1
|
Toušová Z, Vrana B, Smutná M, Novák J, Klučárová V, Grabic R, Slobodník J, Giesy JP, Hilscherová K. Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1599-1612. [PMID: 30308846 DOI: 10.1016/j.scitotenv.2018.08.336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Complex mixtures of contaminants from multiple sources, including agriculture, industry or wastewater enter aquatic environments and might pose hazards or risks to humans or wildlife. Targeted analyses of a few priority substances provide limited information about water quality. In this study, a combined chemical and effect screening of water quality in the River Bosna, in Bosnia and Herzegovina was carried out, with focus on occurrence and effects of contaminants of emerging concern. Chemicals in water were sampled at 10 sites along the Bosna River by use of passive sampling. The combination of semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) enabled sampling of a broad range of contaminants from hydrophobic (PAHs, PCBs, OCPs) to hydrophilic compounds (pesticides, pharmaceuticals and hormones), which were determined by use of GC-MS and LC-MS (MS). In vitro, cell-based bioassays were applied to assess (anti)androgenic, estrogenic and dioxin-like potencies of extracts of the samplers. Of a total of 168 targeted compounds, 107 were detected at least once. Cumulative pollutant concentrations decreased downstream from the city of Sarajevo, which was identified as the major source of organic pollutants in the area. Responses in all bioassays were observed for samples from all sites. In general, estrogenicity could be well explained by analysis of target estrogens, while the drivers of the other observed effects remained largely unknown. Profiling of hazard quotients identified two sites downstream of Sarajevo as hotspots of biological potency. Risk assessment of detected compounds revealed, that 7 compounds (diazinon, diclofenac, 17β-estradiol, estrone, benzo[k]fluoranthene, fluoranthene and benzo[k]fluoranthene) might pose risks to aquatic biota in the Bosna River. The study brings unique results of a complex water quality assessment in a region with an insufficient water treatment infrastructure.
Collapse
Affiliation(s)
- Zuzana Toušová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Environmental Institute (EI), Okružná 784/42, 972 41 Koš, Slovakia
| | - Branislav Vrana
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic; Water Research Institute, Nabr. Arm. Gen. L. Svobodu 5, 812 49 Bratislava, Slovakia
| | - Marie Smutná
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jiří Novák
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Veronika Klučárová
- Slovak University of Technology, Faculty of Chemical and Food Technology, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | | | - John Paul Giesy
- Dept. Biomedical Veterinary Sciences and Toxicology Centre, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Saskatchewan, Canada; School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| | - Klára Hilscherová
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Wangmo C, Jarque S, Hilscherová K, Bláha L, Bittner M. In vitro assessment of sex steroids and related compounds in water and sediments - a critical review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:270-287. [PMID: 29251308 DOI: 10.1039/c7em00458c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Detection of endocrine disrupting compounds in water and sediment samples has gained much importance since the evidence of their effects was reported in aquatic ecosystems in the 1990s. The aim of this review is to highlight the advances made in the field of in vitro analysis for the detection of hormonally active compounds with estrogenic, androgenic and progestogenic effects in water and sediment samples. In vitro assays have been developed from yeast, mammalian and in a few cases from fish cells. These assays are based either on the hormone-mediated proliferation of sensitive cell lines or on the hormone-mediated expression of reporter genes. In vitro assays in combination with various sample enrichment methods have been used with limits of detection as low as 0.0027 ng L-1 in water, and 0.0026 ng g-1 in sediments for estrogenicity, 0.1 ng L-1 in water, and 0.5 ng g-1 in sediments for androgenicity, and 5 ng L-1 in water for progestogenicity expressed as equivalent concentrations of standard reference compounds of 17β-estradiol, dihydrotestosterone and progesterone, respectively. The experimental results and limits of quantification, however, are influenced by the methods of sample collection, preparation, and individual laboratory practices.
Collapse
Affiliation(s)
- Chimi Wangmo
- Masaryk University, Research Centre for Toxic Compounds in the Environment - RECETOX, Kamenice 5, 625 00, Brno, Czech Republic.
| | | | | | | | | |
Collapse
|
3
|
Tousova Z, Oswald P, Slobodnik J, Blaha L, Muz M, Hu M, Brack W, Krauss M, Di Paolo C, Tarcai Z, Seiler TB, Hollert H, Koprivica S, Ahel M, Schollée JE, Hollender J, Suter MJF, Hidasi AO, Schirmer K, Sonavane M, Ait-Aissa S, Creusot N, Brion F, Froment J, Almeida AC, Thomas K, Tollefsen KE, Tufi S, Ouyang X, Leonards P, Lamoree M, Torrens VO, Kolkman A, Schriks M, Spirhanzlova P, Tindall A, Schulze T. European demonstration program on the effect-based and chemical identification and monitoring of organic pollutants in European surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017. [PMID: 28629112 DOI: 10.1016/j.scitotenv.2017.06.032] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Growing concern about the adverse environmental and human health effects of a wide range of micropollutants requires the development of novel tools and approaches to enable holistic monitoring of their occurrence, fate and effects in the aquatic environment. A European-wide demonstration program (EDP) for effect-based monitoring of micropollutants in surface waters was carried out within the Marie Curie Initial Training Network EDA-EMERGE. The main objectives of the EDP were to apply a simplified protocol for effect-directed analysis, to link biological effects to target compounds and to estimate their risk to aquatic biota. Onsite large volume solid phase extraction of 50 L of surface water was performed at 18 sampling sites in four European river basins. Extracts were subjected to effect-based analysis (toxicity to algae, fish embryo toxicity, neurotoxicity, (anti-)estrogenicity, (anti-)androgenicity, glucocorticoid activity and thyroid activity), to target analysis (151 organic micropollutants) and to nontarget screening. The most pronounced effects were estrogenicity, toxicity to algae and fish embryo toxicity. In most bioassays, major portions of the observed effects could not be explained by target compounds, especially in case of androgenicity, glucocorticoid activity and fish embryo toxicity. Estrone and nonylphenoxyacetic acid were identified as the strongest contributors to estrogenicity, while herbicides, with a minor contribution from other micropollutants, were linked to the observed toxicity to algae. Fipronil and nonylphenol were partially responsible for the fish embryo toxicity. Within the EDP, 21 target compounds were prioritized on the basis of their frequency and extent of exceedance of predicted no effect concentrations. The EDP priority list included 6 compounds, which are already addressed by European legislation, and 15 micropollutants that may be important for future monitoring of surface waters. The study presents a novel simplified protocol for effect-based monitoring and draws a comprehensive picture of the surface water status across Europe.
Collapse
Affiliation(s)
- Zuzana Tousova
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic; Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Peter Oswald
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic
| | - Jaroslav Slobodnik
- Environmental Institute (EI), Okruzna 784/42, 972 41 Kos, Slovak Republic
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Melis Muz
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Meng Hu
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Carolina Di Paolo
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Zsolt Tarcai
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Sanja Koprivica
- Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Rudjer Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Jennifer E Schollée
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Marc J-F Suter
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Anita O Hidasi
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Kristin Schirmer
- Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland; EPF Lausanne, School of Architecture, Civil and Environmental Engineering, 1015 Lausanne, Switzerland
| | - Manoj Sonavane
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Selim Ait-Aissa
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Francois Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité ECOT, Parc ALATA - BP2, 60550 Verneuil-en-Halatte, France
| | - Jean Froment
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany; Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway
| | - Ana Catarina Almeida
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway
| | - Kevin Thomas
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway; Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 39 Keesels Road, Coopers Plains 4108, Australia
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Ecotoxicology and Risk Assessment, Gaustadallèen 21, NO-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science & Technology, Dept. for Environmental Sciences, Post Box 5003, N-1432 Ås, Norway
| | - Sara Tufi
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Xiyu Ouyang
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Pim Leonards
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Marja Lamoree
- Vrije Universiteit Amsterdam, Department Environment & Health, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Victoria Osorio Torrens
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Annemieke Kolkman
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Merijn Schriks
- KWR, Watercycle Research Institute, Department of Chemical Water, Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Vitens drinking water company, P.O Box 1205, 8001 BE Zwolle, The Netherlands
| | | | - Andrew Tindall
- WatchFrog S. A., 1 rue Pierre Fontaine, 91000 Evry, France
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research GmbH, Permoserstrasse 15, 04318 Leipzig, Germany.
| |
Collapse
|
4
|
Baldigo BP, George SD, Phillips PJ, Hemming JDC, Denslow ND, Kroll KJ. Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2803-2815. [PMID: 26423596 DOI: 10.1002/etc.3120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/10/2015] [Accepted: 06/13/2015] [Indexed: 06/05/2023]
Abstract
Direct linkages between endocrine-disrupting compounds (EDCs) from municipal and industrial wastewaters and impacts on wild fish assemblages are rare. The levels of plasma vitellogenin (Vtg) and Vtg messenger ribonucleic acid (mRNA) in male fathead minnows (Pimephales promelas) exposed to wastewater effluents and dilutions of 17α-ethinylestradiol (EE2), estrogen activity, and fish assemblages in 10 receiving streams were assessed to improve understanding of important interrelations. Results from 4-d laboratory assays indicate that EE2, plasma Vtg concentration, and Vtg gene expression in fathead minnows, and 17β-estradiol equivalents (E2Eq values) were highly related to each other (R(2) = 0.98-1.00). Concentrations of E2Eq in most effluents did not exceed 2.0 ng/L, which was possibly a short-term exposure threshold for Vtg gene expression in male fathead minnows. Plasma Vtg in fathead minnows only increased significantly (up to 1136 μg/mL) in 2 wastewater effluents. Fish assemblages were generally unaffected at 8 of 10 study sites, yet the density and biomass of 79% to 89% of species populations were reduced (63-68% were reduced significantly) in the downstream reach of 1 receiving stream. These results, and moderate to high E2Eq concentrations (up to 16.1 ng/L) observed in effluents during a companion study, suggest that estrogenic wastewaters can potentially affect individual fish, their populations, and entire fish communities in comparable systems across New York, USA.
Collapse
Affiliation(s)
- Barry P Baldigo
- New York Water Science Center, US Geological Survey, Troy, New York, USA
| | - Scott D George
- New York Water Science Center, US Geological Survey, Troy, New York, USA
| | - Patrick J Phillips
- New York Water Science Center, US Geological Survey, Troy, New York, USA
| | | | | | | |
Collapse
|
5
|
Wang J, Bovee TFH, Bi Y, Bernhöft S, Schramm KW. Aryl hydrocarbon receptor (AhR) inducers and estrogen receptor (ER) activities in surface sediments of Three Gorges Reservoir, China evaluated with in vitro cell bioassays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3145-3155. [PMID: 24213842 DOI: 10.1007/s11356-013-2260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023]
Abstract
Two types of biological tests were employed for monitoring the toxicological profile of sediment cores in the Three Gorges Reservoir (TGR), China. In the present study, sediments collected in June 2010 from TGR were analyzed for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activities. The estrogenic activity was assessed using a rapid yeast estrogen bioassay, based on the expression of a green fluorescent reporter protein. Weak anti-estrogenic activity was detected in sediments from an area close to the dam of the reservoir, and weak estrogenic activities ranging from 0.3 to 1 ng 17β-estradiol (E2) equivalents (EQ) g(-1) dry weight sediment (dw) were detected in sediments from the Wanzhou to Guojiaba areas. In the upstream areas Wanzhou and Wushan, sediments demonstrated additive effects in co-administration of 1 nM E2 in the yeast test system, while sediments from the downstream Badong and Guojiaba areas showed estrogenic activities which seemed to be more than additive (synergistic activity). There was an increasing tendency in estrogenic activity from upstream of TGR to downstream, while this tendency terminated and converted into anti-estrogenic activity in the area close to the dam. The AhR activity was detected employing rat hepatoma cell line (H4IIE). EROD activities were found homogenously distributed in sediments in TGR ranging from 200 to 311 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) EQ g(-1) dw for total AhR agonists and from 45 to 76 pg TCDD EQ g(-1) dw for more persistent AhR agonists. The known AhR agonists polycyclic aromatic hydrocarbon, polychlorinated biphenyl, and PCDD/F only explained up to 8 % of the more persistent AhR agonist activity in the samples, which suggests that unidentified AhR-active compounds represented a great proportion of the TCDD EQ in sediments from TGR. These findings of estrogenic potential and dioxin-like activity in TGR sediments provide possible weight-of-evidence of potential ecotoxicological causes for the declines in fish populations which have been observed during the past decades in TGR.
Collapse
Affiliation(s)
- Jingxian Wang
- Department for Biosciences, Center for Life & Food Sciences, Land Use and Environment, Technical University of Munich, Weihenstephaner Steig 23, 85350, Freising, Germany,
| | | | | | | | | |
Collapse
|
6
|
Maggioni S, Balaguer P, Chiozzotto C, Benfenati E. Screening of endocrine-disrupting phenols, herbicides, steroid estrogens, and estrogenicity in drinking water from the waterworks of 35 Italian cities and from PET-bottled mineral water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1649-60. [PMID: 22821279 DOI: 10.1007/s11356-012-1075-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/05/2012] [Indexed: 05/20/2023]
Abstract
We investigated contamination by endocrine-disrupting chemicals in drinking water from 35 major Italian cities and five popular Italian brands of bottled mineral water. The quality of Italian drinking water was assessed by combing chemical analysis with bioassay to quantify specific estrogenic contaminants and to characterize the actual biological effect of the mixture of chemicals present in drinking water including the contribution of not targeted compounds. The selected contaminants were natural and synthetic steroid estrogens, alkylphenols and bisphenol A, linuron, triazine herbicides, and their metabolites. A specific analytical method was developed based on solid phase extraction of 1 L of water and concentration to 100 μL for quantification by electrospray ionization liquid chromatography tandem mass spectrometry, achieving quantification limits of 0.05-0.36 ng/L for herbicides and 0.64-7.70 ng/L for steroids and phenols. No steroid estrogens were detected in any of the samples, while bisphenol A and nonylphenols were detected in the ranges of 0.82-102.00 and 10.30-84.00 ng/L respectively. Herbicides and their degradation products, when present, were found from slightly above the quantification limits up to 49.91 ng/L, mainly from cities in northern Italy. Chemical analyses were complemented by the performance of a bioassay for the determination of the estrogenic activity in the extracts based on the transactivation of estrogen receptor α-transfected reporter HeLa-ERE-Luciferase-Neomycin cell line. Activity was generally low with maximum estrogenicity of 13.6 pg/L estradiol equivalents.
Collapse
Affiliation(s)
- Silvia Maggioni
- Istituto di Ricerche Farmacologiche "Mario Negri", via La Masa 19, 20156, Milan, Italy.
| | | | | | | |
Collapse
|
7
|
Min CR, Kim MJ, Park YJ, Kim HR, Lee SY, Chung KH, Oh SM. Estrogenic effects and their action mechanism of the major active components of party pill drugs. Toxicol Lett 2012; 214:339-47. [PMID: 23026265 DOI: 10.1016/j.toxlet.2012.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/26/2022]
Abstract
Benzylpiperazine (BZP) and trifluoromethylphenylpiperazine (TFMPP) are commonly used constituents of party pill drugs. They are reported to induce psychoactive effects such as euphoria and provide effects similar with other illicit drugs such as methylenedioxymethamphetamine (MDMA). A great deal of evidence has proven that party pills, as alternatives for MDMA, exert harmful effects on users. However, their toxicological effects have not been fully understood and endocrine disruptive effects are still unknown. In this study, we identified estrogenic effects of BZP and TFMPP by using in vitro and in vivo assays. BZP and TFMPP stimulated cell proliferation in a dose-dependent manner, while co-treatment with tamoxifen and BZP or TFMPP showed a decrease of E(2)-induced cell proliferation. In an estrogen sensitive reporter gene assay, BZP and TFMPP significantly increased transcriptional activities of party pill drugs. In addition, ER-related genes, PR and pS2, were significantly stimulated by BZP and TFMPP. These results indicated that BZP and TFMPP could have estrogenic activities related to the ER-mediated pathway. Unlike the in vitro assay results, BZP and TFMPP did not show significant effects on weight increase in a rodent uterotrophic assay. However, further studies would be necessary to verify the estrogenic activities of BZP and TFMPP by a chronic exposure animal study.
Collapse
Affiliation(s)
- Cho Rong Min
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon dong, Jangan-gu, Suwon, Kyeonggi-do 440-746, South Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Zhao JL, Ying GG, Yang B, Liu S, Zhou LJ, Chen ZF, Lai HJ. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2208-2215. [PMID: 21766324 DOI: 10.1002/etc.625] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/24/2011] [Accepted: 07/01/2011] [Indexed: 05/31/2023]
Abstract
This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms.
Collapse
Affiliation(s)
- Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Zhao JL, Ying GG, Chen F, Liu YS, Wang L, Yang B, Liu S, Tao R. Estrogenic activity profiles and risks in surface waters and sediments of the Pearl River system in South China assessed by chemical analysis and in vitro bioassay. ACTA ACUST UNITED AC 2010; 13:813-21. [PMID: 21161085 DOI: 10.1039/c0em00473a] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Estrogenic activity risks in the Pearl River system (Liuxi River, Zhujiang River and Shijing River) in South China were assessed by combined chemical analysis and recombinant yeast estrogen screen (YES) bioassay for surface waters and sediments collected in both dry and wet seasons. The xenoestrogens 4-tert-octylphenol, 4-nonylphenol and bisphenol A were detected at almost every sampling site at concentrations of several ng L(-1) (ng g(-1)) to tens of μg L(-1) (μg g(-1)) in surface waters (and sediments). The estrogens estrone and 17β-estradiol were also detected in most of the samples with concentrations from several ng L(-1) (ng g(-1)) to tens of ng L(-1) (ng g(-1)) in surface waters (and sediments). However, synthetic estrogens diethylstilbestrol and 17α-ethinylestradiol were only detected at a few sites. The 17β-estradiol equivalents (EEQ) screened by the YES bioassay were in the range of 0.23-324 ng L(-1) in surface waters and from not detected to 101 ng g(-1) in sediments. Shijing River displayed one to two orders of magnitude higher levels for both measured chemical concentrations and estrogenic activities than the Zhujiang River and the Liuxi River. A risk assessment for the surface waters showed high risks for the downstream reaches of the Liuxi River and the upstream to midstream reaches of the Zhujiang River and the Shijing River. Higher estrogenic risks were observed in the wet season than in the dry season for surface waters, probably due to the input of runoff and direct overflow of small urban streams during heavy rain events. Only small variations in estrogenic risk were found for the sediments between the two seasons, suggesting that sediments are a sink for these estrogenic compounds in the rivers.
Collapse
Affiliation(s)
- Jian-Liang Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, P R China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kim HR, Park YJ, Kim JG, Chung KH, Oh SM. Molecular cloning of vitellogenin gene and mRNA expression by 17alpha-ethinylestradiol from slender bitterling. Gen Comp Endocrinol 2010; 168:484-95. [PMID: 20600042 DOI: 10.1016/j.ygcen.2010.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/14/2010] [Accepted: 06/19/2010] [Indexed: 01/18/2023]
Abstract
Indigenous aquatic population such as fish could be used as a successful test species for evaluating the ecological effects in aquatic environment. In the present study, vitellogenin (Vtg) from slender bitterling (Acheilognathus yamatsutae), an indigenous aquatic species in Korea, was cloned and sequenced to determine if the Vtg gene possesses an important characteristic so as to act as a sensitive biomarker for estrogenic endocrine disrupting chemicals (EEDCs). The sbVtg cDNA is 5010 bp in length, containing a 4653 bp open reading frame, which encodes 1550 amino acid residues. The sbVtg cDNA was divided into lipovitellin heavy chain (LvH), phosvitin (Pv), lipovitellin light chain (LvL) as well as a beta'-component (beta'-c) domain, and belongs to VtgAo2. SbVtg has conserved important sequences for Vtg functions such as signal peptide, VtgR-binding region, and disulfide bond formation, all of which are consistent with those of other teleosts. In addition, the male slender bitterling aqueous exposed to 17 alpha-ethinylestradiol (EE2, 12.5, 25, and 50 ng/L) produced a statistically significant and concentration-dependent increase in hepatic Vtg mRNA expression, which showed a similar pattern to biliary estrogenic activity, measured by ERE-reporter gene assay. Thus, this study clearly indicates that the induction of Vtg in slender bitterling might be a suitable biomarker in toxicological research of EEDCs.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, #300 Cheoncheondong, Jangan-Gu, Suwon, Gyeonggi-do 440-746, South Korea
| | | | | | | | | |
Collapse
|
11
|
Shue MF, Chen FA, Chen TC. Total estrogenic activity and nonylphenol concentration in the Donggang River, Taiwan. ENVIRONMENTAL MONITORING AND ASSESSMENT 2010; 168:91-101. [PMID: 19609692 DOI: 10.1007/s10661-009-1093-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 07/02/2009] [Indexed: 05/28/2023]
Abstract
We report a survey on the occurrence and distribution of nonylphenol (NP) and 17beta-estradiol equivalent quotient (EEQ) concentrations in Donggang River, Taiwan. Concentrations of NP were measured with a high-performance liquid chromatography/fluorescent system and EEQs were carried with an MVLN cell line. Concentrations of NP ranged from less than 93 to 511 ng/L; EEQs ranged from less than 0.16 to 8.64 ng-E2/L. Concentrations of NP were higher in the dry season than in the wet season, which was affected by a high flow rate. In the main water course, higher EEQ occurred in the wet season than in the dry season; rainfall may have flushed substances containing estrogenic activity. NP and EEQ concentrations occurred in seawater only in the dry season, especially high EEQ values, and were not detected in the wet season. The reasons are not clear at this moment. Furthermore, NP concentrations provided low contribution to the total estrogenic activity.
Collapse
Affiliation(s)
- Meei-Fang Shue
- Department of Environmental Resources Management, Tajen University, Enpu, Pingtung, Taiwan, Republic of China
| | | | | |
Collapse
|
12
|
Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, Kim KW, Inam E, Kim SD. Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries. CHEMOSPHERE 2010; 78:286-293. [PMID: 19931116 DOI: 10.1016/j.chemosphere.2009.10.048] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 05/28/2023]
Abstract
The effects of treatment processes on estrogenicity were evaluated by examining estradiol equivalent (EEQ) concentrations in influents and effluents of sewage treatment plants (STPs) located along Yeongsan and Seomjin rivers in Korea. The occurrence and distribution of estrogenic chemicals were also estimated for surface water in Korea and compared with seven other Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia. Target compounds were nonylphenol (NP), octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17alpha-ethynylestradiol (EE2) and genistein (Gen). Water samples were pretreated and analyzed by liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS). The results showed that the treatment processes of Korean STPs were sufficient to reduce the estrogenic activity of municipal wastewater. The concentrations of phenolic xenoestrogens (i.e., NP, OP and BPA) in samples of Yeongsan and Seomjin rivers were smaller than those reported by previous studies in Korea. In most samples taken from the seven Asian countries, the presence of E2 and EE2 was a major contributor toward estrogenic activity. The EEQ concentrations in surface water samples of the seven Asian countries were at a higher level in comparison to that reported in European countries, America and Japan. However, further studies with more sampling frequencies and sampling areas should be carried out for better evaluation of the occurrence and distribution of estrogenic compounds in these Asian countries.
Collapse
Affiliation(s)
- Cuong N Duong
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1-Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Oh SM, Kim HR, Park HK, Choi K, Ryu J, Shin HS, Park JS, Lee JS, Chung KH. Identification of estrogen-like effects and biologically active compounds in river water using bioassays and chemical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:5787-5794. [PMID: 19647290 DOI: 10.1016/j.scitotenv.2009.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/26/2009] [Accepted: 06/04/2009] [Indexed: 05/28/2023]
Abstract
The Nackdong River is the longest river in South Korea and passes through major cities that have several industrial complexes, including chemical, electric, and petrochemical complexes, and municipal characteristics such as apartment complexes. Along the river, the Gumi region has an electric industrial complex and an apartment complex that may be possible point sources of xenoestrogens such as phenolic compounds. To identify the causative chemicals for estrogenic activity in the river water of this region, bioassay-directed chemical analysis was performed. All samples from six sampling sites (an upstream point: S1; hot spot points: S2-1, S2-2, and S2-3; and downstream points: S3, and S4) showed estrogenic activity in the E-screen assay, with bio-EEQs (17beta-E(2)-equivalent quantities) ranging from 25.35-677.15 pg/L. Samples from S2-2, the sampling point downstream of the junction of stream water, and domestic and industrial wastewater, contained the highest estrogenic activity. Since the bio-EEQ of the organic acid fraction (F2) of the S2-2 sample had the highest activity (823.25 pg-EEQ/L) and F2 may contain phenolic compounds, GC-MS analyses for phenolic xenoestrogens were conducted with the organic acid fractions of the river water samples. Six estrogenic phenolic chemicals, 4-NP, BPA, 4-t-OP, 4-t-BP, 4-n-OP, and 4-n-HTP, were detected, with the highest concentrations (I-EEQ) found in S2-2 (231.80 pg/L). Among these phenolic chemicals, 4-NP was the most potent estrogen (bio-EEF; 8.12 x1 0(-5)) and acted as a full agonist. Furthermore, 4-NP was present at levels (2.0 microg/L in S2-2) that can induce VTG induction in fish (>1 microg/L). In addition, we confirmed that river water (S2-2) significantly increased serum VTG levels in crucian carp (Carassius auratus) in a fish exposure experiment under laboratory conditions. Therefore, phenolic xenoestrogens, especially 4-NP, may be the main causative compounds responsible for the estrogenic effect on the Nackdong River.
Collapse
Affiliation(s)
- Seung Min Oh
- College of Pharmacy, Sungkyunkwan University, #300, Cheoncheondong, Jangan-Gu, Suwon, Gyeonggi-do, 440-746, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Liu J, Ma M, Zhang F, Yang Z, Domagalski J. The ecohealth assessment and ecological restoration division of urban water system in Beijing. ECOTOXICOLOGY (LONDON, ENGLAND) 2009; 18:759-767. [PMID: 19513828 DOI: 10.1007/s10646-009-0342-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 05/18/2009] [Indexed: 05/27/2023]
Abstract
Evaluating six main rivers and six lakes in Beihuan water system (BWS) and diagnosing the limiting factors of eco-health were conducted for the ecohealth assessment and ecological restoration division of urban water system (UWS) for Beijing. The results indicated that Jingmi River and Nanchang River were in a healthy state, the degree of membership to unhealthy were 0.358, 0.392, respectively; while Yongding River, Beihucheng River, Liangma River, Tongzi River and six lakes were in an unhealthy state, their degree of membership to unhealthy were between 0.459 and 0.927. The order of that was Liangma > Beihucheng > Tongzi > Yongding > six lakes > Jingmi > Nanchang, in which Liangma Rivers of that was over 0.8. The problems of Rivers and lakes in BWS are different. Jingmi River and Nanchang River were ecotype limiting; Yongding River, Tongzi River and six lakes were water quality and ecotype limiting. Beihucheng River and Liangma River were water quantity, water quality and ecotype limiting. BWS could be divided into 3 restoration divisions, pollution control division including Yongding River, Tongzi River and six lakes; Jingmi River and Nanchang River were ecological restoration zone, while Beihucheng River and Liangma River were in comprehensive improvement zone. Restoration potentiality of Jingmi River and Nanchang River were higher, and Liangma River was hardest to restore. The results suggest a new idea to evaluate the impact of human and environmental factors on UWS.
Collapse
Affiliation(s)
- Jingling Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environmental, Beijing Normal University, 100875 Beijing, China.
| | | | | | | | | |
Collapse
|
15
|
Duong CN, Schlenk D, Chang NI, Kim SD. The effect of particle size on the bioavailability of estrogenic chemicals from sediments. CHEMOSPHERE 2009; 76:395-401. [PMID: 19361834 DOI: 10.1016/j.chemosphere.2009.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 05/27/2023]
Abstract
The effects of particle size on the bioavailability of estrogenic chemicals in the sediments from the Yeongsan River and its tributaries in South Korea were evaluated for 2006 and 2007. Samples for chemical analysis and bioassays were collected from 6 sampling sites during both dry and rainy seasons. The pore water of the sediment samples was extracted, and estrogenic chemicals were eluted using a liquid-liquid extraction (LLE) method. Concentrations of 4-nonylphenol (NP), 4-tert-octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17 alpha-ethynylestradiol (EE2) and genistein (Gen) were analyzed by gas chromatography-mass spectrometry (GC-MS). To evaluate bioavailability, hepatic vitellogenin (Vtg) concentrations of male Japanese medaka were measured after exposure to the sediment or its fractions for 7d. NP, BPA and E2 were detected in all the sediment sample extracts from the Yeongsan River and its tributaries. The concentrations of NP in the sedimentary samples ranged from 60 to 400 ngg(-1) on a dry weight basis. Similarly, OP and E2 were detected in nearly all the sediment extracts, with concentrations of 13 and 26 ngg(-1), respectively. According to the bioassay test results, all the sediment samples significantly induced Vtg in male fish after 7d of exposure. Fractionation of sediments into different size-classes (i.e., particle size >1 microm, particle size <1 microm) eliminated bioavailable estrogenic activity, but fine particles of less than 1microm in size increased the absorption of E2 from E2-amended sediment particle fractions. Consequently, the study suggested that the presence of particles and its interaction in the water environment might change the bioavailability of estrogenic chemicals.
Collapse
Affiliation(s)
- Cuong Ngoc Duong
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1-Oryongdong, Bukgu, Gwangju 500-712, South Korea
| | | | | | | |
Collapse
|
16
|
Navas JM, Segner H. In-vitro screening of the antiestrogenic activity of chemicals. Expert Opin Drug Metab Toxicol 2008; 4:605-17. [PMID: 18484918 DOI: 10.1517/17425255.4.5.605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Many chemicals have the potential to interfere with the endocrine systems of humans and wildlife, leading to adverse health effects. In the tiered testing strategies developed for regulatory hazard assessment, in-vitro screens could serve for prioritisation of compounds and for guiding subsequent testing. OBJECTIVE To describe in-vitro assays to detect antiestrogenic activity of chemicals. METHODS Antiestrogenicity was considered in this review as any inhibition or reduction of estrogen-induced processes due to interference with the normal functioning of the estrogen receptor pathway. Accordingly, in-vitro screening assays for antiestrogenicity have to consider all the possible mechanisms by which this inhibition may occur. Such assays include binding assays, cell proliferation assays, reporter gene assays, and gene activation/protein production assays. RESULTS/CONCLUSIONS While binding assays appear to be of limited value in assessing antiestrogenicity, assays using differentiated cells with metabolic competence and a varied receptor/regulatory factor equipment have the capability to detect various modes of antiestrogenic action.
Collapse
Affiliation(s)
- José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Department of Environment, Madrid, Spain.
| | | |
Collapse
|
17
|
Ra JS, Oh SY, Lee BC, Kim SD. The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. ENVIRONMENT INTERNATIONAL 2008; 34:184-92. [PMID: 17765969 DOI: 10.1016/j.envint.2007.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 05/17/2023]
Abstract
The sorption characteristics of 10 organic chemicals, categorized as pharmaceuticals, estrogens and phenols, onto synthetic suspended particle (i.e., alumina) coated with humic acid were investigated according to their octanol-water partition coefficient (K(ow)). Chemical analyses were performed with gas chromatography and mass spectrometry (GC/MS) and high performance liquid chromatography (HPLC). The effects of particles on the toxicity reduction were evaluated using bioassay tests, using Daphnia magna and Vibrio fisheri for phenols and pharmaceuticals, and the human breast cancer cell MCF-7 for estrogens. Sorption studies revealed that 22 and 38% of octylphenol and pentachlorophenol, respectively, were removed by suspended particle, whereas 2,4-dichlorophenol was not removed, which was directly proportional to the logK(ow) value. Similar to the sorption tests, suspended particles significantly reduced the acute toxicities of octylphenol and pentachlorophenol to D. magna and V. fisheri (p<0.01), but there was no significant difference in the toxicity of 2,4-dichlorophenol to D. magna (p=0.8374). Pharmaceuticals, such as ibuprofen, gemfibrozil and tolfenamic acid, showed no discernible sorption to the suspended particle, with the exception of diclofenac, which revealed 11% sorption. For estrogens, such as estrone, 17beta-estradiol and 17alpha-ethynylestradiol, the results indicated no reduction in the sorption test. This may be attributed to the polar interaction by functional groups in sorption between pharmaceuticals and estrogens and suspended particles. In the bioassays, presence of suspended particles did not significantly modify the toxicity of pharmaceuticals (regardless of their K(ow) values) to D. magna, V. fisheri or E-screen.
Collapse
Affiliation(s)
- Jin Sung Ra
- Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, South Korea
| | | | | | | |
Collapse
|
18
|
Kumar V, Chakraborty A, Viswanath G, Roy P. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: Their influence on reproductive processes and systemic toxicity in male rats. Toxicol Appl Pharmacol 2008; 226:60-73. [DOI: 10.1016/j.taap.2007.08.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/21/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
|
19
|
Campbell CG, Borglin SE, Green FB, Grayson A, Wozei E, Stringfellow WT. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water: A review. CHEMOSPHERE 2006; 65:1265-80. [PMID: 16979218 DOI: 10.1016/j.chemosphere.2006.08.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/28/2006] [Accepted: 08/03/2006] [Indexed: 05/11/2023]
Abstract
Endocrine disrupting compounds (EDCs) are contaminants that may be hormonally active at low concentrations and are emerging as a major concern for water quality. Estrogenic EDCs (e-EDCs) are a subclass of EDCs that, when organisms are exposed to them, function as estrogens. Given that there are numerous e-EDCs that can negatively affect humans and wildlife, general screening techniques like biologically based assays (BBAs) may provide major advantages by estimating the total estrogenic effects of many e-EDCs in the environment. These techniques may potentially be adapted for field portable biologically directed sampling and analyses. This article summarizes available BBAs used to measure estrogenic e-EDCs in the environmental samples and also presents results relating to fate and transport of e-EDCs. Estrogenic EDCs appear to be almost ubiquitous in the environment, despite low solubility and high affinity of organic matter. Potential transport mechanisms may include: (1) transport of more soluble precursors, (2) colloid facilitated transport, (3) enhanced solubility through elevated pH, and (4) the formation of micelles by longer-chain ethoxylates. Due to their persistent and ubiquitous nature, source control strategies for e-EDCs may reduce influent concentration to wastewater treatment plants so that the post treatment effluent will decrease concentrations to estrogenically inactive levels. Alternatively if source reduction is not possible, then more testing is needed on tertiary treatment technologies and treatment efficiencies for e-EDCs. There is still a need for research on remediation and restoration approaches for habitats disturbed by elevated e-EDC concentrations.
Collapse
Affiliation(s)
- Chris G Campbell
- Water Guidance and Monitoring Group, Environmental Protection Department, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA.
| | | | | | | | | | | |
Collapse
|