer risk for psychiatric diagnoses, and that protective factors moderate this association. Investigation into the effect of protective factors in the relationship between ACEs and internalizing disorders (e.g., depression, anxiety) is limited in high-risk groups. The present study investigated the relationship between ACEs and risk for internalizing disorders in youth at clinical high risk for psychosis (CHR-P) and tests the hypothesis that protective factors moderate this relationship. METHODS 688 participants aged 12-30 (M = 18; SD = 4.05) meeting criteria for CHR-P were administered measures of child adversity, protective factors (SAVRY), and diagnostic assessment (SCID- 5). Logistic regression tested whether ACEs predicted internalizing disorders. Moderation regression analyses determined whether these associations were weaker in the presence of protective factors. RESULTS & CONCLUSIONS Higher levels of ACEs predicted history of depressive disorder (β = 0.26(1.30), p < .001), self-harm/suicide attempts (β = 0.34(1.40), p < .001), and substance use (β = 0.14(1.15), p = .04). Childhood sexual abuse (β = 0.77(2.15), p = .001), emotional neglect (β = 0.38(1.46), p = .05), and psychological abuse (β = 0.42(1.52), p = .04), predicted self- harm/suicide attempts. Sexual abuse (β = 1.00 (2.72), p = .001), and emotional neglect (β = 0.53(1.71), p = .011), were also linked to depressive disorder. There was no association between ACEs and anxiety disorder, and no moderation effect of protective factors in the relationship between ACEs and psychiatric outcomes. These findings add nuance to a growing literature linking ACEs to psychopathology and highlight the importance of investigation into the mechanisms that may buffer this relationship.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | | | | | - William S Stone
- Beth Israel Deaconess Medical Center and Harvard Medical School, USA
| | | | | |
Collapse
|
2
|
Aberizk K, Addington JM, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF, Ku BS. Relations of Lifetime Perceived Stress and Basal Cortisol With Hippocampal Volume Among Healthy Adolescents and Those at Clinical High Risk for Psychosis: A Structural Equation Modeling Approach. Biol Psychiatry 2024; 96:401-411. [PMID: 38092185 PMCID: PMC11166888 DOI: 10.1016/j.biopsych.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Hippocampal volume (HV) is sensitive to environmental influences. Under normative conditions in humans, HV increases linearly into childhood and asymptotes in early adulthood. Studies of humans and nonhuman animals have provided evidence of inverse relationships between several measures of stress and HV. METHODS Using structural equation modeling, this study aimed to characterize the relationships of age, basal cortisol, biological sex, and lifetime perceived stress with bilateral HV in a sample of healthy adolescents and adolescents at clinical high risk for psychosis (CHR-P) (N = 571, 43% female; age range = 12-19.9 years). This sample included 469 individuals at CHR-P and 102 healthy comparison participants from the combined baseline cohorts of the second and third NAPLS (North American Prodrome Longitudinal Study). RESULTS A structural model that constrained the individual effects of basal cortisol and perceived stress to single path coefficients, and freely estimated the effects of age and biological sex in group models, optimized model fit and parsimony relative to other candidate models. Significant inverse relationships between basal cortisol and bilateral HV were observed in adolescents at CHR-P and healthy comparison participants. Significant sex differences in bilateral HV were also observed, with females demonstrating smaller HV than males in both groups. CONCLUSIONS Multigroup structural equation modeling revealed heterogeneity in the relationships of age and biological sex with basal cortisol, lifetime perceived stress, and bilateral HV in individuals at CHR-P and healthy comparison participants. Moreover, the findings support previous literature indicating that elevated basal cortisol is a nonspecific risk factor for reduced HV.
Collapse
Affiliation(s)
- Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, Georgia.
| | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, California
| | | | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | | | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, California
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William S Stone
- Department of Psychiatry, Harvard Medical School, Harvard University, Cambridge, Massachusetts
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, California
| | - Scott W Woods
- Departments of Psychology and Psychiatry, Yale University, New Haven, Connecticut
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
3
|
Breslin FJ, Kerr KL, Ratliff EL, Cohen ZP, Simmons WK, Morris AS, Croff JM. Early Life Adversity Predicts Reduced Hippocampal Volume in the Adolescent Brain Cognitive Development Study. J Adolesc Health 2024; 75:275-280. [PMID: 38878049 PMCID: PMC11264191 DOI: 10.1016/j.jadohealth.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024]
Abstract
PURPOSE Cross-sectional studies in adults have demonstrated associations between early life adversity (ELA) and reduced hippocampal volume, but the timing of these effects is not clear. The present study sought to examine whether ELA predicts changes in hippocampal volume over time in a large sample of early adolescents. METHODS The Adolescent Brain Cognitive Development Study provides a large dataset of tabulated neuroimaging, youth-reported adverse experiences, and parent-reported financial adversity from a sample of children around the United States. Linear mixed effects modeling was used to determine the relationship between ELA and hippocampal volume change within youth (n = 7036) from ages 9-10 to 11-12 years. RESULTS Results of the models indicated that the number of early adverse events predicted bilateral hippocampal volume change (β = -0.02, t = -2.02, p < .05). Higher adversity was associated with lower hippocampal volume at Baseline (t = 5.55, p < .01) and at Year 2 (t = 6.14, p < .001). DISCUSSION These findings suggest that ELA may affect hippocampal development during early adolescence. Prevention and early intervention are needed to alter the course of this trajectory. Future work should examine associations between ELA, hippocampal development, and educational and socioemotional outcomes.
Collapse
Affiliation(s)
- Florence J Breslin
- Hardesty Center for Clinical Research and Neuroscience, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma; Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma.
| | - Kara L Kerr
- Hardesty Center for Clinical Research and Neuroscience, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma; Department of Psychology, Oklahoma State University, Stillwater, Oklahoma
| | - Erin L Ratliff
- Department of Psychology, University of Marlyand, College Park, Maryland
| | - Zsofia P Cohen
- Department of Psychology, Oklahoma State University, Stillwater, Oklahoma
| | - W Kyle Simmons
- Hardesty Center for Clinical Research and Neuroscience, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma; Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| | - Amanda S Morris
- Hardesty Center for Clinical Research and Neuroscience, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma; Department of Psychology, Oklahoma State University, Stillwater, Oklahoma
| | - Julie M Croff
- Hardesty Center for Clinical Research and Neuroscience, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma; Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma
| |
Collapse
|
4
|
Ku BS, Aberizk K, Feurer C, Yuan Q, Druss BG, Jeste DV, Walker EF. Aspects of Area Deprivation Index in Relation to Hippocampal Volume Among Children. JAMA Netw Open 2024; 7:e2416484. [PMID: 38865127 PMCID: PMC11170298 DOI: 10.1001/jamanetworkopen.2024.16484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/11/2024] [Indexed: 06/13/2024] Open
Abstract
Importance Area deprivation index (ADI) has been shown to be associated with reduced hippocampal volume (HV) among youths. The social environment may interact with the association between ADI and HV. Objective To investigate which aspects of ADI are uniquely associated with bilateral HV and whether school and family environments have moderating interactions in associations between ADI and HV. Design, Setting, and Participants This cross-sectional study used data from the Adolescent Brain and Cognitive Development (ABCD) study. Participants aged 9 and 10 years were recruited from 21 sites in the US between September 2016 and August 2018. Data analysis was performed between March 2023 and April 2024. Exposures ADI aspects were derived from participant primary home addresses provided by parents or guardians. Main Outcomes and Measures HV was automatically segmented from structural brain images ascertained from magnetic resonance imaging. Multiple generalized linear mixed modeling tested associations between 9 indices of ADI and bilateral HV, with family groups and recruitment sites as random effects. After stepwise backward selection, models were adjusted for individual-level covariates, including age, sex, race and ethnicity, parental education, household income, and estimated intracranial volume. Results This study included 10 114 participants aged 9 and 10 years (median [IQR] age, 9.92 [9.33-10.48] years; 5294 male [52.3%]; 200 Asian [2.0%], 1411 Black [14.0%], and 6655 White [65.8%]; 1959 Hispanic [19.4%]). After stepwise backward selection and adjusting for covariates, only the percentage of neighborhood-level single-parent households was associated with right HV (adjusted β per 1-SD increase in single-parent households, -0.03; 95% CI, -0.06 to -0.01; P = .01). School environment interacted with neighborhood-level single-parent households in its association with right HV (adjusted β per 1-SD increase in score, 0.02; 95% CI, 0.01 to 0.03; P = .003), such that there was an inverse association only among those at a school with the mean environment score (adjusted β per 1% increase in single-parent households, -0.03; 95% CI, -0.05 to -0.01; P = .02) and worse (-1 SD score) school environment score (adjusted β per 1% increase in single-parent households, -0.05; 95% CI, -0.09 to -0.01; P < .001) but not among those at better (+1 SD score) school environments. Conclusions and Relevance In this study, an increased percentage of neighborhood-level single-parent households was associated with reduced right HV among children in schools with the mean or worse but not better environment score. These findings suggest that longitudinal research concerning the association of neighborhood-level characteristics and school environments with hippocampal development may be warranted to better understand complex interactions between various social factors and child neurodevelopment and mental health outcomes.
Collapse
Affiliation(s)
- Benson S. Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Katrina Aberizk
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Cope Feurer
- Department of Psychiatry, University of Illinois at Chicago
| | - Qingyue Yuan
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Benjamin G. Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Dilip V. Jeste
- Global Research Network on Social Determinants of Health and Exposomics, La Jolla, California
| | | |
Collapse
|
5
|
Sloan AF, Kittleson AR, Torregrossa LJ, Feola B, Rossi-Goldthorpe R, Corlett PR, Sheffield JM. Belief Updating, Childhood Maltreatment, and Paranoia in Schizophrenia-Spectrum Disorders. Schizophr Bull 2024:sbae057. [PMID: 38701234 DOI: 10.1093/schbul/sbae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND AND HYPOTHESIS Exposure to childhood maltreatment-a risk factor for psychosis is associated with paranoia-may impact one's beliefs about the world and how beliefs are updated. We hypothesized that increased exposure to childhood maltreatment is related to volatility-related belief updating, specifically higher expectations of volatility, and that these relationships are strongest for threat-related maltreatment. Additionally, we tested whether belief updating mediates the relationship between maltreatment and paranoia. STUDY DESIGN Belief updating was measured in 75 patients with schizophrenia-spectrum disorders and 76 nonpsychiatric controls using a 3-option probabilistic reversal learning (3PRL) task. A Hierarchical Gaussian Filter (HGF) was used to estimate computational parameters of belief updating, including prior expectations of volatility (μ03). The Childhood Trauma Questionnaire (CTQ) was used to assess cumulative maltreatment, threat, and deprivation exposure. Paranoia was measured using the Positive and Negative Syndrome Scale (PANSS) and the revised Green et al. Paranoid Thoughts Scale (R-GPTS). RESULTS Greater exposure to childhood maltreatment is associated with higher prior expectations of volatility in the whole sample and in individuals with schizophrenia-spectrum disorders. This was specific to threat-related maltreatment, rather than deprivation, in schizophrenia-spectrum disorders. Paranoia was associated with both exposure to childhood maltreatment and volatility priors, but we did not observe a significant indirect effect of volatility priors on the relationship between maltreatment and paranoia. CONCLUSIONS Our study suggests that individuals with schizophrenia-spectrum disorders who were exposed to threatening experiences during childhood expect their environment to be more volatile, potentially facilitating aberrant belief updating and conferring risk for paranoia.
Collapse
Affiliation(s)
- Ali F Sloan
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Kittleson
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lénie J Torregrossa
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Brandee Feola
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Philip R Corlett
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Cullen AE, Labad J, Oliver D, Al-Diwani A, Minichino A, Fusar-Poli P. The Translational Future of Stress Neurobiology and Psychosis Vulnerability: A Review of the Evidence. Curr Neuropharmacol 2024; 22:350-377. [PMID: 36946486 PMCID: PMC10845079 DOI: 10.2174/1570159x21666230322145049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 03/23/2023] Open
Abstract
Psychosocial stress is a well-established risk factor for psychosis, yet the neurobiological mechanisms underlying this relationship have yet to be fully elucidated. Much of the research in this field has investigated hypothalamic-pituitary-adrenal (HPA) axis function and immuno-inflammatory processes among individuals with established psychotic disorders. However, as such studies are limited in their ability to provide knowledge that can be used to develop preventative interventions, it is important to shift the focus to individuals with increased vulnerability for psychosis (i.e., high-risk groups). In the present article, we provide an overview of the current methods for identifying individuals at high-risk for psychosis and review the psychosocial stressors that have been most consistently associated with psychosis risk. We then describe a network of interacting physiological systems that are hypothesised to mediate the relationship between psychosocial stress and the manifestation of psychotic illness and critically review evidence that abnormalities within these systems characterise highrisk populations. We found that studies of high-risk groups have yielded highly variable findings, likely due to (i) the heterogeneity both within and across high-risk samples, (ii) the diversity of psychosocial stressors implicated in psychosis, and (iii) that most studies examine single markers of isolated neurobiological systems. We propose that to move the field forward, we require well-designed, largescale translational studies that integrate multi-domain, putative stress-related biomarkers to determine their prognostic value in high-risk samples. We advocate that such investigations are highly warranted, given that psychosocial stress is undoubtedly a relevant risk factor for psychotic disorders.
Collapse
Affiliation(s)
- Alexis E. Cullen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Clinical Neuroscience, Division of Insurance Medicine, Karolinska Institutet, Solna, Sweden
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Javier Labad
- CIBERSAM, Sabadell, Barcelona, Spain
- Department of Mental Health and Addictions, Consorci Sanitari del Maresme, Mataró, Spain
| | - Dominic Oliver
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Adam Al-Diwani
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Amedeo Minichino
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Paolo Fusar-Poli
- Early Psychosis: Interventions and Clinical-Detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
- OASIS Service, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
7
|
Thomas M, Rakesh D, Whittle S, Sheridan M, Upthegrove R, Cropley V. The neural, stress hormone and inflammatory correlates of childhood deprivation and threat in psychosis: A systematic review. Psychoneuroendocrinology 2023; 157:106371. [PMID: 37651860 DOI: 10.1016/j.psyneuen.2023.106371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Childhood adversity increases the risk of developing psychosis, but the biological mechanisms involved are unknown. Disaggregating early adverse experiences into core dimensions of deprivation and threat may help to elucidate these mechanisms. We therefore systematically searched the literature investigating associations between deprivation and threat, and neural, immune and stress hormone systems in individuals on the psychosis spectrum. Our search yielded 74 articles, from which we extracted and synthesized relevant findings. While study designs were heterogeneous and findings inconsistent, some trends emerged. In psychosis, deprivation tended to correlate with lower global cortical volume, and some evidence supported threat-related variation in prefrontal cortex morphology. Greater threat exposure was also associated with higher C-reactive protein, and higher and lower cortisol measures. When examined, associations in controls were less evident. Overall, findings indicate that deprivation and threat may associate with partially distinct biological mechanisms in the psychosis spectrum, and that associations may be stronger than in controls. Dimensional approaches may help disentangle the biological correlates of childhood adversity in psychosis, but more studies are needed.
Collapse
Affiliation(s)
- Megan Thomas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia.
| | - Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia; Neuroimaging Department, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, United Kingdom
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia
| | - Margaret Sheridan
- Department of Psychology & Neuroscience, University of North Carolina, United States
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, United Kingdom; Early Intervention Service, Birmingham Women's and Children's NHS Foundation Trust, United Kingdom
| | - Vanessa Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Australia
| |
Collapse
|
8
|
Ku BS, Collins M, Anglin DM, Diomino AM, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Druss BG, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF. Associations between childhood ethnoracial minority density, cortical thickness, and social engagement among minority youth at clinical high-risk for psychosis. Neuropsychopharmacology 2023; 48:1707-1715. [PMID: 37438421 PMCID: PMC10579230 DOI: 10.1038/s41386-023-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
An ethnoracial minority density (EMD) effect in studies of psychotic spectrum disorders has been observed, whereby the risk of psychosis in ethnoracial minority group individuals is inversely related to the proportion of minorities in their area of residence. The authors investigated the relationships among area-level EMD during childhood, cortical thickness (CT), and social engagement (SE) in clinical high risk for psychosis (CHR-P) youth. Data were collected as part of the North American Prodrome Longitudinal Study. Participants included 244 ethnoracial minoritized (predominantly Hispanic, Asian and Black) CHR-P youth and ethnoracial minoritized healthy controls. Among youth at CHR-P (n = 164), lower levels of EMD during childhood were associated with reduced CT in the right fusiform gyrus (adjusted β = 0.54; 95% CI 0.17 to 0.91) and right insula (adjusted β = 0.40; 95% CI 0.05 to 0.74). The associations between EMD and CT were significantly moderated by SE: among youth with lower SE (SE at or below the median, n = 122), lower levels of EMD were significantly associated with reduced right fusiform gyrus CT (adjusted β = 0.72; 95% CI 0.29 to 1.14) and reduced right insula CT (adjusted β = 0.57; 95% CI 0.18 to 0.97). However, among those with greater SE (n = 42), the associations between EMD and right insula and fusiform gyrus CT were not significant. We found evidence that lower levels of ethnic density during childhood were associated with reduced cortical thickness in regional brain regions, but this association may be buffered by greater levels of social engagement.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Meghan Collins
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Deidre M Anglin
- Department of Psychology, The City College of New York, City University of New York, New York, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Anthony M Diomino
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychology, The City College of New York, City University of New York, New York, NY, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matcheri Keshavan
- Harvard Medical School, Departments of Psychiatry at Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S Stone
- Harvard Medical School, Departments of Psychiatry at Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Boston, MA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W Woods
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Thomas M, Whittle S, Tian YE, van Rheenen TE, Zalesky A, Cropley VL. Pathways from threat exposure to psychotic symptoms in youth: The role of emotion recognition bias and brain structure. Schizophr Res 2023; 261:304-313. [PMID: 37898031 DOI: 10.1016/j.schres.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Research supports an association between threatening experiences in childhood and psychosis. It is possible that early threat exposure disrupts the development of emotion recognition (specifically, producing a bias for facial expressions relating to threat) and the brain structures subserving it, contributing to psychosis development. METHODS Using data from the Philadelphia Neurodevelopmental Cohort, we examined associations between threat exposure and both the misattribution of facial expressions to fear/anger in an emotion recognition task, and gray matter volumes in key emotion processing regions. Our sample comprised youth with psychosis spectrum symptoms (N = 304), control youth (N = 787), and to evaluate specificity, youth with internalizing symptoms (N = 92). The moderating effects of group and sex were examined. RESULTS Both the psychosis spectrum and internalizing groups had higher levels of threat exposure than controls. In the total sample, threat exposure was associated with lower left medial prefrontal cortex (mPFC) volume but not misattributions to fear/anger. The effects of threat exposure did not significantly differ by group or sex. CONCLUSIONS The findings of this study provide evidence for an effect of threat exposure on mPFC morphology, but do not support an association between threat exposure and a recognition bias for threat-related expressions, that is particularly pronounced in psychosis. Future research should investigate factors linking transdiagnostic alterations related to threat exposure with psychotic symptoms, and attempt to clarify the mechanisms underpinning emotion recognition misattributions in threat-exposed youth.
Collapse
Affiliation(s)
- Megan Thomas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Ye E Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Tamsyn E van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia; Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| |
Collapse
|
10
|
Merritt K, Luque Laguna P, Sethi A, Drakesmith M, Ashley SA, Bloomfield M, Fonville L, Perry G, Lancaster T, Dimitriadis SI, Zammit S, Evans CJ, Lewis G, Kempton MJ, Linden DEJ, Reichenberg A, Jones DK, David AS. The impact of cumulative obstetric complications and childhood trauma on brain volume in young people with psychotic experiences. Mol Psychiatry 2023; 28:3688-3697. [PMID: 37903876 PMCID: PMC10730393 DOI: 10.1038/s41380-023-02295-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Psychotic experiences (PEs) occur in 5-10% of the general population and are associated with exposure to childhood trauma and obstetric complications. However, the neurobiological mechanisms underlying these associations are unclear. Using the Avon Longitudinal Study of Parents and Children (ALSPAC), we studied 138 young people aged 20 with PEs (n = 49 suspected, n = 53 definite, n = 36 psychotic disorder) and 275 controls. Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk. PEs were associated with smaller left posterior cingulate (pFWE < 0.001, Z = 4.19) and thalamus volumes (pFWE = 0.006, Z = 3.91). Cumulative pre/perinatal risk was associated with smaller left subgenual cingulate volume (pFWE < 0.001, Z = 4.54). A significant interaction between PEs and cumulative pre/perinatal risk found larger striatum (pFWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus (pFWE = 0.002, Z = 4.79), specifically in those with definite PEs and psychotic disorder. Cumulative childhood trauma was associated with larger left dorsal striatum (pFWE = 0.002, Z = 3.65), right prefrontal cortex (pFWE < 0.001, Z = 4.63) and smaller left insula volume in all participants (pFWE = 0.03, Z = 3.60), and there was no interaction with PEs group. In summary, pre/peri-natal risk factors and childhood psychological trauma impact similar brain pathways, namely smaller insula and larger striatum volumes. The effect of pre/perinatal risk was greatest in those with more severe PEs, whereas effects of trauma were seen in all participants. In conclusion, environmental risk factors affect brain networks implicated in schizophrenia, which may increase an individual's propensity to develop later psychotic disorders.
Collapse
Affiliation(s)
- Kate Merritt
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK.
| | - Pedro Luque Laguna
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Arjun Sethi
- Department of Forensic & Neurodevelopmental Sciences, IOPPN, King's College London, London, UK
| | - Mark Drakesmith
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sarah A Ashley
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Michael Bloomfield
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | | | - Gavin Perry
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Tom Lancaster
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Department of Psychology, Bath University, Bath, UK
| | - Stavros I Dimitriadis
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035, Barcelona, Spain
| | - Stanley Zammit
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- Bristol Medical School (PHS), University of Bristol, Bristol, UK
| | - C John Evans
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Glyn Lewis
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| | - Matthew J Kempton
- Psychosis Studies Department, IOPPN, King's College London, London, UK
| | - David E J Linden
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Derek K Jones
- The Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Anthony S David
- Division of Psychiatry, Institute of Mental Health, University College London, London, UK
| |
Collapse
|
11
|
Jeste DV, Malaspina D, Bagot K, Barch DM, Cole S, Dickerson F, Dilmore A, Ford CL, Karcher NR, Luby J, Rajji T, Pinto-Tomas AA, Young LJ. Review of Major Social Determinants of Health in Schizophrenia-Spectrum Psychotic Disorders: III. Biology. Schizophr Bull 2023; 49:867-880. [PMID: 37023360 PMCID: PMC10318888 DOI: 10.1093/schbul/sbad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
BACKGROUND Social determinants of health (SDoHs) are nonmedical factors that significantly impact health and longevity. We found no published reviews on the biology of SDoHs in schizophrenia-spectrum psychotic disorders (SSPD). STUDY DESIGN We present an overview of pathophysiological mechanisms and neurobiological processes plausibly involved in the effects of major SDoHs on clinical outcomes in SSPD. STUDY RESULTS This review of the biology of SDoHs focuses on early-life adversities, poverty, social disconnection, discrimination including racism, migration, disadvantaged neighborhoods, and food insecurity. These factors interact with psychological and biological factors to increase the risk and worsen the course and prognosis of schizophrenia. Published studies on the topic are limited by cross-sectional design, variable clinical and biomarker assessments, heterogeneous methods, and a lack of control for confounding variables. Drawing on preclinical and clinical studies, we propose a biological framework to consider the likely pathogenesis. Putative systemic pathophysiological processes include epigenetics, allostatic load, accelerated aging with inflammation (inflammaging), and the microbiome. These processes affect neural structures, brain function, neurochemistry, and neuroplasticity, impacting the development of psychosis, quality of life, cognitive impairment, physical comorbidities, and premature mortality. Our model provides a framework for research that could lead to developing specific strategies for prevention and treatment of the risk factors and biological processes, thereby improving the quality of life and increasing the longevity of people with SSPD. CONCLUSIONS Biology of SDoHs in SSPD is an exciting area of research that points to innovative multidisciplinary team science for improving the course and prognosis of these serious psychiatric disorders.
Collapse
Affiliation(s)
- Dilip V Jeste
- Department of Psychiatry, University of California, San Diego (Retired), CA, USA
| | - Dolores Malaspina
- Departments of Psychiatry, Neuroscience and Genetics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kara Bagot
- Department of Psychiatry, Addiction Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deanna M Barch
- Departments of Psychological and Brain Sciences, Psychiatry, and Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Steve Cole
- Departments of Psychiatry and Biobehavioral Sciences, and Medicine, University of California, Los Angeles, CA, USA
| | - Faith Dickerson
- Department of Psychology, Sheppard Pratt, Baltimore, MD, USA
| | - Amanda Dilmore
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - Charles L Ford
- Center for Translational Social Neuroscience, Department of Psychiatry, Emory University, Atlanta, GA, USA
| | - Nicole R Karcher
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan Luby
- Department of Psychiatry (Child), Washington University in St. Louis, St. Louis, MO, USA
| | - Tarek Rajji
- Adult Neurodevelopment and Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Adrián A Pinto-Tomas
- Biochemistry Department, School of Medicine, Universidad de Costa Rica, San José, Costa Rica
| | - Larry J Young
- Center for Translational Social Neuroscience, Department of Psychiatry, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Laricchiuta D, Panuccio A, Picerni E, Biondo D, Genovesi B, Petrosini L. The body keeps the score: The neurobiological profile of traumatized adolescents. Neurosci Biobehav Rev 2023; 145:105033. [PMID: 36610696 DOI: 10.1016/j.neubiorev.2023.105033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Trauma-related disorders are debilitating psychiatric conditions that affect people who have directly or indirectly witnessed adversities. Experiencing multiple types of traumas appears to be common during childhood, and even more so during adolescence. Dramatic brain/body transformations occurring during adolescence may provide a highly responsive substrate to external stimuli and lead to trauma-related vulnerability conditions, such as internalizing (anxiety, depression, anhedonia, withdrawal) and externalizing (aggression, delinquency, conduct disorders) problems. Analyzing relations among neuronal, endocrine, immune, and biochemical signatures of trauma and internalizing and externalizing behaviors, including the role of personality traits in shaping these conducts, this review highlights that the marked effects of traumatic experience on the brain/body involve changes at nearly every level of analysis, from brain structure, function and connectivity to endocrine and immune systems, from gene expression (including in the gut) to the development of personality.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Eleonora Picerni
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
13
|
Vargas TG, Mittal VA. The Critical Roles of Early Development, Stress, and Environment in the Course of Psychosis. ANNUAL REVIEW OF DEVELOPMENTAL PSYCHOLOGY 2022; 4:423-445. [PMID: 36712999 PMCID: PMC9879333 DOI: 10.1146/annurev-devpsych-121020-032354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Psychotic disorders are highly debilitating with poor prognoses and courses of chronic illness. In recent decades, conceptual models have shaped understanding, informed treatment, and guided research questions. However, these models have classically focused on the adolescent and early adulthood stages immediately preceding onset while conceptualizing early infancy through all of childhood as a unitary premorbid period. In addition, models have paid limited attention to differential effects of types of stress; contextual factors such as local, regional, and country-level characteristics or sociocultural contexts; and the timing of the stressor or environmental risk. This review discusses emerging research suggesting that (a) considering effects specific to neurodevelopmental stages prior to adolescence is highly informative, (b) understanding specific stressors and levels of environmental exposures (i.e., systemic or contextual features) is necessary, and (c) exploring the dynamic interplay between development, levels and types of stressors, and environments can shed new light, informing a specified neurodevelopmental and multifaceted diathesis-stress model.
Collapse
Affiliation(s)
- T G Vargas
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
| | - V A Mittal
- Department of Psychology, Northwestern University, Evanston, Illinois, USA
- Departments of Psychiatry and Medical Social Sciences, Institute for Innovations in Developmental Sciences, and Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
14
|
Nogovitsyn N, Addington J, Souza R, Placsko TJ, Stowkowy J, Wang J, Goldstein BI, Bray S, Lebel C, Taylor VH, Kennedy SH, MacQueen G. Childhood trauma and amygdala nuclei volumes in youth at risk for mental illness. Psychol Med 2022; 52:1192-1199. [PMID: 32940197 DOI: 10.1017/s0033291720003177] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Adults with significant childhood trauma and/or serious mental illness may exhibit persistent structural brain changes within limbic structures, including the amygdala. Little is known about the structure of the amygdala prior to the onset of SMI, despite the relatively high prevalence of trauma in at-risk youth. METHODS Data were gathered from the Canadian Psychiatric Risk and Outcome study. A total of 182 youth with a mean age of 18.3 years completed T1-weighted MRI scans along with clinical assessments that included questionnaires on symptoms of depression and anxiety. Participants also completed the Childhood Trauma and Abuse Scale. We used a novel subfield-specific amygdala segmentation workflow as a part of FreeSurfer 6.0 to examine amygdala structure. RESULTS Participants with higher trauma scores were more likely to have smaller amygdala volumes, particularly within the basal regions. Among various types of childhood trauma, sexual and physical abuse had the largest effects on amygdala subregions. Abuse-related differences in the right basal region mediated the severity of depression and anxiety symptoms, even though no participants met criteria for clinical diagnosis at the time of assessment. CONCLUSION The experience of physical or sexual abuse may leave detectable structural alterations in key regions of the amygdala, potentially mediating the risk of psychopathology in trauma-exposed youth.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jean Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Roberto Souza
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Thea J Placsko
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jacqueline Stowkowy
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - JianLi Wang
- Work & Mental health Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Psychiatry and Pharmacology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Signe Bray
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Child & Adolescent Imaging Research (CAIR) Program, Calgary, Alberta, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada
- Child & Adolescent Imaging Research (CAIR) Program, Calgary, Alberta, Canada
| | - Valerie H Taylor
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Toronto, Ontario, Canada
- Department of Psychiatry, St. Michael's Hospital, Toronto, Ontario, Canada
- Arthur Sommer Rotenberg Chair in Suicide and Depression Studies, St. Michael's Hospital, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Glenda MacQueen
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Ku BS, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Compton MT, Cornblatt BA, Druss BG, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF. The associations between area-level residential instability and gray matter volumes from the North American Prodrome Longitudinal Study (NAPLS) consortium. Schizophr Res 2022; 241:1-9. [PMID: 35066429 PMCID: PMC8960350 DOI: 10.1016/j.schres.2021.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Area-level residential instability (ARI), an index of social fragmentation, has been shown to explain the association between urbanicity and psychosis. Urban upbringing has been shown to be associated with reduced gray matter volumes (GMV)s of brain regions corresponding to the right caudal middle frontal gyrus (CMFG) and rostral anterior cingulate cortex (rACC). We hypothesize that greater ARI will be associated with reduced right CMFG and rACC GMVs. METHODS Data were collected at baseline as part of the North American Prodrome Longitudinal Study Phase 2. Counties where participants resided during childhood were geographically coded using the US Census to area-level factors. ARI was defined as the percentage of residents living in a different house 5 years ago. Generalized linear mixed models tested associations between ARI and GMVs. RESULTS This study included 29 healthy controls (HC)s and 64 clinical high risk for psychosis (CHR-P) individuals who were aged 12 to 24 years, had remained in their baseline residential area, and had magnetic resonance imaging scans. ARI was associated with reduced right CMFG (adjusted β = -0.258; 95% CI = -0.502 to -0.015) and right rACC volumes (adjusted β = -0.318; 95% CI = -0.612 to -0.023). The interaction term (ARI-by-diagnostic group) in the prediction of both brain regions was not significant, indicating that the relationships between ARI and regional brain volumes held for both CHR-P and HCs. CONCLUSIONS ARI may adversely impact similar brain regions as urban upbringing. Further investigation into the potential mechanisms of the relationship between ARI and neurobiology, including social stress, is needed.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, United States
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Tyrone D Cannon
- Department of Psychiatry, Yale University, New Haven, CT, United States; Department of Psychology, Yale University, New Haven, CT, United States
| | - Michael T Compton
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States; New York State Psychiatric Institute, New York, NY, United States
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, United States; Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, San Francisco, CA, United States; San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - William S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, United States
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, United States
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, United States
| |
Collapse
|
16
|
DeLuca JS, Novacek DM, Adery LH, Herrera SN, Landa Y, Corcoran CM, Walker EF. Equity in Mental Health Services for Youth at Clinical High Risk for Psychosis: Considering Marginalized Identities and Stressors. EVIDENCE-BASED PRACTICE IN CHILD AND ADOLESCENT MENTAL HEALTH 2022; 7:176-197. [PMID: 35815004 PMCID: PMC9258423 DOI: 10.1080/23794925.2022.2042874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Prevention and early intervention programs have been initiated worldwide to serve youth at Clinical High Risk for Psychosis (CHR-P), who are adolescents and young adults experiencing subclinical psychosis and functional impairment. The primary goals of these efforts are to prevent or mitigate the onset of clinical psychosis, while also treating comorbid issues. It is important to consider issues of diversity, equity, and inclusion in CHR-P work, especially as these programs continue to proliferate around the world. Further, there is a long history in psychiatry of misdiagnosing and mistreating psychosis in individuals from racial and ethnic minority groups. Although there have been significant developments in early intervention psychosis work, there is evidence that marginalized groups are underserved by current CHR-P screening and intervention efforts. These issues are compounded by the contexts of continued social marginalization and significant mental health disparities in general child/adolescent services. Within this narrative review and call to action, we use an intersectional and minority stress lens to review and discuss current issues related to equity in CHR-P services, offer evidence-based recommendations, and propose next steps. In particular, our intersectional and minority stress lenses incorporate perspectives for a range of marginalized and underserved identities related to race, ethnicity, and culture; faith; immigration status; geography/residence; gender identity; sexual orientation; socioeconomic status/class; and ability status.
Collapse
Affiliation(s)
- Joseph S. DeLuca
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, , New York, NY, USA
| | - Derek M. Novacek
- Desert Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Greater Los Angeles Healthcare System, , Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Laura H. Adery
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Shaynna N. Herrera
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, , New York, NY, USA
| | - Yulia Landa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, , New York, NY, USA
- New York Mental Illness Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Cheryl M. Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, , New York, NY, USA
- New York Mental Illness Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Elaine F. Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
17
|
Hanson JL, Nacewicz BM. Amygdala Allostasis and Early Life Adversity: Considering Excitotoxicity and Inescapability in the Sequelae of Stress. Front Hum Neurosci 2021; 15:624705. [PMID: 34140882 PMCID: PMC8203824 DOI: 10.3389/fnhum.2021.624705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Early life adversity (ELA), such as child maltreatment or child poverty, engenders problems with emotional and behavioral regulation. In the quest to understand the neurobiological sequelae and mechanisms of risk, the amygdala has been of major focus. While the basic functions of this region make it a strong candidate for understanding the multiple mental health issues common after ELA, extant literature is marked by profound inconsistencies, with reports of larger, smaller, and no differences in regional volumes of this area. We believe integrative models of stress neurodevelopment, grounded in "allostatic load," will help resolve inconsistencies in the impact of ELA on the amygdala. In this review, we attempt to connect past research studies to new findings with animal models of cellular and neurotransmitter mediators of stress buffering to extreme fear generalization onto testable research and clinical concepts. Drawing on the greater impact of inescapability over unpredictability in animal models, we propose a mechanism by which ELA aggravates an exhaustive cycle of amygdala expansion and subsequent toxic-metabolic damage. We connect this neurobiological sequela to psychosocial mal/adaptation after ELA, bridging to behavioral studies of attachment, emotion processing, and social functioning. Lastly, we conclude this review by proposing a multitude of future directions in preclinical work and studies of humans that suffered ELA.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brendon M. Nacewicz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
18
|
Kaul D, Schwab SG, Mechawar N, Matosin N. How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neurosci Biobehav Rev 2021; 124:193-215. [PMID: 33556389 DOI: 10.1016/j.neubiorev.2021.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Severe stress is among the most robust risk factors for the development of psychiatric disorders. Imaging studies indicate that life stress is integral to shaping the human brain, especially regions involved in processing the stress response. Although this is likely underpinned by changes to the cytoarchitecture of cellular networks in the brain, we are yet to clearly understand how these define a role for stress in human psychopathology. In this review, we consolidate evidence of macro-structural morphometric changes and the cellular mechanisms that likely underlie them. Focusing on stress-sensitive regions of the brain, we illustrate how stress throughout life may lead to persistent remodelling of the both neurons and glia in cellular networks and how these may lead to psychopathology. We support that greater translation of cellular alterations to human cohorts will support parsing the psychological sequalae of severe stress and improve our understanding of how stress shapes the human brain. This will remain a critical step for improving treatment interventions and prevention outcomes.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
19
|
Smith KE, Pollak SD. Early life stress and development: potential mechanisms for adverse outcomes. J Neurodev Disord 2020; 12:34. [PMID: 33327939 PMCID: PMC7745388 DOI: 10.1186/s11689-020-09337-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Chronic and/or extreme stress in early life, often referred to as early adversity, childhood trauma, or early life stress, has been associated with a wide range of adverse effects on development. However, while early life stress has been linked to negative effects on a number of neural systems, the specific mechanisms through which early life stress influences development and individual differences in children's outcomes are still not well understood. MAIN TEXT The current paper reviews the existing literature on the neurobiological effects of early life stress and their ties to children's psychological and behavioral development. CONCLUSIONS Early life stress has persistent and pervasive effects on prefrontal-hypothalamic-amygdala and dopaminergic circuits that are at least partially mediated by alterations in hypothalamic-pituitary-adrenal axis function. However, to date, this research has primarily utilized methods of assessment that focus solely on children's event exposures. Incorporating assessment of factors that influence children's interpretation of stressors, along with stressful events, has the potential to provide further insight into the mechanisms contributing to individual differences in neurodevelopmental effects of early life stress. This can aid in further elucidating specific mechanisms through which these neurobiological changes influence development and contribute to risk for psychopathology and health disorders.
Collapse
Affiliation(s)
- Karen E Smith
- Department of Psychology and Waisman Center, University of Wisconsin-Madison, 1500 S Highland Blvd, Rm 399, Madison, WI, 53705, USA.
| | - Seth D Pollak
- Department of Psychology and Waisman Center, University of Wisconsin-Madison, 1500 S Highland Blvd, Rm 399, Madison, WI, 53705, USA
| |
Collapse
|
20
|
Cheng TW, Mills KL, Miranda Dominguez O, Zeithamova D, Perrone A, Sturgeon D, Feldstein Ewing SW, Fisher PA, Pfeifer JH, Fair DA, Mackiewicz Seghete KL. Characterizing the impact of adversity, abuse, and neglect on adolescent amygdala resting-state functional connectivity. Dev Cogn Neurosci 2020; 47:100894. [PMID: 33385788 PMCID: PMC7786040 DOI: 10.1016/j.dcn.2020.100894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
Characterizing typologies of childhood adversity may inform the development of risk profiles and corresponding interventions aimed at mitigating its lifelong consequences. A neurobiological grounding of these typologies requires systematic comparisons of neural structure and function among individuals with different exposure histories. Using seed-to-whole brain analyses, this study examined associations between childhood adversity and amygdala resting-state functional connectivity (rs-fc) in adolescents aged 11–19 years across three independent studies (N = 223; 127 adversity group) in both general and dimensional models of adversity (comparing abuse and neglect). In a general model, adversity was associated with altered amygdala rs-fc with clusters within the left anterior lateral prefrontal cortex. In a dimensional model, abuse was associated with altered amygdala rs-fc within the orbitofrontal cortex, dorsal precuneus, posterior cingulate cortex, and dorsal anterior cingulate cortex/anterior mid-cingulate cortex, as well as within the dorsal attention, visual, and somatomotor networks. Neglect was associated with altered amygdala rs-fc with the hippocampus, supplementary motor cortex, temporoparietal junction, and regions within the dorsal attention network. Both general and dimensional models revealed unique regions, potentially reflecting pathways by which distinct histories of adversity may influence adolescent behavior, cognition, and psychopathology.
Collapse
Affiliation(s)
- Theresa W Cheng
- Department of Psychology, University of Oregon, Eugene, OR, United States.
| | - Kathryn L Mills
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Oscar Miranda Dominguez
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Dagmar Zeithamova
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Anders Perrone
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Darrick Sturgeon
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | | - Philip A Fisher
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Jennifer H Pfeifer
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Damien A Fair
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States; Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, United States
| | - Kristen L Mackiewicz Seghete
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
21
|
Antonucci LA, Pergola G, Passiatore R, Taurisano P, Quarto T, Dispoto E, Rampino A, Bertolino A, Cassibba R, Blasi G. The interaction between OXTR rs2268493 and perceived maternal care is associated with amygdala-dorsolateral prefrontal effective connectivity during explicit emotion processing. Eur Arch Psychiatry Clin Neurosci 2020; 270:553-565. [PMID: 31471679 DOI: 10.1007/s00406-019-01062-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have indicated a link between socio-emotional processing and the oxytocin receptor. In this regard, a single nucleotide polymorphism in the oxytocin receptor coding gene (OXTR rs2268493) has been linked with lower social functioning, increased risk for autism spectrum disorders (ASDs) and with post-mortem OXTR mRNA expression levels. Indeed, the levels of expression of OXTR in brain regions involved in emotion processing are also associated with maternal care. Furthermore, maternal care has been associated with emotional correlates. Taken together, these previous findings suggest a possible combined effect of rs2268493 and maternal care on emotion-related brain phenotypes. A crucial biological mechanism subtending emotional processing is the amygdala-dorsolateral prefrontal cortex (DLPFC) functional connection. On this basis, our aim was to investigate the interaction between rs2268493 and maternal care on amygdala-DLPFC effective connectivity during emotional evaluation. We characterized through dynamic causal modeling (DCM) patterns of amygdala-DLPFC effective connectivity during explicit emotion processing in healthy controls (HC), profiled based on maternal care and rs2268493 genotype. In the whole sample, right top-down DLPFC-to-amygdala pattern was the most likely directional model of effective connectivity. This pattern of connectivity was the most likely for all rs2268493/maternal care subgroups, except for thymine homozygous (TT)/low maternal care individuals. Here, a right bottom-up amygdala-to-DLPFC was the most likely directional model. These results suggest a gene by environment interaction mediated by the oxytocin receptor on biological phenotypes relevant to emotion processing.
Collapse
Affiliation(s)
- Linda A Antonucci
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy, Ludwig-Maximilians Universität, 80336, Munich, Germany.,Department of Educational Science, Psychology and Communication Science, University of Bari "Aldo Moro", 70121, Bari, Italy.,Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Roberta Passiatore
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Paolo Taurisano
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy.,IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo, 71013, Foggia, Italy
| | - Tiziana Quarto
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Eleonora Dispoto
- Department of Educational Science, Psychology and Communication Science, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Antonio Rampino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy.,Psychiatry Unit, Bari University Hospital, 70124, Bari, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy.,Psychiatry Unit, Bari University Hospital, 70124, Bari, Italy
| | - Rosalinda Cassibba
- Department of Educational Science, Psychology and Communication Science, University of Bari "Aldo Moro", 70121, Bari, Italy
| | - Giuseppe Blasi
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Piazza Giulio Cesare, 11, 70124, Bari, Italy. .,Psychiatry Unit, Bari University Hospital, 70124, Bari, Italy.
| |
Collapse
|
22
|
Mittal VA, Walker EF. Advances in the neurobiology of stress and psychosis. Schizophr Res 2019; 213:1-5. [PMID: 31575430 DOI: 10.1016/j.schres.2019.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Road, Swift 202, Evanston, IL 60208, USA.
| | - Elaine F Walker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, USA 30322.
| |
Collapse
|