1
|
Sandoval MA, Calzadilla W, Vidal J, Brillas E, Salazar-González R. Contaminants of emerging concern: Occurrence, analytical techniques, and removal with electrochemical advanced oxidation processes with special emphasis in Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123397. [PMID: 38272166 DOI: 10.1016/j.envpol.2024.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/02/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
The occurrence of contaminants of emerging concern (CECs) in environmental systems is gradually more studied worldwide. However, in Latin America, the presence of contaminants of emerging concern, together with their environmental and toxicological impacts, has recently been gaining wide interest in the scientific community. This paper presents a critical review about the source, fate, and occurrence of distinct emerging contaminants reported during the last two decades in various countries of Latin America. In recent years, Brazil, Chile, and Colombia are the main countries that have conducted research on the presence of these pollutants in biological and aquatic compartments. Data gathered indicated that pharmaceuticals, pesticides, and personal care products are the most assessed CECs in Latin America, being the most common compounds the followings: atrazine, acenaphthene, caffeine, carbamazepine, ciprofloxacin, diclofenac, diuron, estrone, losartan, sulfamethoxazole, and trimethoprim. Most common analytical methodologies for identifying these compounds were HPLC and GC coupled with mass spectrometry with the potential to characterize and quantify complex substances in the environment at low concentrations. Most CECs' monitoring and detection were observed near to urban areas which confirm the out-of-date wastewater treatment plants and sanitization infrastructures limiting the removal of these pollutants. Therefore, the implementation of tertiary treatment should be required. In this tenor, this review also summarizes some studies of CECs removal using electrochemical advanced oxidation processes that showed satisfactory performance. Finally, challenges, recommendations, and future perspectives are discussed.
Collapse
Affiliation(s)
- Miguel A Sandoval
- Instituto Tecnológico Superior de Guanajuato, Tecnológico Nacional de México, Carretera Estatal Guanajuato-Puentecillas Km. 10.5, 36262, Guanajuato, Mexico
| | - Wendy Calzadilla
- Research Group of Analysis, Treatments, Electrochemistry, Recovery and Reuse of Water, (WATER2), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Jorge Vidal
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| | - Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ricardo Salazar-González
- Departamento de Química de Los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile.
| |
Collapse
|
2
|
Manetti M, Tomei MC. Anaerobic removal of contaminants of emerging concern in municipal wastewater: Eco-toxicological risk evaluation and strategic selection of optimal treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168895. [PMID: 38042180 DOI: 10.1016/j.scitotenv.2023.168895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
In the last decades, the interest for anaerobic process as a mainstream treatment of municipal wastewater increased due to the development of high-rate anaerobic bioreactors able to achieve removal kinetics comparable to the aerobic ones. Moreover, they have the additional advantages of energy production, nutrient recovery and reduced excess sludge yield, which are interesting features in the frame of sustainability wastewater treatment goals. These appealing factors increased the research demand to evaluate the potential of the anaerobic removal for contaminants of emerging concern (CECs) in municipal wastewater. However, despite the growing interest for the subject, literature is still fragmentary and reviews are mainly focused on specific technologies and target compounds or groups of compounds. We propose this review with the main objectives of presenting the state of knowledge, the performances of anaerobic systems for CECs' removal and, more important, to give the reader guidelines for optimal treatment selection. In the first part, a general overview of the investigated technologies at different scale, with a special focus on the recently proposed enhancements, is presented. Collected data are analysed to select the target CECs and the analysis results employed to define the optimal technological solution for their removal. A first novelty element of the paper is the original procedure for contaminant selection consisting of a risk assessment tool for CECs, based on their frequency of detection, concentration and potential for biosorption in wastewater treatment plants. Data of selected target CECs are combined with compound and technology performance data to implement a flowchart tool to evaluate the optimal treatment strategy, which constitute another, even more important, novelty element of this study.
Collapse
Affiliation(s)
- Marco Manetti
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy
| | - Maria Concetta Tomei
- Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione (Rome), Italy.
| |
Collapse
|
3
|
Yang L, Xia C, Jiang J, Chen X, Zhou Y, Yuan C, Bai L, Meng S, Cao G. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132628. [PMID: 37783143 DOI: 10.1016/j.jhazmat.2023.132628] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
The separation behavior of a variety of emerging contaminants, including nine antibiotics and six estrogens commonly reported in natural environment, by four commercial nanofiltration and reverse osmosis (NF/RO) membranes at various water conditions (pH, concentration) was investigated. The contaminant rejection at pH 6.0 followed a decreasing trend of XLE (94%-100%) ≈ NF90 (88%-100%) > NF270 (25%-85%) > DL (16%-75%). The dense structures of NF90 and XLE reflected by their small effective pore radii (0.30-0.31 nm) contributed mainly to their high rejection, demonstrating the important role of size exclusion. For the negatively charged loose NF270 and DL membranes (0.40-0.45 nm), charge repulsion made additional contribution, which is markedly reflected by their greater rejection to charged antibiotics than neutral estrogens (45%-85% vs. 25%-60% by NF270). The correlation between rejection data and normalized molecular sizes at pH 4.0 and 9.0 intuitively demonstrated the individual role of size exclusion and charge repulsion. The adsorption by membranes was mainly responsible for the initial compound reduction in feedwater by 6%-25% within 3 h, while only 0.3%-5.6% was attributed to self-degradation. The adsorption capacity was determined, which might be mainly governed by hydrophobic interaction. The resolved controlling factors and mechanisms will contribute to the accurate prediction and membrane selection for trace contaminant removal by membrane process.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Caiping Xia
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jielun Jiang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yanbo Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Yuan
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lichun Bai
- Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Guomin Cao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
4
|
Odehnalová K, Přibilová P, Maršálková E, Zezulka Š, Pochylý F, Rudolf P, Maršálek B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2905-2916. [PMID: 38096077 PMCID: wst_2023_382 DOI: 10.2166/wst.2023.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The present paper investigated the potential of hydrodynamic cavitation (HC) as an effective tool for activating sodium percarbonate (SPC). The method's efficiency was demonstrated by effectively removing estrogens, which are pollutants that have adverse impacts on aquatic ecosystems. The effects of the SPC concentration, temperature of solution, and cavitation time were evaluated. After SPC/HC treatment, the removal of estrogens was monitored by liquid chromatography-tandem mass spectrometry (LC -MS/MS). Already after 4 s of treatment and 24 h of reaction time, more than 97% of estrogens (initial concentration of 300 ng/L) were removed. The effect of post-treatment time is not considered in several papers, even though it seems to be crucial and is discussed here. The results were supported by the values of degradation rate constants, which fit the pseudo-first-order kinetic model. We also verified that HC alone was not effective for estrogen removal under the selected conditions. The sustainability of the SPC/HC system was evaluated based on electric energy per order calculation. The combination of SPC and HC is a promising approach for rapidly degrading micropollutants such as estrogenic compounds without the need for additional technological steps, such as pH or temperature adjustment.
Collapse
Affiliation(s)
- Klára Odehnalová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic E-mail:
| | - Petra Přibilová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Eliška Maršálková
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Štěpán Zezulka
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - František Pochylý
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Pavel Rudolf
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Blahoslav Maršálek
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| |
Collapse
|
5
|
Chae SH, Lim SJ, Seid MG, Ejerssa WW, Son A, Son H, Choi S, Lee W, Lee Y, Hong SW. Predicting micropollutant fate during wastewater treatment using refined classical kinetic model based on quantitative monitoring in multi-metropolitan regions of South Korea. WATER RESEARCH 2023; 245:120627. [PMID: 37717334 DOI: 10.1016/j.watres.2023.120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
This study aimed to implement an extensive prediction model for the fate of micropollutants (MPs) in wastewater treatment plants (WWTPs). Five WWTPs equipped with seven different biological treatment processes were monitored from 2020 to 2022 with three to four sampling events in each year, and 27 datasets for 20 MPs were collected. Among these datasets, 12 were used to investigate the behavior and fate of MPs in WWTPs in South Korea. Metformin, acetaminophen, caffeine, naproxen, and ibuprofen were the MPs with the highest influent concentrations (ranging from 3,933.3-187,637.0 ng L-1) at all WWTPs. More than 90% of MPs were removed by biological treatment processes in all WWTPs. The Kruskal-Wallis test verified that their efficacy did not differ statistically (p-value > 0.05). Meanwhile, to refine the performance of the prediction model, this study optimized the biodegradation rate constants (kbio) of each MP according to the variation of seasonal water temperature. As a result, compared to the original prediction model, the mean difference between the actual data and predicted results (MEAN) decreased by 6.77%, while the Nash-Sutcliffe efficiency (NSE) increased by 0.226. The final MEAN and NSE for the refined prediction model were calculated to be 5.09% and 0.964, respectively. The prediction model made accurate predictions, even for MPs exhibiting behaviors different from other cases, such as estriol and atrazine. Consequently, the optimization strategy proposed in this study was determined to be effective because the overall removal efficiencies of MPs were successfully predicted even with limited reference datasets.
Collapse
Affiliation(s)
- Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seung Ji Lim
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Wondesen Workneh Ejerssa
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Aseom Son
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Heejong Son
- Water Quality Institute, Busan Water Authority, Gimhae-si, Gyeongsangnam-do 50804, Republic of Korea
| | - Sangki Choi
- Water Quality Institute, Busan Water Authority, Gimhae-si, Gyeongsangnam-do 50804, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Woongbae Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
6
|
El Mouchtari EM, El Mersly L, Belkodia K, Piram A, Lebarillier S, Briche S, Rafqah S, Wong-Wah-Chung P. Sol-Gel Synthesis of New TiO 2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol. TOXICS 2023; 11:299. [PMID: 37112526 PMCID: PMC10143179 DOI: 10.3390/toxics11040299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Many approaches have been investigated to eliminate pharmaceuticals in wastewater treatment plants during the last decades. However, a lack of sustainable and efficient solutions exists for the removal of hormones by advanced oxidation processes. The aim of this study was to synthesize and test new photoactive bio composites for the elimination of these molecules in wastewater effluents. The new materials were obtained from the activated carbon (AC) of Arganian spinosa tree nutshells and titanium tetrachloride by the sol gel method. SEM analysis allowed one to confirm the formation of TiO2 particles homogeneously dispersed at the surface of AC with a controlled titanium dioxide mass ratio, a specific TiO2 anatase structure, and a highly specific surface area, evidenced by ATG, XRD, and BET analysis, respectively. The obtained composites were revealed to quantitatively absorb carbamazepine (CBZ), which is used as a referred pharmaceutical, and leading to its total elimination after 40 min under irradiation with the most effective material. TiO2 high content disfavors CBZ adsorption but improves its degradation. In the presence of the composite, three hormones (17α-ethinylestradiol, estrone, and β-estradiol) are partially adsorbed onto the composite and totally degraded after 60 min under UV light exposure. This study constitutes a promising solution for the efficient treatment of wastewater contaminated by hormones.
Collapse
Affiliation(s)
- El Mountassir El Mouchtari
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| | - Lekbira El Mersly
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
| | - Kaltoum Belkodia
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
| | - Anne Piram
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| | - Stéphanie Lebarillier
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| | - Samir Briche
- Département Stockage de l’Energie et Revêtements Multifonctionnels (SERM), Moroccan Foundation for Advanced Science Innovation and Research (MAScIR), Rabat 10100, Morocco
| | - Salah Rafqah
- Laboratoire Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Marrakech 40000, Morocco; (E.M.E.M.)
| | - Pascal Wong-Wah-Chung
- Laboratoire Chimie Environnement (LCE), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille University, 13000 Marseille, France
| |
Collapse
|
7
|
Souza CPFAD, Kligerman DC, Bezerra GM, Oliveira JLDM. Environmental risk caused by drug waste in the city of Rio de Janeiro, Brazil, during the SARS-Cov19 pandemic. CIENCIA & SAUDE COLETIVA 2023. [DOI: 10.1590/1413-81232023283.05722022en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Abstract The relationship between the distribution of medicines used in the Pandemic by SARS-COV-19 in the municipality of Rio de Janeiro and the estimated level of environmental risk caused by their residues was evaluated. The amount of medicines distributed by primary health care (PHC) units between 2019 and 2021 were collected. The risk quotient (RQ) corresponded to the ratio between the estimated predictive environmental concentration (PECest) obtained by the consumption and excretion of each drug and its non-effective predictive concentration (PNEC). Between 2019 and 2020, the PECest of azithromycin (AZI) and ivermectin (IVE) increased between 2019 and 2020, with a decrease in 2021 probably due to shortages. Dexchlorpheniramine (DEX) and fluoxetine (FLU) fell, returning to growth in 2021. While the PECest of diazepam (DIA) increased over these 3 years, ethinylestradiol (EE2) decreased possibly due to the prioritization of PHC in the treatment of COVID-19. The largest QR were from FLU, EE2 and AZI. The consumption pattern of these drugs did not reflect their environmental risk because the most consumed ones have low toxicity. It is worth noting that some data may be underestimated due to the incentive given during the pandemic to the consumption of certain groups of drugs.
Collapse
|
8
|
Souza CPFAD, Kligerman DC, Bezerra GM, Oliveira JLDM. Environmental risk caused by drug waste in the city of Rio de Janeiro, Brazil, during the SARS-Cov19 pandemic. CIENCIA & SAUDE COLETIVA 2023; 28:711. [PMID: 36888856 DOI: 10.1590/1413-81232023283.05722022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/30/2022] [Indexed: 03/08/2023] Open
Abstract
The relationship between the distribution of medicines used in the Pandemic by SARS-COV-19 in the municipality of Rio de Janeiro and the estimated level of environmental risk caused by their residues was evaluated. The amount of medicines distributed by primary health care (PHC) units between 2019 and 2021 were collected. The risk quotient (RQ) corresponded to the ratio between the estimated predictive environmental concentration (PECest) obtained by the consumption and excretion of each drug and its non-effective predictive concentration (PNEC). Between 2019 and 2020, the PECest of azithromycin (AZI) and ivermectin (IVE) increased between 2019 and 2020, with a decrease in 2021 probably due to shortages. Dexchlorpheniramine (DEX) and fluoxetine (FLU) fell, returning to growth in 2021. While the PECest of diazepam (DIA) increased over these 3 years, ethinylestradiol (EE2) decreased possibly due to the prioritization of PHC in the treatment of COVID-19. The largest QR were from FLU, EE2 and AZI. The consumption pattern of these drugs did not reflect their environmental risk because the most consumed ones have low toxicity. It is worth noting that some data may be underestimated due to the incentive given during the pandemic to the consumption of certain groups of drugs.
Collapse
Affiliation(s)
- Carla Patricia Figueiredo Antunes de Souza
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. R. Leopoldo Bulhões 1.480, Manguinhos. 21041-210. Rio de Janeiro RJ Brasil.
| | - Débora Cynamon Kligerman
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. R. Leopoldo Bulhões 1.480, Manguinhos. 21041-210. Rio de Janeiro RJ Brasil.
| | | | - Jaime Lopes da Mota Oliveira
- Departamento de Saneamento e Saúde Ambiental, Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz. R. Leopoldo Bulhões 1.480, Manguinhos. 21041-210. Rio de Janeiro RJ Brasil.
| |
Collapse
|
9
|
Ciślak M, Kruszelnicka I, Zembrzuska J, Ginter-Kramarczyk D. Estrogen pollution of the European aquatic environment: A critical review. WATER RESEARCH 2023; 229:119413. [PMID: 36470046 DOI: 10.1016/j.watres.2022.119413] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Among the plethora of chemicals released into the environment, much attention is paid to endocrine disrupting compounds (EDCs). Natural estrogens, such as estrone (E1), 17β-estradiol (E2), estriol (E3) are excreted by humans as well as animals, and can enter the environment as a result of discharging domestic sewage and animal waste. These compounds can cause deleterious effects such as feminization, infertility and hermaphroditism in organisms that inhabit water bodies. This study provides an overview of the level of estrogen exposures in surface waters, groundwater and river sediments in European countries. The conducted review shows that estrogen concentrations were within the range of 0.1 ng L - 10 ng /L in the majority of the tested environmental samples. However, the authors of the study point out that there are still many unexplored areas and a limited amount of data that mainly concerns Eastern European countries. The study also analysed the factors that influence the increased emissions of estrogens to the environment, which may be helpful for identifying particularly polluted areas.
Collapse
Affiliation(s)
- Marianna Ciślak
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland.
| | - Izabela Kruszelnicka
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| | - Joanna Zembrzuska
- Poznan University of Technology, Faculty of Chemical Technology Institute of Chemistry and Technical Electrochemistry, Berdychowo 4, 60-965 Poznan
| | - Dobrochna Ginter-Kramarczyk
- Poznan University of Technology, Faculty of Environmental Engineering and Energy, Department of Water Supply and Bioeconomy, Berdychowo 4, 60-965 Poznan, Wielkopolska, Poland
| |
Collapse
|
10
|
Qin X, Lai KP, Wu RSS, Kong RYC. Continuous 17α-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma). MARINE POLLUTION BULLETIN 2022; 183:114093. [PMID: 36084614 DOI: 10.1016/j.marpolbul.2022.114093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
17α-ethinylestradiol (EE2) is an anthropogenic estrogen that is widely used for hormone therapy and oral contraceptives. It was reported that EE2 exposure induced reproductive impairments through processes affecting reproduction behavior and inducing ovotestis. However, the effects of continuous EE2 exposure on the reproductive performance remain largely unknown. In this study, adult marine medaka fish (Oryzias melastigma) were exposed to EE2 (85 ng/L) for one (F0) and two (F1) generations. Our results indicate that continuous EE2 exposure reduced fecundity and sperm motility. The testicular transcriptome, followed by bioinformatic analysis revealed the dysregulation of pathways related to steroidogenesis, sperm motility, and reproductive system development. Collectively, our findings indicate that continuous EE2 exposure directly affected sperm quality via the alteration of steroidogenesis and dysregulation of reproductive system development. The identified key factors including DNM1, PINK1, PDE7B, and SLC12A7 can serve as biomarkers to assess EE2-reduced sperm motility.
Collapse
Affiliation(s)
- Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Rodrigues-Silva F, Masceno GP, Panicio PP, Imoski R, Prola LDT, Vidal CB, Xavier CR, Ramsdorf WA, Passig FH, Liz MVD. Removal of micropollutants by UASB reactor and post-treatment by Fenton and photo-Fenton: Matrix effect and toxicity responses. ENVIRONMENTAL RESEARCH 2022; 212:113396. [PMID: 35525292 DOI: 10.1016/j.envres.2022.113396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Literature is scarce on the performance of Fenton-based processes as post-treatment of municipal wastewater treated by upflow anaerobic sludge blanket (UASB) reactor. This study aims to perform Fenton and photo-Fenton from UASB influent and effluent matrices to remove micropollutants (MPs) models: atrazine (ATZ), rifampicin (RIF), and 17α-ethynylestradiol (EE2). A UASB reactor at bench-scale (14 L) was operated with these MPs, and the AOPs experiments at bench-scale were performed on a conventional photochemical reactor (1 L). A high-pressure vapor mercury lamp was used for photo-Fenton process (UVA-Vis) as a radiation source. Microcrustacean Daphnia magna (acute toxicity) and seeds of Lactuca sativa (phytotoxicity) were indicator organisms for toxicity monitoring. The UASB reactor showed stability removing 90% of the mean chemical oxygen demand, and removal efficiencies for ATZ, RIF, and EE2 were 16.5%, 45.9%, and 15.7%, respectively. A matrix effect was noted regarding the application of both Fenton and photo-Fenton in UASB influent and effluent to remove MPs and toxicity responses. The pesticide ATZ was the most recalcitrant compound, yet the processes carried out from UASB effluent achieved removal >99.99%. The post-treatment of the UASB reactor by photo-Fenton removed acute toxicity in D. magna for all treatment times. However, only the photo-Fenton conducted for 90 min did not result in a phytotoxic effect in L. sativa.
Collapse
Affiliation(s)
- Fernando Rodrigues-Silva
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Gabriella Paini Masceno
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Paloma Pucholobek Panicio
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Rafaela Imoski
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Liziê Daniela Tentler Prola
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Carla Bastos Vidal
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Claudia Regina Xavier
- Laboratory of Wastewater Treatment, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Wanessa Algarte Ramsdorf
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Fernando Hermes Passig
- Laboratory of Sanitation, Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil
| | - Marcus Vinicius de Liz
- Research Group on Water and Wastewater Advanced Treatment Technologies (GPTec), Department of Chemistry and Biology, Federal University of Technology-Paraná (UTFPR), Deputado Heitor de Alencar Furtado St., 5000, Ecoville, Curitiba, Paraná, 81280-340, Brazil.
| |
Collapse
|
12
|
Marson EO, Paniagua CES, Gomes Júnior O, Gonçalves BR, Silva VM, Ricardo IA, V M Starling MC, Amorim CC, Trovó AG. A review toward contaminants of emerging concern in Brazil: Occurrence, impact and their degradation by advanced oxidation process in aquatic matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155605. [PMID: 35504382 DOI: 10.1016/j.scitotenv.2022.155605] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
This work presents data regarding the occurrence and treatment of Contaminants of Emerging Concern (CECs) in Brazil in the past decade. The literature review (2011-2021) revealed the detection of 87 pharmaceutical drugs and personal care products, 58 pesticides, 8 hormones, 2 illicit drugs, caffeine and bisphenol A in distinct matrices (i.e.: wastewater, groundwater, sea water, rainwater, surface water, drinking water and hospital effluent). Concentrations of CECs varied from ng-μg L-1 depending on the location, compound and matrix. The inefficiency of conventional wastewater treatment methods on the removal of CECs and lack of basic sanitation in some regions in the country aggravates contamination of Brazilian aquatic environments and poses potential environmental and health risks. Advanced oxidation processes (AOPs) are pointed out as viable and efficient alternatives to degrade CECs and prevent environmental contamination. A total of 375 studies involving the use of AOPs in Brazilian aqueous matrices were published in the last decade. Fenton and photo-Fenton processes, photo-peroxidation, ozonation, electrochemical advanced oxidation and heterogeneous photocatalysis are some of the AOPs applied by Brazilian research groups. Although many works discuss the importance of applying these technologies for CECs removal in real treatment plants, most of these studies assess the treatment of distilled water or simulated effluent. Therefore, the conduction of studies applying AOPs in real matrices are critical to drive the implementation of these processes coupled to conventional water and wastewater treatment in real plants in order to prevent the contamination of environmental matrices by CECs in Brazil.
Collapse
Affiliation(s)
- Eduardo O Marson
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Cleiseano E S Paniagua
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Oswaldo Gomes Júnior
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Bárbara R Gonçalves
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Valdislaine M Silva
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil
| | - Ivo A Ricardo
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil; Faculty of Natural and Exact Sciences, Save University, 0301-01 Chongoene, Gaza, Mozambique
| | - Maria Clara V M Starling
- Research Group on Advanced Oxitation Processes, Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental, 31270-010 Belo Horizonte, MG, Brazil
| | - Camila C Amorim
- Research Group on Advanced Oxitation Processes, Universidade Federal de Minas Gerais, Departamento de Engenharia Sanitária e Ambiental, 31270-010 Belo Horizonte, MG, Brazil
| | - Alam G Trovó
- Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG, Brazil.
| |
Collapse
|
13
|
Budeli P, Ekwanzala MD, Momba MNB. Hormetic effect of 17α-ethynylestradiol on activated sludge microbial community response. Front Microbiol 2022; 13:961736. [PMID: 36060745 PMCID: PMC9434213 DOI: 10.3389/fmicb.2022.961736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Synthetic estrogen analogues are among the most potent estrogenic contaminants in effluents from wastewater treatment plants. Although its effects have been well elucidated in the feminization of male fish and interference with the endocrine systems in humans, it has not been fully explored in the activated sludge (AS) microbiome, particularly EE2 (17α-ethynylestradiol). Therefore, in this study, the bacterial community shift in a 6-day laboratory-scale reactor in environmental (0, 5, 10, and 100 ng/L) and predictive elevated concentrations (5, 10, and 100 mg/L) of EE2 was investigated using culture-based and metagenomics approaches. Results showed significant changes (t-test, all p < 0.05) between initial and final physicochemical parameters (pH, DO, and EC). Although environmental concentrations showed a slight decrease in microbial counts (5.6 × 106 to 4.6 × 106 CFU/ml) after a 24-h incubation for the culturable approach, the predictive elevated concentrations (5 to 100 mg/L) revealed a drastic microbial counts reduction (5.6 × 106 to 8 × 102 CFU/ml). The metagenomic data analysis uncovered that bacterial communities in the control sample were dominated by Proteobacteria, followed by Bacteroidetes and Firmicutes. The taxonomic classification after exposure of microbial communities in various concentrations revealed significant differences in community composition between environmental concentration (Shannon indices between 2.58 to 3.68) and predictive elevated concentrations (Shannon indices between 2.24 and 2.84; t-test, all p < 0.05). The EE2 enriched seven OTUs were Novosphingobium, Cloacibacterium, Stenotrophomonas, Enterobacteriaceae_unclassified, Stenotrophomonas, Enterobacteriaceae_unclassified and Rhodobacteraceae_unclassified. These results were supported by a dehydrogenase activity (DHA) test, which demonstrated less (about 40%) DHA in predictive elevated concentrations than in environmental concentrations. Notwithstanding, these findings suggest that EE2 may possess potent hormetic effect as evidenced by promotion of microbiome richness and dehydrogenase activity of AS in lower EE2 doses.
Collapse
Affiliation(s)
- Phumudzo Budeli
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
| | | | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, South Africa
- *Correspondence: Maggy Ndombo Benteke Momba,
| |
Collapse
|
14
|
Narindri Rara Winayu B, Chang YL, Hsueh HT, Chu H. Simultaneous 17β-estradiol degradation, carbon dioxide fixation, and carotenoid accumulation by Thermosynechococcus sp. CL-1. BIORESOURCE TECHNOLOGY 2022; 354:127197. [PMID: 35460842 DOI: 10.1016/j.biortech.2022.127197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Thermosynechococcus sp. CL-1 (TCL-1) has a high potency to utilize CO2 under extreme conditions including high temperature, alkaline condition, and the occurrence of 17β-estradiol (E2). In this study, TCL-1 cultivation with E2 addition in the range of 0-20 mg/L was combined with various growth arrangements (light intensity and dissolved inorganic nitrogen/DIN level). After 120 h cultivation, the 1.0 mg/L E2, 200 µmol photons/m2/s light intensity, and 5.8 mM available nitrogen performed the best growth with 4.58 ± 0.18 mg/L/h biomass productivity, 94.9 ± 3.3% total estrogen removal, and 11.41 ± 0.11 mg/L/h CO2 fixation rate. Estrogen degradation was mainly carried out by biodegradation route which started from E2 conversion into estrone/E1 and with only 4-6% influence from the abiotic factors. Compared with the accumulated zeaxanthin, β-carotene was dominantly generated with a productivity of 0.043 ± 0.019 mg/L/h. Therefore, TCL-1 cultivation is an efficient strategy for simultaneous CO2 fixation, estrogen removal, and carotenoid accumulation as valuable byproducts.
Collapse
Affiliation(s)
| | - Yu-Ling Chang
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Ta Hsueh
- Sustainable Environment Research Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin Chu
- Department of Environmental Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
15
|
Sorption of 71 Pharmaceuticals to Powder Activated Carbon for Improved Wastewater Treatment. CLEAN TECHNOLOGIES 2022. [DOI: 10.3390/cleantechnol4020017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, sorption distribution coefficients were determined for 71 pharmaceuticals, aiming to describe their sorption behavior to powder activated carbon (PAC). The data are expected to be applied when designing and upgrading wastewater treatment plants (WWTP) for improved removal of pharmaceuticals by applying sorption to PAC as an additional removal technique. Sorption isotherms were determined for the pharmaceuticals over a concentration interval covering a wide range from 0.08 to 10 µg/L using PAC at a concentration of 10 mg/L. The best fitted sorption isotherms were used to calculate the distribution coefficients (Kd) and these were applied to estimate that the PAC doses needed to achieve a target concentration of 10 ng/L in the effluent. A target concentration was used since neither discharge limit values nor environmental quality standards in general have been defined for these compounds. Using a %-removal approach does not guarantee achievement of concentrations low enough to protect the water ecosystems. Some of the pharmaceuticals will be reduced by the addition of small amounts of PAC. Examples are atenolol, carbamazepine, citalopram, codeine, fluoxetine and ibuprofen. For others, e.g., oxazepam, an alternative treatment has to be considered since the requested dose is too high to be realistic for a target concentration of 10 ng/L.
Collapse
|
16
|
da Silva LF, Nobre CR, Moreno BB, Pereira CDS, de Souza Abessa DM, Choueri RB, Gusso-Choueri PK, Cesar A. Non-destructive biomarkers can reveal effects of the association of microplastics and pharmaceuticals or personal care products. MARINE POLLUTION BULLETIN 2022; 177:113469. [PMID: 35248887 DOI: 10.1016/j.marpolbul.2022.113469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Methods to assess the effects of contaminants on marine organisms typically involve euthanasia to obtain samples, but less invasive techniques may be more appropriate for working with threatened species. In this study, were assessed the biological responses of crabs exposed to microplastics and contaminants of emerging concern. Biochemical and cellular effects (lipid peroxidation, DNA damage, cholinesterase activity, and lysosomal membrane stability) in hemolymph were analyzed in a kinetic study, at 3 and 7 days, in U. cordatus exposed to microplastics spiked with Triclosan (TCS) or 17α-Ethynylestradiol (EE2). The results showed that the contaminants were produced toxic effects in the crabs exposed either to the microplastics alone (oxidative stress, genotoxicity, and neurotoxicity), or to microplastics with TCS or EE2 adsorbed (neurotoxic and cytotoxic). The present study showed the responsiveness of non-lethal analyzes to understanding the biological effects of combined exposure to microplastics and chemical pollution.
Collapse
Affiliation(s)
- Letícia Fernanda da Silva
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - Caio Rodrigues Nobre
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil.
| | - Beatriz Barbosa Moreno
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - Camilo Dias Seabra Pereira
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University (Unisanta), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Denis Moledo de Souza Abessa
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil
| | - Rodrigo Brasil Choueri
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| | - Paloma Kachel Gusso-Choueri
- Biosciences Institute, São Paulo State University (CLP-Unesp), Praça Infante Dom Henrique, s/n, Parque Bitaru, São Vicente, São Paulo, Brazil; Ecotoxicology Laboratory, Santa Cecília University (Unisanta), Rua Oswaldo Cruz, 266, 11045-907, Santos, São Paulo, Brazil
| | - Augusto Cesar
- Department of Ocean Sciences, Sea Institute, Federal University of São Paulo (CBS-Unifesp), Rua Carvalho de Mendonça, 144, 11070-102, Santos, São Paulo, Brazil
| |
Collapse
|
17
|
Nasir HM, Wee SY, Aris AZ, Abdullah LC, Ismail I. Processing of natural fibre and method improvement for removal of endocrine-disrupting compounds. CHEMOSPHERE 2022; 291:132726. [PMID: 34718023 DOI: 10.1016/j.chemosphere.2021.132726] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Persistent endocrine-disrupting compounds (EDCs) in bodies of water are a concern for human health and constitute an environmental issue, even if present in trace amounts. Conventional treatment systems do not entirely remove EDCs from discharge effluent. Due to the ultra-trace level of EDCs which affect human health and pose an environmental issue, developing new approaches and techniques to remove these micropollutants from the discharged effluent is vital. This review discusses the most common methods of eliminating EDCs through preliminary, primary, secondary and tertiary treatments. The adsorption process is favoured for EDC removal, as it is an economical and straightforward option. The NABC aspects, which are the need, approach, benefits and challenges, were analysed based on existing circumstances, highlighting biochar as a green and renewable adsorbent for the removal of organic contaminants. From the environmental point of view, the effectiveness of this method, which uses natural fibre from the kenaf plant as a porous and economical biochar material with a selected lignocellulosic biomass, provides insights into the advantages of biochar-derived adsorbents. Essentially, the improvement of the natural fibre as an adsorbent is a focus, using carbonisation, activation, and the physiochemical process to enhance the adsorption ability of the material for pollutants in bodies of water. This output will complement sustainable water management approaches presented in previous studies for combating the emerging pollutant crisis via novel green and environmentally safe options.
Collapse
Affiliation(s)
- Hanisah Mohmad Nasir
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ismayadi Ismail
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
18
|
Pollution Characteristics and Risk Prediction of Endocrine Disruptors in Lakes of Wuhan. TOXICS 2022; 10:toxics10020093. [PMID: 35202278 PMCID: PMC8880694 DOI: 10.3390/toxics10020093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
As a new and ubiquitous trace organic pollutant, endocrine-disrupting compounds (EDCs) can cause endocrine-disrupting effects on organisms even at low levels. However, little information is available on the resource and assessment of EDC risks in the water environment. The study area was selected based on the paucity of information on the pollution status of inland lakes. Wuhan has numerous and diverse types of lakes which receive micropollutants from different pathways. In this study, the spatial distribution, occurrence, quantity and ecological risks of EDCs in 12 lakes were investigated. Five EDCs, including 17-alpha-ethinylestradiol (17α-EE2), estrone (E1), β-estradiol (β-E2), estriol (E3) and bisphenol A (BPA) were detected in surface waters. The distribution of EDC content in the lakes was ordered as follows: exurban zone < suburban area < urban areas. The pollution sources in remote lakes mainly included agricultural and aquaculture wastewater, while those in suburban and urban areas included domestic or industrial wastewater. Areas with higher EDC content were frequently related to agricultural activities, aquaculture water or dense populations. Water quality parameters, including dissolved oxygen, pH and water temperature, were significantly related to the occurrence and distribution of EDCs in the lakes. Risk assessment demonstrated that the occurrence of EDCs posed minimum to medium risk to aquatic organisms in the lakes. The results showed that the lakes faced a threat hormone pollution though it was at lower doses and, thus, the ecological risk of EDCs should be considered in future environmental policies and decisions in China.
Collapse
|
19
|
Sousa H, Sousa CA, Simões LC, Simões M. Microalgal-based removal of contaminants of emerging concern. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127153. [PMID: 34543999 DOI: 10.1016/j.jhazmat.2021.127153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/22/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The presence of contaminants of emerging concern (CECs) in the environment has been recognized as a worldwide concern. In particular, water pollution by CECs is becoming a major global problem, which requires ongoing evaluation of water resources policies at all levels and the use of effective and innovative wastewaters treatment processes for their removal. Microalgae have been increasingly recognized as relevant for wastewater polishing, including CECs removal. These microorganisms are commonly cultivated in suspension. However, the use of planktonic microalgae for wastewater treatment has limitations in terms of microbiological contamination, process effectiveness and sustainability. The use of consortia of microalgae and bacteria represents a significant advance for sustainable wastewater polishing, particularly when the microorganisms are associated as biofilms. These immobilized mixed cultures can overcome the limitations of suspended-microalgae systems and improve the performance of the involved species for CECs removal. In addition, microalgae-bacteria based systems can offer a relevant combined effect for CECs removal and biomass production enhancement. This study reviews the advantages and advances on the use of microalgae for wastewater treatment, highlighting the potential on the use of microalgae-bacteria biofilms for CECs removal and the further biomass valorisation for third-generation biofuel production.
Collapse
Affiliation(s)
- Henrique Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Cátia A Sousa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia C Simões
- CEB, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
20
|
Gudda FO, Ateia M, Waigi MG, Wang J, Gao Y. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113708. [PMID: 34619591 DOI: 10.1016/j.jenvman.2021.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17β-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17β-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Mpupa A, Nqombolo A, Mizaikoff B, Nomngongo PN. Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis. Molecules 2021; 27:molecules27010248. [PMID: 35011480 PMCID: PMC8747044 DOI: 10.3390/molecules27010248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
A β-cyclodextrin-decorated magnetic activated carbon adsorbent was prepared and characterized using various analytical techniques (X-ray diffraction (XRD), scanning electron microscopy–electron diffraction spectroscopy (SEM-EDS) and transmission electron microscopy (TEM)), and the adsorbent was used in the development of a magnetic solid-phase microextraction (MSPE) method for the preconcentration of estrone, β-estradiol, hydrocortisone and progesterone in wastewater and river water samples. This method was optimized using the central composite design in order to determine the experimental parameters affecting the extraction procedure. The quantification of hormones was achieved using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-DAD). Under optimum conditions, the linearity ranged from 0.04 to 300 µg L−1 with a correlation of determinations of 0.9969–0.9991. The limits of detection and quantification were between 0.01–0.03 and 0.033–0.1 µg L−1, with intraday and interday precisions at 1.1–3.4 and 3.2–4.2. The equilibrium data were best described by the Langmuir isotherm model, and high adsorption capacities (217–294 mg g−1) were obtained. The developed procedure demonstrated high potential as an effective technique for use in wastewater samples without significant interferences, and the adsorbent could be reused up to eight times.
Collapse
Affiliation(s)
- Anele Mpupa
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Azile Nqombolo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
| | - Boris Mizaikoff
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Philiswa Nosizo Nomngongo
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (A.M.); (A.N.); (B.M.)
- Department of Science and Innovation-National Research Foundation South African Research Chair Initiative (DSI-NRF SARChI), Nanotechnology for Water, University of Johannesburg, Doornfontein 2028, South Africa
- Correspondence: ; Tel.: +27-11-559-6571
| |
Collapse
|
22
|
Choudhary M, Sarkar P, Kumar Sharma S, Kajla A, Neogi S. Quantification of reactive species generated in pulsed electrical discharge plasma reactor and its application for 17α-ethinylestradiol degradation in different water matrices. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Tang Z, Liu ZH, Wang H, Dang Z, Liu Y. A review of 17α-ethynylestradiol (EE2) in surface water across 32 countries: Sources, concentrations, and potential estrogenic effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 292:112804. [PMID: 34023789 DOI: 10.1016/j.jenvman.2021.112804] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic estrogen with very strong estrogenic potency. Due to its wide usage in human and livestock as well as its high recalcitration to biodegradation, it was ubiquitous in different environment. This review summarized EE2 concentration levels in surface waters among 32 countries across seven continents. EE2 concentrations varied greatly in different surface waters, which ranged from not detected to 17,112 ng/L. The top 10 countries ranked in the order of high to low average EE2 concentration in surface water, were Vietnam, Cambodia, China, Laos, Brazil, Argentina, Kuwait, Thailand, Indonesia and Portugal, with the respective mean concentrations of 27.7, 22.1, 21.5, 21.1, 13.6, 9.6, 9.5, 8.8, 7.6 and 6.6 ng/L. Generally speaking, the EE2 concentration levels in surface waters in developing countries were much higher than those in developed countries. EE2 in effluent of municipal wastewater treatment plant (WWTP) was the dominant source to most countries, which suggested that improving the EE2 removal performance of municipal WWTP is the key to mitigate EE2 contamination to surface water body. Livestock, hospital, pharmacy factory and aquaculture wastewaters were also the important sources, but further work should be performed to elucidate their contribution. Evaluation based on estrogenic effects, the EE2-derived estrogen equivalence in surface waters ranged from 0 to 33 ng E2/L, among which about 65% of surface waters among 32 countries were at risk or high risk, indicating global serious EE2 contamination. MAIN FINDING: EE2 concentration in surface waters across 32 countries were summarized, along which its potential estrogenic effects were evaluated.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
24
|
Oliveira JT, de Sousa MC, Martins IA, de Sena LMG, Nogueira TR, Vidal CB, Neto EFA, Romero FB, Campos OS, do Nascimento RF. Electrocoagulation/oxidation/flotation by direct pulsed current applied to the removal of antibiotics from Brazilian WWTP effluents. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Mirmont E, Bœuf A, Charmel M, Vaslin-Reimann S, Lalère B, Laprévote O, Lardy-Fontan S. Development and implementation of an analytical procedure for the quantification of natural and synthetic steroid hormones in whole surface waters. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1175:122732. [PMID: 33992977 DOI: 10.1016/j.jchromb.2021.122732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Natural and synthetic steroid hormones are chronically released into aquatic spheres. Whereas knowledge on their combined mode of action and the cocktail effect are needed, only few multi-class methods address the challenge of their trace quantification in surface waters. The current study describes a sensitive multi-residue analytical strategy aiming to quantify 23 steroid hormones belonging to androgens, estrogens, glucocorticoids and progestogens in whole surface waters. The procedure relies on a two-step solid-phase extraction followed by an ultra-performance liquid chromatography separation coupled to tandem mass spectrometry detection (UPLC-MS/MS). Isotope dilution was implemented when possible in order to ensure the reliability of the measurement. The procedure was optimized toward the reliable quantification of the 23 target compounds at the predicted no-effect concentrations when existing or below the ng L-1 level. Satisfactory absolute global recoveries ≥ 77% were obtained for almost all compounds (21 out of 23) in intermediate precision conditions. Measurement errors were comprised between -27% and +17% for the great majority of compounds (21 out of 23) with standard deviations < 20% in intermediate precision conditions. Despite signal suppression was observed in water samples, satisfactory limits of quantification were achieved, ranging from 0.035 ng L-1 for 17alpha-ethinylestradiol to 1 ng L-1 for 6beta-hydroxycortisol and 6beta-hydroxydexamethasone. Abiotic stability was demonstrated for the great majority of target compounds (22 out of 23) in reference water samples stored at 4 ± 3 °C during 48 h, driving our sampling strategy. To demonstrate its fitness for purpose, the procedure was implemented in a preliminary monitoring survey of Belgian surface waters. As a result, 6 out of 23 target compounds were detected or quantified, showing a contamination by some estrogens and glucocorticoids at levels ranging from 0.1 to 0.9 ng L-1.
Collapse
Affiliation(s)
- E Mirmont
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France; UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France
| | - A Bœuf
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - M Charmel
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - S Vaslin-Reimann
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - B Lalère
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France
| | - O Laprévote
- UMR CNRS 8038 CiTCoM, Chimie-Toxicologie Analytique et Cellulaire, Université de Paris, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 24 rue Leblanc, 75015 Paris, France
| | - S Lardy-Fontan
- Laboratoire National de métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75724 Paris, France.
| |
Collapse
|
26
|
Komolafe O, Mrozik W, Dolfing J, Acharya K, Vassalle L, Mota CR, Davenport R. Occurrence and removal of micropollutants in full-scale aerobic, anaerobic and facultative wastewater treatment plants in Brazil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112286. [PMID: 33706091 DOI: 10.1016/j.jenvman.2021.112286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
This study aims to evaluate micropollutant occurrence and removal in a low-middle income country (LMIC) by investigating the occurrence of 28 chemicals from different classes (triclosan, 15 polycyclic aromatic hydrocarbons (PAHs), 4 estrogens and 8 polybrominated diphenyl ether (PBDE) congeners) in three technologically diverse full-scale Brazilian wastewater treatment plants (WWTPs). These chemicals were detected at concentrations similar to those reported in other low-middle income countries (LMICs) and high-income countries (HICs) (0.1-49 μg/L) indicating their widespread use globally and the need for more studies in LMICs that are typically characterized by relatively inadequate wastewater treatment barriers. Among the three different WWTPs investigated for removal of these chemicals, the least energy intensive system, waste stabilization ponds (WSPs), was the most effective (95-99%) compared to the activated sludge (79-94%), and Up-flow sludge blanket reactor (UASB) with trickling filters system (89-95%). These results highlight the potential of WSPs for micropollutant removal-especially in warm climates. However, the effluent from all three WWTP could pose a risk to aquatic organisms when discharged into the receiving waters as the effluent concentrations of triclosan, some estrogens, PAHs and BDE 209 were above European environmental quality standards (EQS) or predicted no effect concentration (PNEC values), indicating that receiving water bodies could benefit from further treatment. In combination, these results help to further understand prevailing concentrations of micropollutants globally and fate in current wastewater treatment systems.
Collapse
Affiliation(s)
- Oladapo Komolafe
- GFL Environmental Inc. Greater Toronto Area, L5T 2L2, Ontario, Canada.
| | - Wojciech Mrozik
- School of Engineering, Newcastle University, NE1 7RU, Newcastle Upon Tyne, UK
| | - Jan Dolfing
- Department of Mechanical and Construction Engineering, Northumbria University, NE1 8QH, Newcastle Upon Tyne, UK
| | - Kishor Acharya
- School of Engineering, Newcastle University, NE1 7RU, Newcastle Upon Tyne, UK
| | - Lucas Vassalle
- Departamento de Engenharia Sanitária e Ambiental, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Cesar R Mota
- Departamento de Engenharia Sanitária e Ambiental, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Russell Davenport
- School of Engineering, Newcastle University, NE1 7RU, Newcastle Upon Tyne, UK
| |
Collapse
|
27
|
Tang Z, Liu ZH, Wang H, Dang Z, Liu Y. Occurrence and removal of 17α-ethynylestradiol (EE2) in municipal wastewater treatment plants: Current status and challenges. CHEMOSPHERE 2021; 271:129551. [PMID: 33453480 DOI: 10.1016/j.chemosphere.2021.129551] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
As a synthetic estrogen, 17α-ethynylestradiol (EE2) has been known to show the strong estrogenic potency. This work critically reviewed the occurrence and removal of EE2 in municipal wastewater treatment plants (WWTPs). Based on the on-site investigations from 282 municipal WWTPs across 29 countries, the concentrations of EE2 in influent and effluent ranged from n.d-7890 and n.d-549 ng/L, with respective average concentrations of 78.4 and 12.3 ng/L. The average effluent concentration of EE2 was more than 61 times higher than the reported lowest-observed-effect concentration, indicating an urgent need for removing EE2 in WWTPs. The calculated removal efficiencies of EE2 in different wastewater treatment processes varied from -100%-100%. Averagely, 47.5% of EE2 was removed in the primary treatment process, 55.3% by biological filter treatment, 59.4% by lagoon and 71.5% by activated sludge process. The observed removal of EE2 in municipal WWTP could be mainly attributed to adsorption and biodegradation, which could be predicted according to its solid-water distribution coefficients and biodegradation rate constants. However, it should be noted that the predicted removal of EE2 was found to deviate from the in-plant observation, likely attributing to the existence of EE2 conjugates in raw municipal wastewater. Therefore, the effect of EE2 conjugates on the EE2 removal in WWTPs should be taken into account in future.
Collapse
Affiliation(s)
- Zhao Tang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Ze-Hua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China; Key Lab Pollution Control & Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering and Technology Research Center for Environment Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| | - Hao Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yu Liu
- Advanced Environmental Biotechnology Center, Nanyang Environment and Water Research Institute, Nanyang Technological University, CleanTech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
28
|
Louros VL, Lima DLD, Leitão JH, Esteves VI, Nadais HGA. Impact of UASB reactors operation mode on the removal of estrone and 17α-ethinylestradiol from wastewaters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144291. [PMID: 33401048 DOI: 10.1016/j.scitotenv.2020.144291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
This work aims to compare the performance of the continuous operation (CO) and intermittent operation (IO) of upflow anaerobic sludge blanket (UASB) reactors for the removal of estrone (E1) and 17α-ethinylestradiol (EE2) from wastewaters. Results suggest that the IO contribute to the improvement of the overall removal of estrogens (above 95% for E1 and EE2) when compared to CO (49% for E1 and 39% for EE2). For both CO and IO, biodegradation was the main removal mechanism for E1, while for EE2, adsorption to sludge was the major removal pathway. Moreover, a higher biodegradation of estrogens was obtained with the IO compared to CO (69.4% vs. 43.3% for E1 and 21.8% vs. 8.0% for EE2). The favourable effect of IO can be justified by effluent recirculation during the feedless period which promotes the adaptation of microbial biomass to estrogens' biodegradation.
Collapse
Affiliation(s)
- Vitória L Louros
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge H Leitão
- iBB-Institute for Bioengineering and Biosciences, Bioengineering Department, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena G A Nadais
- CESAM, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
29
|
Li Y, Yang L, Zhen H, Chen X, Sheng M, Li K, Xue W, Zhao H, Meng S, Cao G. Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1168:122559. [PMID: 33652260 DOI: 10.1016/j.jchromb.2021.122559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
An analytical method has been developed and validated for the determination of six estrogens and estrogen mimics, namely estriol (E3), bisphenol A (BPA), 17β-estradiol (E2), estrone (E1), ethynyl estradiol (EE2) and dienestrol (DIE), with frequent occurrence in the natural environment. Solid phase extraction coupled with liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) using electrospray ionization (ESI) in a negative mode was applied to concentration, identification, and quantification of estrogens and estrogen mimics. The SPE conditions were optimized as the selection of C18 as cartridges and MeOH as an eluent, and the control of solution pH at 9.0. The method was validated by satisfactory recoveries (80-130%) and intra-day and inter-day precision (<18.4%, as relative standard deviation), and excellent linearity for calibration curves (R2 > 0.996). The limits of detection (LODs) for six target estrogenic compounds ranged between 2.5 and 19.2 ng/L. The effects of matrix background on the determination were evaluated in terms of LODs, LOQs, analyte recovery, and slopes of calibration curves in five different water matrices. Matrix effects by tap water were negligible. However, both matrix suppression and enhancement (i.e., E3, E1, DIE) were observed in surface water and wastewater. The positive correlation between LODs and TOC in various water matrices indicated the negative effect of organic pollutants on the method sensitivity. The sum of target estrogenic compounds in environmental samples were within 17-9462 ng/L.
Collapse
Affiliation(s)
- Yejin Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China.
| | - Huajun Zhen
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mei Sheng
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibo Xue
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huihui Zhao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers (Basel) 2021; 13:392. [PMID: 33513670 PMCID: PMC7865700 DOI: 10.3390/polym13030392] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair bin Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah binti Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
31
|
Occurrence and distribution of endocrine-disrupting chemicals in mariculture fish and the human health implications. Food Chem 2020; 345:128806. [PMID: 33352402 DOI: 10.1016/j.foodchem.2020.128806] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/09/2023]
Abstract
The presence and distribution of endocrine-disrupting chemicals (EDCs) in the mariculture fish from Pulau Kukup, Johor of Malaysia have been studied along with the impact on human health. Six different species of mariculture fish were collected, due to their high consumption in the Asian region-especially Malaysia, to assess their levels of EDCs. The highest concentration of EDCs detected in the muscle was dexamethasone (2.37-15.84 ng/g) and (0.77-13.41 ng/g), in the liver was dexamethasone (<2.54-43.56 ng/g) and progesterone (2.23-9.78 ng/g), and in the reproductive organ are dexamethasone (<2.54-37.23 ng/g) and caffeine (0.21-18.92 ng/g). The human health risk assessment in the current study suggested that there is no potential risk to the consumer because the hazard index was below 1 (HI < 1). The present study provides information on the pollution profile of EDCs and the associated human health risk with EDCs in mariculture fish.
Collapse
|
32
|
Ramírez-Morales D, Masís-Mora M, Montiel-Mora JR, Cambronero-Heinrichs JC, Briceño-Guevara S, Rojas-Sánchez CE, Méndez-Rivera M, Arias-Mora V, Tormo-Budowski R, Brenes-Alfaro L, Rodríguez-Rodríguez CE. Occurrence of pharmaceuticals, hazard assessment and ecotoxicological evaluation of wastewater treatment plants in Costa Rica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141200. [PMID: 32771760 DOI: 10.1016/j.scitotenv.2020.141200] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
The continuous release of pharmaceuticals from WWTP effluents to freshwater is a matter of concern, due to their potential effects on non-target organisms. The occurrence of pharmaceuticals in WWTPs and their associated hazard have been scarcely studied in Latin American countries. This study aimed at monitoring for the first time the occurrence of 70 pharmaceutical active compounds (PhACs) in WWTPs across Costa Rica; the application of the hazard quotient (HQ) approach coupled to ecotoxicological determinations permitted to identify the hazard posed by specific pharmaceuticals and toxicity of the effluents, respectively. Thirty-three PhACs were found, with 1,7-dimethylxanthine, caffeine, acetaminophen, ibuprofen, naproxen, ketoprofen and gemfibrozil being the most frequently detected (influents/effluents). HQ for specific pharmaceuticals revealed 24 compounds with high/medium hazard in influents, while the amount only decreased to 21 in effluents. The top HQ values were obtained for risperidone, lovastatin, diphenhydramine and fluoxetine (influent/effluent samples), plus caffeine (influent) and trimethoprim (effluent). Likewise, the estimation of overall hazard in WWTP samples (sum of individual HQ, ∑HQ) demonstrated that every influent and 96% of the effluents presented high hazard towards aquatic organisms. Ecotoxicological analysis (Daphnia magna, Lactuca sativa and Microtox test) revealed that 16.7% of the effluents presented toxicity towards all benchmark organisms; the phytotoxicity was particularly frequent, as inhibition values ≥20% in the germination index for L. sativa were obtained for all the effluents. The ∑HQ approach estimated the highest hazard in urban wastewater, while the ecotoxicological results showed the highest toxicity in hospital and landfill wastewater. Likewise, ecotoxicological results and ∑HQ values showed a rather poor correlation; instead, better correlations were obtained between ecotoxicological parameters and HQ values for some individual pharmaceuticals such as cephalexin and diphenhydramine. Findings from this study provide novel information on the occurrence of pharmaceuticals and the performance of WWTPs in the tropical region of Central America.
Collapse
Affiliation(s)
- Didier Ramírez-Morales
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - José R Montiel-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica; Facultad de Microbiología, Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Susana Briceño-Guevara
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | | | - Michael Méndez-Rivera
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Víctor Arias-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Rebeca Tormo-Budowski
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Laura Brenes-Alfaro
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060 San José, Costa Rica.
| |
Collapse
|
33
|
Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44863-44891. [PMID: 32986197 DOI: 10.1007/s11356-020-10842-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) are environmentally ubiquitous around the world, and the countries of Latin America (LATAM) are not the exception; however there is still little knowledge of the magnitude and conditions of their occurrence in LATAM and of the environmental consequences of their presence. The present work reviews 79 documents published from 2007 to 2019 on the occurrence, concentrations, and sources of PhACs and hormones in surface water (SW), wastewater (WW), and treated wastewater (TWW) in LATAM and on the circumstances of their release to the environment. Research efforts are reported in only ten countries and confirm the presence of 159 PhACs, mainly analgesics and anti-inflammatories, although extraordinarily high concentrations of carbamazepine (830 μg/L) and ethinylestradiol (6.8 μg/L) were found in Ecuador and Brazil, respectively. The analysis of maximum concentrations and the ecotoxicological risk assessment corroborate that (1) these values exceed the environmental concentrations found in other parts of the world, (2) the environmental risk posed by these concentrations is remarkably high, and (3) there is no statistically significant difference between the maximum concentrations found in WW and those found in TWW. The main source of PhACs in LATAM's aquatic environment is WW; hence, these countries should direct substantial efforts to develop efficient and cost-effective treatment technologies and plan and apply WW management strategies and regulations. This analysis presents the current states of occurrence, concentrations, and sources of PhACs in the aquatic environment of LATAM and outlines the magnitude of the environmental problem in that part of the world.
Collapse
Affiliation(s)
- Melissa Valdez-Carrillo
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Leif Abrell
- Arizona Laboratory for Emerging Contaminants, Departments of Soil, Water & Environmental Science and Chemistry & Biochemistry, University of Arizona, 1040 E. 4th St., Room 606/611, Tucson, AZ, 85721, USA
| | - Jorge Ramírez-Hernández
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Jaime A Reyes-López
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Concepción Carreón-Diazconti
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico.
| |
Collapse
|
34
|
Jiang R, Liu J, Huang B, Wang X, Luan T, Yuan K. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136689. [PMID: 31978772 DOI: 10.1016/j.scitotenv.2020.136689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Residual chemicals discharged from wastewater treatment plants (WWTPs) and subsequent ecological risk are important in production safety when reuse of the effluent water occurs. Thus, this work provides an investigation of the occurrence and removal of dissolved Endocrine-disrupting chemicals (EDCs) in 38 WWTPs in Guangdong Province, China. The results indicate that EDCs are widely distributed in the investigated WWTPs, while nonylphenols (NPs) are the predominant chemical among the target EDCs, accounting for >98% of the concentration in the influent and >97% of the concentration in the effluent. Moreover, 4 main types of wastewater treatment processes (oxidation ditch, A2/O, conventional activated sludge and microaeration oxidation ditch followed by A2/O) were found to be inefficient for removing dissolved EDCs, with a mean removal rate of approximately 25%. The potential environmental risk was predicted for residual EDCs. Specifically, 17α-ethynylestradiol (EE2) was considered to be the most hazardous chemical among the target EDCs, with a median risk quotient (RQ) of 8.94. In addition, β-estradiol (E2) and estrone (E1) have median RQs of 1.14 and 0.27, and NPs have median RQs of 0.61 (algae), 0.37 (inverberate) and 0.25 (fish), respectively.
Collapse
Affiliation(s)
- Ruirun Jiang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Bi Huang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; State Key Lab of Bioresource and Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
35
|
Kibambe MG, Momba MNB, Daso AP, Van Zijl MC, Coetzee MAA. Efficiency of selected wastewater treatment processes in removing estrogen compounds and reducing estrogenic activity using the T47D-KBLUC reporter gene assay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110135. [PMID: 32090831 DOI: 10.1016/j.jenvman.2020.110135] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 05/07/2023]
Abstract
The occurrence of endocrine-disrupting compounds (EDCs) consisting of natural and synthetic estrogens, namely estrone (E1), 17β-estradiol (E2), estriol (E3) and 17α-ethinylestradiol (EE2) was quantified in wastewater samples. The aim of this study was to assess the removal efficiency for the selected estrogens (E1, E2, E3 and EE2) and reduction of estrogenic activity in wastewater samples from wastewater treatment plants (WWTPs) using different processes. Solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods were used to quantify the selected estrogens in wastewater samples. Estrogenic activity was assessed using the T47D-KBluc gene reporter assay. Results revealed a decrease in estrogen concentrations observed in the effluents of all the WWTPs, except for E2 at Daspoort where no removal was noted. In general, the highest removal for total estrogens was observed at Phola (84%) combining three processes (AP, BF and wetland). The AS at Daspoort had a highest removal of 75% for E3; while at Zeekoegat the highest removal reached 61% for EE2. The PST at Daspoort had no removal recorded for all the compounds, except for the EE2 (33%). The AP and BF systems at Phola contributed to a higher removal of selected compounds. Downstream of the wetland at Phola no removal was recorded for E3; while the highest removal reached 61% for E1. The best performance in terms of the overall influent-to-effluent removal efficiency was observed at Phola WWTP, where E1 removal of 85% was recorded. The highest estrogenic activity in the effluent was reported at Phola, with an average estradiol equivalent (EEQ) value of 6.3 ± 6.7 ng/L. However, no anti-estrogenic activity was detected in any of the samples. The daily mass load discharged from the effluent of the three WWTPs was higher for E1 recorded at Zeekoegat (8002.3 ± 6416.3 mg/d), followed by Daspoort (3509.8 ± 849.0 mg/d) and finally Phola (176.1 ± 34.9).
Collapse
Affiliation(s)
- Muyasu Grace Kibambe
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| | - Maggie N B Momba
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - A P Daso
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - M C Van Zijl
- Department of Urology, University of Pretoria, Private Bag X323, Arcadia, 007, Pretoria, South Africa
| | - Marthie A A Coetzee
- Department of Environmental, Water and Earth Science, Faculty of Science Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
36
|
Jose J, Sandra Pinto J, Kotian B, Mathew Thomas A, Narayana Charyulu R. Comparison of the regulatory outline of ecopharmacovigilance of pharmaceuticals in Europe, USA, Japan and Australia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:134815. [PMID: 31887508 DOI: 10.1016/j.scitotenv.2019.134815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are known to improve the quality of life by curing and preventing diseases. However, these pharmaceutical products, when it diffuses through the environment by various routes, can cause severe harmful effects to the living organisms. During the last several years, the coping with the impact of pharmaceuticals on the environment was one of the challenging tasks for the pharmaceutical industries. These concerns about the environmental health and safety risks paved the way in developing a proper regulatory framework for environmental risk assessment of pharmaceutical products. In the US, EU, and Canada, most improvements have been made in the regulation of Environmental Risk Assessment (ERA) for pharmaceuticals. Many countries and organizations like the Organization for Economic Cooperation and Development (OECD), had adapted these ERA procedures to fulfil the purpose. At present, there are no specific guidelines for ERA of pharmaceuticals in Japan, Australia and many other countries. Nevertheless, it is expected that they will have strict regulations and legal requirements in the future. The purpose of this study is to understand and compare the ERA regulation in Europe, USA, Japan and Australia. In this review, we have summarized the knowledge on ERA of pharmaceuticals and its consequences on the environment. It is therefore necessary to establish an eco-pharmacovigilance system for monitoring and collection of data, which would eradicate the risk of pharmaceuticals entering into the surroundings.
Collapse
Affiliation(s)
- Jobin Jose
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India.
| | - Jean Sandra Pinto
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| | - Bhashini Kotian
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| | - Aaron Mathew Thomas
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| | - R Narayana Charyulu
- Department of Pharmaceutical Regulatory Affairs and Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Mangalore 575018, Karnataka, India
| |
Collapse
|
37
|
de Oliveira F, Moura KO, Costa LS, Vidal CB, Loiola AR, do Nascimento RF. Reactive Adsorption of Parabens on Synthesized Micro- and Mesoporous Silica from Coal Fly Ash: pH Effect on the Modification Process. ACS OMEGA 2020; 5:3346-3357. [PMID: 32118149 PMCID: PMC7045554 DOI: 10.1021/acsomega.9b03537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 05/22/2023]
Abstract
Parabens are widely used as preservatives in food, pharmaceutical, and cosmetic products. These compounds are known for their estrogen agonist activity. This research investigates the synthesis of micro- and mesoporous silica from coal fly ash at different pH values (13, 11, 9, and 7) as well as its use as an adsorbent for the removal of parabens. The materials were characterized, and X-ray fluorescence (XRF) analysis revealed that the fly ash acid treatment reduced the presence of aluminum, iron, and calcium oxides and also that silica synthesized at lower pH values (7 and 9) showed a higher SiO2 content. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed microporous silica formation for silica synthesized at pH 13 and mesoporous silica at pH 7, 9, and 11. Adsorption tests were performed with materials, and FA-AT7 showed a higher adsorption capacity. The effect of factors (A) adsorbent mass, (B) initial paraben concentration, and (C) agitation rate on the adsorption process was studied for the FA-AT7 adsorbent using a factorial experimental design. Standardized Pareto charts revealed a negative effect of factor A, positive effect of factor B, and negative interaction effects of factors A-B for all studied parabens. Isotherms and multicomponent kinetic studies were performed. A linear type-III isotherm was obtained, and adsorption equilibrium was reached at approximately 10 min.
Collapse
Affiliation(s)
- Francisca
F. de Oliveira
- Department
of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Karine O. Moura
- Department
of Chemical Engineering, Federal University
of Ceará, Campus
do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Luelc S. Costa
- Department
of Physical Chemistry, University of Campinas, 13083-861 Campinas, SP, Brazil
| | - Carla B. Vidal
- Department
of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
- E-mail:
| | - Adonay R. Loiola
- Department
of Organic and Inorganic Chemistry, Federal
University of Ceará Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| | - Ronaldo F. do Nascimento
- Department
of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Campus do Pici, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
38
|
Guedes-Alonso R, Montesdeoca-Esponda S, Herrera-Melián JA, Rodríguez-Rodríguez R, Ojeda-González Z, Landívar-Andrade V, Sosa-Ferrera Z, Santana-Rodríguez JJ. Pharmaceutical and personal care product residues in a macrophyte pond-constructed wetland treating wastewater from a university campus: Presence, removal and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135596. [PMID: 31767305 DOI: 10.1016/j.scitotenv.2019.135596] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/16/2019] [Indexed: 05/28/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) constitute a group of chemicals of concern because of their potential toxicity when reaching aquatic environments. Wastewaters are one of the main pathways of introduction into the environment of the chemical compounds used in PPCPs because, in most cases, wastewater treatment facilities are not 100% efficient in their removal. This problem is accentuated in rural zones and isolated communities where conventional treatment systems are too expensive to build and operate. Waste-stabilization ponds and constructed wetlands (CWs) are natural wastewater treatment systems which are used to improve the quality of sewage from small communities because of their low cost and easy maintenance. There is growing interest in combining the two technologies to make a more robust system, taking into account their respective strengths and weaknesses. In this work, a combined macrophyte pond-CW system was evaluated for the presence at three sampling points (influent, pond effluent and CW effluent) of fifteen steroid hormones and six benzotriazole ultraviolet stabilizers (BUVSs). None of the targeted BUVS compounds were detected in either the influent or effluent, probably because of the particular characteristics of the population served by the wastewater system. In contrast, eight different steroid hormone compounds were detected at concentrations ranging from 17.3 to 247.7 ng·L-1 in influent samples and from 8.1 to 22.1 ng·L-1 in final effluent samples. The pond-CW system showed high elimination rates of steroid hormone residues with average removal efficiencies of over 77%. This efficacy was confirmed in the ecological risk assessment evaluation that was performed. Final effluents showed a low ecological risk associated with steroid hormones in contrast to the medium-high ecological risks found in the influent samples.
Collapse
Affiliation(s)
- Rayco Guedes-Alonso
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José A Herrera-Melián
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Raquel Rodríguez-Rodríguez
- Escuela de Ingeniería Industriales y Civiles, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - Zeneida Ojeda-González
- Escuela de Ingeniería Industriales y Civiles, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | | | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| | - José J Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
39
|
K'oreje KO, Okoth M, Van Langenhove H, Demeestere K. Occurrence and treatment of contaminants of emerging concern in the African aquatic environment: Literature review and a look ahead. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 254:109752. [PMID: 31733478 DOI: 10.1016/j.jenvman.2019.109752] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/06/2019] [Accepted: 10/21/2019] [Indexed: 05/24/2023]
Abstract
Awareness about the rising detection and reported (eco)toxicological effects of contaminants of emerging concern (CECs, e.g. pharmaceuticals and personal care products - PPCPs - and modern pesticides) in the aquatic environment is growing. CECs are increasingly reported in the African aquatic environment, although the amount of data available is still limited. In this work, a comprehensive review is presented on the occurrence of CECs in wastewater, sludge, surface water, sediment, groundwater and drinking water of Africa. Further attention is given to the performance of wastewater stabilization ponds (WSPs) and trickling filters (TF) with respect to CECs removal. For the first time, we also look at the state of knowledge on the performance of point-of-use technologies (POUs) regarding the removal of CECs in drinking water. Generally, CECs in Africa occur at the same order of magnitude as in the Western world. However, for particular groups of compounds and at specific locations such as informal settlements, clearly higher concentrations are reported in Africa. Whereas antiretroviral and antimalarial drugs are rarely detected in the Western world, occurrence patterns in Africa reveal concentrations up to >100 μg L-1. Removal efficiencies of WSPs and TFs focus mainly on PPCPs and vary significantly, ranging from no removal (e.g. carbamazepine) to better than 99.9% (e.g. paracetamol). Despite the rising adoption of POUs, limited but promising information is available on their performance regarding CECs treatment in drinking water, particularly for the low-cost devices (e.g. ceramic filters and solar disinfection - SODIS) being adopted in Africa and other developing countries.
Collapse
Affiliation(s)
- Kenneth Otieno K'oreje
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium; Water Resources Authority (WRA), P.O. Box 45250, Nairobi, Kenya; Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya.
| | - Maurice Okoth
- Department of Chemistry & Biochemistry, School of Science, University of Eldoret, P.O. Box 1125, Eldoret, Kenya; Kenya Methodist University, P.O. Box 267-60200, Meru, Kenya.
| | - Herman Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
40
|
Ismail NAH, Wee SY, Haron DEM, Kamarulzaman NH, Aris AZ. Occurrence of endocrine disrupting compounds in mariculture sediment of Pulau Kukup, Johor, Malaysia. MARINE POLLUTION BULLETIN 2020; 150:110735. [PMID: 31784268 DOI: 10.1016/j.marpolbul.2019.110735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Endocrine-disrupting compounds (EDCs) such as hormones, pesticides, phenolic compounds, and pharmaceuticals compounds can cause adverse effects on humans, animals, and other living organisms. One of the largest mariculture areas situated in Pulau Kukup, Johor, Malaysia, is actively involved in exporting marine fish to other countries worldwide. This paper aims to provide baseline data on the level of EDC pollutants found in mariculture sediments in Malaysia since no reports have investigated this issue. Calculated samples recovered are between 50.39 and 129.10% at 100 ng/g spiking level. The highest concentration in the sediment samples was bisphenol A (0.072-0.389 ng/g dry weight) followed by diethylstilbestrol (<0.208-0.331 ng/g dry weight) and propranolol (<0.250-0.275 ng/g dry weight). Even though the concentrations of the targeted compounds obtained were low, their effects could become more evident longer term, which raises not only environmental health concerns but the potential risk to humans.
Collapse
Affiliation(s)
- Nur Afifah Hanun Ismail
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Didi Erwandi Mohamad Haron
- Shimadzu-UM Centre of Xenobiotic Studies, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nitty Hirawaty Kamarulzaman
- Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
41
|
Reichert G, Hilgert S, Fuchs S, Azevedo JCR. Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113140. [PMID: 31541833 DOI: 10.1016/j.envpol.2019.113140] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 05/24/2023]
Abstract
This review aims to gather and summarize information about the occurrence of emerging contaminants and antibiotic resistance genes in environmental matrices in Latin America. We aim to contribute to future research by compiling a list of priority pollutants adjusted to the needs and characteristics of Latin America, according to the data presented in this study. In order to perform a comprehensive research and secure a representative and unbiased amount of quality data concerning emerging contaminants in Latin America, the research was performed within the Scopus® database in a time frame from 2000 to July 2019. The countries with higher numbers of published articles were Brazil and México, while most studies were performed in the surroundings of Mexico City and in Southern and Southeastern Brazil. The main investigated environmental matrices were drinking water and surface water. The presence of antibiotic resistance was frequently reported, mainly in Brazil. Monitoring efforts should be performed in other countries in Latin America, as well as in other regions of Brazil and México. The suggested priority list for monitoring of emerging contaminants in Latin America covers: di(2-ethylhexyl) phthalate (DEHP), bisphenol-A (BP-A), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), estradiol (E2), ethinylestradiol (EE2), tetracycline (TC), amoxicillin (AMOX), norfloxacin (NOR), ampicillin (AMP) and imipenem (IMP). We hope this list serves as a basis for the orientation of the future research and monitoring projects to better understand the distribution and concentration of the listed emerging substances.
Collapse
Affiliation(s)
- Gabriela Reichert
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil.
| | - Stephan Hilgert
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Stephan Fuchs
- Institute for Water and River Basin Management, Department of Aquatic Environmental Engineering, Karlsruhe Institute of Technology, Gotthard-Franz-Str. 3, Building 50.31, 3rd Floor, 76131 Karlsruhe, Germany
| | - Júlio César Rodrigues Azevedo
- Department of Hydraulics and Sanitation, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 210, 81531-980, Curitiba PR, Brazil; Capes Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, DF, Brazil; Department of Chemistry and Biology, Federal Technology University of Paraná, Rua Deputado Heitor Alencar Furtado, 5000, 81280-340, Curitiba PR, Brazil
| |
Collapse
|
42
|
Luo L, Xia L, Tan W, Li J, Barrow CJ, Yang W, Wang H, Shu L. The TiO 2 (B) nano-belts with excellent performance prepared via alkaline stirring hydrothermal method and its application to remove 17α-ethynylestradiol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34018-34026. [PMID: 30225689 DOI: 10.1007/s11356-018-3122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
In this work, TiO2 (B) nano-belts were synthesized by hydrothermal method under stirring, and static conditions and preparation conditions were optimized. The prepared materials were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), photoluminescence spectroscopy (PL), and N2 adsorption/desorption measurement. The photocatalytic performance was evaluated by removing synthetic estrogen 17α-ethynylestradiol (EE2), which is the most potent endocrine-disrupting chemical. The results show that the TiO2 nano-belt possesses pure metastable monoclinic TiO2 (B) and has uniform nano-belt shape with 80~120-nm diameters and 62.904 m2 g-1 of specific surface area. Under the best optimal preparation conditions (0.5 g P25, 20 mL 10 mol L-1 NaOH, hydrothermal temperature 180 °C for 18 h under stirring, 400 °C calcination for 2 h), the TiO2 (B) has better catalytic activity with 100.00% removal rate towards 3 mg L-1 EE2 in 120 min. The removal rates of EE2 over catalyst which was prepared under static condition and P25 are 74.66% and 70.71%, respectively. The photocatalytic degradation rate constant of TiO2 (B) prepared under stirring condition (0.0379 min-1) is 4.51 times and 8.42 times than those of TiO2 prepared under static condition (0.0084 min-1) and P25 (0.0045 min-1). The excellent photocatalytic activity is mainly ascribed to longer one-dimensional nano-belt structure and effective suppression of photo-produced electron-hole.
Collapse
Affiliation(s)
- Lijun Luo
- Key Laboratory of Resource Clean Conversion in Ethnic Region, Education Department of Yunnan, School of Chemistry and Environment, Yunnan MinZu University, Kunming, 650500, China
| | - Lihong Xia
- Key Laboratory of Resource Clean Conversion in Ethnic Region, Education Department of Yunnan, School of Chemistry and Environment, Yunnan MinZu University, Kunming, 650500, China
| | - Wei Tan
- Key Laboratory of Resource Clean Conversion in Ethnic Region, Education Department of Yunnan, School of Chemistry and Environment, Yunnan MinZu University, Kunming, 650500, China
| | - Junhong Li
- Key Laboratory of Resource Clean Conversion in Ethnic Region, Education Department of Yunnan, School of Chemistry and Environment, Yunnan MinZu University, Kunming, 650500, China
| | - Colin J Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Wenrong Yang
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Hongbin Wang
- Key Laboratory of Resource Clean Conversion in Ethnic Region, Education Department of Yunnan, School of Chemistry and Environment, Yunnan MinZu University, Kunming, 650500, China
| | - Li Shu
- School of Civil, Environmental and Chemical Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
43
|
Majumder A, Gupta B, Gupta AK. Pharmaceutically active compounds in aqueous environment: A status, toxicity and insights of remediation. ENVIRONMENTAL RESEARCH 2019; 176:108542. [PMID: 31387068 DOI: 10.1016/j.envres.2019.108542] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/22/2023]
Abstract
Pharmaceutically active compounds (PhACs) have pernicious effects on all kinds of life forms because of their toxicological effects and are found profoundly in various wastewater treatment plant influents, hospital effluents, and surface waters. The concentrations of different pharmaceuticals were found in alarmingly high concentrations in various parts of the globe, and it was also observed that the concentration of PhACs present in the water could be eventually related to the socio-economic conditions and climate of the region. Drinking water equivalent limit for each PhAC has been calculated and compared with the occurrence data from various continents. Since these compounds are recalcitrant towards conventional treatment methods, while advanced oxidation processes (AOPs) have shown better efficiency in degrading these PhACs. The performance of the AOPs have been evaluated based on percentage removal, time, and electrical energy consumed to degrade different classes of PhACs. Ozone based AOPs were found to be favorable because of their low treatment time, low cost, and high efficiency. However, complete degradation cannot be achieved by these processes, and various transformation products are formed, which may be more toxic than the parent compounds. The various transformation products formed from various PhACs during treatment have been highlighted. Significant stress has been given on the role of various process parameters, water matrix, oxidizing radicals, and the mechanism of degradation. Presence of organic compounds, nitrate, and phosphate usually hinders the degradation process, while chlorine and sulfate showed a positive effect. The role of individual oxidizing radicals, interfering ions, and pH demonstrated dissimilar effects on different groups of PhACs.
Collapse
Affiliation(s)
- Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Bramha Gupta
- School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
44
|
Histamine functionalized magnetic nanoparticles (HIS-MNP) as a sorbent for thin film microextraction of endocrine disrupting compounds in aqueous samples and determination by high performance liquid chromatography-fluorescence detection. J Chromatogr A 2019; 1602:41-47. [DOI: 10.1016/j.chroma.2019.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 01/04/2023]
|
45
|
Cunha GDS, Souza-Chaves BMD, Bila DM, Bassin JP, Vecitis CD, Dezotti M. Insights into estrogenic activity removal using carbon nanotube electrochemical filter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:448-456. [PMID: 31077923 DOI: 10.1016/j.scitotenv.2019.04.342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
This study reports the performance of a carbon nanotube (CNT) electrochemical filter applied to 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) degradation and their estrogenic activity removal (calculated in terms of E2 equivalent, EQ-E2). The performance of CNT electrochemical filter was assessed at different applied voltages (0-2.5 V) and aqueous matrices (ultrapure water and urban wastewater), using 37 μM of E2 and EE2, a flow rate of 1.5 mL min-1 and 10 mM of Na2SO4, used as supporting electrolyte. Surface characterization of CNT anodic filters was completed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) was used to investigate electron transfer mechanisms. The CNT electrochemical filter was successfully applied to E2 and EE2 degradation and removals higher than 95.3% (oxidative fluxes >2.94 ± 0.05 mmol h-1 m-2) were achieved when 2.5 V was applied for both ultrapure water and urban wastewater. CV results indicate that the oxidation in the CNT electrochemical filter is an irreversible process. SEM and XPS results showed evidence of the polymer formation on the CNT surface after 300 min of reaction, which probably reduced the efficiency of the process under low applied voltages. Estrogenic activity was considerably reduced and minimal EQ-E2 levels were observed when 2.5 V was applied. A residual EQ-E2 was observed, likely due to the presence of estrogens, which suggests the non-formation of estrogenic intermediates. At 2.5 V total cell potential, the energy required to remove estrogenic activity was 0.014 ± 0.001 kWh m-3 for ultrapure water and 0.021 ± 0.001 kWh m-3 for post-secondary wastewater. These results suggest a CNT electrochemical filter may have potential to effectively and efficiently remove estrogenic activity and may be a feasible process for wastewater polishing treatment.
Collapse
Affiliation(s)
- Gustavo Dos Santos Cunha
- Chemical Engineering Program - PEQ/COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil; Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Bianca Miguel de Souza-Chaves
- Chemical Engineering Program - PEQ/COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil; Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States.
| | - Daniele Maia Bila
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Paulo Bassin
- Chemical Engineering Program - PEQ/COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Chad David Vecitis
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States
| | - Márcia Dezotti
- Chemical Engineering Program - PEQ/COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, 21941-972 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
46
|
Molé RA, Good CJ, Stebel EK, Higgins JF, Pitell SA, Welch AR, Minarik TA, Schoenfuss HL, Edmiston PL. Correlating effluent concentrations and bench-scale experiments to assess the transformation of endocrine active compounds in wastewater by UV or chlorination disinfection. CHEMOSPHERE 2019; 226:565-575. [PMID: 30953901 DOI: 10.1016/j.chemosphere.2019.03.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Transformation of endocrine active compounds (EACs) by either chlorination (Cl-D) or UV disinfection (UV-D) was studied by field sampling and bench-scale validation studies. Field testing assessed concentration of 13 EACs in effluent at two Chicago area 250 MGD wastewater reclamation plants (WRP) over two years. One WRP uses chlorination/dechlorination while the other employs UV disinfection. Target compounds included bupropion, carbamazepine, citalopram, duloxetine, estradiol, estrone, fluoxetine, nonylphenol, norfluoxetine, norsertraline, paroxetine, sertraline, and venlafaxine. Concentrations of 9/13 target compounds were partially reduced after disinfection (5-65% reduction). None of the target compounds were fully transformed by either chlorination or UV treatment at the WRP scale. In bench-scale experiments each compound was spiked into deionized water or effluent and treated in a process mimicking plant-scale disinfection to validate transformations. Correlation was observed between compounds that were transformed in bench-testing and those that decreased in concentration in post-disinfection WRP effluent (10/13 compounds). A survey of potential reaction products was made. Chlorination of some amine containing compounds produced chloramine by-products that reverted to the initial form after dechlorination. Transformation products produced upon simulated UV disinfection were more diverse. Laboratory UV-induced transformation was generally more effective under stirred conditions, suggesting that indirect photo-induced reactions may predominate over direct photolysis.
Collapse
Affiliation(s)
- Rachel A Molé
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Christopher J Good
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Eva K Stebel
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Julia F Higgins
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Sarah A Pitell
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Arielle R Welch
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA
| | - Thomas A Minarik
- Metropolitan Water Reclamation District of Greater Chicago, Cicero, IL, 60804, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, 56301, USA
| | - Paul L Edmiston
- Department of Chemistry, The College of Wooster, 943 College Mall, Wooster, OH, 44691, USA.
| |
Collapse
|
47
|
Starling MCVM, Amorim CC, Leão MMD. Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. JOURNAL OF HAZARDOUS MATERIALS 2019; 372:17-36. [PMID: 29728279 DOI: 10.1016/j.jhazmat.2018.04.043] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 05/25/2023]
Abstract
This is the first review to present data obtained in Brazil over the years regarding contaminants of emerging concern (CEC) and to contrast it with contamination in other countries. Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L-1 range in streams near urban areas. While endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradiol. Organochlorine pesticides are the most frequently found and persistent in sediments in agricultural regions. Moreover, in tropical agricultural fields, pesticide volatilization and its implications to ecosystem protection must be better investigated. The reality represented here for Brazil may be transposed to other developing countries due to similarities related to primitive basic sanitation infrastructure and economic and social contexts, which contribute to continuous environmental contamination by CEC. Municipal wastewater treatment facilities in Brazil, treat up to the secondary stage and lead to limited CEC removal. This is also true for other nations in Latin America, such as Argentina, Colombia and Mexico. Therefore, it is an urgent priority to improve sanitation infrastructure and, then, the implementation of tertiary treatment shall be imposed.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901.
| | - Mônica Maria D Leão
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidation Processes, Universidade Federal de Minas Gerais. Av.Antônio Carlos, 6627, Belo Horizonte - MG, Brazil, 31270-901
| |
Collapse
|
48
|
Yu Q, Geng J, Zong X, Zhang Y, Xu K, Hu H, Deng Y, Zhao F, Ren H. Occurrence and removal of progestagens in municipal wastewater treatment plants from different regions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1191-1199. [PMID: 31018459 DOI: 10.1016/j.scitotenv.2019.02.327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Progestagens discharged from municipal wastewater treatment plants (WWTPs) have increasingly gained attention due to their potential risks to the aquatic organisms. However, limited information is available on the occurrence and removal of various progestagens in WWTPs in different cities of China. This work investigated the occurrence and removal of 11 progestagens in 21 WWTPs from 19 Chinese cities. Results showed that progestagens are widely distributed in the investigated WWTPs, with higher influent concentrations of total progestagens in northern WWTPs. The concentration of progestagens in WWTP influent were closely correlated with influent quality, service population and daily service volume of the WWTPs. Additionally, progesterone (PGT) and dydrogesterone (DDT) were two predominant progestagens in influent, effluent and excess sludge. Up to 5 of 11 progestagens showed high aqueous removal efficiencies (median removal efficiency >90%), whereas megestrol acetate (MTA), chlormadinone acetate (CMA), drospirenone (DSP) and levonorgestrel (LNG) had a removal efficiency of below 50%. Specially, the behaviors of progestagens along the anaerobic-anoxic-oxic of a WWTP were further explored and the aerobic tank is the main contributor to the removal of progestagens. Finally, in the effluent of these 21 WWTPs, daily mass loadings of the total progestagens ranged from 0.51 to 10.4 g d-1. Notably, LNG exhibited high potential risk to the fish base on risk quotient.
Collapse
Affiliation(s)
- Qingmiao Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Xueying Zong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yongfeng Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Fuzheng Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
49
|
Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ. Quantification of multi-classes of endocrine-disrupting compounds in estuarine water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:1019-1028. [PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
Collapse
Affiliation(s)
- Nur Afifah Hanun Ismail
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nitty Hirawaty Kamarulzaman
- Department of Agribusiness and Bioresource Economics, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
50
|
Luo Z, Tu Y, Li H, Qiu B, Liu Y, Yang Z. Endocrine-disrupting compounds in the Xiangjiang River of China: Spatio-temporal distribution, source apportionment, and risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:476-484. [PMID: 30368141 DOI: 10.1016/j.ecoenv.2018.10.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Endocrine-disrupting compounds (EDCs) were seasonally investigated in the surface water of the Xiangjiang River (south China) in order to understand their spatio-temporal distribution, source apportionment, and ecological risks. The occurrence of 21 EDCs were determined with liquid chromatography-tandem mass spectrometry in the water samples collected along the river over four seasons, and the results were statistically analyzed. The concentrations of progestagens, androgens, estrogens ranged from not detected (ND) to 98.3 ng L-1; while the concentrations of alkylphenols ranged from 0.8 to 3.1 × 103 ng L-1; and that of caffeine ranged from 0.1 to 49.8 ng L-1. The detection frequencies of bisphenol A, 4-tert-octylphenol, 4-n-nonylphenol, estrone, and 17β-estradiol were 95-100% during the four sampling campaigns. The seasonal and spatial variation trend of EDCs in the Xiangjiang River was noticeable. The concentration of EDCs in Yueyang section (downstream) was the highest in winter, while the concentration in Yongzhou (upstream) section was the lowest in spring. The concentration of EDCs in the Xiangjiang River was significantly correlated with the levels of the total organic carbon, water temperature, and dissolved oxygen. Source analysis indicated that untreated sewage was the major source of EDCs. Furthermore, the potential risks of EDCs in the surface water to aquatic organisms were assessed with the risk quotient method (European Commission, 2003), and the results indicated the highest ecological risk of 17β-estradiol in the Xiangjiang River.
Collapse
Affiliation(s)
- Zhoufei Luo
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Yi Tu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Bo Qiu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Yang Liu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|