1
|
Walsh HL, Smith GD, Schall MK, Gordon SE, Blazer VS. Temporal analysis of water chemistry and smallmouth bass (Micropterus dolomieu) health at two sites with divergent land use in the Susquehanna River watershed, Pennsylvania, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:922. [PMID: 39259319 PMCID: PMC11390901 DOI: 10.1007/s10661-024-13049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Monitoring wild fish health and exposure effects in impacted rivers and streams with differing land use has become a valuable research tool. Smallmouth bass (Micropterus dolomieu) are a sensitive, indicator species that exhibit signs of immunosuppression and endocrine disruption in response to water quality changes and contaminant exposure. To determine the impact of agriculture and development on smallmouth bass health, two sites (a developed/agriculture site and a forested site) in the Susquehanna River watershed, Pennsylvania were selected where bass and water chemistry were sampled from 2015 to 2019. Smallmouth bass were sampled for histopathology to assess parasite and macrophage aggregate density in the liver and spleen, condition factor (Ktl), hepatic gene transcript abundance, hepatosomatic index (HSI), and a health assessment index (HAI). Land use at the developed/agriculture site included greater pesticide application rates and phytoestrogen crop cover and more detections and higher concentrations of pesticides, wastewater-associated contaminants, hormones, phytoestrogens, and mycotoxins than at the forested site. Additionally, at the developed/agriculture site, indicators of molecular changes, including oxidative stress, immune/inflammation, and lipid metabolism-related hepatic gene transcripts, were associated with more contaminants and land use variables. At both sites, there were multiple associations of contaminants with liver and/or spleen macrophage aggregate density, indicating that changes at the molecular level seemed to be a better indicator of exposures unique to each site. The findings illustrate the importance of timing for land management practices, the complex mixtures aquatic animals are exposed to, and the temporal changes in contaminant concentration. Agricultural practices that affect hepatic gene transcripts associated with immune function and disease resistance were demonstrated which could negatively affect smallmouth bass populations.
Collapse
Affiliation(s)
- Heather L Walsh
- Eastern Ecological Science Center, Leetown Research Laboratory, U.S. Geological Survey, 11649 Leetown Rd, Kearneysville, WV, 25430, USA.
| | - Geoffrey D Smith
- Pennsylvania Fish and Boat Commission, Division of Fisheries Management, 595 E. Rolling Ridge Drive, Bellefonte, PA, 16823, USA
| | - Megan K Schall
- Biological Services, Pennsylvania State University-Hazleton, 76 University Drive, Hazleton, PA, 18202, USA
| | - Stephanie E Gordon
- Eastern Ecological Science Center, Leetown Research Laboratory, U.S. Geological Survey, 11649 Leetown Rd, Kearneysville, WV, 25430, USA
| | - Vicki S Blazer
- Eastern Ecological Science Center, Leetown Research Laboratory, U.S. Geological Survey, 11649 Leetown Rd, Kearneysville, WV, 25430, USA
| |
Collapse
|
2
|
Agrawal I, Lee AQ, Gong Z. Identifying Universal Fish Biomarker Genes in Response to PCB126 Exposure by Comparative Transcriptomic Analyses. Curr Issues Mol Biol 2024; 46:7862-7876. [PMID: 39194683 DOI: 10.3390/cimb46080466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024] Open
Abstract
Water pollution remains a major environmental concern, with increased toxic by-products being released into water bodies. Many of these chemical contaminants persist in the environment and bio-accumulate in aquatic organisms. At present, toxicological tests are mostly based on laboratory tests, and effective methods for monitoring wild aquatic environments remain lacking. In the present study, we used a well-characterized toxic chemical, 3,3',4,4',5-polychlorinated biphenyl (PCB126), as an example to try to identify common biomarker genes to be used for predictive toxicity of this toxic substance. First, we used two laboratory fish models, the zebrafish (Danio rerio) and medaka (Oryzias latipes), to expose PCB126 to obtain liver transcriptomic data by RNA-seq. Comparative transcriptomic analyses indicated generally conserved and concerted changes from the two species, thus validating the transcriptomic data for biomarker gene selection. Based on the common up- and downregulated genes in the two species, we selected nine biomarker genes to further test in other fish species. The first validation experiment was carried out using the third fish species, Mozambique tilapia (Oreochromis mossambicus), and essentially, all these biomarker genes were validated for consistent responses with the two laboratory fish models. Finally, to develop universal PCR primers suitable for potentially all teleost fish species, we designed degenerate primers and tested them in the three fish species as well as in another fish species without a genomic sequence available: guppy (Poecilia reticulata). We found all the biomarker genes showed consistent response to PCB126 exposure in at least 50% of the species. Thus, our study provides a promising strategy to identify common biomarker genes to be used for teleost fish analyses. By using degenerate PCR primers and analyzing multiple biomarker genes, it is possible to develop diagnostic PCR arrays to predict water contamination from any wild fish species sampled in different water bodies.
Collapse
Affiliation(s)
- Ira Agrawal
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
3
|
Kanerva M, Tue NM, Kunisue T, Vuori KA, Iwata H. Multi-level assessment of the origin, feeding area and organohalogen contamination on salmon from the Baltic Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115424. [PMID: 37672939 DOI: 10.1016/j.ecoenv.2023.115424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The Atlantic salmon (Salmo salar) population in the Baltic Sea consists of wild and hatchery-reared fish that have been released into the sea to support salmon stocks. During feeding migration, salmon migrate to different parts of the Baltic Sea and are exposed to various biotic and abiotic stressors, such as organohalogen compounds (OHCs). The effects of salmon origin (wild or hatchery-reared), feeding area (Baltic Main Basin, Bothnian Sea, and Gulf of Finland), and OHC concentration on the differences in hepatic proteome of salmon were investigated. Multi-level analysis of the OHC concentration, transcriptome, proteome, and oxidative stress biomarkers measured from the same salmon individuals were performed to find the key variables (origin, feeding area, OHC concentrations, and oxidative stress) that best account for the differences in the transcriptome and proteome between the salmon groups. When comparing wild and hatchery-reared salmon, differences were found in xenobiotic and amino acid metabolism-related pathways. When comparing salmon from different feeding areas, the amino acid and carbohydrate metabolic pathways were notably different. Several proteins found in these pathways are correlated with the concentrations of polychlorinated biphenyls (PCBs). The multi-level analysis also revealed amino acid metabolic pathways in connection with PCBs and oxidative stress variables related to glutathione metabolism. Other pathways found in the multi-level analysis included genetic information processes related to ribosomes, signaling and cellular processes related to the cytoskeleton, and the immune system, which were connected mainly to the concentrations of Polychlorinated biphenyls and Dichlorodiphenyltrichloroethane and their metabolites. These results suggest that the hepatic proteome of salmon in the Baltic Sea, together with the transcriptome, is more affected by the OHC concentrations and oxidative stress of the feeding area than the origin of the salmon.
Collapse
Affiliation(s)
- Mirella Kanerva
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan.
| | - Nguyen Minh Tue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan
| | - Tatsuya Kunisue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan
| | - Kristiina Am Vuori
- Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 57, Koetilantie 2, FI-00014, Helsinki, Finland
| | - Hisato Iwata
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, 790-8577, Matsuyama, Japan.
| |
Collapse
|
4
|
Mehinto AC, Thornton Hampton LM, Vidal-Dorsch DE, Garcia-Reyero N, Arick MA, Maruya KA, Lao W, Vulpe CD, Brown-Augustine M, Loguinov A, Bay SM. Transcriptomic response patterns of hornyhead turbot (Pleuronichthys verticalis) dosed with polychlorinated biphenyls and polybrominated diphenyl ethers. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100822. [PMID: 33684654 DOI: 10.1016/j.cbd.2021.100822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/04/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
To evaluate the impact of environmental contaminants on aquatic health, extensive surveys of fish populations have been conducted using bioaccumulation as an indicator of impairment. While these studies have reported mixtures of chemicals in fish tissues, the relationship between specific contaminants and observed adverse impacts remains poorly understood. The present study aimed to characterize the toxicological responses induced by persistent organic pollutants in wild-caught hornyhead turbot (P. verticalis). To do so, hornyhead turbot were interperitoneally injected with a single dose of PCB or PBDE congeners prepared using environmentally realistic mixture proportions. After 96-hour exposure, the livers were excised and analyzed using transcriptomic approaches and analytical chemistry. Concentrations of PCBs and PBDEs measured in the livers indicated clear differences across treatments, and congener profiles closely mirrored our expectations. Distinct gene profiles were characterized for PCB and PBDE exposed fish, with significant differences observed in the expression of genes associated with immune responses, endocrine-related functions, and lipid metabolism. Our findings highlight the key role that transcriptomics can play in monitoring programs to assess chemical-induced toxicity in heterogeneous group of fish (mixed gender and life stage) as is typically found during field surveys. Altogether, the present study provides further evidence of the potential of transcriptomic tools to improve aquatic health assessment and identify causative agents.
Collapse
Affiliation(s)
- Alvine C Mehinto
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA; Department of Chemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA.
| | - Leah M Thornton Hampton
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Doris E Vidal-Dorsch
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Keith A Maruya
- Department of Chemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Wenjian Lao
- Department of Chemistry, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Christopher D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Marianna Brown-Augustine
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Steven M Bay
- Department of Toxicology, Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| |
Collapse
|
5
|
Kanerva M, Tue NM, Kunisue T, Vuori K, Iwata H. Effects on the Liver Transcriptome in Baltic Salmon: Contributions of Contamination with Organohalogen Compounds and Origin of Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15246-15256. [PMID: 33166131 DOI: 10.1021/acs.est.0c04763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hatchery-reared Atlantic salmon (Salmo salar) has been released to support the wild salmon stocks in the Baltic Sea for decades. During their feeding migration, salmon are exposed to organohalogen compounds (OHCs). Here, we investigated the OHC levels and transcriptome profiles in the liver of wild and hatchery-reared salmon collected from the Baltic main basin (BMB), the Bothnian Sea (BS), and the Gulf of Finland (GoF) and examined whether salmon origin and OHC levels contributed to the hepatic transcriptome profiles. There were no differences in the OHC concentrations between wild and reared fish but larger differences between areas. Several transcript levels were associated with non-dioxin-like polychlorinated biphenyls, polybrominated diphenylethers, chlordanes, and dichlorodiphenyltrichloroethane in a concentration-dependent manner. Between wild and reared salmon, lipid metabolism and related signaling pathways were enriched within the BMB and BS, while amino acid metabolism was altered within the GoF. When comparing the different areas, lipid metabolism, environmental stress and cell growth, and death-related pathways were enriched. Class coinertia analysis showed that the covariation in the OHC levels and the transcriptome were significantly similar. These results suggest that the hepatic transcriptomes in wild and hatchery-reared salmon are more affected by the OHC levels rather than the origin of salmon.
Collapse
Affiliation(s)
- Mirella Kanerva
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Nguyen Minh Tue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- CMES, Lab. of Environmental Chemistry, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kristiina Vuori
- Department of Equine and Small Animal Medicine, University of Helsinki, P.O. Box 57, Koetilantie 2, Helsinki FI-00014, Finland
| | - Hisato Iwata
- CMES, Lab. of Environmental Toxicology, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
6
|
Goodson WH, Lowe L, Gilbertson M, Carpenter DO. Testing the low dose mixtures hypothesis from the Halifax project. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:333-357. [PMID: 32833669 DOI: 10.1515/reveh-2020-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/02/2020] [Indexed: 05/24/2023]
Abstract
In 2013, 60 scientists, representing a larger group of 174 scientists from 26 nations, met in Halifax, Nova Scotia to consider whether - using published research - it was logical to anticipate that a mixture of chemicals, each thought to be non-carcinogenic, might act together in that mixture as a virtual carcinogen. The group identified 89 such chemicals, each one affecting one or more Hallmark(s) - collectively covering all Hallmarks of Cancer - confirming the possibility that a chemical mixture could induce all the Hallmarks and function as a virtual carcinogen, thereby supporting the concern that chemical safety research that does not evaluate mixtures, is incomplete. Based on these observations, the Halifax Project developed the Low-Dose Carcinogenesis Hypothesis which posits "…that low-dose exposures to [mixtures of] disruptive chemicals that are not individually carcinogenic may be capable of instigating and/or enabling carcinogenesis." Although testing all possible combinations of over 80,000 chemicals of commerce would be impractical, prudence requires designing a methodology to test whether low-dose chemical mixtures might be carcinogenic. As an initial step toward testing this hypothesis, we conducted a mini review of published empirical observations of biological exposures to chemical mixtures to assess what empirical data exists on which to base future research. We reviewed studies on chemical mixtures with the criteria that the studies reported both different concentrations of chemicals and mixtures composed of different chemicals. We found a paucity of research on this important question. The majority of studies reported hormone related processes and used chemical concentrations selected to facilitate studying how mixtures behave in experiments that were often removed from clinical relevance, i.e., chemicals were not studied at human-relevant concentrations. New research programs must be envisioned to enable study of how mixtures of small doses of chemicals affect human health, starting, when at all possible, from non-malignant specimens when studies are done in vitro. This research should use human relevant concentrations of chemicals, expand research beyond the historic focus on endocrine endpoints and endocrine related cancers, and specifically seek effects that arise uniquely from exposure to chemical mixtures at human-relevant concentrations.
Collapse
Affiliation(s)
- William H Goodson
- Department of Surgery, California Pacific Medical Center Research Institute, San Francisco, CA, 94115, USA
| | - Leroy Lowe
- Getting to Know Cancer (NGO), Truro, NS, B2N 1X5, Canada
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - David O Carpenter
- Institute for Health and the Environment, University at Albany, Rensselaer, NY, 12144, USA
| |
Collapse
|
7
|
Xia P, Crump D, Chiu S, Chan HM, O'Brien JM. Toxicogenomic Assessment of Complex Chemical Signatures in Double-Crested Cormorant Embryos from Variably Contaminated Great Lakes Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7504-7512. [PMID: 32459094 DOI: 10.1021/acs.est.0c02725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Using omics approaches to monitor complex environmental mixtures is challenging. Previously, we evaluated in vitro transcriptomic effects of complex organic extracts derived from avian eggs. However, there is a lack of studies using wild species that are naturally exposed to contaminant mixtures. Here, we examined polychlorinated biphenyl (PCB) and polybrominated diphenyl ether (PBDE) residues and gene expression in embryonic liver tissue of double-crested cormorants (Phalacrocorax auritus) collected from six variably contaminated colonies. Colonies near industrialized areas were distinguished from less contaminated sites based on their PCB and PBDE concentrations. The most variably expressed genes between sites were involved in pathways including, xenobiotic metabolism (e.g., Cyp1a4), lipid/bile acid homeostasis (e.g., Lbfabp), and oxidative stress (e.g., Mt4). Hierarchical clustering, based on relative gene expression, revealed a grouping pattern similar to chemical residue concentrations. Further, partial least squares regression analysis was used to estimate chemical concentrations from transcriptomics data. PCB 155 and BDE 47 showed the highest slopes (0.77 and 0.69, respectively) fitted by linear regression of measured and estimated chemical concentrations. The application of transcriptomics to a wild avian species, naturally exposed to complex chemical mixtures and other stressors, represents a promising means to distinguish and prioritize variably contaminated sites.
Collapse
Affiliation(s)
- Pu Xia
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa K1A 0H3, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa K1A 0H3, Ontario, Canada
| | - Suzanne Chiu
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa K1A 0H3, Ontario, Canada
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Ontario, Canada
| | - Jason M O'Brien
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa K1A 0H3, Ontario, Canada
| |
Collapse
|
8
|
Dépatie C, Houde M, Verreault J. Environmental exposure of northern pike to a primary wastewater effluent: Impact on the lipidomic profile and lipid metabolism. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105421. [PMID: 32036233 DOI: 10.1016/j.aquatox.2020.105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 05/27/2023]
Abstract
Lipids play important roles in growth, reproduction, locomotion, and migration of fish. Municipal effluents, which are complex mixtures of biological and chemical compounds including flame retardants, have been shown to alter lipid metabletabolism in environmentally and experimentally exposed fish. Down-regulation of several genes coding for fatty acid metabolism enzymes has previously been reported in male northern pike (Esox lucius) collected in the St. Lawrence River (QC, Canada) downstream of a major primary wastewater treatment plant (WWTP) point of discharge. The main objective of this study was to investigate the effects of exposure to the Montreal's WWTP effluent on the lipidomic profile (i.e., fatty acids, acylcarnitines, and phospholipids) as well as the transcription of genes related to lipid metabolism in the liver of northern pike collected upstream and downstream of this WWTP effluent. Halogenated flame retardant concentrations were also determined in pike liver and used as markers of exposure to this effluent. Greater concentrations of saturated and monounsaturated lysophosphatidylcholines (LPCs) and lower concentrations of polyunsaturated LPCs were determined in the liver of pike collected downstream of the WWTP compared to those collected upstream. Lower mRNA levels of peroxisome proliferator-activated receptor alpha (pparα), a major regulator of lipid metabolism, were also measured in pike exposed to Montreal's WWTP effluent. In addition, the relative contributions (%) of LPC 18:2 and LPC14:0, compounds used as markers of obesity and inflammation, were significantly correlated with halogenated flame retardant concentrations and fish girth. Results of the present study suggest that chronic environmental exposure to a primary WWTP effluent can modulate the transcription of genes related to lipid metabolism, and hence affect the hepatic phospholipid composition of pike from the St. Lawrence River.
Collapse
Affiliation(s)
- Christine Dépatie
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Magali Houde
- Environment and Climate Change Canada, 105 McGill Street, Montreal, QC, H2Y 2E7, Canada.
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| |
Collapse
|
9
|
Crump D, Williams KL, Chiu S, Periard L, Letcher RJ. A rapid method of preparing complex organohalogen extracts from avian eggs: Applications to in vitro toxicogenomics screening. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:811-819. [PMID: 30657196 DOI: 10.1002/etc.4364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Double-crested cormorants are piscivorous birds that breed in variably contaminated colonies across the Laurentian Great Lakes of North America. Collection and preparation of environmentally relevant extracts from eggs that contain variable concentrations of organohalogen contaminants represents a minimally invasive approach to characterize potential effects of exposure using in vitro bioassays. In the present study, a rapid, efficient lipid freeze-filtration extraction method was used to prepare extracts from double-crested cormorant eggs collected from 5 breeding colonies that had variable organohalogen contaminant burdens. Extracts, solubilized in dimethyl sulfoxide, were administered to chicken embryonic hepatocytes (CEHs) to determine effects on cell viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and messenger RNA expression using a chicken ToxChip polymerase chain reaction (PCR) array. The EROD median effect concentration (EC50) values were lower for extracts with greater organohalogen contaminant burdens and thus permitted an initial ranking of colonies based on the efficacy of eliciting an aryl hydrocarbon receptor-mediated response. The ToxChip PCR array data provided a more exhaustive, pathway-based evaluation of extract effects; variability in the transcriptomic profiles was associated with organohalogen contaminant burdens. For example, extracts from Mud Island (Detroit River, MI, USA) had among the highest organohalogen contaminant burdens and elicited a greater biochemical (EROD EC50 = 0.005) and transcriptomic response (22/43 genes altered on the array) in CEHs compared with the least contaminated site, which was Mandarte Island (BC, Canada; EROD EC50 = 0.172; 8/43 genes altered). Avian eggs represent a useful biomonitoring tool for determining complex mixture effects, and the combination of a rapid extraction method, an in vitro bioassay, and targeted endpoint evaluation (biochemical and transcriptomic) shows great promise as an environmental effects monitoring approach. Environ Toxicol Chem 2019;38:811-819. © 2019 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Luke Periard
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Hook SE, Mondon J, Revill AT, Greenfield PA, Smith RA, Turner RDR, Corbett PA, Warne MSJ. Transcriptomic, lipid, and histological profiles suggest changes in health in fish from a pesticide hot spot. MARINE ENVIRONMENTAL RESEARCH 2018; 140:299-321. [PMID: 29983192 DOI: 10.1016/j.marenvres.2018.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/14/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Barramundi (Lates calcarifer) were collected at the beginning (1st sampling) and end (2nd sampling) of the wet season from Sandy Creek, an agriculturally impacted catchment in the Mackay Whitsundays region of the Great Barrier Reef catchment area, and from Repulse Creek, located approximately 100 km north in Conway National Park, to assess the impacts of pesticide exposure. Gill and liver histology, lipid class composition in muscle, and the hepatic transcriptome were examined. The first sample of Repulse Creek fish showed little tissue damage and low transcript levels of xenobiotic metabolism enzymes. Sandy Creek fish showed altered transcriptomic patterns, including those that regulate lipid metabolism, xenobiotic metabolism, and immune response; gross histological alterations including lipidosis; and differences in some lipid classes. The second sampling of Repulse Creek fish showed similar alterations in hepatic transcriptome and tissue structure as fish from Sandy Creek. These changes may indicate a decrease in health of pesticide exposed fish.
Collapse
Affiliation(s)
- Sharon E Hook
- CSIRO Oceans and Atmosphere, Lucas Heights, New South Wales, Australia.
| | - Julie Mondon
- Deakin University, Warrnambool, Victoria, Australia
| | | | | | - Rachael A Smith
- Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia
| | - Ryan D R Turner
- Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia
| | | | - Michael St J Warne
- Centre for Agroecology, Water and Resilience, Coventry University, United Kingdom; Queensland Department of Science and Environment, Brisbane, Queensland 4001, Australia; Australian Rivers Institute, Griffith University, Queensland 4111, Australia; Queensland Alliance of Environmental Health Sciences, University of Queensland, Queensland, 4108, Australia
| |
Collapse
|
11
|
Li C, Chen Q, Zhang X, Snyder SA, Gong Z, Lam SH. An integrated approach with the zebrafish model for biomonitoring of municipal wastewater effluent and receiving waters. WATER RESEARCH 2018; 131:33-44. [PMID: 29258003 DOI: 10.1016/j.watres.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/04/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Comprehensive monitoring of water pollution is challenging. With the increasing amount and types of anthropogenic compounds being released into water, there are rising concerns of undetected toxicity. This is especially true for municipal wastewater effluents that are discharged to surface waters. This study was designed to integrate zebrafish toxicogenomics, targeted gene expression, and morphological analyses, for toxicity evaluation of effluent discharged from two previously characterized wastewater treatment plants (WWTPs) in Pima County, Arizona, and their receiving surface water. Zebrafish embryos were exposed to organic extracts from the WWTP1 effluent that were reconstituted to represent 1× and 0.5× of the original concentration. Microarray analyses identified deregulated gene probes that mapped to 1666, 779, and 631 unique human homologs in the 1×, 0.5×, and the intersection of both groups, respectively. These were associated with 18 cellular and molecular functions ranging from cell cycle to metabolism and are involved in the development and function of 10 organ systems including nervous, cardiovascular, haematological, reproductive, and hepatic systems. Superpathway of cholesterol biosynthesis, retinoic acid receptor activation, glucocorticoid receptor and prolactin signaling were among the top 11 perturbed canonical pathways. Real-time quantitative PCR validated the expression changes of 12 selected genes. These genes were then tested on zebrafish embryos exposed to the reconstituted extract of water sampled downstream of WWTP1 and another nearby WWTP2. The expression of several targeted genes were significantly affected by the WWTP effluents and some of the downstream receiving waters. Morphological analyses using four transgenic zebrafish lines revealed potential toxicity associated with nervous, hepatic, endothelial-vascular and myeloid systems. This study demonstrated how information can be obtained using adverse outcome pathway framework to derive biological effect-based monitoring tools. This integrated approach using zebrafish can supplement analytical chemistry to provide more comprehensive monitoring of discharged effluents and their receiving waters.
Collapse
Affiliation(s)
- Caixia Li
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Qiyu Chen
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xiaoyan Zhang
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Shane A Snyder
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Zhiyuan Gong
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Marjan P, Bragg LM, MacLatchy DL, Servos MR, Martyniuk CJ. How Does Reference Site Selection Influence Interpretation of Omics Data?: Evaluating Liver Transcriptome Responses in Male Rainbow Darter (Etheostoma caeruleum) across an Urban Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6470-6479. [PMID: 28489360 DOI: 10.1021/acs.est.7b00894] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Studies quantifying the influence of reference site selection on transcriptomic profiles in aquatic organisms exposed to complex mixtures are lacking in the literature, despite the significant implications of such research for the interpretation of omics data sets. We measured hepatic transcriptomic responses in fish across an urban environment in the central Grand River watershed (Ontario, Canada). Adult male rainbow darter (RBD) (Etheostoma caeruleum) were collected from nine sites at varying distances from two major municipal wastewater treatment plants (MWWTPs) (Waterloo, Kitchener), including three upstream reference sites. The transcriptomic response in RBD was independently compared with that of fish from each of the three reference sites. Data collected in fish downstream of the Waterloo MWWTP (poorest effluent quality) suggested that ∼15.5% of the transcriptome response was influenced by reference site selection. In contrast, at sites where the impact of MWWTPs was less-pronounced and fish showed less of a transcriptome response, reference site selection had a greater influence (i.e., ∼56.9% of transcripts were different depending on the site used). This study highlights the importance of conducting transcriptomics studies that leverage more than one reference site, and it broadens our understanding of the molecular responses in fish in dynamic natural environments.
Collapse
Affiliation(s)
- Patricija Marjan
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Deborah L MacLatchy
- Department of Biology, Wilfrid Laurier University , 75 University Avenue West, N2L 3C5 Waterloo, Ontario, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo , 200 University Avenue West, N2L 3G1 Waterloo, Ontario, Canada
| | - Cristopher J Martyniuk
- Center for Environmental and Human Toxicology & Department of Physiological Sciences, University of Florida , 2187 Mowry Road, Building 471, PO Box 110885, Gainesville, Florida 32611, United States
| |
Collapse
|
13
|
Simvastatin down-regulates differential genetic profiles produced by organochlorine mixtures in primary breast cell (HMEC). Chem Biol Interact 2017; 268:85-92. [PMID: 28263720 DOI: 10.1016/j.cbi.2017.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 11/22/2022]
Abstract
Women all over the world are exposed to an unavoidable contamination by organochlorine pesticides and other chemical pollutants. Many of them are considered as xenoestrogens and have been associated with the development and progression of breast cancer. We have demonstrated that the most prevalent pesticide mixtures found in healthy women and in women diagnosed with breast cancer modulates the gene expression in human epithelial mammary cells. Statins are well-known cholesterol-depleting agents acting as inhibitors of cholesterol synthesis. Since the early 1990s, it has been known that statins could be successfully used in cancer therapy, including breast cancer, but the exact mechanism behind anti-tumor activity of the statins remains unclear. In the present study we evaluated the effect of simvastatin in the gene expression pattern induced by realistic organochlorine mixtures found in breast cancer patients. The gene expression of 94 genes related with the cell signaling pathways were assessed. Our results indicate that simvastatin exerts a global down regulating effect on successfully determined genes (78.7%), thus attenuating the effects induced by organochlorine mixtures on the gene profile of human mammary epithelial cells. This effect was more evident on genes whose function is the ATP-binding process (that also were particularly up-regulated by pesticide mixtures). We also found that MERTK (a proto-oncogene which is overexpressed in several malignancies) and PDGFRB (a member of the platelet-derived growth factor family whose expression is high in breast-cancer cells that have become resistant to endocrine therapy) were among the genes with a higher differential regulation by simvastatin. Since resistance to treatment with tyrosine kinase inhibitors is closely related to MERKT, our findings would enhance the possible utility of statins in breast cancer treatment, i.e. improving therapeutic results combining statins with tyrosine Kinase inhibitors.
Collapse
|
14
|
El Nahas AF, Abdel-Razek MAS, Helmy NM, Mahmoud S, Ghazy HA. Impaired antioxidant gene expression by pesticide residues and its relation with other cellular biomarkers in Nile Tilapia (Oreochromis niloticus) from Lake Burullus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:202-209. [PMID: 27940135 DOI: 10.1016/j.ecoenv.2016.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 06/06/2023]
Abstract
Organochlorines and Organophosphorus are the most commonly used pesticides. These pesticides constitute a considerable contaminating threat due to their excessive agricultural usage which in turn contaminates the aquatic system through agricultural drainage. The aim of this study was to evaluate water and tissue residues of both pesticides in O. niloticus obtained from three different sections in Lake Burullus, Egypt. Assessment of relative change in mRNA levels of GST and Vtg (oxidative stress indicator) was done and its relation with other cellular biomarkers including apoptosis, which is assessed by Cellular apoptosis susceptibility transcript level (CAS), comet assay and micronucleus assays (genotoxicity indicator). Pesticide residue levels in water are fluctuating. In fish tissues, most residues were higher than those found in water and were associated with down regulation of hepatic GST gene and Vtg expression. CAS gene involved in apoptosis, its transcript is down regulated in middle and western sections of the lake with higher pesticide residues. Different degrees of DNA damages in O. niloticus' liver cells were demonstrated by comet assay. Significant increase in the micronucleated cells in the three sections of the lake was observed; the western section fish showed the highest number. Persistent exposures of fish to pesticide caused impairment of antioxidant gene expression. This negatively affects apoptosis associated with damaging DNA and chromosome fragments.
Collapse
Affiliation(s)
- Abeer F El Nahas
- Animal Husbandry and Animal Wealth Department, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Mohamed A S Abdel-Razek
- Department of Chemistry and Toxicity of Pesticides, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Nashwa M Helmy
- Biotechnology department, Animal Health Research Institute, Dokki, Egypt
| | - Shawky Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt
| | - Haneen A Ghazy
- Biotechnology department, Animal Health Research Institute, Kafrelsheikh, Egypt
| |
Collapse
|
15
|
Abbasi NA, Arukwe A, Jaspers VLB, Eulaers I, Mennilo E, Ibor OR, Frantz A, Covaci A, Malik RN. Oxidative stress responses in relationship to persistent organic pollutant levels in feathers and blood of two predatory bird species from Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:26-33. [PMID: 27939994 DOI: 10.1016/j.scitotenv.2016.11.197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
To date, knowledge of persistent organic pollutant (POP) mediated oxidative stress responses in avian species is rather limited. We therefore investigated whether exposure to polybrominated diphenyl ethers (PBDEs) and organochlorine pesticides (OCPs) in two predatory bird species, namely black kite (Milvus migrans) and spotted owlet (Athene brama), was associated to activities of antioxidant enzymes, such as glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and catalase (CAT), or expression of GPx and superoxide dismutase (SOD) genes. As part of this investigation, we evaluated whether feathers were suitable to reflect internal body burdens and their associated oxidative stress effects. p,p'-DDE was unanimously recorded with highest concentrations in feathers and blood of both species. In general, the non-significant associations reflect that feathers are not always a suitable indicator for internal body burdens of POPs, depending on the feather type and the age of the bird. The activity of GST and GR was significantly higher in spotted owlet whereas GPx and CAT was higher (albeit not significant) in spotted owlet and black kite respectively. In comparison, mRNA expression of GPx, SOD and Cu,ZnSOD was significantly higher in black kite. Regression analysis showed that the activity of GST and GR was significantly associated with p,p'-DDE in blood of spotted owlet. Similarly, activity of CAT and GR was significantly correlated with BDE-100 in feathers of spotted owlet. In comparison, mRNA expression of SOD was found significantly associated with ∑PBDEs in blood of spotted owlet as well as p,p'-DDE in feathers of black kite. Significant associations of various POPs with biological responses may suggest that POP exposure may be contributing to oxidative stress in the studied bird of prey species. This first investigation indicates the necessity for further research on cause-effect relationships between POP exposures and changes in general health of free ranging birds.
Collapse
Affiliation(s)
- Naeem Akhtar Abbasi
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Augustine Arukwe
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Veerle L B Jaspers
- Environmental Toxicology, Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Igor Eulaers
- Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, 4000 Roskilde, Denmark
| | - Elvira Mennilo
- Department of Veterinary Sciences, University of Pisa, Italy
| | - Oju Richard Ibor
- Department of Zoology and Environmental Biology, University of Calabar, Nigeria
| | - Adrien Frantz
- Sorbonne Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, F-75005 Paris, France
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
16
|
Bruneau A, Landry C, Giraudo M, Douville M, Brodeur P, Boily M, Gagnon P, Houde M. Integrated spatial health assessment of yellow perch (Perca flavescens) populations from the St. Lawrence River (QC, Canada), part B: cellular and transcriptomic effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18211-18221. [PMID: 27272701 DOI: 10.1007/s11356-016-7001-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/27/2016] [Indexed: 06/06/2023]
Abstract
Multi-biological level assessments have become great tools to evaluate the health of aquatic ecosystems. Using this approach, a complementary study was designed to evaluate the health of yellow perch (Perca flavescens) populations in the St. Lawrence River (Quebec, Canada). In the present study, stress responses were compared at the transcriptomic, cellular, and tissue levels in yellow perch collected at six sites along the river: Lake St. François, Lake St. Louis (north and south), Beauregard Island and Lake St. Pierre (north and south). These results complement the physiological and chemical parameters as well as pathogen infection investigated in a companion paper published in the present issue. Thiobarbituric acid reactive substance (TBARS) analyses indicated the presence of oxidative stress in fish collected in the southern part of Lake St. Louis and at the downstream sites of Lake St. Pierre. High lipid peroxidation levels were found in the muscle of yellow perch caught at Beauregard Island, located downstream of the Montreal's wastewater treatment plant, suggesting an impact of the municipal effluent on redox homeostasis. Transcriptomic results indicated the down-regulation of genes related to lipid, glucose, and retinoid in southern Lake St. Pierre as well as a decrease in retinoid storage. Overall, biochemical and molecular markers indicated that the health status of yellow perch followed a decreasing gradient from upstream to downstream of the St. Lawrence River. This gradient is representative of the cumulative negative impacts of human activities on water and habitat quality along the river.
Collapse
Affiliation(s)
- Audrey Bruneau
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Catherine Landry
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des Parcs, Direction de la gestion de la faune de la Mauricie et du Centre-du-Québec, 100, rue Laviolette, bureau 207, Trois-Rivières, QC, G9A 5S9, Canada
| | - Monique Boily
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, QC, H3C 3P8, Canada
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate, 105 McGill street, Montreal, QC, H2Y 2E7, Canada
| |
Collapse
|
17
|
Martyniuk CJ, Doperalski NJ, Prucha MS, Zhang JL, Kroll KJ, Conrow R, Barber DS, Denslow ND. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:140-150. [DOI: 10.1016/j.cbd.2016.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/05/2016] [Accepted: 06/09/2016] [Indexed: 12/28/2022]
|
18
|
Hahn CM, Iwanowicz LR, Cornman RS, Mazik PM, Blazer VS. Transcriptome discovery in non-model wild fish species for the development of quantitative transcript abundance assays. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:27-40. [PMID: 27497300 DOI: 10.1016/j.cbd.2016.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/04/2016] [Accepted: 07/08/2016] [Indexed: 12/14/2022]
Abstract
Environmental studies increasingly identify the presence of both contaminants of emerging concern (CECs) and legacy contaminants in aquatic environments; however, the biological effects of these compounds on resident fishes remain largely unknown. High throughput methodologies were employed to establish partial transcriptomes for three wild-caught, non-model fish species; smallmouth bass (Micropterus dolomieu), white sucker (Catostomus commersonii) and brown bullhead (Ameiurus nebulosus). Sequences from these transcriptome databases were utilized in the development of a custom nCounter CodeSet that allowed for direct multiplexed measurement of 50 transcript abundance endpoints in liver tissue. Sequence information was also utilized in the development of quantitative real-time PCR (qPCR) primers. Cross-species hybridization allowed the smallmouth bass nCounter CodeSet to be used for quantitative transcript abundance analysis of an additional non-model species, largemouth bass (Micropterus salmoides). We validated the nCounter analysis data system with qPCR for a subset of genes and confirmed concordant results. Changes in transcript abundance biomarkers between sexes and seasons were evaluated to provide baseline data on transcript modulation for each species of interest.
Collapse
Affiliation(s)
- Cassidy M Hahn
- West Virginia University, School of Natural Resources, 322 Percival Hall, Morgantown, WV 26506, USA; US Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA.
| | - Luke R Iwanowicz
- US Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Robert S Cornman
- US Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| | - Patricia M Mazik
- West Virginia University, School of Natural Resources, 322 Percival Hall, Morgantown, WV 26506, USA
| | - Vicki S Blazer
- US Geological Survey, Leetown Science Center, 11649 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
19
|
Bougas B, Normandeau E, Grasset J, Defo MA, Campbell PGC, Couture P, Bernatchez L. Transcriptional response of yellow perch to changes in ambient metal concentrations-A reciprocal field transplantation experiment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:132-142. [PMID: 26867186 DOI: 10.1016/j.aquatox.2015.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation.
Collapse
Affiliation(s)
- Bérénice Bougas
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec (Québec) G1V 0A6, Canada
| | - Julie Grasset
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement 490, rue de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Michel A Defo
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement 490, rue de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Peter G C Campbell
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement 490, rue de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Patrice Couture
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement 490, rue de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec (Québec) G1V 0A6, Canada
| |
Collapse
|
20
|
Bahamonde PA, Feswick A, Isaacs MA, Munkittrick KR, Martyniuk CJ. Defining the role of omics in assessing ecosystem health: Perspectives from the Canadian environmental monitoring program. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:20-35. [PMID: 26771350 DOI: 10.1002/etc.3218] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/16/2015] [Accepted: 08/20/2015] [Indexed: 05/22/2023]
Abstract
Scientific reviews and studies continue to describe omics technologies as the next generation of tools for environmental monitoring, while cautioning that there are limitations and obstacles to overcome. However, omics has not yet transitioned into national environmental monitoring programs designed to assess ecosystem health. Using the example of the Canadian Environmental Effects Monitoring (EEM) program, the authors describe the steps that would be required for omics technologies to be included in such an established program. These steps include baseline collection of omics endpoints across different species and sites to generate a range of what is biologically normal within a particular ecosystem. Natural individual variability in the omes is not adequately characterized and is often not measured in the field, but is a key component to an environmental monitoring program, to determine the critical effect size or action threshold for management. Omics endpoints must develop a level of standardization, consistency, and rigor that will allow interpretation of the relevance of changes across broader scales. To date, population-level consequences of routinely measured endpoints such as reduced gonad size or intersex in fish is not entirely clear, and the significance of genome-wide molecular, proteome, or metabolic changes on organism or population health is further removed from the levels of ecological change traditionally managed. The present review is not intended to dismiss the idea that omics will play a future role in large-scale environmental monitoring studies, but rather outlines the necessary actions for its inclusion in regulatory monitoring programs focused on assessing ecosystem health.
Collapse
Affiliation(s)
- Paulina A Bahamonde
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - April Feswick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Meghan A Isaacs
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Kelly R Munkittrick
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
21
|
Transcript variability and physiological correlates in the fathead minnow ovary: Implications for sample size, and experimental power. Comp Biochem Physiol B Biochem Mol Biol 2015; 187:22-30. [DOI: 10.1016/j.cbpb.2015.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/23/2015] [Accepted: 04/28/2015] [Indexed: 11/23/2022]
|
22
|
Crump D, Williams KL, Chiu S, Letcher RJ, Periard L, Kennedy SW. Biochemical and Transcriptomic Effects of Herring Gull Egg Extracts from Variably Contaminated Colonies of the Laurentian Great Lakes in Chicken Hepatocytes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10190-10198. [PMID: 26192021 DOI: 10.1021/acs.est.5b02745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Determining the effects of complex mixtures of environmental contaminants poses many challenges within the field of ecotoxicology. In this study, graded concentrations of herring gull egg extracts, collected from five Great Lakes breeding colonies with variable burdens of organohalogen contaminants (OHCs), were administered to chicken embryonic hepatocytes to determine effects on 7-ethoxyresorufin-O-deethylase (EROD) activity, porphyrin accumulation, and mRNA expression. EROD activity and porphyrin accumulation permitted the ranking of colonies based on the efficacy of eliciting an aryl hydrocarbon receptor-mediated response. An avian ToxChip polymerase chain reaction (PCR) array provided more exhaustive coverage in terms of potential toxicity pathways being affected, including xenobiotic and lipid metabolism and the thyroid hormone pathway. Herring gull eggs from Channel Shelter Island (CHSH, Lake Huron) and Gull Island (GULL, Lake Michigan) had among the highest OHC burdens, and extracts elicited a biochemical and transcriptomic response greater than that of extracts from the other three, less polluted colonies. For example, EROD EC50 values and porphyrin ECthreshold values were lower for CHSH and GULL extracts than for the other colonies. Extracts from CHSH and GULL altered 15 and 13 of 27 genes on the PCR array compared to no more than eight genes for the less contaminated sites. The combination of a well-established avian in vitro assay, two well-characterized biochemical assays, and the avian ToxChip PCR array permitted the geographical discrimination of variably contaminated herring gull eggs from the Great Lakes. Such high-throughput assays show potential promise as cost-effective tools for determining toxic potencies of complex mixtures in the environment.
Collapse
Affiliation(s)
- Doug Crump
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Kim L Williams
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Suzanne Chiu
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Robert J Letcher
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Luke Periard
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
| | - Sean W Kennedy
- †Ecotoxicology and Wildlife Health Division, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada K1A 0H3
- ‡Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
23
|
Porreca I, D'Angelo F, Gentilcore D, Carchia E, Amoresano A, Affuso A, Ceccarelli M, De Luca P, Esposito L, Guadagno FM, Mallardo M, Nardone A, Maccarone S, Pane F, Scarfò M, Sordino P, De Felice M, Ambrosino C. Cross-species toxicogenomic analyses and phenotypic anchoring in response to groundwater low-level pollution. BMC Genomics 2014; 15:1067. [PMID: 25475078 PMCID: PMC4301944 DOI: 10.1186/1471-2164-15-1067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 11/24/2014] [Indexed: 01/02/2023] Open
Abstract
Background Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and maximizes health risk prediction in human. Results Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA determination in mice and zebrafish, respectively. Conclusions In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the observed effects. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1067) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Nilsen E, Morace J. Foodweb transfer, sediment transport, and biological impacts of emerging and legacy organic contaminants in the lower Columbia River, Oregon and Washington, USA: USGS Contaminants and Habitat (ConHab) Project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 484:319-321. [PMID: 24063844 DOI: 10.1016/j.scitotenv.2013.07.127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Elena Nilsen
- U.S. Geological Survey, Oregon Water Science Center, 2130 S.W. 5th Avenue, Portland, OR 97201, USA.
| | - Jennifer Morace
- U.S. Geological Survey, Oregon Water Science Center, 2130 S.W. 5th Avenue, Portland, OR 97201, USA
| |
Collapse
|
25
|
Counihan TD, Waite IR, Nilsen EB, Hardiman JM, Elias E, Gelfenbaum G, Zaugg SD. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 484:331-343. [PMID: 24703225 DOI: 10.1016/j.scitotenv.2014.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated.
Collapse
Affiliation(s)
- Timothy D Counihan
- U.S. Geological Survey, Western Fisheries Research Center, 5501-A Cook-Underwood Road, Cook, WA 98605, United States.
| | - Ian R Waite
- U.S. Geological Survey, Oregon Water Science Center, 2130 S.W. 5th Avenue, Portland, OR 97201, United States
| | - Elena B Nilsen
- U.S. Geological Survey, Oregon Water Science Center, 2130 S.W. 5th Avenue, Portland, OR 97201, United States
| | - Jill M Hardiman
- U.S. Geological Survey, Western Fisheries Research Center, 5501-A Cook-Underwood Road, Cook, WA 98605, United States
| | - Edwin Elias
- U.S. Geological Survey, Pacific Coastal and Marine Science Center, 400 Natural Bridges Drive, Santa Cruz, CA 95060, United States
| | - Guy Gelfenbaum
- U.S. Geological Survey, Pacific Coastal and Marine Science Center, 400 Natural Bridges Drive, Santa Cruz, CA 95060, United States
| | - Steven D Zaugg
- U.S. Geological Survey, National Water Quality Laboratory, West 6th Ave. & Kipling Street, Lakewood, CO 80225, United States
| |
Collapse
|