1
|
Sinclair CA, Garcia TS, Eagles-Smith CA. A Meta-Analysis of Mercury Biomagnification in Freshwater Predatory Invertebrates: Community Diversity and Dietary Exposure Drive Variability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19429-19439. [PMID: 39392791 PMCID: PMC11526377 DOI: 10.1021/acs.est.4c05920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
Accurate estimates of methylmercury (MeHg) exposure are valuable to actionably assess risk and protect wildlife and human health. MeHg trophic transfer is a critical driver of risk: MeHg is generally biomagnified by a factor of 8.3 ± 7.5 from one trophic level to the next, averaged across freshwater communities (mean ± standard deviation). This variability can produce disparate risks even where basal MeHg concentrations are similar. Taxonomy may be one driver of this variability: physiologically diverse groups, like vertebrates and invertebrates, may assimilate MeHg differently. To determine whether taxonomy affects trophic transfer efficiency, we conducted a meta-analysis characterizing predatory invertebrate MeHg biomagnification. Our analyses estimated that freshwater predatory invertebrates biomagnify MeHg by factors of 2.1 ± 0.2 to 4.3 ± 0.3, with a 98.9 ± 0.4% posterior probability that factors are below 5 (mean ± standard error). When vertebrates or primary producers were included, a site's trophic magnification factor was 18.6 ± 6.2 to 54.1 ± 7.7% higher than estimates for invertebrates alone. Biomagnification was inversely correlated to prey MeHg concentration and varied among systematic and functional groups. These data suggest that predatory invertebrates biomagnify MeHg less efficiently than vertebrates and that a community's diversity and structure determine its biomagnification efficiency. Incorporating organismal variation in trophic transfer estimates may improve the assessment, communication, and management of MeHg risk.
Collapse
Affiliation(s)
- Cailin A. Sinclair
- Department
of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Tiffany S. Garcia
- Department
of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97331, United States
| | - Collin A. Eagles-Smith
- Forest
and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon 97330, United States
| |
Collapse
|
2
|
Gomes PR, Pestana IA, de Almeida MG, de Rezende CE. The Paraíba do Sul River Basin and its coastal area as a study model of the mercury cycle: A meta-analytical review of three decades of research. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132442. [PMID: 37683351 DOI: 10.1016/j.jhazmat.2023.132442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
The Paraíba do Sul River (PSR) Basin is a crucial drainage basin in Southeast Brazil, being the most industrialized and densely populated region in the country. Over the last three decades, the basin has been the subject of numerous studies due to its long history of mercury (Hg) contamination. This makes the PSR Basin an excellent model to evaluate Hg cycling, which is a priority for signatory countries of the Minamata Convention, which includes Brazil. This review compiled data on Hg from five environmental compartments (animals, plants, sediment, suspended particulate matter (SPM), and water), three different sectors (upper, middle, and lower) and five different ecosystems (reservoir, mangrove, fluvial, estuarine, and coastal) from 60 published studies, aiming to understand the Hg cycling through meta-analyses. The highest concentrations of Hg were observed in the upper and middle sectors of the basin, which are areas with high industrialization and urbanization levels. Among the evaluated ecosystems, hydropower reservoirs showed the highest medians and were also frequent in the upper and middle portions of the PSR basin. Over the years, all environmental compartments showed a decline in Hg concentrations due to the implementation of federal and state environmental policies. The main source of Hg for the basin was Hg-rich soils from past activities (such as artisanal small-scale gold mining and the use of organomercurial fungicides in sugarcane plantations). These results can assist decision-makers in the management of the basin's ecosystems and can also be used to evaluate the effectiveness of implementing the Minamata Convention in the region.
Collapse
Affiliation(s)
- Philipe Ribeiro Gomes
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil.
| | - Inácio Abreu Pestana
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Marcelo Gomes de Almeida
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Carlos Eduardo de Rezende
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000 - Parque Califórnia - CEP: 28013-602, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Anderson MA, Fisk AT, Laing R, Noël M, Angnatok J, Kirk J, Evans M, Pijogge L, Brown TM. Changing environmental conditions have altered the feeding ecology of two keystone Arctic marine predators. Sci Rep 2023; 13:14056. [PMID: 37640733 PMCID: PMC10462653 DOI: 10.1038/s41598-023-39091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/20/2023] [Indexed: 08/31/2023] Open
Abstract
Environmental change in the Arctic has impacted the composition and structure of marine food webs. Tracking feeding ecology changes of culturally-valued Arctic char (Salvelinus alpinus) and ringed seals (Pusa hispida) can provide an indication of the ecological significance of climate change in a vulnerable region. We characterized how changes in sea ice conditions, sea surface temperature (SST), and primary productivity affected the feeding ecology of these two keystone species over a 13- and 18-year period, respectively, in northern Labrador, Canada. Arctic char fed consistently on pelagic resources (δ13C) but shifted over time to feeding at a higher trophic level (δ15N) and on more marine/offshore resources (δ34S), which correlated with decreases in chlorophyll a concentration. A reduction in Arctic char condition factor and lipid content was associated with higher trophic position. Ringed seals also shifted to feeding at a higher trophic level, but on more pelagic resources, which was associated with lower SST and higher chlorophyll a concentrations. Years with abnormally high SSTs and reduced sea ice concentrations resulted in large isotopic niche sizes for both species, suggesting abrupt change can result in more variable feeding. Changes in abundance and distribution of species long valued by the Inuit of Labrador could diminish food security.
Collapse
Affiliation(s)
| | - Aaron T Fisk
- School of the Environment, University of Windsor, Windsor, ON, Canada
| | - Rodd Laing
- Nunatsiavut Government, Nain, NL, Canada
| | | | | | - Jane Kirk
- Environment and Climate Change Canada, Burlington, ON, Canada
| | - Marlene Evans
- Environment and Climate Change Canada, Saskatoon, SK, Canada
| | | | - Tanya M Brown
- School of the Environment, University of Windsor, Windsor, ON, Canada.
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.
| |
Collapse
|
4
|
Han Y, Jiang Y, Xiong X, Sui X, Zhu R, Feng X, Li K, Jia Y, Chen Y. Mercury biomagnification at higher rates than the global average in aquatic ecosystems of the Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131408. [PMID: 37080022 DOI: 10.1016/j.jhazmat.2023.131408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Mercury biomagnification in aquatic ecosystems is a global issue. Biomagnification patterns and drivers in alpine regions remain poorly understood. Hg biomagnification in the aquatic food web of the Qinghai-Tibetan Plateau (Q-T Plateau) was investigated. A total of 302 fish and macroinvertebrate tissue samples were analysed for total mercury (THg) and nitrogen (δ15N) stable isotope ratios. Overall, 26.75% of fish individuals exceeded the USFWS consumption guidelines. A total of 52.17% of the sampling sites covering different habitats exhibited a significantly positive THg-δ15N relationship, which confirmed the Hg biomagnification potential of Q-T Plateau aquatic ecosystems. The Q-T Plateau Hg biomagnification rates were generally far higher than global averages regardless of the habitat type. Hg in sediments, elevation and population density were positively related to the Hg biomagnification magnitude on the Q-T Plateau, which could be attributed to the disproportionate response of Hg concentrations in macroinvertebrates and fishes along environmental gradients. Our findings offer empirical evidence that fish consumption on the Q-T Plateau poses a substantial Hg exposure risk to people living along river and lake shores. Higher biomagnification rates could further disproportionately accelerate Hg pollution in Q-T Plateau aquatic ecosystems under future anthropogenic activities and climate warming trajectories.
Collapse
Affiliation(s)
- Yuzhu Han
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihang Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiong Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoyun Sui
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ren Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiu Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kemao Li
- Qinghai Provincial Fishery Technology Extension Center, Xining 810012, China
| | - Yintao Jia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yifeng Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Wang Q, Li X, Zhou X. Improving the qualities of the trophic magnification factors (TMFs): A case study based on scaled Δ 15N trophic position framework and separate baseline species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160095. [PMID: 36372174 DOI: 10.1016/j.scitotenv.2022.160095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Scientific understanding of trophic magnification factors (TMFs) is conducive to formulating environmental management measures. Trophic position (TP) of species is the key parameter in TMFs assessment. Nitrogen stable isotopes (δ15N) provide a powerful tool to estimate TP. However, some limitations could introduce considerable uncertainty into TP and TMFs assessment which mainly includes: 1) determination of Δ15N between two adjacent trophic positions; 2) determination of baseline species. Different from the widely used constant Δ15N (3.4 ‰) between two adjacent trophic positions, which is called additive Δ15N framework, Δ15N gradually decreases as trophic position increases under scaled Δ15N framework, which has been confirmed by more and more laboratory studies and meta-analyses. In this study, we sampled in two similar littoral ecosystems separated by one natural dam, which is called Small Xingkai Lake and Xingkai Lake, analyzed the δ15N and total mercury (THg) of each species. On the one hand, we compared the TP of species under the additive Δ15N framework and scaled Δ15N framework with the White shrimp (Exopalaemon modestus) as baseline species in two lakes respectively. On the other hand, we explored the possible changes in TMFs based on TP. Our results show, under the scaled Δ15N framework, the trophic position of the same species is higher, while TMFs is lower compared with the additive Δ15N framework; even if in the two interconnected lakes, distributed the same baseline species, in the similar ecosystem, separate baselines should also be used. In this study, two frameworks of the food chain were compared in two interconnected freshwater ecosystems for the first time. The difference between TMFs of two lakes was obvious under scaled framework but not under additive framework. We also recommend that future TMFs assessments should be based on the scaled Δ15N framework because it has improved the accuracy of trophic position assessment.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province 130102, China
| | - Xingchun Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province 150040, China
| | - Xuehong Zhou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province 150040, China.
| |
Collapse
|
6
|
Jonsson S, Mastromonaco MN, Wang F, Bravo AG, Cairns WRL, Chételat J, Douglas TA, Lescord G, Ukonmaanaho L, Heimbürger-Boavida LE. Arctic methylmercury cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157445. [PMID: 35882324 DOI: 10.1016/j.scitotenv.2022.157445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic mercury (Hg) undergoes long-range transport to the Arctic where some of it is transformed into methylmercury (MeHg), potentially leading to high exposure in some Arctic inhabitants and wildlife. The environmental exposure of Hg is determined not just by the amount of Hg entering the Arctic, but also by biogeochemical and ecological processes occurring in the Arctic. These processes affect MeHg uptake in biota by regulating the bioavailability, methylation and demethylation, bioaccumulation and biomagnification of MeHg in Arctic ecosystems. Here, we present a new budget for pools and fluxes of MeHg in the Arctic and review the scientific advances made in the last decade on processes leading to environmental exposure to Hg. Methylation and demethylation are key processes controlling the pool of MeHg available for bioaccumulation. Methylation of Hg occurs in diverse Arctic environments including permafrost, sediments and the ocean water column, and is primarily a process carried out by microorganisms. While microorganisms carrying the hgcAB gene pair (responsible for Hg methylation) have been identified in Arctic soils and thawing permafrost, the formation pathway of MeHg in oxic marine waters remains less clear. Hotspots for methylation of Hg in terrestrial environments include thermokarst wetlands, ponds and lakes. The shallow sub-surface enrichment of MeHg in the Arctic Ocean, in comparison to other marine systems, is a possible explanation for high MeHg concentrations in some Arctic biota. Bioconcentration of aqueous MeHg in bacteria and algae is a critical step in the transfer of Hg to top predators, which may be dampened or enhanced by the presence of organic matter. Variable trophic position has an important influence on MeHg concentrations among populations of top predator species such as ringed seal and polar bears distributed across the circumpolar Arctic. These scientific advances highlight key processes that affect the fate of anthropogenic Hg deposited to Arctic environments.
Collapse
Affiliation(s)
- Sofi Jonsson
- Department of Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | | | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea G Bravo
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Warren R L Cairns
- CNR Institute of Polar Sciences and Ca' Foscari University, Venice, Italy
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON, Canada
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK, USA
| | - Gretchen Lescord
- Wildlife Conservation Society Canada and Laurentian University, Vale Living with Lakes Center, Sudbury, Ontario, Canada
| | - Liisa Ukonmaanaho
- Natural Resources Institute Finland (Luke), P.O. Box 2, FI-00791 Helsinki, Finland
| | - Lars-Eric Heimbürger-Boavida
- CNRS/INSU,Aix Marseille Université,Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| |
Collapse
|
7
|
Minet A, Metian M, Taylor A, Gentès S, Azemard S, Oberhänsli F, Swarzenski P, Bustamante P, Lacoue-Labarthe T. Bioaccumulation of inorganic and organic mercury in the cuttlefish Sepia officinalis: Influence of ocean acidification and food type. ENVIRONMENTAL RESEARCH 2022; 215:114201. [PMID: 36057331 DOI: 10.1016/j.envres.2022.114201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 μatm, equivalent to pH 8.08 and 7.54, respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203Hg was found in the gills, but i203Hg also increased in the digestive gland. When fed with 203Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203Hg and Me203Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.
Collapse
Affiliation(s)
- Antoine Minet
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Marc Metian
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Angus Taylor
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Sophie Gentès
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sabine Azemard
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - François Oberhänsli
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Peter Swarzenski
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Paco Bustamante
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes 75005, Paris, France
| | - Thomas Lacoue-Labarthe
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
8
|
Hilgendag IR, Swanson HK, Lewis CW, Ehrman AD, Power M. Mercury biomagnification in benthic, pelagic, and benthopelagic food webs in an Arctic marine ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156424. [PMID: 35662606 DOI: 10.1016/j.scitotenv.2022.156424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) is a ubiquitous toxic metal that biomagnifies in food webs, and can reach high concentrations in top predators. Evaluating Hg biomagnification in Arctic marine food webs is critical for understanding Hg dynamics and estimating exposure to understudied fish and wildlife consumed by humans. The majority of studies conducted on Hg biomagnification in the Arctic have focused on pelagic food webs. Benthic and benthopelagic food webs in Arctic marine ecosystems also support many species of subsistence and commercial importance, and data are lacking for these systems. In this study, we investigated food web structure and Hg biomagnification for the benthic, pelagic, and benthopelagic marine food webs of inner Frobisher Bay in Nunavut. Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N), as well as total (THg) and methyl (MeHg) mercury concentrations were measured in fish, invertebrates, and zooplankton. Biomagnification in each food web was quantified with Trophic Magnification Slopes (TMS) and Trophic Magnification Factors (TMF). The highest TMS and TMF values were exhibited by the benthopelagic food web (TMS = 0.201; TMF = 1.59), followed by the pelagic food web (TMS = 0.183; TMF = 1.52), and lastly the benthic food web (TMS = 0.079; TMF = 1.20), with δ15N explaining 88%, 79%, and 9% of variation in Hg concentrations, respectively. TMS and TMF values were generally low compared to other Arctic marine food webs. Results from food web structure analyses indicated that the benthic food web had the greatest trophic diversity, trophic redundancy, and largest isotopic niche area of all food webs studied. Greater food web complexity may thus result in reduced MeHg biomagnification, but further study is required. Acquiring Hg and food web structure data is critical for predicting the effects of climate-induced environmental change on Hg dynamics, especially in the context of Arctic marine ecosystems.
Collapse
Affiliation(s)
- Isabel R Hilgendag
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Heidi K Swanson
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | | | - Ashley D Ehrman
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba R3T 2N6, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Barst BD, Chételat J, Basu N. Toxicological risk of mercury for fish and invertebrate prey in the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155702. [PMID: 35523325 DOI: 10.1016/j.scitotenv.2022.155702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/19/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
We assessed the risks of mercury (Hg) to Arctic marine and freshwater fish by compiling published muscle Hg concentrations and information on tissue concentrations associated with adverse effects. The assessment included 333 groups of fish representing 35 genera and 14,002 individuals sampled from sites across the circumpolar Arctic. Mean or median Hg concentrations in fish muscle varied widely from 0.005 μg/g ww to a maximum of 2.2 μg/g ww. Results indicate that most (n = 139 of 333 or ~ 42%) Arctic fish are not at risk for Hg toxicity, based on the large number of fish mean or median muscle Hg concentrations below 0.1 μg/g ww. A smaller number of the identified groups (n = 76 of 333 or ~ 23%) of Arctic fish had mean or median Hg concentrations consistent with moderate (0.3-0.5 μg/g ww), high (0.5-2 μg/g ww), and severe risk (≥2 μg/g ww). Most of the fish with Hg concentrations in these risk categories were long-lived predators (e.g., non-anadromous Arctic char, northern pike, lake trout, Greenland halibut, Greenland shark). We also, for the first time, conducted a risk assessment of Arctic marine and freshwater invertebrates to evaluate the potential for Hg effects at lower trophic levels and to support risk assessment for Arctic fish. The vast majority (90%) of site-specific Hg or methylmercury (MeHg) concentrations in taxa of marine and freshwater invertebrates (n = 321) were < 0.5 μg/g dw, which is well below critical body residues of Hg in aquatic invertebrates associated with acute and sublethal effects determined in laboratory dosing studies. As the screening-level approach we carried out in the present study is not indicative of actual effects, more studies which directly evaluate the effects of Hg exposure in Arctic fish species are needed. The information here will be of use to Article 22 (Effectiveness Evaluation) of the Minamata Convention.
Collapse
Affiliation(s)
- Benjamin D Barst
- Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA.
| | - John Chételat
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Québec, Canada
| |
Collapse
|
10
|
McKinney MA, Chételat J, Burke SM, Elliott KH, Fernie KJ, Houde M, Kahilainen KK, Letcher RJ, Morris AD, Muir DCG, Routti H, Yurkowski DJ. Climate change and mercury in the Arctic: Biotic interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155221. [PMID: 35427623 DOI: 10.1016/j.scitotenv.2022.155221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Global climate change has led to profound alterations of the Arctic environment and ecosystems, with potential secondary effects on mercury (Hg) within Arctic biota. This review presents the current scientific evidence for impacts of direct physical climate change and indirect ecosystem change on Hg exposure and accumulation in Arctic terrestrial, freshwater, and marine organisms. As the marine environment is elevated in Hg compared to the terrestrial environment, terrestrial herbivores that now exploit coastal/marine foods when terrestrial plants are iced over may be exposed to higher Hg concentrations. Conversely, certain populations of predators, including Arctic foxes and polar bears, have shown lower Hg concentrations related to reduced sea ice-based foraging and increased land-based foraging. How climate change influences Hg in Arctic freshwater fishes is not clear, but for lacustrine populations it may depend on lake-specific conditions, including interrelated alterations in lake ice duration, turbidity, food web length and energy sources (benthic to pelagic), and growth dilution. In several marine mammal and seabird species, tissue Hg concentrations have shown correlations with climate and weather variables, including climate oscillation indices and sea ice trends; these findings suggest that wind, precipitation, and cryosphere changes that alter Hg transport and deposition are impacting Hg concentrations in Arctic marine organisms. Ecological changes, including northward range shifts of sub-Arctic species and altered body condition, have also been shown to affect Hg levels in some populations of Arctic marine species. Given the limited number of populations and species studied to date, especially within Arctic terrestrial and freshwater systems, further research is needed on climate-driven processes influencing Hg concentrations in Arctic ecosystems and their net effects. Long-term pan-Arctic monitoring programs should consider ancillary datasets on climate, weather, organism ecology and physiology to improve interpretation of spatial variation and time trends of Hg in Arctic biota.
Collapse
Affiliation(s)
- Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - John Chételat
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Samantha M Burke
- Minnow Aquatic Environmental Services, Guelph, ON N1H 1E9, Canada
| | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 5E7, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, FI-16900 Lammi, Finland
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - Adam D Morris
- Northern Contaminants Program, Crown-Indigenous Relations and Northern Affairs Canada, Gatineau, QC J8X 2V6, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - David J Yurkowski
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| |
Collapse
|
11
|
Skogsberg E, McGovern M, Poste A, Jonsson S, Arts MT, Varpe Ø, Borgå K. Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119361. [PMID: 35523379 DOI: 10.1016/j.envpol.2022.119361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/09/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May-July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.
Collapse
Affiliation(s)
- Emelie Skogsberg
- University of Oslo, Department of Biosciences, Oslo, Norway; The University Centre in Svalbard, Department of Arctic Biology, Longyearbyen, Norway
| | - Maeve McGovern
- Norwegian Institute for Water Research, Oslo, Norway; The Arctic University of Norway, Tromsø, Norway
| | - Amanda Poste
- Norwegian Institute for Water Research, Oslo, Norway; The Arctic University of Norway, Tromsø, Norway
| | - Sofi Jonsson
- Stockholm University, Department of Environmental Science, Stockholm, Sweden
| | - Michael T Arts
- Ryerson University, Department of Chemistry and Biology, Toronto, M5B 2K3, Canada
| | - Øystein Varpe
- The University Centre in Svalbard, Department of Arctic Biology, Longyearbyen, Norway; Norwegian Institute for Nature Research, Bergen, Norway; University of Bergen, Department of Biological Sciences, Bergen, Norway
| | - Katrine Borgå
- University of Oslo, Department of Biosciences, Oslo, Norway.
| |
Collapse
|
12
|
Climate-related drivers of nutrient inputs and food web structure in shallow Arctic lake ecosystems. Sci Rep 2022; 12:2125. [PMID: 35136177 PMCID: PMC8825857 DOI: 10.1038/s41598-022-06136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/12/2022] [Indexed: 11/08/2022] Open
Abstract
In order to predict the effects of climate change on polar ecosystems, disentangling mechanisms of nutrient transfer in food webs is crucial. We investigated sources of nutrients in tundra lakes, tracing their transfer through the food web and relating the observed patterns to runoff, snow coverage, and the presence of migratory geese in lake catchments. C and N content (elemental and isotopic) of several food web components including Lepidurus arcticus (Notostraca, at the top of the lake food webs) in 18 shallow Arctic lakes was compared. Terrestrial productivity and geese abundance were key biotic factors that interacted with abiotic variables (snow coverage, lake and catchment size) in determining the amount and origin of nutrient inputs, affecting the trophic interactions among aquatic species, food chain length and nutrient flow in Arctic lake food webs. Decreasing snow coverage, increasing abundance and expansion of the geese's range are expected across the Arctic due to climate warming. By relating nutrient inputs and food web structure to snow coverage, vegetation and geese, this study contributes to our mechanistic understanding of the cascade effects of climate change in tundra ecosystems, and may help predict the response of lakes to changes in nutrient inputs at lower latitudes.
Collapse
|
13
|
Fioramonti NE, Ribeiro Guevara S, Becker YA, Riccialdelli L. Mercury transfer in coastal and oceanic food webs from the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2022; 175:113365. [PMID: 35114547 DOI: 10.1016/j.marpolbul.2022.113365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The dynamics of contaminants, such as mercury (Hg), in marine trophic webs is a critical topic in the scientific community due to the high concentrations encountered in organisms. In this study we attempted to provide information on total Hg accumulation patterns and possible pathways of trophic transfers assessed in combination with δ13C and δ15N to understand how this contaminant permeates three sub-Antarctic food webs: the Beagle Channel (BC), the Atlantic coast of Tierra del Fuego (AC-TDF) and Burdwood Bank (BB). We found a site-specific pattern of Hg transfer and biomagnification processes, while the oceanic BB showed major Hg transfer through the pelagic domain, coastal sectors (BC and AC-TDF) indicate a general biodilution process but with Hg concentrations incrementing with the benthivory grade. This represents a dissimilar Hg bioavailability for marine consumers that rely on different diet and forage in different habitats, and may become an issue of important conservation concern for these southern areas.
Collapse
Affiliation(s)
- N E Fioramonti
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina.
| | - S Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av E. Bustillo Km 9.500, Bariloche, Argentina
| | - Y A Becker
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| | - L Riccialdelli
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernardo Houssay 200, Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
14
|
Kozak N, Ahonen SA, Keva O, Østbye K, Taipale SJ, Hayden B, Kahilainen KK. Environmental and biological factors are joint drivers of mercury biomagnification in subarctic lake food webs along a climate and productivity gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146261. [PMID: 34030265 DOI: 10.1016/j.scitotenv.2021.146261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Subarctic lakes are getting warmer and more productive due to the joint effects of climate change and intensive land-use practices (e.g. forest clear-cutting and peatland ditching), processes that potentially increase leaching of peat- and soil-stored mercury into lake ecosystems. We sampled biotic communities from primary producers (algae) to top consumers (piscivorous fish), in 19 subarctic lakes situated on a latitudinal (69.0-66.5° N), climatic (+3.2 °C temperature and +30% precipitation from north to south) and catchment land-use (pristine to intensive forestry areas) gradient. We first tested how the joint effects of climate and productivity influence mercury biomagnification in food webs focusing on the trophic magnification slope (TMS) and mercury baseline (THg baseline) level, both derived from linear regression between total mercury (log10THg) and organism trophic level (TL). We examined a suite of environmental and biotic variables thought to explain THg baseline and TMS with stepwise generalized multiple regression models. Finally, we assessed how climate and lake productivity affect the THg content of top predators in subarctic lakes. We found biomagnification of mercury in all studied lakes, but with variable TMS and THg baseline values. In stepwise multiple regression models, TMS was best explained by negative relationships with food chain length, climate-productivity gradient, catchment properties, and elemental C:N ratio of the top predator (full model R2 = 0.90, p < 0.001). The model examining variation in THg baseline values included the same variables with positive relationships (R2 = 0.69, p = 0.014). Mass-standardized THg content of a common top predator (1 kg northern pike, Esox lucius) increased towards warmer and more productive lakes. Results indicate that increasing eutrophication via forestry-related land-use activities increase the THg levels at the base of the food web and in top predators, suggesting that the sources of nutrients and mercury should be considered in future bioaccumulation and biomagnification studies.
Collapse
Affiliation(s)
- Natalia Kozak
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad veg 80, 2480 Koppang, Norway.
| | - Salla A Ahonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ossi Keva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Kjartan Østbye
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, Anne Evenstad veg 80, 2480 Koppang, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sami J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Brian Hayden
- Biology Department, Canadian Rivers Institute, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Kimmo K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland; Kilpisjärvi Biological Station, University of Helsinki, Käsivarrentie 14622, 99490 Kilpisjärvi, Finland
| |
Collapse
|
15
|
Minet A, Manceau A, Valada-Mennuni A, Brault-Favrou M, Churlaud C, Fort J, Nguyen T, Spitz J, Bustamante P, Lacoue-Labarthe T. Mercury in the tissues of five cephalopods species: First data on the nervous system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143907. [PMID: 33333333 DOI: 10.1016/j.scitotenv.2020.143907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg), one of the elements most toxic to biota, accumulates within organisms throughout their lifespan and biomagnifies along trophic chain. Due to their key role in marine systems, cephalopods constitute a major vector of Hg in predators. Further, they grow rapidly and display complex behaviours, which can be altered by neurotoxic Hg. This study investigated Hg concentrations within 81 cephalopod specimens sampled in the Bay of Biscay, which belonged to five species: Eledone cirrhosa, Sepia officinalis, Loligo vulgaris, Todaropsis eblanae and Illex coindetii. Hg concentrations were measured in the digestive gland, the mantle muscle and the optic lobes of the brain. The digestive gland and the mantle were tissues with the most concentrated Hg among all species considered (up to 1.50 μg.g-1 dw), except E. cirrhosa. This benthic cephalopod had 1.3-fold higher Hg concentrations in the brain (up to 1.89 μg.g-1 dw) than in the mantle, while other species had 2-fold lower concentrations of Hg in the brain than in the mantle. Brain-Hg concentrations can be predicted from muscle-Hg concentrations for a given species, which facilitates the assessment of Hg toxicokinetics in cephalopods. In the most contaminated E. cirrhosa individual, the chemical form of Hg in its digestive gland, mantle muscle and optic lobes, was determined using High energy-Resolution X-ray Absorption Near Edge Structure (HR XANES) spectroscopy. In the digestive gland, 33 ± 11% of total Hg was inorganic Hg speciated as a dicysteinate complex (Hg(Cys)2), which suggested that the demethylation of dietary MeHg occurs in this organ. All Hg found in the mantle muscle and the optic lobes is methylated and bound to one cysteinyl group (MeHgCys complex), which implies that dietary MeHg is distributed to these tissues via the bloodstream. These results raised the questions regarding interspecific differences observed regarding Hg brain concentrations and the possible effect of Hg on cephalopod functional brain plasticity and behaviour.
Collapse
Affiliation(s)
- Antoine Minet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Alain Manceau
- Univ. Grenoble Alpes, ISTerre, CNRS, CS 40700, 38058 Grenoble, France
| | - Anaïs Valada-Mennuni
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Thành Nguyen
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Université des Sciences et des Technologies de Hanoï (USTH), 18 Hoàng Quốc Việt, Nghĩa Đô, Cầu Giấy, Hà Nội, Viet Nam
| | - Jérôme Spitz
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 5 Allées de l'Océan, 17000 La Rochelle, France; Observatoire PELAGIS, UMS 3462 CNRS -La Rochelle Université, 5 Allées de l'Océan, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| |
Collapse
|
16
|
Zhang Z, Wang WX, Zheng N, Cao Y, Xiao H, Zhu R, Guan H, Xiao H. Methylmercury biomagnification in aquatic food webs of Poyang Lake, China: Insights from amino acid signatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:123700. [PMID: 33045461 DOI: 10.1016/j.jhazmat.2020.123700] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
As the dominant mercury species in fish, methylmercury (MeHg) biomagnifies during its trophic transfer through aquatic food webs. MeHg is known to bind to cysteine, forming the complex of MeHg-cysteine. However, relationship between MeHg and cysteine in large-scale food webs has not been explored and contrasted with MeHg biomagnification models. Here, we quantified the compound-specific nitrogen isotopic analysis of amino acids (CSIA-AA), MeHg, and amino acid composition in aquatic organisms of Poyang Lake, the largest freshwater lake in China. The trophic positions (TPAA) of organisms ranged from 1.0 ± 0.1-3.7 ± 0.2 based on CSIA-AA approach. The trophic magnification factor (TMF) of MeHg, derived from the regression slope of Log-transformed MeHg in organisms upon their TPAA for the entire food web was 9.5 ± 0.5. Significantly positive regression between MeHg and cysteine (R2 = 0.64, p < 0.01) was documented, suggesting MeHg-cysteine complex may potentially play a critical role in the bioaccumulation of MeHg. Furthermore, TMFs of MeHg calculated with and without cysteine normalization compared well (7.7-8.7) when excluding primary producers. Our results implied that MeHg may biomagnify as the complex of MeHg-cysteine and contribute to our understanding of MeHg trophic transfer at the molecular level.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China; School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Nengjian Zheng
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Yansheng Cao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Hongwei Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Renguo Zhu
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China
| | - Hui Guan
- The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Huayun Xiao
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
17
|
Hasselberg AE, Wessels L, Aakre I, Reich F, Atter A, Steiner-Asiedu M, Amponsah S, Pucher J, Kjellevold M. Composition of nutrients, heavy metals, polycyclic aromatic hydrocarbons and microbiological quality in processed small indigenous fish species from Ghana: Implications for food security. PLoS One 2020; 15:e0242086. [PMID: 33180860 PMCID: PMC7660496 DOI: 10.1371/journal.pone.0242086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The triple burden of malnutrition is an incessant issue in low- and middle-income countries, and fish has the potential to mitigate this burden. In Ghana fish is a central part of the diet, but data on nutrients and contaminants in processed indigenous fish species, that are often eaten whole, are missing. Samples of smoked, dried or salted Engraulis encrasicolus (European anchovy), Brachydeuterus auritus (bigeye grunt), Sardinella aurita (round sardinella), Selene dorsalis (African moonfish), Sierrathrissa leonensis (West African (WA) pygmy herring) and Tilapia spp. (tilapia) were collected from five different regions in Ghana. Samples were analyzed for nutrients (crude protein, fat, fatty acids, several vitamins, minerals, and trace elements), microbiological quality (microbial loads of total colony counts, E. coli, coliforms, and Salmonella), and contaminants (PAH4 and heavy metals). Except for tilapia, the processed small fish species had the potential to significantly contribute to the nutrient intakes of vitamins, minerals, and essential fatty acids. High levels of iron, mercury and lead were detected in certain fish samples, which calls for further research and identification of anthropogenic sources along the value chains. The total cell counts in all samples were acceptable; Salmonella was not detected in any sample and E. coli only in one sample. However, high numbers of coliform bacteria were found. PAH4 in smoked samples reached high concentrations up to 1,300 μg/kg, but in contrast salted tilapia samples had a range of PAH4 concentration of 1 μg/kg to 24 μg/kg. This endpoint oriented study provides data for the nutritional value of small processed fish as food in Ghana and also provides information about potential food safety hazards. Future research is needed to determine potential sources of contamination along the value chains in different regions, identify critical points, and develop applicable mitigation strategies to improve the quality and safety of processed small fish in Ghana.
Collapse
Affiliation(s)
| | - Laura Wessels
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Inger Aakre
- Institute of Marine Research, Bergen, Norway
| | - Felix Reich
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Amy Atter
- Council for Scientific and Industrial Research, Food Research Institute, Accra, Ghana
| | - Matilda Steiner-Asiedu
- Department of Nutrition and Food Science, School of Biological Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Amponsah
- Council for Scientific and Industrial Research, Food Research Institute, Accra, Ghana
- Department of Fisheries and Water Resources, University of Energy and Natural Resources, Sunyani, Ghana
| | - Johannes Pucher
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | |
Collapse
|
18
|
Martyniuk MAC, Couture P, Tran L, Beaupré L, Urien N, Power M. A seasonal comparison of trace metal concentrations in the tissues of Arctic charr (Salvelinus alpinus) in Northern Québec, Canada. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1327-1346. [PMID: 32794028 DOI: 10.1007/s10646-020-02248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Ecotoxicological research detailing trace metal contamination and seasonal variation in the tissues of northern fishes such as Arctic charr (Salvelinus alpinus) has been poorly represented in the literature beyond examination of mercury. In an effort to address this, anadromous Arctic charr were collected from the Deception River watershed in the late summer and post-winter season, before quantifying seasonal and organotropic variations in dorsal muscle and liver concentrations of arsenic, cadmium, chromium, copper, nickel, lead, and zinc. Potential linkages with biological variables (fork length, age, and somatic condition) and indicators of feeding behavior (δ13C and δ15N) were also assessed. Trace metal organotropism favouring elevation in liver tissue concentrations was exhibited by cadmium, copper, nickel and zinc, while arsenic, chromium and lead exhibited no significant organotropic variation. Seasonal differences in concentrations were metal and tissue dependent, but generally increased in tissues collected from post-winter sampled Arctic charr. Significant correlations with biological and trophic descriptors were also determined to be element and tissue dependent. These parameters, in addition to season, were incorporated into multi-predictor variable models, where variations in trace metal concentration data were often best explained when season, somatic condition, and trophic descriptors were included. These variables were also of greatest relative importance across all considered trace metals and tissue types. These findings suggest that seasonally linked processes have the greatest influence on trace metal concentrations in anadromous Arctic charr. Future metal-related research on Arctic charr and other northern fish species should further consider these variables when evaluating elemental accumulation.
Collapse
Affiliation(s)
- Mackenzie Anne Clifford Martyniuk
- Institut National de la Recherche Scientifique-Centre Eau, Terre, Environnement, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| | - Patrice Couture
- Institut National de la Recherche Scientifique-Centre Eau, Terre, Environnement, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Lilian Tran
- Nunavik Research Centre, P.O. Box 179, Kuujjuaq, Québec, QC, J0M 1C0, Canada
| | - Laurie Beaupré
- Makivk Corporation, 1111 Boulevard Dr. Frederik-Philips, Saint-Laurent, Québec, QC, H4M 2x6, Canada
| | - Nastassia Urien
- Institut National de la Recherche Scientifique-Centre Eau, Terre, Environnement, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Michael Power
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
19
|
Martyniuk MAC, Couture P, Tran L, Beaupré L, Power M. Seasonal variation of total mercury and condition indices of Arctic charr (Salvelinus alpinus) in Northern Québec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139450. [PMID: 32534279 DOI: 10.1016/j.scitotenv.2020.139450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
The winter ecology of anadromous Arctic charr, an important fish species for Indigenous populations, has remained poorly detailed in the literature beyond descriptions of seasonal fasting and resulting declines in condition. However, prolonged periods of reduced feeding can have significant consequences for other variables, such as tissue contaminant levels. To more thoroughly detail seasonal changes, biological information (fork length, total weight, age, sex, somatic condition), stable isotopes (δ13C, % carbon, δ15N, % nitrogen), dorsal muscle % lipid, caloric densities, and total mercury (THg) concentrations were assessed in anadromous Arctic charr collected from Deception Bay, Canada, during the summer and over-wintering periods. Significant reductions in somatic condition, total weight, and % nitrogen, consistent with prolonged periods of fasting, were found for post-winter captured Arctic charr, but % lipid and caloric densities were significantly higher in these fish. THg also varied seasonally and was significantly higher in summer collected tissue. When tested individually via linear regression, significant relationships were seasonally dependent, but limited in number. All previously mentioned parameters were then incorporated into multi-variable models which better explained variations in the data. While there was no clear best model for explaining the % lipid values, caloric densities, and THg, season, condition, and stable isotope values (% carbon and % nitrogen) were the best indicators of % lipid content and caloric densities. THg concentrations were best explained by total weight, somatic condition, and δ13C. Seasonal variation in fish condition measures and THg may be indicative of condition selective mortality that yields apparent improvement through the disproportionate removal of poorer conditioned fish from the population during the over-wintering period. This hypothesis was further supported by mortality estimates and the results of the multi-predictor variable models. Collectively, this research highlights the importance of understanding seasonal dynamics for anadromous Arctic charr populations.
Collapse
Affiliation(s)
| | - Patrice Couture
- Institut National de la Recherche Scientifique - Centre Eau Terre Environnement, 490 Rue de la Couronne, Québec, Canada, G1K 9A9
| | - Lilian Tran
- Nunavik Research Centre - Makivik Corporation, P.O. Box 179, Kuujjuaq, Québec, Canada, J0M 1C0
| | - Laurie Beaupré
- Makivik Corporation, 1111 Boulevard Dr. Frederik-Philips, Saint-Laurent, Québec, Canada, H4M 2X6
| | - Michael Power
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada, N2L 3G1
| |
Collapse
|
20
|
Wu P, Zakem EJ, Dutkiewicz S, Zhang Y. Biomagnification of Methylmercury in a Marine Plankton Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5446-5455. [PMID: 32054263 DOI: 10.1021/acs.est.9b06075] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Methylmercury is greatly bioconcentrated and biomagnified in marine plankton ecosystems, and these communities form the basis of marine food webs. Therefore, the evaluation of the potential exposure of methylmercury to higher trophic levels, including humans, requires a better understanding of its distribution in the ocean and the factors that control its biomagnification. In this study, a coupled physical/ecological model is used to simulate the trophic transfer of monomethylmercury (MMHg) in a marine plankton ecosystem. The model includes phytoplankton, a microbial community, herbivorous zooplankton (HZ), and carnivorous zooplankton (CZ). The model captures both shorter food chains in oligotrophic regions, with small HZ feeding on small phytoplankton, and longer chains in higher nutrient conditions, with larger HZ feeding on larger phytoplankton and larger CZ feeding on larger HZ. In the model, trophic dilution occurs in the food webs that involve small zooplankton, as the grazing fluxes of small zooplankton are insufficient to accumulate more MMHg in themselves than in their prey. The model suggests that biomagnification is more prominent in large zooplankton and that the microbial community plays an important role in the trophic transfer of MMHg. Sensitivity analyses show that with increasing body size, the sensitivity of the trophic magnification ratio to grazing, mortality rates, and food assimilation efficiency (AEC) increases, while the sensitivity to excretion rates decreases. More predation or a longer zooplankton lifespan may lead to more prominent biomagnification, especially for large species. Because lower AEC results in more predation, modeled ratios of MMHg concentrations between large plankton are doubled or even tripled when the AEC decreases from 50% to 10%. This suggests that the biomagnification of large zooplankton is particularly sensitive to food assimilation efficiency.
Collapse
Affiliation(s)
- Peipei Wu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Emily J Zakem
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089 United States
| | - Stephanie Dutkiewicz
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 United States
| | - Yanxu Zhang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
21
|
Yu X, Khan S, Khan A, Tang Y, Nunes LM, Yan J, Ye X, Li G. Methyl mercury concentrations in seafood collected from Zhoushan Islands, Zhejiang, China, and their potential health risk for the fishing community: Capsule: Methyl mercury in seafood causes potential health risk. ENVIRONMENT INTERNATIONAL 2020; 137:105420. [PMID: 32070806 DOI: 10.1016/j.envint.2019.105420] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Seafood is an important exposure route for mercury, especially methyl mercury (MeHg). Therefore, we quantified MeHg concentrations in 69 species of seafood including fish, crustaceans and mollusks collected from Zhoushan Islands, China. MeHg concentrations ranged from <0.0020-0.2098 µg/g and did not exceed the threshold limit of 1 µg/g in all sampled species, However, MeHg concentrations significantly differed among fish species (0.0085-0.2098 mg kg-1), crustaceans (<0.002-0.0221 mg kg-1) and mollusks (<0.002-0.1389 mg kg-1). The trophic magnification factor (TMF) was determined on the basis of the trophic level (TL). The TL values for fish, crustaceans and mollusks were above 3 when the TMF values were >1. The daily dietary intake and hazard quotient for MeHg were calculated to estimate exposure and health risk through seafood consumption by local inhabitants. The calculated HQ was lower than 1, thus indicating that the exposure was below the risk threshold of related chronic diseases. However, higher MeHg concentrations in fish species such as Scoliodon sorrakowah and Auxis thazard are concerning and may pose health risk through continuous consumption by local inhabitants.
Collapse
Affiliation(s)
- Xinwei Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Sardar Khan
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China; Department of Environmental Science, University of Peshawar, Peshawar 25120, Pakistan.
| | - Anwarzeb Khan
- Department of Environmental Science, University of Peshawar, Peshawar 25120, Pakistan; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | - Yuting Tang
- School of Geographical Sciences, Faculty of Science and Engineering, The University of Nottingham, Ningbo 315100, China
| | - Luis M Nunes
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China; Faculty of Sciences and Technology, Civil Engineering Research and Innovation for Sustainability Center, University of Algarve, Faro, Portugal
| | - Jianbo Yan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan 316021, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou 310058, China.
| | - Gang Li
- CAS Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800, China.
| |
Collapse
|
22
|
Testing the Use of Standardized Laboratory Tests to Infer Hg Bioaccumulation in Indigenous Benthic Organisms of Lake Maggiore (NW Italy). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10061970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chronic toxicity of mercury essentially derives from its strong tendency to biomagnify along food webs. For this reason, the European regulatory framework establishes an environmental quality standard for Hg based on the total Hg concentration in prey fish to protect top predators. A considerable part of the Hg burden of prey fish can come from the ingestion of benthic organisms that, in the presence of contaminated sediments, may remobilize substantial amounts of Hg towards the pelagic food webs. The present study evaluated whether Hg accumulation in assemblages of indigenous chironomids and oligochaetes could be predicted using standardized laboratory bioaccumulation tests with Chironomus riparius and Lumbriculus variegatus. Indigenous chironomids and oligochaetes were recovered at different sites in a lake suffering from legacy Hg pollution and analyzed for total Hg content. Sediment aliquots from the same sites were used to assess Hg bioaccumulation using laboratory-reared C. riparius and L. variegatus. Mercury concentrations in indigenous versus laboratory organisms showed a good correlation (p < 0.05; Spearman correlation test) only in the case of C. riparius versus indigenous chironomids, suggesting the possibility of using linear regressions to predict Hg accumulation by these benthic invertebrates. Further research needs and caveats as to the applicability of the present results to other aquatic systems are identified and discussed.
Collapse
|
23
|
Comparing total mercury concentrations of northern Dolly Varden, Salvelinus malma malma, in two Canadian Arctic rivers 1986–1988 and 2011–2013. Polar Biol 2019. [DOI: 10.1007/s00300-019-02476-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Barst BD, Drevnick PE, Muir DCG, Gantner N, Power M, Köck G, Chéhab N, Swanson H, Rigét F, Basu N. Screening-level risk assessment of methylmercury for non-anadromous Arctic char (Salvelinus alpinus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:489-502. [PMID: 30561040 DOI: 10.1002/etc.4341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Non-anadromous forms of Arctic char (Salvelinus alpinus), those that are restricted to lakes and rivers, typically have higher mercury (Hg) concentrations than anadromous forms, which migrate to and from the sea. Using tissue burden data from the literature and our own analyses, we performed a screening-level risk assessment of methylmercury (MeHg) for non-anadromous Arctic char. Our assessment included 1569 fish distributed across 83 sites. Site-specific mean total Hg concentrations in non-anadromous Arctic char muscle varied considerably from 0.01 to 1.13 µg/g wet weight, with 21% (17 of 83 sites) meeting or exceeding a threshold-effect level in fish of 0.33 µg/g wet weight, and 13% (11 of 83 sites) meeting or exceeding a threshold-effect level in fish of 0.5 µg/g wet weight. Of the sites in exceedance of the 0.33-µg/g threshold, 7 were located in Greenland and 10 in Canada (Labrador, Nunavut, and Yukon). All but one of these sites were located in interfrost or permafrost biomes. Maximum total Hg concentrations exceeded 0.33 µg/g wet weight at 53% of sites (40 of the 75 sites with available maximum Hg values), and exceeded 0.5 µg/g wet weight at 27% (20 of 75 sites). Collectively, these results indicate that certain populations of non-anadromous Arctic char located mainly in interfrost and permafrost regions may be at risk for MeHg toxicity. This approach provides a simple statistical assessment of MeHg risk to non-anadromous Arctic char, and does not indicate actual effects. We highlight the need for studies that evaluate the potential toxic effects of MeHg in non-anadromous Arctic char, as well as those that aid in the development of a MeHg toxic-effect threshold specific to this species of fish. Environ Toxicol Chem 2019;38:489-502. © 2018 SETAC.
Collapse
Affiliation(s)
- Benjamin D Barst
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, Québec, Canada
- Water and Environmental Research Center, Alaska Stable Isotope Facility, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Paul E Drevnick
- Centre Eau Terre et Environnement, Institut National de la Recherche Scientifique, Québec, Québec, Canada
- Environmental Monitoring and Science Division, Alberta Environment and Parks, Calgary, Alberta, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment Canada, Burlington, Ontario, Canada
| | - Nikolaus Gantner
- Environmental Science Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Günter Köck
- Institute for Interdisciplinary Mountain Research, Innsbruck, Austria
| | - Nathalie Chéhab
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, Québec, Canada
| | - Heidi Swanson
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Frank Rigét
- Arctic Research Centre, Department of Bioscience, Faculty of Science and Technology, Aarhus University, Roskilde, Denmark
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montréal, Québec, Canada
| |
Collapse
|
25
|
Reinhart BL, Kidd KA, Curry RA, O'Driscoll NJ, Pavey SA. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary. J Environ Sci (China) 2018; 68:41-54. [PMID: 29908743 DOI: 10.1016/j.jes.2018.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Although estuaries are critical habitats for many aquatic species, the spatial trends of toxic methylmercury (MeHg) in biota from fresh to marine waters are poorly understood. Our objective was to determine if MeHg concentrations in biota changed along a salinity gradient in an estuary. Fourspine Stickleback (Apeltes quadracus), invertebrates (snails, amphipods, and chironomids), sediments, and water were collected from ten sites along the Saint John River estuary, New Brunswick, Canada in 2015 and 2016, with salinities ranging from 0.06 to 6.96. Total mercury (proxy for MeHg) was measured in whole fish and MeHg was measured in a subset of fish, pooled invertebrates, sediments, and water. Stable sulfur (δ34S), carbon (δ13C), and nitrogen (δ15N) isotope values were measured to assess energy sources (S, C) and relative trophic level (N). There were increases in biotic δ13C and δ34S from fresh to more saline sites and these measures were correlated with salinity. Though aqueous MeHg was higher at the freshwater than more saline sites, only chironomid MeHg increased significantly with salinity. In the Saint John River estuary, there was little evidence that MeHg and its associated risks increased along a salinity gradient.
Collapse
Affiliation(s)
- Bethany L Reinhart
- Department of Biology and Canadian Rivers Institute, University of New Brunswick Saint John, Saint John, New Brunswick E2L4L5, Canada
| | - Karen A Kidd
- Department of Biology and Canadian Rivers Institute, University of New Brunswick Saint John, Saint John, New Brunswick E2L4L5, Canada; Department of Biology and School of Geography & Earth Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - R Allen Curry
- Department of Biology, Forestry and Environmental Management, and Canadian Rivers Institute, University of New Brunswick, Fredericton, New Brunswick E3B4A3, Canada
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Sciences, Acadia University, Wolfville, Nova Scotia B4P2R6, Canada
| | - Scott A Pavey
- Department of Biology and Canadian Rivers Institute, University of New Brunswick Saint John, Saint John, New Brunswick E2L4L5, Canada
| |
Collapse
|
26
|
Mandich M. Ranked effects of heavy metals on marine bivalves in laboratory mesocosms: A meta-analysis. MARINE POLLUTION BULLETIN 2018; 131:773-781. [PMID: 29887005 DOI: 10.1016/j.marpolbul.2018.04.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Bivalves are commonly used as biomonitors for heavy metal pollution in marine environments because they accumulate heavy metal ions quickly, are sessile, abundant, and widely dispersed, and adult mortality from contamination is rare. However, the breadth of experiments used to measure the effect of heavy metal contamination can obscure general trends. It is unclear which heavy metals cause the most severe effects, how severity varies with exposure concentration and duration, and whether effects vary with level of biological organization. I conducted a meta-analysis of 48 mesocosm studies on the effects of heavy metal ions - silver, cadmium, copper, mercury, lead, and zinc - on marine bivalves. The ordering of effect sizes was Pb > Hg > Cu > Zn > Cd > Ag. The significance and direction of concentration and duration as moderators depended on the metal and the biological level. Future studies should consider non-linear effects over time and concentration, and measure both bioaccumulation and effect of the metals being studies.
Collapse
Affiliation(s)
- McKenzie Mandich
- University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637, USA.
| |
Collapse
|
27
|
Fan S, Wang B, Liu H, Gao S, Li T, Wang S, Liu Y, Liu X, Wan Y. Trophodynamics of Organic Pollutants in Pelagic and Benthic Food Webs of Lake Dianchi: Importance of Ingested Sediment As Uptake Route. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14135-14143. [PMID: 29161512 DOI: 10.1021/acs.est.7b03681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Habitat is of great importance in determining the trophic transfer of pollutants in freshwater ecosystems; however, the major factors influencing chemical trophodynamics in pelagic and benthic food webs remain unclear. This study investigated the levels of p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), polycyclic aromatic hydrocarbons (PAHs), and substituted PAHs (s-PAHs) in 2 plankton species, 6 invertebrate species, and 10 fish species collected from Lake Dianchi in southern China. Relatively high concentrations of PAHs and s-PAHs were detected with total concentrations of 11.4-1400 ng/g wet weight (ww) and 5.3-115 ng/g ww, respectively. Stable isotope analysis and stomach content analysis were applied to quantitatively determine the trophic level of individual organisms and discriminate between pelagic and benthic pathways, and the trophodynamics of the detected compounds in the two food webs were assessed. P,p'-DDE was found to exhibit relatively higher trophic magnification rate in the pelagic food web than in the benthic food web. In contrast, PAHs and s-PAHs exhibited greater dilution rates along the trophic levels in the pelagic food web. The lower species differences of pollutants accumulated in benthic organisms compared to pelagic organisms is attributable to extra uptake via ingested sediment in benthos. The average uptake proportions of PAHs and s-PAHs via ingested sediment in benthic biotas were estimated to be 31-77%, and that of p,p'-DDE was 46%. The uptake routes are of importance for assessing the trophic magnification potentials of organic pollutants, especially in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Senrong Fan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Beili Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Hang Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Tong Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| | - Shuran Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, 430072, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences Ministry of Education, College of Environmental Science and Engineering, Peking University , Beijing 100871, China
| | - Xueqin Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, 430072, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
28
|
Davis RP, Sullivan SMP, Stefanik KC. Reductions in fish-community contamination following lowhead dam removal linked more to shifts in food-web structure than sediment pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:671-680. [PMID: 28850935 DOI: 10.1016/j.envpol.2017.07.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Recent increases in dam removals have prompted research on ecological and geomorphic river responses, yet contaminant dynamics following dam removals are poorly understood. We investigated changes in sediment concentrations and fish-community body burdens of mercury (Hg), selenium (Se), polychlorinated biphenyls (PCB), and chlorinated pesticides before and after two lowhead dam removals in the Scioto and Olentangy Rivers (Columbus, Ohio). These changes were then related to documented shifts in fish food-web structure. Seven study reaches were surveyed from 2011 to 2015, including controls, upstream and downstream of the previous dams, and upstream restored vs. unrestored. For most contaminants, fish-community body burdens declined following dam removal and converged across study reaches by the last year of the study in both rivers. Aldrin and dieldrin body burdens in the Olentangy River declined more rapidly in the upstream-restored vs. the upstream-unrestored reach, but were indistinguishable by year three post dam removal. No upstream-downstream differences were observed in body burdens in the Olentangy River, but aldrin and dieldrin body burdens were 138 and 148% higher, respectively, in downstream reaches than in upstream reaches of the Scioto River following dam removal. The strongest relationships between trophic position and body burdens were observed with PCBs and Se in the Scioto River, and with dieldrin in the Olentangy River. Food-chain length - a key measure of trophic structure - was only weakly related to aldrin body burdens, and unrelated to other contaminants. Overall, we demonstrate that lowhead dam removal may effectively reduce ecosystem contamination, largely via shifts in fish food-web dynamics versus sediment contaminant concentrations. This study presents some of the first findings documenting ecosystem contamination following dam removal and will be useful in informing future dam removals.
Collapse
Affiliation(s)
- Robert P Davis
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States.
| | - S Mažeika P Sullivan
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States
| | - Kay C Stefanik
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, United States
| |
Collapse
|
29
|
Grant CJ, Lutz AK, Kulig AD, Stanton MR. Fracked ecology: Response of aquatic trophic structure and mercury biomagnification dynamics in the Marcellus Shale Formation. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1739-1750. [PMID: 27743207 DOI: 10.1007/s10646-016-1717-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Unconventional natural gas development and hydraulic fracturing practices (fracking) are increasing worldwide due to global energy demands. Research has only recently begun to assess fracking impacts to surrounding environments, and very little research is aimed at determining effects on aquatic biodiversity and contaminant biomagnification. Twenty-seven remotely-located streams in Pennsylvania's Marcellus Shale basin were sampled during June and July of 2012 and 2013. At each stream, stream physiochemical properties, trophic biodiversity, and structure and mercury levels were assessed. We used δ15N, δ13C, and methyl mercury to determine whether changes in methyl mercury biomagnification were related to the fracking occurring within the streams' watersheds. While we observed no difference in rates of biomagnificaion related to within-watershed fracking activities, we did observe elevated methyl mercury concentrations that were influenced by decreased stream pH, elevated dissolved stream water Hg values, decreased macroinvertebrate Index for Biotic Integrity scores, and lower Ephemeroptera, Plecoptera, and Trichoptera macroinvertebrate richness at stream sites where fracking had occurred within their watershed. We documented the loss of scrapers from streams with the highest well densities, and no fish or no fish diversity at streams with documented frackwater fluid spills. Our results suggest fracking has the potential to alter aquatic biodiversity and methyl mercury concentrations at the base of food webs.
Collapse
Affiliation(s)
| | - Allison K Lutz
- Biology Department, Georgia Southern University, Statesboro, GA, 30460, USA
| | - Aaron D Kulig
- Juniata College, von Liebig Center for Science, Huntingdon, PA, 16652, USA
| | | |
Collapse
|
30
|
Pomerleau C, Stern GA, Pućko M, Foster KL, Macdonald RW, Fortier L. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 551-552:92-100. [PMID: 26874765 DOI: 10.1016/j.scitotenv.2016.01.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.
Collapse
Affiliation(s)
- Corinne Pomerleau
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Greenland Institute of Natural Resources, Kivioq 2, Nuuk 3900, Greenland.
| | - Gary A Stern
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Monika Pućko
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Robie W Macdonald
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Louis Fortier
- Québec-Océan, Département de Biologie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
31
|
Bubach DF, Macchi PJ, Pérez Catán S. Influence of volcanic activity and anthropic impact in the trace element contents of fishes from the North Patagonia in a global context. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:710. [PMID: 26511851 DOI: 10.1007/s10661-015-4910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
The elemental contents in salmonid muscle and liver tissues from different lakes around the world were investigated. Fish from pristine areas were compared with those fishes from impacted environments, both by volcanic and anthropogenic activities. Within the data, special attention was given to fishes from the Andean Patagonian lakes in two contexts: local and global. The local evaluation includes geological and limnological parameters and diet composition which were obtained through a data search from published works. The volcanic influence in Andean Patagonian lakes was mainly observed by an increase of cesium (Cs) and rubidium (Rb) concentrations in fishes, influenced by calcium (Ca) and potassium (K) water contents. Zinc (Zn), selenium (Se), iron (Fe), silver (Ag), and mercury (Hg) contents in fishes showed the effect of the geological substratum, and some limnological parameters. The diet composition was another factor which affects the elemental concentration in fishes. The analyzed data showed that the fishes from Andean Patagonian lakes had elemental content patterns corresponding to those of pristine regions with volcanic influence. Selenium and Ag contents from Andean Patagonian fishes were the highest reported.
Collapse
Affiliation(s)
- D F Bubach
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina.
| | - P J Macchi
- Grupo de Evaluación y Manejo de Recursos Ícticos, Centro Regional Universitario Bariloche, CRUB, Universidad Nacional del Comahue, UNC, Neuquén, Argentina
| | - S Pérez Catán
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, CNEA, Av. Bustillo km 9.5, 8400, Bariloche, Argentina
| |
Collapse
|
32
|
Balogh SJ, Tsui MTK, Blum JD, Matsuyama A, Woerndle GE, Yano S, Tada A. Tracking the fate of mercury in the fish and bottom sediments of Minamata Bay, Japan, using stable mercury isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5399-406. [PMID: 25877383 DOI: 10.1021/acs.est.5b00631] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Between 1932 and 1968, industrial wastewater containing methylmercury (MeHg) and other mercury (Hg) compounds was discharged directly into Minamata Bay, Japan, seriously contaminating the fishery. Thousands of people who consumed tainted fish and shellfish developed a neurological disorder now known as Minamata disease. Concentrations of total mercury (THg) in recent fish and sediment samples from Minamata Bay remain higher than those in other Japanese coastal waters, and elevated concentrations of THg in sediments in the greater Yatsushiro Sea suggest that Hg has moved beyond the bay. We measured stable Hg isotope ratios in sediment cores from Minamata Bay and the southern Yatsushiro Sea and in archived fish from Minamata Bay dating from 1978 to 2013. Values of δ(202)Hg and Δ(199)Hg in Yatsushiro Sea surface sediments were indistinguishable from those in highly contaminated Minamata Bay sediments but distinct from and nonoverlapping with values in background (noncontaminated) sediments. We conclude that stable Hg isotope data can be used to track Minamata Bay Hg as it moves into the greater Yatsushiro Sea. In addition, our data suggest that MeHg is produced in bottom sediments and enters the food web without substantial prior photodegradation, possibly in sediment porewaters or near the sediment-water interface.
Collapse
Affiliation(s)
- Steven J Balogh
- †Moyau Consulting Engineering and Science, St. Paul, Minnesota 55116, United States
- ‡Metropolitan Council Environmental Services, St. Paul, Minnesota 55106, United States
| | - Martin Tsz-Ki Tsui
- §Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | | | - Akito Matsuyama
- ⊥National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| | - Glenn E Woerndle
- §Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Shinichiro Yano
- #Kyushu University, Faculty of Engineering, Fukuoka, Fukuoka 819-0395, Japan
| | - Akihide Tada
- ∇Nagasaki University, Faculty of Engineering, Nagasaki, Nagasaki 852-8521, Japan
| |
Collapse
|
33
|
Lescord GL, Kidd KA, Kirk JL, O'Driscoll NJ, Wang X, Muir DCG. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:195-205. [PMID: 24909711 DOI: 10.1016/j.scitotenv.2014.04.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 04/21/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ(13)C) and nitrogen (δ(15)N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ(13)C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ(15)N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota.
Collapse
Affiliation(s)
- Gretchen L Lescord
- University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6, Canada.
| | - Karen A Kidd
- University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6, Canada
| | - Jane L Kirk
- Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | | | - Xiaowa Wang
- Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| | - Derek C G Muir
- Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
34
|
Clayden MG, Arsenault LM, Kidd KA, O'Driscoll NJ, Mallory ML. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:206-215. [PMID: 25149682 DOI: 10.1016/j.scitotenv.2014.07.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ(13)C and δ(15)N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web - using the slope of log MeHg versus δ(15)N - was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance.
Collapse
Affiliation(s)
- Meredith G Clayden
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5, Canada.
| | - Lilianne M Arsenault
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5, Canada; Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6, Canada; Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Karen A Kidd
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
35
|
Evans MS, Muir DCG, Keating J, Wang X. Anadromous char as an alternate food choice to marine animals: a synthesis of Hg concentrations, population features and other influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:175-194. [PMID: 25467220 DOI: 10.1016/j.scitotenv.2014.10.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/06/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990 s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004-2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically <0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ(15)N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ(13)C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990 s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and marine vertebrates in traditional diets. The known information on anadromous char is reviewed including population features, habitat, and harvests. Future Hg trend monitoring should focus on specific locations and harvest areas within these areas to better assess trends and influencing factors.
Collapse
Affiliation(s)
- Marlene S Evans
- Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada.
| | - Derek C G Muir
- Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6, Canada
| | - Jonathan Keating
- Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5, Canada
| | - Xiaowa Wang
- Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6, Canada
| |
Collapse
|
36
|
McMeans BC, Arts MT, Fisk AT. Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:216-225. [PMID: 24630590 DOI: 10.1016/j.scitotenv.2014.01.128] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/21/2014] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Benthic and pelagic food web components in Cumberland Sound, Canada were explored as sources of total mercury (THg) to Greenland Sharks (Somniosus microcephalus) via both bottom-up food web transfer and top-down shark feeding behavior. Log10THg increased significantly with δ(15)N and trophic position from invertebrates (0.01 ± 0.01 μg · g(-1) [113 ± 1 ng · g(-1)] dw in copepods) to Greenland Sharks (3.54 ± 1.02 μg · g(-1)). The slope of the log10THg vs. δ(15)N linear regression was higher for pelagic compared to benthic food web components (excluding Greenland Sharks, which could not be assigned to either food web), which resulted from THg concentrations being higher at the base of the benthic food web (i.e., in benthic than pelagic primary consumers). However, feeding habitat is unlikely to consistently influence shark THg exposure in Cumberland Sound because THg concentrations did not consistently differ between benthic and pelagic shark prey. Further, size, gender and feeding behavior (inferred from stable isotopes and fatty acids) were unable to significantly explain THg variability among individual Greenland Sharks. Possible reasons for this result include: 1) individual sharks feeding as generalists, 2) high overlap in THg among shark prey, and 3) differences in turnover time between ecological tracers and THg. This first assessment of Greenland Shark THg within an Arctic food web revealed high concentrations consistent with biomagnification, but low ability to explain intra-specific THg variability. Our findings of high THg levels and consumption of multiple prey types, however, suggest that Greenland Sharks acquire THg through a variety of trophic pathways and are a significant contributor to the total biotic THg pool in northern seas.
Collapse
Affiliation(s)
- Bailey C McMeans
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - Michael T Arts
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada; National Water Research Institute, Environment Canada, 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6, Canada
| | - Aaron T Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
37
|
van der Velden S, Dempson JB, Power M. Comparing mercury concentrations across a thirty year time span in anadromous and non-anadromous Arctic charr from Labrador, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:165-174. [PMID: 24373639 DOI: 10.1016/j.scitotenv.2013.11.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/20/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Anadromous and non-anadromous Arctic charr (Salvelinus alpinus) from multiple sample sites in Labrador, Canada were used to investigate possible differences in total mercury concentration ([THg]) between 1977-78 and 2007-09. The mean [THg] of anadromous Arctic charr was 0.03 μg/g wet weight (ww) in 1977-78 and 0.04 μg/g ww in 2007-09, while mean concentrations in non-anadromous conspecifics were 0.18 μg/g ww in 1977-78 and 0.14 μg/g ww in 2007-09. After correcting for the effects of fish age and fork-length, there was no widespread difference in the mean [THg] of anadromous or non-anadromous fish between the two time periods. However, at individual sites sampled during both time periods, [THg] increased, decreased, or did not change. The mean age of sampled fish declined from 9.0 years in 1977-78 to 8.2 years in 2007-09 for anadromous fish, and from 11.7 years to 10.5 years in non-anadromous Arctic charr. Similarly, mean fork-lengths decreased from 450 mm to 417 mm in anadromous and from 402 mm to 335 mm in non-anadromous fish between 1977-78 and 2007-09. The mean annual temperature at four Labrador weather stations increased by 1.6°C to 2.9°C between the two sampling periods. The lack of an overall trend in anadromous or non-anadromous Arctic charr [THg] despite warming temperatures that favour increased mercury methylation suggests that regional changes in climate-driven factors have had limited impacts on mercury exposure in Labrador freshwater or marine fish.
Collapse
Affiliation(s)
- S van der Velden
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - J B Dempson
- Fisheries and Oceans Canada, St. John's, Newfoundland and Labrador, A1C 5X1, Canada
| | - M Power
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
38
|
Chételat J, Amyot M, Arp P, Blais JM, Depew D, Emmerton CA, Evans M, Gamberg M, Gantner N, Girard C, Graydon J, Kirk J, Lean D, Lehnherr I, Muir D, Nasr M, Poulain AJ, Power M, Roach P, Stern G, Swanson H, van der Velden S. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:41-66. [PMID: 24993511 DOI: 10.1016/j.scitotenv.2014.05.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/01/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
The Canadian Arctic has vast freshwater resources, and fish are important in the diet of many Northerners. Mercury is a contaminant of concern because of its potential toxicity and elevated bioaccumulation in some fish populations. Over the last decade, significant advances have been made in characterizing the cycling and fate of mercury in these freshwater environments. Large amounts of new data on concentrations, speciation and fluxes of Hg are provided and summarized for water and sediment, which were virtually absent for the Canadian Arctic a decade ago. The biogeochemical processes that control the speciation of mercury remain poorly resolved, including the sites and controls of methylmercury production. Food web studies have examined the roles of Hg uptake, trophic transfer, and diet for Hg bioaccumulation in fish, and, in particular, advances have been made in identifying determinants of mercury levels in lake-dwelling and sea-run forms of Arctic char. In a comparison of common freshwater fish species that were sampled across the Canadian Arctic between 2002 and 2009, no geographic patterns or regional hotspots were evident. Over the last two to four decades, Hg concentrations have increased in some monitored populations of fish in the Mackenzie River Basin while other populations from the Yukon and Nunavut showed no change or a slight decline. The different Hg trends indicate that the drivers of temporal change may be regional or habitat-specific. The Canadian Arctic is undergoing profound environmental change, and preliminary evidence suggests that it may be impacting the cycling and bioaccumulation of mercury. Further research is needed to investigate climate change impacts on the Hg cycle as well as biogeochemical controls of methylmercury production and the processes leading to increasing Hg levels in some fish populations in the Canadian Arctic.
Collapse
Affiliation(s)
- John Chételat
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario K1A 0H3, Canada.
| | - Marc Amyot
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Paul Arp
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - David Depew
- Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
| | - Craig A Emmerton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Marlene Evans
- Environment Canada, Aquatic Contaminants Research Division, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Mary Gamberg
- Gamberg Consulting, Whitehorse, Yukon Y1A 5M2, Canada
| | - Nikolaus Gantner
- Department of Geography, University of Victoria, Victoria, BC V8W 3R4, Canada
| | - Catherine Girard
- Centre d'études nordiques, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jennifer Graydon
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jane Kirk
- Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
| | - David Lean
- Lean Environmental, Apsley, Ontario K0L 1A0, Canada
| | - Igor Lehnherr
- Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Derek Muir
- Environment Canada, Canada Centre for Inland Waters, Burlington, Ontario L7R 4A6, Canada
| | - Mina Nasr
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Alexandre J Poulain
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Pat Roach
- Aboriginal Affairs and Northern Development Canada, Whitehorse, Yukon Y1A 2B5, Canada
| | - Gary Stern
- Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Heidi Swanson
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
39
|
Braune B, Chételat J, Amyot M, Brown T, Clayden M, Evans M, Fisk A, Gaden A, Girard C, Hare A, Kirk J, Lehnherr I, Letcher R, Loseto L, Macdonald R, Mann E, McMeans B, Muir D, O'Driscoll N, Poulain A, Reimer K, Stern G. Mercury in the marine environment of the Canadian Arctic: review of recent findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:67-90. [PMID: 24953756 DOI: 10.1016/j.scitotenv.2014.05.133] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/09/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
This review summarizes data and information which have been generated on mercury (Hg) in the marine environment of the Canadian Arctic since the previous Canadian Arctic Contaminants Assessment Report (CACAR) was released in 2003. Much new information has been collected on Hg concentrations in marine water, snow and ice in the Canadian Arctic. The first measurements of methylation rates in Arctic seawater indicate that the water column is an important site for Hg methylation. Arctic marine waters were also found to be a substantial source of gaseous Hg to the atmosphere during the ice-free season. High Hg concentrations have been found in marine snow as a result of deposition following atmospheric mercury depletion events, although much of this Hg is photoreduced and re-emitted back to the atmosphere. The most extensive sampling of marine sediments in the Canadian Arctic was carried out in Hudson Bay where sediment total Hg (THg) concentrations were low compared with other marine regions in the circumpolar Arctic. Mass balance models have been developed to provide quantitative estimates of THg fluxes into and out of the Arctic Ocean and Hudson Bay. Several recent studies on Hg biomagnification have improved our understanding of trophic transfer of Hg through marine food webs. Over the past several decades, Hg concentrations have increased in some marine biota, while other populations showed no temporal change. Marine biota also exhibited considerable geographic variation in Hg concentrations with ringed seals, beluga and polar bears from the Beaufort Sea region having higher Hg concentrations compared with other parts of the Canadian Arctic. The drivers of these variable patterns of Hg bioaccumulation, both regionally and temporally, within the Canadian Arctic remain unclear. Further research is needed to identify the underlying processes including the interplay between biogeochemical and food web processes and climate change.
Collapse
Affiliation(s)
- Birgit Braune
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3.
| | - John Chételat
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3
| | - Marc Amyot
- Département de sciences biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville Pavillon Marie-Victorin, Montreal, Quebec, Canada H3C 3 J7
| | - Tanya Brown
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, PO Box 6000, Sidney, British Columbia, Canada V8L 4B2; Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | - Meredith Clayden
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5
| | - Marlene Evans
- Environment Canada, National Water Research Institute, 11 Innovation Blvd., Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Aaron Fisk
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada N9B 3P4
| | - Ashley Gaden
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Catherine Girard
- Département de sciences biologiques, Université de Montréal, CP 6128, Succ. Centre-Ville Pavillon Marie-Victorin, Montreal, Quebec, Canada H3C 3 J7
| | - Alex Hare
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Jane Kirk
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Igor Lehnherr
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Robert Letcher
- Environment Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, Canada K1A 0H3
| | - Lisa Loseto
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| | - Robie Macdonald
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, PO Box 6000, Sidney, British Columbia, Canada V8L 4B2
| | - Erin Mann
- Department of Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
| | - Bailey McMeans
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave., Windsor, Ontario, Canada N9B 3P4
| | - Derek Muir
- Environment Canada, Canada Centre for Inland Waters, 867 Lakeshore Road, Burlington, Ontario, Canada L7R 4A6
| | - Nelson O'Driscoll
- Department of Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
| | - Alexandre Poulain
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | - Ken Reimer
- Royal Military College of Canada, PO Box 17000, Station Forces, Kingston, Ontario, Canada K7K 7B4
| | - Gary Stern
- Centre for Earth Observation Science, 497 Wallace Bldg., University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2; Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6
| |
Collapse
|
40
|
Tran L, Reist JD, Power M. Total mercury concentrations in anadromous Northern Dolly Varden from the northwestern Canadian Arctic: a historical baseline study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 509-510:154-164. [PMID: 24891097 DOI: 10.1016/j.scitotenv.2014.04.099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
Previous research has documented the significance of total mercury (THg) as a northern contaminant in general and of fish in particular. While much research has been devoted to documenting both spatial and temporal changes in THg in consumed fish, little effort has been directed at understanding patterns of THg in Dolly Varden (Salvelinus malma), a prized subsistence species throughout the western North American Arctic. Here we report historical THg concentrations for anadromous Dolly Varden from 10 populations in the Yukon and Northwest Territories sampled across a range of latitudes (67-69°N) and longitudes (136-141°W) between the years 1988-91. Unadjusted mean THg concentrations ranged from 15 to 254 ng/g wet weight. Length-adjusted THg concentrations were significantly different among sites, but were not related to latitude or longitude. Within and among populations, THg was significantly related to fork-length, age, δ(15)N, and δ(13)C, with the variation in THg found among populations being best explained by size. The data serve as an important baseline against which future changes in THg levels in this important subsistence fishery may be compared to determine the significance of any observed trends.
Collapse
Affiliation(s)
- L Tran
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - J D Reist
- Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada
| | - M Power
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
41
|
Pućko M, Burt A, Walkusz W, Wang F, Macdonald RW, Rysgaard S, Barber DG, Tremblay JÉ, Stern GA. Transformation of mercury at the bottom of the Arctic food web: an overlooked puzzle in the mercury exposure narrative. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7280-7288. [PMID: 24901673 DOI: 10.1021/es404851b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We show 2008 seasonal trends of total and monomethyl mercury (THg and MeHg, respectively) in herbivorous (Calanus hyperboreus) and predatory (Chaetognaths, Paraeuchaeta glacialis, and Themisto abyssorum) zooplankton species from the Canadian High Arctic (Amundsen Gulf and the Canadian Beaufort Sea) in relation to ambient seawater and diet. It has recently been postulated that the Arctic marine environment may be exceptionally vulnerable to toxic MeHg contamination through postdepositional processes leading to mercury transformation and methylation. Here, we show that C. hyperboreus plays a hitherto unrecognized central role in mercury transformation while, itself, not manifesting inordinately high levels of THg compared to its prey (pelagic particulate organic matter (POM)). Calanus hyperboreus shifts Hg from mainly inorganic forms in pelagic POM (>99.5%) or ambient seawater (>90%) to primarily organic forms (>50%) in their tissue. We calculate that annual dietary intake of MeHg could supply only ∼30% of the MeHg body burden in C. hyperboreus and, thus, transformation within the species, perhaps mediated by gut microbial communities, or bioconcentration from ambient seawater likely play overriding roles. Seasonal THg trends in C. hyperboreus are variable and directly controlled by species-specific physiology, e.g., egg laying and grazing. Zooplankton that prey on species such as C. hyperboreus provide a further biomagnification of MeHg and reflect seasonal trends observed in their prey.
Collapse
Affiliation(s)
- Monika Pućko
- Centre for Earth Observation Science, University of Manitoba , 460 Wallace Building, 125 Dysart Road, Winnipeg, R3T 2N2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Liu J, Xu X, Yu S, Cheng H, Hong Y, Feng X. Mercury pollution in fish from South China Sea: levels, species-specific accumulation, and possible sources. ENVIRONMENTAL RESEARCH 2014; 131:160-164. [PMID: 24721134 DOI: 10.1016/j.envres.2014.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/09/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
Both total mercury (THg) and methylmercury (MeHg) levels in fish collected from South China Sea (SCS) were studied to understand Hg pollution in Chinese tropical marine ecosystems. The average THg concentrations in fish species ranged from 39.6 μg/kg for rabbitfish (Siganus fuscessens) to 417 μg/kg for thornfish (Terapon jarbua), while those of MeHg varied from 13 μg/kg (rabbitfish) to 176 μg/kg (thornfish). The median values of MeHg/THg ratios in different fish species ranged from 36 to 85%. Significant inter-species differences of THg and MeHg in fish were observed due to feeding habits and fish sizes. Overall, carnivorous fish had higher levels of THg, MeHg and MeHg/THg ratios than omnivorous and herbivorous fish. High Hg levels in fish of the SCS were probably related to Hg input from atmospheric deposition and anthropogenic activities.
Collapse
Affiliation(s)
- Jinling Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Shen Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hefa Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiguo Hong
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|
43
|
Nagorski SA, Engstrom DR, Hudson JP, Krabbenhoft DP, Hood E, DeWild JF, Aiken GR. Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 184:62-72. [PMID: 24035911 DOI: 10.1016/j.envpol.2013.07.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/12/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.
Collapse
Affiliation(s)
- Sonia A Nagorski
- Environmental Science Program, University of Alaska Southeast, Juneau, AK 99801, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Zhu A, Zhang W, Xu Z, Huang L, Wang WX. Methylmercury in fish from the South China Sea: geographical distribution and biomagnification. MARINE POLLUTION BULLETIN 2013; 77:437-444. [PMID: 24095204 DOI: 10.1016/j.marpolbul.2013.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
We conducted a large-scale investigation of methylmercury (MeHg) in a total of 628 marine wild fish covering 46 different species collected from the South China Sea between 2008 and 2009. Biological and ecological characteristics such as size (length and wet weight), feeding habit, habitat, and stable isotope (δ(15)N) were examined to explain MeHg bioaccumulation in marine fish and their geographical distribution. MeHg levels in the muscle tissues of the 628 individuals ranged from 0.010 to 1.811 μg/g dry wt. Log10MeHg concentration was significantly related to their length and wet weight. Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic varieties. Linear relationships were obtained between Log10(MeHg) and δ(15)N only for one location, indicating that biomagnification was site-specific. Results from this study suggest that dietary preference and trophic structure were the main factors affecting MeHg bioaccumulation in marine fish from the South China Sea.
Collapse
Affiliation(s)
- Aijia Zhu
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China; South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | | | | | | | | |
Collapse
|
45
|
Xu X, Newman MC, Fabrizio MC, Liang L. An ecologically framed mercury survey of finfish of the lower Chesapeake Bay. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:510-520. [PMID: 23715787 DOI: 10.1007/s00244-013-9917-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Total mercury (THg) and methylmercury (MHg) concentrations and determents of mercury (Hg) accumulation were examined for muscle tissues of 10 finfish from the lower Chesapeake Bay (LCB) and its tributaries. There was no suggestion of potential human harm from Hg due to LCB fish consumption: None of the sampled fish had THg concentrations approaching the United States Environmental Protection Agency human health screening value. Hg concentrations in different fish species generally increased with the increasing stable isotope of nitrogen 15 (δ(15)N) but not the stable isotope of carbon 13 (δ(13)C), thus suggesting that trophic position but not dietary carbon source is a dominant determinant. An MHg biomagnification model was built to estimate a food web magnification factor of approximately 10-fold increase per trophic level. Based on otolith strontium-to-calcium ratios, Atlantic croaker inhabiting less saline waters might accumulate more Hg than those inhabiting more saline waters. The SAS mixed procedure identified significant positive intraspecies relationships between MHg concentration and δ(13)C for summer flounder, weakfish, American eel, Atlantic croaker, and spot.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, Gloucester Point, VA 23062, USA.
| | | | | | | |
Collapse
|
46
|
Coelho JP, Mieiro CL, Pereira E, Duarte AC, Pardal MA. Mercury biomagnification in a contaminated estuary food web: effects of age and trophic position using stable isotope analyses. MARINE POLLUTION BULLETIN 2013; 69:110-5. [PMID: 23433553 DOI: 10.1016/j.marpolbul.2013.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 01/15/2013] [Accepted: 01/21/2013] [Indexed: 05/21/2023]
Abstract
The main aim of this study was to ascertain the biomagnification processes in a mercury-contaminated estuary, by clarifying the trophic web structure through stable isotope ratios. For this purpose, primary producers (seagrasses and macroalgae), invertebrates (detritivores and benthic predators) and fish were analysed for total and organic mercury and for stable carbon and nitrogen isotopic signatures. Trophic structure was accurately described by δ(15)N, while δ(13)C reflected the carbon source for each species. An increase of mercury levels was observed with trophic level, particularly for organic mercury. Results confirm mercury biomagnification to occur in this estuarine food web, especially in the organic form, both in absolute concentrations and fraction of total mercury load. Age can be considered an important variable in mercury biomagnification studies, and data adjustments to account for the different exposure periods may be necessary for a correct assessment of trophic magnification rates and ecological risk.
Collapse
Affiliation(s)
- J P Coelho
- CESAM (Centre for Environmental and Marine Studies), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | | | |
Collapse
|