1
|
Margoum C, Bedos C, Munaron D, Nélieu S, Achard AL, Pesce S. Characterizing environmental contamination by plant protection products along the land-to-sea continuum:a focus on France and French overseas territories. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34945-9. [PMID: 39279021 DOI: 10.1007/s11356-024-34945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Environmental compartments are contaminated by a broad spectrum of plant protection products (PPPs) that are currently widely used in agriculture or, for some of them, whose use was banned many years ago. The aim of this study is to draw up an overview of the levels of contamination of soils, continental aquatic environments, seawaters and atmosphere by organic PPPs in France and the French overseas territories, based on data from the scientific publications and the grey literature. It is difficult to establish an exhaustive picture of the overall contamination of the environment because the various compartments monitored, the monitoring frequencies, the duration of the studies and the lists of substances are not the same. Of the 33 PPPs most often recorded at high concentration levels in at least one compartment, 5 are insecticides, 9 are fungicides, 15 are herbicides and 4 are transformation products. The PPP contamination of the environment shows generally a seasonal variation according to crop cycles. On a pluriannual scale, the contamination trends are linked to the level of use driven by the pest pressure, and especially to the ban of PPP. Overall, the quality of the data acquired has been improved thanks to new, more integrative sampling strategies and broad-spectrum analysis methods that make it possible to incorporate the search for emerging contaminants such as PPP transformation products. Taking into account additional information (such as the quantities applied, agricultural practices, meteorological conditions, the properties of PPPs and environmental conditions) combined with modelling tools will make it possible to better assess and understand the fate and transport of PPPs in the environment, inter-compartment transfers and to identify their potential impacts. Simultaneous monitoring of all environmental compartments as well as biota in selected and limited relevant areas would also help in this assessment.
Collapse
Affiliation(s)
| | - Carole Bedos
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | - Sylvie Nélieu
- UMR ECOSYS, Université Paris-Saclay, INRAE, 91120, Palaiseau, AgroParisTech, France
| | | | | |
Collapse
|
2
|
Iummato MM, Sabatini SE, Rocchetta I, Yusseppone MS, Del Carmen Ríos de Molina M, Juárez ÁB. Oxidative stress in the bivalve Diplodon chilensis under direct and dietary glyphosate-based formulation exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23610-23622. [PMID: 38418793 DOI: 10.1007/s11356-024-32639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The aim of this study was to evaluate and compare the effects on biochemical parameters and organosomatic indices in the freshwater bivalve Diplodon chilensis exposed to a glyphosate-based formulation under direct and dietary exposures (4 mg a.p./L). After 1, 7, and 14 days of exposure, reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) levels and the activities of glutathione-S- transferase (GST), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the gills and digestive gland. The hepatosomatic (HSI) and branchiosomatic (BSI) indices were also analyzed. Direct and dietary glyphosate-based formulation exposure altered the redox homeostasis in the gills and digestive gland throughout the experimental time, inducing the detoxification response (GST), the antioxidant defenses (SOD, CAT, GSH), and causing lipid peroxidation. After 14 days of exposure, the HSI and BSI increased significantly (43% and 157%, respectively) only in the bivalves under direct exposure. Greater changes in the biochemical parameters were induced by the dietary exposure than by the direct exposure. Furthermore, the gills presented an earlier response compared to the digestive gland. These results suggested that direct and dietary exposure to a glyphosate-based formulation induced oxidative stress in the gills and digestive glands of D. chilensis. Thus, the presence of glyphosate-based formulations in aquatic ecosystems could represent a risk for filter-feeding organisms like bivalves.
Collapse
Affiliation(s)
- María Mercedes Iummato
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Aquatic Ecotoxicology Laboratory, Research Institute in the Environment and Biodiversity (INIBIOMA), CONICET-National University of Comahue, Neuquén, Argentina
| | - Sebastián Eduardo Sabatini
- Institute of Biological Chemistry of the Faculty of Exact and Natural Sciences (IQUIBICEN), CONICET, University of Buenos Aires, Buenos Aires, Argentina
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina
| | - Iara Rocchetta
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Aquatic Ecotoxicology Laboratory, Research Institute in the Environment and Biodiversity (INIBIOMA), CONICET-National University of Comahue, Neuquén, Argentina
| | - María Soledad Yusseppone
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Ecology Laboratory, Institute of Marine and Coastal Research (IIMYC), CONICET-National University of Mar del Plata, Mar del Plata, Argentina
| | - María Del Carmen Ríos de Molina
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina
- Institute of Biological Chemistry of the Faculty of Exact and Natural Sciences (IQUIBICEN), CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Ángela Beatriz Juárez
- Faculty of Exact and Natural Sciences, Department of Biological Chemistry, University of Buenos Aires, Buenos Aires, Argentina.
- Faculty of Exact and Natural Sciences, Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina.
- Institute of Biodiversity and Applied and Experimental Biology (IBBEA UBA), CONICET, University of Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Singh R, Shukla A, Kaur G, Girdhar M, Malik T, Mohan A. Systemic Analysis of Glyphosate Impact on Environment and Human Health. ACS OMEGA 2024; 9:6165-6183. [PMID: 38371781 PMCID: PMC10870391 DOI: 10.1021/acsomega.3c08080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 02/20/2024]
Abstract
With a growing global population, agricultural scientists are focusing on crop production management and the creation of new strategies for a higher agricultural output. However, the growth of undesirable plants besides the primary crop poses a significant challenge in agriculture, necessitating the massive application of herbicides to eradicate this problem. Several synthetic herbicides are widely utilized, with glyphosate emerging as a potential molecule for solving this emerging issue; however, it has several environmental and health consequences. Several weed species have evolved resistance to this herbicide, therefore lowering agricultural yield. The persistence of glyphosate residue in the environment, such as in water and soil systems, is due to the misuse of glyphosate in agricultural regions, which causes its percolation into groundwater via the vertical soil profile. As a result, it endangers many nontarget organisms existing in the natural environment, which comprises both soil and water. The current Review aims to provide a systemic analysis of glyphosate, its various effects on the environment, its subsequent impact on human health and animals, which will lead us toward a better understanding of the issues about herbicide usage and aid in managing it wisely, as in the near the future glyphosate market is aiming for a positive forecast until 2035.
Collapse
Affiliation(s)
- Reenu Singh
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Akanksha Shukla
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Gurdeep Kaur
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 00000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
4
|
Al-Alam J, Millet M, Khoury D, Rodrigues A, Akoury E, Tokajian S, Wazne M. Biomonitoring of PAHs and PCBs in industrial, suburban, and rural areas using snails as sentinel organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4970-4984. [PMID: 38112875 DOI: 10.1007/s11356-023-31493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
There is a worldwide concern about the presence of persistent organic pollutants (POPs) in the environment because of their toxicity, bioaccumulation, and resistance to degradation. Various conventional monitoring techniques have been used to assess their presence in diverse environmental compartments. Most currently available methods, however, have limitations with regards to long-term monitoring. In the present work, juvenile Cornu aspersum (O. F. Müller, 1774) snails were tested in field microcosms as biomonitors for two major classes of organic pollutants, namely, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). The study assessed their deployment in one suburban, one rural, and two industrial sites over an 18-week period and monitored for temporal variations of 16 PAHs and 22 PCBs. Sampling was conducted once every 3 weeks. Targeted pollutants were extracted from the caged snails using the QuEChERS extraction procedure and subsequently analyzed using gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). The results showed that the bioaccumulation of specific pollutants was site dependent; significantly higher levels of PCBs were observed at the industrial sites as compared to the suburban and rural ones. PAHs were bioaccumulated by the snails via ingestion of air and soil whereas PCBs were mainly bioaccumulated via soil contact and ingestion. The findings of this study indicate that C. aspersum is a reliable model organism for the biomonitoring of organic pollutants in air and soil compartments and can be used as part of an integrated environmental assessment.
Collapse
Affiliation(s)
- Josephine Al-Alam
- Civil Engineering Department, Lebanese American University, 309 Bassil Building, Byblos, Lebanon
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES, UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Dani Khoury
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES, UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Anaïs Rodrigues
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES, UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Elias Akoury
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut, 1102-2801, Lebanon
| | - Mahmoud Wazne
- Civil Engineering Department, Lebanese American University, 309 Bassil Building, Byblos, Lebanon.
| |
Collapse
|
5
|
Saha S, Banerjee P, Saha NC, Chukwuka AV. Triazophos-induced Respiratory and Behavioral Effects and Development of Adverse Outcome Pathway (AOP) for short-term Exposed Freshwater Snail, Bellamya Bengalensis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:94. [PMID: 37171504 DOI: 10.1007/s00128-023-03734-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
The physiological effects of triazophos were examined using respiratory and behavioral endpoints in Bellamya bengalensis under a 96-hour acute exposure regime. Physiological manifestation of respiratory stress was measured using the rate of oxygen consumption while behavioral toxicity was measured using crawling reflexes, touch response, and mucus production. The threshold effect values for LOEC (Lowest Observed Effect Concentration), NOEC (No Observed Effect Concentration), and MATC (Maximum Acceptable Toxicant Concentration) at 96 h were 0.40, 0.60, and 0.075 mg/l, respectively. Definitive 96 h acute exposures for both respiratory and behavioral endpoints tests were determined using a control group and concentrations ranging from 0.40 to 1.60 mg/l monitored for 24, 48, 72, and 96 h. Test organisms irrespective of exposure concentration demonstrated an initial rise in oxygen consumption rate after 24 h, followed by a progressive decrease in toxicant concentration and exposure period. The in silico structural analysis presents triazophos as having an electrophilic toxic structure similar to choline esterase inhibitors, and also capable of inducing oxidative stress. The AOP highlighted neurotoxicity and oxidative stress as plausible pathways of triazophos toxicity in mollusk species.
Collapse
Affiliation(s)
- Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, South 24 Parganas-743611, Pathankhali, West Bengal, India
| | - Priyajit Banerjee
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, University of Burdwan, Purba Barddhaman, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency (NESREA), Osogbo, Nigeria.
| |
Collapse
|
6
|
Drakulovski P, Krasteva D, Bellet V, Randazzo S, Roger F, Pottier C, Bertout S. Exposure of Cryptococcus neoformans to Seven Commonly Used Agricultural Azole Fungicides Induces Resistance to Fluconazole as Well as Cross-Resistance to Voriconazole, Posaconazole, Itraconazole and Isavuconazole. Pathogens 2023; 12:pathogens12050662. [PMID: 37242332 DOI: 10.3390/pathogens12050662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Cross-resistance to medical azoles by exposure to azole pesticides is well documented for Aspergillus family fungi but is poorly evaluated for other environmental pathogen fungi, particularly for yeasts belonging to the Cryptococcus neoformans/Cryptococcus gattii species complexes. METHODS One thousand C. neoformans yeast were exposed to various concentrations of seven different commonly used azole pesticides. Clones surviving exposure were picked randomly, and their minimal inhibitory concentrations (MICs) of fluconazole, voriconazole, posaconazole, itraconazole and isavuconazole were assessed. RESULTS Depending on the pesticide used for exposure, up to 13.3% of selected Cryptococcus colonies showed a phenotype of resistance to fluconazole, and among them, several showed cross-resistance to another or several other medical azoles. Molecular mechanisms involved in the resistance setups seem to be dependent on ERG11 and AFR1 gene overexpression. CONCLUSION Exposure to any of the seven azole pesticides tested is capable of increasing the MIC of fluconazole in C. neoformans, including up to the level of the fluconazole-resistant phenotype, as well as generating cross-resistance to other medical azoles in some cases.
Collapse
Affiliation(s)
- Pascal Drakulovski
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Donika Krasteva
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Virginie Bellet
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Sylvie Randazzo
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Frédéric Roger
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Cyrille Pottier
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| | - Sébastien Bertout
- Laboratoire de Parasitologie et Mycologie Médicale, UMI 233 TransVIHMI, University of Montpellier, IRD, INSERM U1175, 15 Avenue Charles Flahaut, 34093 Montpellier, France
| |
Collapse
|
7
|
Shao X, Liu L, Li H, Luo Y, Zhao J, Liu S, Yan B, Wang D, Luo K, Liu M, Bai L, Li X, Liu K. The effects of polyethersulfone and Nylon 6 micromembrane filters on the pyraclostrobin detection: adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74051-74061. [PMID: 35633450 DOI: 10.1007/s11356-022-21021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Adsorption of test substances on micromembrane filters during sample pretreatment before qualitative and quantitative analysis has greatly affected the accuracy of the measurement. In the present study, it was found that the adsorption rate of pyraclostrobin reached 77.7-100% when water samples of pyraclostrobin (1 mL) were filtered with polyethersulfone (PES) and Nylon 6 filters. Therefore, the adsorption mechanisms were investigated from the kinetics, isotherms, and thermodynamics of the pyraclostrobin adsorption process, combined with attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that PES accorded with second-order adsorption kinetics and Nylon 6 with first-order adsorption kinetics, and the correlation coefficient R2 was 0.98. The adsorption behavior of the two micromembranes followed the linear isothermal model, indicating that the adsorption process was through monolayer adsorption. Thermodynamic study showed that the adsorption of pyracoethyl on PES membrane was spontaneous endothermic, while that on Nylon 6 was spontaneous exothermic. The π-π electron-donor-acceptor (EDA) between pyraclostrobin and PES may promote the adsorption of PES to pyraclostrobin, and hydrogen bonding between pyraclostrobin and Nylon 6 micromembrane may be involved in the adsorption. Our study also proved that the adding 60% methanol and iodine solution (2 mmol/L) was an effective strategy to reduce the adsorption effects and to increase the accuracy of the detection.
Collapse
Affiliation(s)
- Xiaolan Shao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, 410125, Changsha, People's Republic of China
| | - Lejun Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yue Luo
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jingyu Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Shuai Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Bei Yan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Dan Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Kun Luo
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Min Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, 410125, Changsha, People's Republic of China
| | - Xiaoyun Li
- Department of Evironmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Kailin Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, 410125, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Snails as Temporal Biomonitors of the Occurrence and Distribution of Pesticides in an Apple Orchard. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The intensive use of pesticides in agricultural areas and the resulting effects have created a need to develop monitoring programs for their active assessment at low cost. This research entails a biomonitoring study of the pesticides in an apple orchard, using juvenile Cornu aspersum (O. F. Müller, 1774) snails exposed in field microcosms. The snails were deployed at three different locations in the orchard area and were used to assess the temporal biomonitoring of 100 different semi-volatile and non-volatile pesticides. The study was performed over an 18-week period and targeted the center, the border, and the outside of the orchard. Results showed that greater levels of pesticides were detected at the center of the orchard as compared to the other sites. The type and level of the applied pesticide influenced its environmental dissipation, as significantly greater levels of semi-volatile pesticides were accumulated by the caged snails in comparison to non-volatile pesticides. The presence of semi-volatile pesticides in the snails outside the orchard revealed the usefulness of these species in the biomonitoring of off-site pesticide emissions. The findings of this study showed that C. aspersum can serve as a reliable and effective model organism for the active biomonitoring of pesticide emissions in agricultural sites.
Collapse
|
9
|
Panico SC, van Gestel CAM, Verweij RA, Rault M, Bertrand C, Menacho Barriga CA, Coeurdassier M, Fritsch C, Gimbert F, Pelosi C. Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119290. [PMID: 35436506 DOI: 10.1016/j.envpol.2022.119290] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg-1, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQi) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects".
Collapse
Affiliation(s)
- Speranza C Panico
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands; Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands.
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, the Netherlands
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Colette Bertrand
- UMR 1402 ECOSYS, INRAe, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France
| | - Carlos A Menacho Barriga
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Michaël Coeurdassier
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Clémentine Fritsch
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Frédéric Gimbert
- UMR 6249 Chrono-environnement CNRS - Université de Franche-Comté Usc INRAe, 16 route de Gray, 25030, Besançon, cedex, France
| | - Céline Pelosi
- UMR 1114 EMMAH, INRAe, Avignon Université, 84914, Avignon, France
| |
Collapse
|
10
|
Nutritional and toxicity profiles of two species of land snail, Theba pisana and Otala lactea, from Morocco. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Radwan MA, El-Gendy KS, Gad AF. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review. CHEMOSPHERE 2020; 257:127218. [PMID: 32497833 DOI: 10.1016/j.chemosphere.2020.127218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
The chemical contamination of terrestrial ecosystems is a great concern as these ecosystems are the target of most of the pollutants derived from anthropogenic activities such as pesticides, heavy metals, nanoparticles, and others. Terrestrial gastropods are considered to be excellent sentinel organisms for biological monitoring of environmental pollution, as they have the ability to accumulate chemicals in their tissues and exhibit a great potential to evaluate the ecological effects of pollutants in terrestrial ecosystems. The use of biomarkers as sensitive parameters to estimate the exposure or resulting effects of chemicals have received considerable attention. The successful biomarker must be applicable in the laboratory and field conditions. Many biomarkers have been examined to understand the adverse effects of pollutants. In this review, we shed light on different types of biomarkers, such as oxidative stress, genotoxicity and immunotoxicity as diagnostic tools for monitoring the impacts of pollution. These biomarkers can provide information about early detection and quantification of these impacts during their initial manifestations and can facilitate the implementation of a rapid preventive and/or restorative responses in the affected ecosystems, as well as single or multiple biomarkers can be integrated into routine monitoring programs.
Collapse
Affiliation(s)
- M A Radwan
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545, Alexandria, Egypt.
| | - K S El-Gendy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, University of Alexandria, El-Shatby, 21545, Alexandria, Egypt
| | - A F Gad
- Department of Animal Pests, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
| |
Collapse
|
12
|
Al-Alam J, Baroudi F, Chbani A, Fajloun Z, Millet M. A multiresidue method for the analysis of pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in snails used as environmental biomonitors. J Chromatogr A 2020; 1621:461006. [PMID: 32156459 DOI: 10.1016/j.chroma.2020.461006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/14/2023]
Abstract
This paper reports an optimized multiresidue extraction strategy based on the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) extraction procedure and on solid-phase microextraction (SPME) for the simultaneous screening of 120 pesticides, 16 polycyclic aromatic hydrocarbons, and 22 polychlorinated biphenyls from the terrestrial snail Helix aspersa. The optimized extraction method was based on QuEChERS using acetonitrile, followed by dispersive-Solid-phase extraction clean-up using primary secondary amine and octadecyl (C18) sorbents. The obtained extracts were analyzed by liquid chromatography coupled with tandem mass spectrometry and gas chromatography coupled with tandem mass spectrometry. This latest technique was preceded by a pre-concentration step using SPME with appropriate fibers. Afterwards, the method was validated for its linearity, sensitivity, recovery, and precision. Results showed high sensitivity, accuracy, and precision, with limits of detection and quantification lower than 20 ng g - 1 for most considered pollutants. Both inter and intra-day analyses revealed low relative standard deviation (%), which was lower than 20% for most targeted compounds. Moreover, the obtained regression coefficient (R2) was higher than 0.98 and the recoveries were higher than 60% for the majority of the assessed pollutants.
Collapse
Affiliation(s)
- Josephine Al-Alam
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France; Lebanese American University, School of Engineering, Byblos, Lebanon
| | - Firas Baroudi
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Asma Chbani
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Ziad Fajloun
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon; Department of Biology, Faculty of Sciences 3, Lebanese University, Michel Slayman Tripoli Campus, Ras Maska 1352, Lebanon
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Lima MG, Augusto RDC, Pinheiro J, Thiengo SC. Physiology and immunity of the invasive giant African snail, Achatina (Lissachatina) fulica, intermediate host of Angiostrongylus cantonensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 105:103579. [PMID: 31877327 DOI: 10.1016/j.dci.2019.103579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
As one of the most successful invasive land snail species, Achatina (Lissachatina) fulica Bowdich, 1822 has achieved wide global distribution, particularly in (sub)tropical regions, with further dispersal likely due to climate change. This species of giant African snails (up to 17 cm shell length) is a pest that has extensive negative impact on agriculture and can serve as vector for several parasites, including Angiostrongylus cantonensis, a nematode parasite that causes (human) eosinophilic meningitis, an emergent disease. Investigation showed that A. cantonensis infection negatively impacts the metabolism of A. fulica by depleting polysaccharide stores of the intermediate host, compromising the energy balance of the snail. A review of the literature indicates that A. fulica possesses potent innate type immune defenses to counter infection, including phagocytic hemocytes capable of deploying reactive oxygen species and lectins for non-self recognition, a serine protease-dependent coagulation response (not observed in other taxa of gastropods), as well as antimicrobial proteins including achacin, an antimicrobial protein. A recent chromosome level genome assembly will facilitate progressively detailed characterization of these immune features of A. fulica. We strongly encourage further immunological studies of A. fulica, ranging from organismal level to molecular biology to gain better understanding of the A. fulica internal defense response to nematode pathogens like A. cantonensis and the contribution of immune function to the invasiveness of (snail) species. Characterization of immunity of A. fulica, representing the understudied Stylommatophora (panpulmonate landsnails) will also broaden the comparative immunology of Gastropoda.
Collapse
Affiliation(s)
- Mariana G Lima
- Laboratório de Referência Nacional para Esquistossomose - Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil; Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal, Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| | - Ronaldo de C Augusto
- UMR 5244 Univ Perpignan via Domitia-CNRS-IFREMER-Univ Montpellier, Interactions Hôtes-Pathògenes-Environnements (IHPE), Université de Perpignan via Domitia, France.
| | - Jairo Pinheiro
- Área de Biofísica, Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal, Rural do Rio de Janeiro, Seropédica, RJ, Brazil.
| | - Silvana C Thiengo
- Laboratório de Referência Nacional para Esquistossomose - Malacologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Al-Alam J, Chbani A, Faljoun Z, Millet M. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9391-9408. [PMID: 30715709 DOI: 10.1007/s11356-019-04388-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/25/2019] [Indexed: 05/13/2023]
Abstract
The continuous discharge of diverse chemical products in the environment is nowadays of great concern to the whole world as some of them persist in the environment leading to serious diseases. Several sampling techniques have been used for the characterization of this chemical pollution, although biomonitoring using natural samplers has recently become the technique of choice in this field due to its efficiency, specificity, and low cost. In fact, several living organisms known as biomonitors could accumulate the well-known persistent environmental pollutants allowing their monitoring in the environment. In this work, a review on environmental biomonitoring is presented. The main sampling techniques used for monitoring environmental pollutants are first reported, followed by an overview on well-known natural species used as passive samplers and known as biomonitors. These species include conifer needles, lichen, mosses, bees and their byproducts, and snails, and were widely used in recent research as reliable monitors for environmental pollution.
Collapse
Affiliation(s)
- Josephine Al-Alam
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France
| | - Asma Chbani
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Ziad Faljoun
- Azm Center for Research in Biotechnology and its Applications, Doctoral School of Science and Technology, Lebanese University, El Mittein Street, Tripoli, Lebanon
- Faculty of Sciences III, Lebanese University, Tripoli, Lebanon
| | - Maurice Millet
- Institute of Chemistry and Processes for Energy, Environment and Health ICPEES UMR 7515 Group of Physical Chemistry of the Atmosphere, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
15
|
Development of a method for the simultaneous determination of multi-class pesticides in earthworms by liquid chromatography coupled to tandem electrospray mass spectrometry. Anal Bioanal Chem 2018; 410:5009-5018. [DOI: 10.1007/s00216-018-1151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/22/2018] [Accepted: 05/17/2018] [Indexed: 10/14/2022]
|
16
|
Mosquera-Vivas CS, Martinez MJ, García-Santos G, Guerrero-Dallos JA. Adsorption-desorption and hysteresis phenomenon of tebuconazole in Colombian agricultural soils: Experimental assays and mathematical approaches. CHEMOSPHERE 2018; 190:393-404. [PMID: 29024884 DOI: 10.1016/j.chemosphere.2017.09.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The adsorption-desorption, hysteresis phenomenon, and leachability of tebuconazole were studied for Inceptisol and Histosol soils at the surface (0-10 cm) and in the subsurface (40-50 cm) of an agricultural region from Colombia by the batch-equilibrium method and mathematical approaches. The experimental Kfa and Kd (L kg-1) values (7.9-289.2) decreased with depth for the two Inceptisols and increased with depth for the Histosol due to the organic carbon content, aryl and carbonyl carbon types. Single-point and desorption isotherms depended on adsorption reversibility and suggested that tebuconazole showed hysteresis; which can be adequately evaluated with the single-point desorption isotherm and the linear model using the hysteresis index HI. The most suitable mathematical approach to estimate the adsorption isotherms of tebuconazole at the surface and in the subsurface was that considering the combination of the n-octanol-water partition coefficient, pesticide solubility, and the mass-balance concept. Tebuconazole had similar moderate mobility potential as compared with the values of other studies conducted in temperate amended and unamended soils, but the risk of the fungicide to pollute groundwater sources increased when the pesticide reached subsurface soil layers, particularly in the Inceptisols.
Collapse
Affiliation(s)
- Carmen S Mosquera-Vivas
- Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C. 11001, Colombia.
| | - María J Martinez
- Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C. 11001, Colombia
| | | | - Jairo A Guerrero-Dallos
- Department of Chemistry, Faculty of Science, Universidad Nacional de Colombia, Bogotá D.C. 11001, Colombia
| |
Collapse
|
17
|
Druart C, Gimbert F, Scheifler R, de Vaufleury A. A full life-cycle bioassay with Cantareus aspersus shows reproductive effects of a glyphosate-based herbicide suggesting potential endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 226:240-249. [PMID: 28395863 DOI: 10.1016/j.envpol.2017.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/14/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
A full life-cycle (240 days) bioassay using the terrestrial snail, Cantareus aspersus, allowing exposure during embryogenesis and/or the growth and reproduction phases, was used to assess the effects of Bypass®, a glyphosate-based herbicide (GlyBH), on a range of endpoints, including parameters under endocrine control. As a positive control, a mixture (R-A) made of diquat (Reglone®) and nonylphenols (NP, Agral®), known for its endocrine disrupting effects in other organisms, was tested. At environmental concentrations, both pesticides (R-A mixture and GlyBH) enhanced growth but reduced reproduction. The R-A mixture acted mainly on the fecundity through a delay in egg-laying of approximately 20 days and a strongly reduced number of clutches. This latter dysfunction may be caused by a permanent eversion of the penis, suggesting a disrupting effect at the neuro-endocrine level, which prevented normal mating. GlyBH acted on fertility, possibly due to a decrease in the fertilization of eggs laid by adults exposed during their embryonic development. These results, associated with the absence of observed effects on gonad histology of GlyBH exposed snails, suggested that the underlying mechanisms are neuro-endocrine.
Collapse
Affiliation(s)
- Coline Druart
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France.
| | - Frédéric Gimbert
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Renaud Scheifler
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| | - Annette de Vaufleury
- Department of Chrono-Environment, University of Bourgogne Franche-Comté, UMR CNRS 6249 usc INRA, 16 route de Gray, F-25030 Besançon Cedex, France
| |
Collapse
|
18
|
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Craig P, de Jong F, Manachini B, Sousa P, Swarowsky K, Auteri D, Arena M, Rob S. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J 2017; 15:e04690. [PMID: 32625401 PMCID: PMC7009882 DOI: 10.2903/j.efsa.2017.4690] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Following a request from EFSA, the Panel on Plant Protection Products and their Residues developed an opinion on the science behind the risk assessment of plant protection products for in-soil organisms. The current risk assessment scheme is reviewed, taking into account new regulatory frameworks and scientific developments. Proposals are made for specific protection goals for in-soil organisms being key drivers for relevant ecosystem services in agricultural landscapes such as nutrient cycling, soil structure, pest control and biodiversity. Considering the time-scales and biological processes related to the dispersal of the majority of in-soil organisms compared to terrestrial non-target arthropods living above soil, the Panel proposes that in-soil environmental risk assessments are made at in- and off-field scale considering field boundary levels. A new testing strategy which takes into account the relevant exposure routes for in-soil organisms and the potential direct and indirect effects is proposed. In order to address species recovery and long-term impacts of PPPs, the use of population models is also proposed.
Collapse
|
19
|
Morrison SA, Belden JB. Development of Helisoma trivolvis pond snails as biological samplers for biomonitoring of current-use pesticides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2320-2329. [PMID: 26876158 DOI: 10.1002/etc.3400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/01/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
Nontarget aquatic organisms residing in wetlands are commonly exposed to current-use pesticides through spray drift and runoff. However, it is frequently challenging to measure exposure because of rapid dissipation of pesticides from water and reduced bioavailability. The authors' hypothesis is that freshwater snails can serve as bioindicators of pesticide exposure based on their capacity to passively accumulate tissue residues. Helisoma trivolvis snails were evaluated as biomonitors of pesticide exposure using a fungicide formulation that contains pyraclostrobin and metconazole and is frequently applied to crops surrounding depressional wetlands. Exposure-response studies indicate that H. trivolvis are tolerant of pyraclostrobin and metconazole at concentrations >10 times those lethal to many aquatic species, with a median lethal concentration based on pyraclostrobin of 441 μg/L (95% confidence interval of 359-555 μg/L). Bioconcentration factors ranged from 137 mL/g to 211 mL/g and from 39 mL/g to 59 mL/g for pyraclostrobin and metconazole, respectively. Elimination studies suggested one-compartmental elimination and snail tissue half-lives (t50 ) of approximately 15 h and 5 h for pyraclostrobin and metconazole, respectively. Modeling derived toxicokinetic parameters in the context of an environmentally relevant pulsed exposure suggests that residues can be measured in snails long after water concentrations fall below detection limits. With high fungicide tolerance, rapid accumulation, and slow elimination, H. trivolvis may be viable for biomonitoring of pyraclostrobin and should be investigated for other pesticides. Environ Toxicol Chem 2016;35:2320-2329. © 2016 SETAC.
Collapse
Affiliation(s)
- Shane A Morrison
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jason B Belden
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
20
|
Baurand PE, Capelli N, de Vaufleury A. Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:320-7. [PMID: 26160746 DOI: 10.1016/j.jhazmat.2015.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/30/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
The study explores the relevance of coupling Random Amplified Polymorphic DNA (RAPD) and a High-Resolution capillary electrophoresis System (HRS) method for assessing the genotoxic potential of the wide variety commercial formulations of pesticides. Using this technique, the genotoxic potential of a glyphosate-based herbicide (Roundup Flash(®) (RU)) and two fungicide formulations based on tebuconazole and copper (Corail(®) and Bordeaux mixture (BM), respectively) was evaluated on terrestrial snail embryos. Clutches of Cantareus aspersus were exposed during their entire embryonic development to a range of concentration around the EC50 values (based on hatching success) for each compound tested. Three primers were used for the RAPD amplifications of pesticides samples. RAPD-HRS revealed concentration-dependent modifications in profiles generated with the three primers in RU(®)-exposed embryos from 30 mg/L glyphosate. For Corail(®)-exposed embryos, only two of the three primers were able to show alterations in profiles from 0.05 mg/L tebuconazole. For BM-exposed embryos, no signs of genotoxicity were observed. All changes observed in amplification profiles have been detected at concentrations lower than the recommended doses for vineyard field applications. Our study demonstrates the efficiency of coupling RAPD and HRS to efficiently screen the effect of pesticide formulations on DNA.
Collapse
Affiliation(s)
- Pierre-Emmanuel Baurand
- Chrono-Environment, UMR 6249 University of Bourgogne Franche-Comté/CNRS, 16 Route de Gray, 25030 Besançon Cedex, France.
| | - Nicolas Capelli
- Chrono-Environment, UMR 6249 University of Bourgogne Franche-Comté/CNRS, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Annette de Vaufleury
- Chrono-Environment, UMR 6249 University of Bourgogne Franche-Comté/CNRS, 16 Route de Gray, 25030 Besançon Cedex, France; Department of Health Safety Environment, Avenue Des Rives du Lac, BP179, 70003 Vesoul Cedex, France
| |
Collapse
|
21
|
Davis AM, Lewis SE, Brodie JE, Benson A. The potential benefits of herbicide regulation: a cautionary note for the Great Barrier Reef catchment area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:81-92. [PMID: 24840283 DOI: 10.1016/j.scitotenv.2014.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
Industry transitions away from traditional photosystem II inhibiting (PSII) herbicides towards an 'alternative' herbicide suite are now widely advocated as a key component of improved environmental outcomes for Australia's Great Barrier Reef and improved environmental stewardship on the part of the Queensland sugar industry. A systematic desktop risk analysis found that based on current farming practices, traditional PSII herbicides can pose significant environmental risks. Several of the 'alternatives' that can directly fill a specific pre-emergent ('soil residual') weed control function similar to regulated PSII herbicides also, however, presented a similar environmental risk profile, regardless of farming systems and bio-climatic zones being considered. Several alternatives with a pre-emergent residual function as well as alternative post-emergent (contact or 'knockdown') herbicides were, predicted to pose lower environmental risks than the regulated PSII herbicides to most trophic levels, although environmental risks could still be present. While several herbicides may well be viable alternatives in terms of weed control, they can still present equal or possibly higher risks to the environment. Imposing additional regulations (or even de-registrations) on particular herbicides could result in marginal, and possibly perverse environmental impacts in the long term, if usage shifts to alternative herbicides with similar risk profiles. Regardless of any regulatory efforts, improved environmental sustainability outcomes in pesticide practices within the Great Barrier Reef catchment area will hinge primarily on the continuing adoption of integrated, strategic pest management systems and technologies applied to both traditional and 'alternative' herbicides. One of the emerging policy challenges is ensuring the requisite technical and extension support for cane growers to ensure effective adoption of rapidly evolving farming system technologies, in a very dynamic and scrutinised herbicide management environment.
Collapse
Affiliation(s)
- A M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Australia.
| | - S E Lewis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Australia
| | - J E Brodie
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Australia
| | - Ash Benson
- Herbert Cane Productivity Services Limited, 181 Fairford Road , Ingham, Qld 4850, Australia.
| |
Collapse
|
22
|
Choubisa SL. Bovine calves as ideal bio-indicators for fluoridated drinking water and endemic osteo-dental fluorosis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:4493-4498. [PMID: 24671615 DOI: 10.1007/s10661-014-3713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Relative susceptibility to fluoride (F) toxicosis in the form of osteo-dental fluorosis was observed in an observational survey of 2,747 mature and 887 immature domestic animals of diverse species living in areas with naturally fluoridated (>1.5 ppm F) drinking water. These animals included buffaloes (Bubalus bubalis), cattle (Bos taurus), camels (Camelus dromedarius), donkeys (Equus asinus), horses (Equus caballus), goats (Capra hircus), and sheep (Ovis aries). Of these mature and immature animals, 899 (32.7 %) and 322 (36.3 %) showed evidence of dental fluorosis with varying grades, respectively. Their incisor teeth were stained with light to deep brownish color. On clinical examination, 31.2 % mature and 10.7 % immature animals revealed periosteal exostoses, intermittent lameness, and stiffness of tendons in the legs as signs of skeletal fluorosis. The maximum susceptibility to fluoride toxicosis was found in bovines (buffaloes and cattle) followed by equines (donkeys and horses), flocks (goats and sheep), and camelids (camels). The bovine calves were found to be more sensitive and highly susceptible to F toxicosis and revealed the maximum prevalence (92.2 %) of dental fluorosis. This indicates that bovine calves are less tolerant and give early sign of F poisoning (dental fluorosis) and therefore, they can be considered as bio-indicators for fluoridated water as well as for endemicity of osteo-dental fluorosis. Causes for variation in susceptibility to F toxicosis (fluorosis) in various species of domestic animal are also discussed.
Collapse
Affiliation(s)
- S L Choubisa
- Parasitology and Toxicology Research Laboratory, Post Graduate Department of Zoology, Government Meera Girls College, Udaipur, Rajasthan, 313001, India,
| |
Collapse
|
23
|
Semenov AV, Elsas JD, Glandorf DCM, Schilthuizen M, Boer WF. The use of statistical tools in field testing of putative effects of genetically modified plants on nontarget organisms. Ecol Evol 2013; 3:2739-50. [PMID: 24567836 PMCID: PMC3930044 DOI: 10.1002/ece3.640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022] Open
Abstract
To fulfill existing guidelines, applicants that aim to place their genetically modified (GM) insect-resistant crop plants on the market are required to provide data from field experiments that address the potential impacts of the GM plants on nontarget organisms (NTO's). Such data may be based on varied experimental designs. The recent EFSA guidance document for environmental risk assessment (2010) does not provide clear and structured suggestions that address the statistics of field trials on effects on NTO's. This review examines existing practices in GM plant field testing such as the way of randomization, replication, and pseudoreplication. Emphasis is placed on the importance of design features used for the field trials in which effects on NTO's are assessed. The importance of statistical power and the positive and negative aspects of various statistical models are discussed. Equivalence and difference testing are compared, and the importance of checking the distribution of experimental data is stressed to decide on the selection of the proper statistical model. While for continuous data (e.g., pH and temperature) classical statistical approaches – for example, analysis of variance (ANOVA) – are appropriate, for discontinuous data (counts) only generalized linear models (GLM) are shown to be efficient. There is no golden rule as to which statistical test is the most appropriate for any experimental situation. In particular, in experiments in which block designs are used and covariates play a role GLMs should be used. Generic advice is offered that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in this testing. The combination of decision trees and a checklist for field trials, which are provided, will help in the interpretation of the statistical analyses of field trials and to assess whether such analyses were correctly applied. We offer generic advice to risk assessors and applicants that will help in both the setting up of field testing and the interpretation and data analysis of the data obtained in field testing.
Collapse
Affiliation(s)
- Alexander V Semenov
- Department of Microbial Ecology Centre for Life Sciences, University of Groningen P.O. BOX 11103, 9700 CC, Groningen, The Netherlands
| | - Jan Dirk Elsas
- Department of Microbial Ecology Centre for Life Sciences, University of Groningen P.O. BOX 11103, 9700 CC, Groningen, The Netherlands
| | - Debora C M Glandorf
- National Institute of Public Health and the Environment, SEC/GMO Office P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Menno Schilthuizen
- Naturalis Biodiversity Center P.O. Box 9517, 2300 RA, Leiden, The Netherlands
| | - Willem F Boer
- Resource Ecology Group Droevendaalsesteeg 3a, 6708 PB, Wageningen UR, The Netherlands
| |
Collapse
|
24
|
Evaluation of biochemical, hematological and oxidative parameters in mice exposed to the herbicide glyphosate-Roundup(®). Interdiscip Toxicol 2013; 5:133-40. [PMID: 23554553 PMCID: PMC3600513 DOI: 10.2478/v10102-012-0022-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 08/10/2012] [Accepted: 09/16/2012] [Indexed: 11/29/2022] Open
Abstract
We evaluated the toxicity of hepatic, hematological, and oxidative effects of glyphosate-Roundup® on male and female albino Swiss mice. The animals were treated orally with either 50 or 500 mg/kg body weight of the herbicide, on a daily basis for a period of 15 days. Distilled water was used as control treatment. Samples of blood and hepatic tissue were collected at the end of the treatment. Hepatotoxicity was monitored by quantitative analysis of the serum enzymes ALT, AST, and γ-GT and renal toxicity by urea and creatinine. We also investigated liver tissues histopathologically. Alterations of hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. TBARS (thiobarbituric acid reactive substances) and NPSH (non-protein thiols) were analyzed in the liver to assess oxidative damage. Significant increases in the levels of hepatic enzymes (ALT, AST, and γ-GT) were observed for both herbicide treatments, but no considerable differences were found by histological analysis. The hematological parameters showed significant alterations (500 mg/kg body weight) with reductions of RBC, hematocrit, and hemoglobin, together with a significant increase of MCV, in both sexes of mice. In males, there was an important increase in lipid peroxidation at both dosage levels, together with an NPSH decrease in the hepatic tissue, whereas in females significant changes in these parameters were observed only at the higher dose rate. The results of this study indicate that glyphosate-Roundup® can promote hematological and hepatic alterations, even at subacute exposure, which could be related to the induction of reactive oxygen species.
Collapse
|
25
|
Nica DV, Bordean DM, Borozan AB, Gergen I, Bura M, Banatean-Dunea I. Use of land snails (pulmonata) for monitoring copper pollution in terrestrial ecosystems. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 225:95-137. [PMID: 23494558 DOI: 10.1007/978-1-4614-6470-9_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Affiliation(s)
- Dragos V Nica
- Faculty of Animal Sciences and Biotechnologies, Banat's University of Agricultural Sciences and Veterinary Medicine, C. Aradului 119, 300645, Timisoara, Romania,
| | | | | | | | | | | |
Collapse
|
26
|
Helander M, Saloniemi I, Saikkonen K. Glyphosate in northern ecosystems. TRENDS IN PLANT SCIENCE 2012; 17:569-74. [PMID: 22677798 DOI: 10.1016/j.tplants.2012.05.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/16/2012] [Accepted: 05/10/2012] [Indexed: 05/09/2023]
Abstract
Glyphosate is the main nonselective, systemic herbicide used against a wide range of weeds. Its worldwide use has expanded because of extensive use of certain agricultural practices such as no-till cropping, and widespread application of glyphosate-resistant genetically modified crops. Glyphosate has a reputation of being nontoxic to animals and rapidly inactivated in soils. However, recent evidence has cast doubts on its safety. Glyphosate may be retained and transported in soils, and there may be cascading effects on nontarget organisms. These processes may be especially detrimental in northern ecosystems because they are characterized by long biologically inactive winters and short growing seasons. In this opinion article, we discuss the potential ecological, environmental and agricultural risks of intensive glyphosate use in boreal regions.
Collapse
Affiliation(s)
- Marjo Helander
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | | | | |
Collapse
|