1
|
Zhang Y, Yang Y, Shao Y, Wang J, Chen Z, Roß-Nickoll M, Schäffer A. Conversion of Rice Field Ecosystems from Conventional to Ecological Farming: Effects on Pesticide Fate, Ecotoxicity and Soil Properties. ENVIRONMENTAL MANAGEMENT 2024:10.1007/s00267-024-02064-3. [PMID: 39414691 DOI: 10.1007/s00267-024-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Rice is an important staple food around the world, the cultivation as sustainable agriculture and food supply are key to achieving the Sustainable Development Goals (SDGs) of 2030. In order to analyze the sustainability of the rice paddy ecosystem, a comparative study was carried out during the rice growing season between paddies with conventional agriculture (CA) and ecological agriculture (EA), integrating analysis of physico-chemical characteristics of soil and soil pore water, pesticide residues, acute toxic effects and potential ecological risk, as well as aquatic invertebrate community structure dynamics. Our study found that total carbon and nitrogen present in soil were significantly higher in CA than in EA, while opposite results were found in soil pore water, implying the improvement on soil properties in EA. Neonicotinoid pesticides (thiamethoxam and thiacloprid) were still detected in EA, although no pesticides were applied after conversing CA to EA. Additionally, toxic effects to zebrafish embryos with a peak toxicity in summer (July, LC50 = 55.26 mg soil equivalent/L) were also found in EA, which was lower than in CA. The dynamics of the aquatic invertebrate community structure were correlated with the toxicity results, with higher diversity recorded in EA. Therefore, for the purpose of ecosystem sustainability, the long-term implementation of EA is highly recommended.
Collapse
Affiliation(s)
- Yulin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Yinjie Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Junjie Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China.
| | - Martina Roß-Nickoll
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
| | - Andreas Schäffer
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, 400045, Chongqing, China
- Institute for Environmental Research, RWTH Aachen University, 52074, Aachen, Germany
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210093, Nanjing, China
| |
Collapse
|
2
|
Mohan A, Matthews B, Räsänen K. Direct and indirect effects of chemical pollution: Fungicides alter growth, feeding, and pigmentation of the freshwater detritivore Asellus aquaticus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117017. [PMID: 39305775 DOI: 10.1016/j.ecoenv.2024.117017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 10/17/2024]
Abstract
Anthropogenic chemical pollutants, such as fungicides, pose significant threats to natural ecosystems. Although the direct impacts of numerous chemicals are well-documented in simple environmental contexts, their indirect impacts are poorly understood. This study used two individual level laboratory experiments to assess direct and indirect effects of fungicides on the isopod Asellus aquaticus, a keystone detritivore in freshwater systems. First, a range-finding assay on three widely used fungicides (Fluazinam, Tebuconazole, Urea) showed that Tebuconazole had the strongest concentration-dependent negative effects on A. aquaticus growth and food consumption. Second, a factorial experiment using Tebuconazole assessed its direct and diet-mediated effects and showed that Tebuconazole reduced growth, feeding, and pigmentation through both pathways. The results indicate that assessing only direct impacts of toxic chemicals could overlook critical interactions that are relevant in natural systems, such as those associated with diet. Our study highlights the importance of considering both direct and indirect effects in environmental toxicology to better understand the full impacts of chemical pollutants in nature.
Collapse
Affiliation(s)
- Akshay Mohan
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Kastanienbaum 6047, Switzerland.
| | - Katja Räsänen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland.
| |
Collapse
|
3
|
Sun J, Xiao P, Yin X, Zhu G, Brock TCM. Aquatic and sediment ecotoxicity data of difenoconazole and its potential environmental risks in ponds bordering rice paddies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116135. [PMID: 38402793 DOI: 10.1016/j.ecoenv.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
Difenoconazole has a widespread agricultural use to control fungal diseases in crops, including rice. In edge-of-field surface waters the residues of this lipophilic fungicide may be toxic to both pelagic and benthic organisms. To allow an effect assessment we mined the regulatory and open literature for aquatic toxicity data. Since published sediment toxicity data were scarce we conducted 28 d sediment-spiked toxicity test with 8 species of benthic macroinvertebrates. Ecotoxicological threshold levels for effects were assessed by applying the species sensitivity distribution approach. Based on short-term L(E)C50's for aquatic organisms from water-only tests an acute Hazardous Concentration to 5% of the species (HC5) of 100 µg difenoconazole/L was obtained, while the HC5 based on chronic NOEC values was a factor of 104 lower (0.96 µg difenoconazole/L). For benthic macroinvertebrates the chronic HC5, based on 28d-L(E)C10 values, was 0.82 mg difenoconazole/kg dry weight sediment. To allow a risk assessment for water- and sediment-dwelling organisms, exposure concentrations were predicted for the water and sediment compartment of an edge-of-field pond bordering rice paddies treated with difenoconazole using the Chinese Top-Rice modelling approach, the Chinese Nanchang exposure scenario and the Equilibrium Partitioning theory. It appeared that in the vast majority of the 20 climate years simulated, potential risks to aquatic and sediment organisms cannot be excluded. Although the HC5 values based on laboratory toxicity data provide one line of evidence only, our evaluation suggests population- and community-level effects on these organisms due to chronic risks in particular.
Collapse
Affiliation(s)
- Jian Sun
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - PengFei Xiao
- JiYang College of Zhe Jiang Agriculture and Forestry University, 77 Pu Yang road, Zhu Ji, Hang Zhou 311800, China
| | - XiaoHui Yin
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China.
| | - GuoNian Zhu
- Zhe Jiang Agriculture and Forestry University, College of Advanced Agriculture Science, 666 Wu Su Street, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, P.O. Box 47, Wageningen 6700 AA, the Netherlands
| |
Collapse
|
4
|
Gu Y, Tobino T, Nakajima F. Dietborne Toxicity of Tebuconazole to a Benthic Crustacean, Heterocypris incongruens and Its Relative Contribution to the Overall Effects under Food-Water Equilibrium Partitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1048-1054. [PMID: 38157561 DOI: 10.1021/acs.est.3c06609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Tebuconazole (TEB), a widely used and persistent pesticide, has garnered attention due to its frequent detection in sediments worldwide. This widespread occurrence has raised concerns about potential dietborne toxicity to benthic crustaceans, as they may ingest contaminated particles in their habitat. While bioaccumulation studies indicate the importance of TEB ingestion for benthic crustaceans, limited data exist on direct dietborne toxicity testing. This study investigated the diet-related toxicity of TEB by subjecting a benthic ostracod, Heterocypris incongruens, to a 6 day toxicity test under dietary and combined exposures. Subsequently, the importance of dietary exposure for TEB toxicity was uncovered, followed by quantification of relative dietborne toxicity contributions using a modified concentration-additive model. Results revealed that the dietary route was more toxicologically significant than the aqueous route in equilibrium. The dietborne lethal concentration (LC50) for TEB on H. incongruens was 200 (170-250) mg/kg, with an 80% relative dietborne toxicity contribution. To gain comprehensive insights into dietborne significance, toxicity data were collected from previous studies involving different pollutants to calculate relative contributions. Finally, the correlation between dietborne toxicity and the partitioning coefficient was analyzed to understand the pollutant behavior and its toxic impact when ingested through the diet.
Collapse
Affiliation(s)
- Yilu Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Tobino
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Fumiyuki Nakajima
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Dong B. A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168264. [PMID: 37918741 DOI: 10.1016/j.scitotenv.2023.168264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Tebuconazole has been widely applied over three decades because of its high efficiency, low toxicity, and broad spectrum, and it is still one of the most popular fungicides worldwide. Tebuconazole residues have been frequently detected in environmental samples and food, posing potential hazards for humans. Understanding the toxicity of pesticides is crucial to ensuring human and ecosystem health, but the toxic mechanisms and toxicity of tebuconazole are still unclear. Moreover, pesticides could transform into transformation products (TPs) that may be more persistent and toxic than their parents. Herein, the toxicities of tebuconazole to humans, mammals, aquatic organisms, soil animals, amphibians, soil microorganisms, birds, honeybees, and plants were summarized, and its TPs were reviewed. In addition, the toxicity of tebuconazole TPs to aquatic organisms and mammals was predicted. Tebuconazole posed potential developmental toxicity, genotoxicity, reproductive toxicity, mutagenicity, hepatotoxicity, neurotoxicity, cardiotoxicity, and nephrotoxicity, which were induced via reactive oxygen species-mediated apoptosis, metabolism and hormone perturbation, DNA damage, and transcriptional abnormalities. In addition, tebuconazole exhibited apparent endocrine-disrupting effects by modulating hormone levels and gene transcription. The toxicity of some TPs was equivalent to and higher than tebuconazole. Therefore, further investigation is necessary into the toxicological mechanisms of tebuconazole and the combined toxicity of a mixture of tebuconazole and its TPs.
Collapse
Affiliation(s)
- Bizhang Dong
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
6
|
Morin S, Artigas J. Twenty Years of Research in Ecosystem Functions in Aquatic Microbial Ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1867-1888. [PMID: 37401851 DOI: 10.1002/etc.5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
One of the major threats to freshwater biodiversity is water pollution including excessive loads of nutrients, pesticides, industrial chemicals, and/or emerging contaminants. The widespread use of organic pesticides for agricultural and nonagricultural (industry, gardening, etc.) purposes has resulted in the presence of their residues in various environments, including surface waters. However, the contribution of pesticides to the deterioration of freshwater ecosystems (i.e., biodiversity decline and ecosystem functions impairment) remains uncertain. Once in the aquatic environment, pesticides and their metabolites can interact with microbial communities, causing undesirable effects. The existing legislation on ecological quality assessment of water bodies in Europe is based on water chemical quality and biological indicator species (Water Framework Directive, Pesticides Directive), while biological functions are not yet included in monitoring programs. In the present literature review, we analyze 20 years (2000-2020) of research on ecological functions provided by microorganisms in aquatic ecosystems. We describe the set of ecosystem functions investigated in these studies and the range of endpoints used to establish causal relationships between pesticide exposure and microbial responses. We focus on studies addressing the effects of pesticides at environmentally realistic concentrations and at the microbial community level to inform the ecological relevance of the ecotoxicological assessment. Our literature review highlights that most studies were performed using benthic freshwater organisms and that autotrophic and heterotrophic communities are most often studied separately, usually testing the pesticides that target the main microbial component (i.e., herbicides for autotrophs and fungicides for heterotrophs). Overall, most studies demonstrate deleterious impacts on the functions studied, but our review points to the following shortcomings: (1) the nonsystematic analysis of microbial functions supporting aquatic ecosystems functioning, (2) the study of ecosystem functions (i.e., nutrient cycling) via proxies (i.e., potential extracellular enzymatic activity measurements) which are sometimes disconnected from the current ecosystem functions, and (3) the lack of consideration of chronic exposures to assess the impact of, adaptations to, or recovery of aquatic microbial communities from pesticides. Environ Toxicol Chem 2023;42:1867-1888. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Joan Artigas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
7
|
Tofan L, Niță V, Nenciu M, Coatu V, Lazăr L, Damir N, Vasile D, Popoviciu DR, Brotea AG, Curtean-Bănăduc AM, Avramescu S, Aonofriesei F. Multiple Assays on Non-Target Organisms to Determine the Risk of Acute Environmental Toxicity in Tebuconazole-Based Fungicides Widely Used in the Black Sea Coastal Area. TOXICS 2023; 11:597. [PMID: 37505562 PMCID: PMC10385278 DOI: 10.3390/toxics11070597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023]
Abstract
The widespread use of Tebuconazole-based fungicides in phytosanitary treatments on a wide range of crops, on the one hand, and the lack of official reports on the amount of fungicide residues in nearby water basins, on the other hand, may lead to uncontrolled and hazardous contamination of water sources used by the resident population, and to serious effects on the environment and public health. Our study explores the acute toxicological risk of this fungicide on various organisms, from bacteria and yeast to fish, using a battery of tests (standardized Toxkit microbiotests and acute semi-static tests). By investigating the interaction between Tebuconazole and bacteria and yeast organisms, we observed that Gram-negative bacteria displayed a strong tolerance for Tebuconazole, while Gram-positive bacteria and yeasts proved to be very sensitive. The fish experiment was conducted on Chelon auratus juveniles exposed to five concentrations of the fungicide Tebustar EW (Tebuconazole, 250 g/L as active substance). After 96 h of exposure, the LC50 for C. auratus was 1.13 mg/L. In the case of the Toxkit microbiotests' application, the following results were recorded: Spirodela polyrhiza EC50 = 2.204 mg/L (after 72 h exposure), Thamnocephalus platyurus EC50 = 0.115 mg/L (after 24 h), and Daphnia magna EC50 = 2.37 mg/L (after 24-48 h). With the exception of bacteria and yeast, the same response pattern was observed for all non-target species tested; the response range expressed by concentrations causing growth inhibition or mortality was small, ranging between very close values that are quite low, thereby demonstrating the high toxicity of Tebuconazole-based fungicides to the environment.
Collapse
Affiliation(s)
- Lucica Tofan
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | - Victor Niță
- Marine Living Resources Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Magda Nenciu
- Marine Living Resources Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Valentina Coatu
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Luminița Lazăr
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Nicoleta Damir
- Chemical Oceanography and Marine Pollution Department, National Institute for Marine Research and Development "Grigore Antipa", 300 Mamaia Blvd., 900581 Constanța, Romania
| | - Daniela Vasile
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | - Dan Răzvan Popoviciu
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | - Alina-Giorgiana Brotea
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| | | | - Sorin Avramescu
- Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Șoseaua Panduri, 050663 Bucharest, Romania
- PROTMED Research Centre, University of Bucharest, 91-95 Splaiul Independenței, 050095 Bucharest, Romania
| | - Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, Ovidius University of Constanța, 1 University Street, 900470 Constanța, Romania
| |
Collapse
|
8
|
Tresnakova N, Famulari S, Zicarelli G, Impellitteri F, Pagano M, Presti G, Filice M, Caferro A, Gulotta E, Salvatore G, Sandova M, Vazzana I, Imbrogno S, Capillo G, Savoca S, Velisek J, Faggio C. Multi-characteristic toxicity of enantioselective chiral fungicide tebuconazole to a model organism Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Bivalve: Mytilidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160874. [PMID: 36521610 DOI: 10.1016/j.scitotenv.2022.160874] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 05/24/2023]
Abstract
The survey of available scientific literature shows a lack of data on the chronic effects of tebuconazole (TEB) on non-target aquatic organisms. Therefore, this study evaluates toxicity (10 and 20 days) of two considered concentrations 2 ng/L (E1) and 2 μg/L (E2) of TEB to bioindicator species Mytilus galloprovincialis. To this end, the TEB concentrations measured in soft mussel tissues showed a time-dependent increasing trend. The viability of haemocyte and digestive gland (DG) cells was higher than 95 % during the experiment. However, DG cells lost the ability to regulate their volume in both groups after 20-d. The E1 treatment increased Cl- and Na+ levels, and E2 decreased Na+ levels in the haemolymph. In addition, levels of superoxide dismutase (SOD) activity and oxidatively modified protein (OMP) increased after 10- and 20-d in both treatments. Histopathological findings showed abnormalities in the E2, e.g., haemocyte infiltration, hypertrophy, and hyperplasia in gills and DG. This study reveals the potential risks of TEB usage in the model organism M. galloprovincialis, primarily via bioaccumulation of TEB in food web links, and improves knowledge about its comprehensive toxicity.
Collapse
Affiliation(s)
- Nikola Tresnakova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Sergio Famulari
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giorgia Zicarelli
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Federica Impellitteri
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Maria Pagano
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy
| | - Giovanni Presti
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Mariacristina Filice
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Alessia Caferro
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Eleonora Gulotta
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Guiliano Salvatore
- Chemical Laboratory of Palermo, Italian Agency of Customs and Monopolies, via Crispi, 143, 90133 Palermo, Italy
| | - Marie Sandova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Irene Vazzana
- Zooprophylactic Institute of Sicily, Via Gino Marinuzzi, Italy
| | - Sandra Imbrogno
- University of Calabria, Department of Biology, Ecology and Earth Sciences, Via P. Bucci, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Gioele Capillo
- Department of Veterinary Sciences, University of Messina, Piazza Pugliatti 1, 98122 Messina, Italy; Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy
| | - Serena Savoca
- Institute for Marine Biological Resources and Biotechnology (IRBIM), National Research Council (CNR), Section of Messina, 98100 Messina, Italy; Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Josef Velisek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Caterina Faggio
- University of Messina, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Viale Ferdinando Stagno 'd'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
9
|
Soares DMM, Procópio DP, Zamuner CK, Nóbrega BB, Bettim MR, de Rezende G, Lopes PM, Pereira ABD, Bechara EJH, Oliveira AG, Freire RS, Stevani CV. Fungal bioassays for environmental monitoring. Front Bioeng Biotechnol 2022; 10:954579. [PMID: 36091455 PMCID: PMC9452622 DOI: 10.3389/fbioe.2022.954579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental pollutants are today a major concern and an intensely discussed topic on the global agenda for sustainable development. They include a wide range of organic compounds, such as pharmaceutical waste, pesticides, plastics, and volatile organic compounds that can be found in air, soil, water bodies, sewage, and industrial wastewater. In addition to impacting fauna, flora, and fungi, skin absorption, inhalation, and ingestion of some pollutants can also negatively affect human health. Fungi play a crucial role in the decomposition and cycle of natural and synthetic substances. They exhibit a variety of growth, metabolic, morphological, and reproductive strategies and can be found in association with animals, plants, algae, and cyanobacteria. There are fungal strains that occur naturally in soil, sediment, and water that have inherent abilities to survive with contaminants, making the organism important for bioassay applications. In this context, we reviewed the applications of fungal-based bioassays as a versatile tool for environmental monitoring.
Collapse
Affiliation(s)
- Douglas M. M. Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Dielle P. Procópio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Research Centre for Greenhouse Gas Innovation (RGCI-POLI-USP), University of São Paulo, São Paulo, Brazil
| | - Caio K. Zamuner
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca B. Nóbrega
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Monalisa R. Bettim
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo de Rezende
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Pedro M. Lopes
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Arthur B. D. Pereira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Etelvino J. H. Bechara
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson G. Oliveira
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY, United States
| | - Renato S. Freire
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Research Centre for Greenhouse Gas Innovation (RGCI-POLI-USP), University of São Paulo, São Paulo, Brazil
| | - Cassius V. Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Research Centre for Greenhouse Gas Innovation (RGCI-POLI-USP), University of São Paulo, São Paulo, Brazil
- *Correspondence: Cassius V. Stevani,
| |
Collapse
|
10
|
Machado C, Cuco AP, Cássio F, Wolinska J, Castro BB. Antiparasitic potential of agrochemical fungicides on a non-target aquatic model (Daphnia × Metschnikowia host-parasite system). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155296. [PMID: 35429554 DOI: 10.1016/j.scitotenv.2022.155296] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are a major anthropogenic threat to the biodiversity of freshwater ecosystems, having the potential to affect non-target aquatic organisms and disrupt the processes in which they intervene. Important knowledge gaps have been recognised concerning the ecological effects of synthetic fungicides on non-target symbiotic aquatic fungi and the ecological processes where they intervene. The goal of this work was to assess the influence of three commonly used fungicides (myclobutanil, metalaxyl and cymoxanil), which differ in their mode of action, on a host (the crustacean Daphnia magna) × parasite (the yeast Metschnikowia bicuspidata) experimental model. Using a set of life history experiments, we evaluated the effect of each fungicide on the outcome of this relationship (disease) and on the fitness of both host and parasite. Contrasting results were observed: (i) cymoxanil and metalaxyl were overall innocuous to host and parasite at the tested concentrations, although host reproduction was occasionally reduced in the simultaneous presence of parasite and fungicide; (ii) on the contrary, myclobutanil displayed a clear antifungal effect, decreasing parasite prevalence and alleviating infection signs in the hosts. This antiparasitic effect of myclobutanil was further investigated with a follow-up experiment that manipulated the timing of application of the fungicide, to understand which stage of parasite development was most susceptible: while myclobutanil did not interfere in the early stages of infection, its antifungal activity was clearly observable at a later stage of the disease (by impairing the production of transmission stages of the parasite). More research is needed to understand the broader consequences of this parasite-clearance effect, especially in face of increasing evidence that parasites are ecologically more important than their cryptic nature might suggest.
Collapse
Affiliation(s)
- Cláudia Machado
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Ana P Cuco
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Fernanda Cássio
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal.
| |
Collapse
|
11
|
Wijntjes C, Weber Y, Höger S, Hollert H, Schäffer A. Effects of algae and fungicides on the fate of a sulfonylurea herbicide in a water-sediment system. CHEMOSPHERE 2022; 290:133234. [PMID: 34902390 DOI: 10.1016/j.chemosphere.2021.133234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The impact of pesticide mixtures on various soil parameters has been extensively studied, whereas research on effects in the aquatic environment is scarce. Furthermore, investigations on the consequences of chemical mixtures on the biodegradation kinetics of parent compounds remain deficient. Our research intended to evaluate potential effects by combined application of an agriculturally employed tank mixture to aquatic sediment systems under controlled laboratory conditions. The mixture contained two fungicides and one radiolabeled herbicide of which the route and rate of degradation was followed. One set of aquatic sediment vessels was incubated in the dark. A second set of vessels was controlled under identical conditions, except for being continuously irradiated to promote algal growth. In addition, the algal biomass in irradiated aquatic sediment was monitored to determine its effects and a potential role in the biodegradation of iodosulfuron-methyl-sodium. The study results showed that the herbicide, although hydro- and photolytically stable throughout the study, metabolized faster (DT50 1.1-1.2-fold and DT90 2.8-4.5-fold) when continuously irradiated in comparison to dark aquatic sediment. Both fungicides had a significant prolonging effect on the biodegradation rate of the herbicide. In the presence of fungicides, DT90 values increased 1.5-fold in the irradiated, and 2.5-fold in the dark systems. Additionally, algae may have influenced the metabolization of the herbicide in the irradiated systems, where shorter DT90 values were evaluated. Even so, the algal influence was concluded to be indirect.
Collapse
Affiliation(s)
- Christiaan Wijntjes
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108, Witterswil, Switzerland.
| | - Yanik Weber
- Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108, Witterswil, Switzerland
| | - Stefan Höger
- Innovative Environmental Services (IES) Ltd, Benkenstrasse 260, 4108, Witterswil, Switzerland
| | - Henner Hollert
- Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt, Max-von-Laue-Strasse 13, 60438, Frankfurt Am Main, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
12
|
Carl S, Mohr S, Sahm R, Baschien C. Laboratory conditions can change the complexity and composition of the natural aquatic mycobiome on Alnus glutinosa leaf litter. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Bani A, Randall KC, Clark DR, Gregson BH, Henderson DK, Losty EC, Ferguson RM. Mind the gaps: What do we know about how multiple chemical stressors impact freshwater aquatic microbiomes? ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Reichman JR, Johnson MG, Rygiewicz PT, Smith BM, Bollman MA, Storm MJ, King GA, Andersen CP. Focused Microbiome Shifts in Reconstructed Wetlands Correlated with Elevated Copper Concentrations Originating from Micronized Copper Azole-Treated Wood. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3351-3368. [PMID: 34551151 PMCID: PMC8729818 DOI: 10.1002/etc.5219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/25/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Micronized copper (Cu) azole (MCA) wood preservative formulations include Cu in nano form, and relatively little is known about longer term effects of Cu leached from MCA into wetland ecosystems. We tested the hypothesis that changes in soil microbiomes within reconstructed freshwater wetlands will be associated with exposure to elevated Cu concentrations originating from immersed MCA-treated wood stakes. Eight replicate communities were assembled with Willamette Valley (OR, USA) flood plain soil and clonally propagated wetland plants within mesocosms. Inundated communities were equilibrated for 5 months before installation of MCA or control southern yellow pine stakes (n = 4 communities/experimental group). Soil samples were collected for 16S and internal transcribed spacer amplicon sequencing to quantify responses in prokaryotes and eukaryotes, respectively, at 15 time points, spanning two simulated seasonal dry downs, for up to 678 days. Physiochemical properties of water and soil were monitored at 20 and 12 time points respectively, over the same period. For both taxonomic groups of organisms, phylogenetic diversity increased and was positively correlated with elapsed days. Furthermore, there was significant divergence among eukaryotes during the second year based on experimental group. Although the composition of taxa underwent succession over time, there was significantly reduced relative abundance of sequence variants from Gomphonema diatoms and Scutellinia fungi in communities where MCA wood stakes were present compared with the controls. These focused microbiome shifts were positively correlated with surface water Cu and soil Cu concentrations, which were significantly elevated in treated communities. The reconstructed communities were effective systems for assessing potential impacts to wetland microbiomes after exposure to released copper. The results further inform postcommercialization risk assessments on MCA-treated wood. Environ Toxicol Chem 2021;40:3351-3368. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Jay R. Reichman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Mark G. Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Paul T. Rygiewicz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Bonnie M. Smith
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | - Michael A. Bollman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| | | | | | - Christian P. Andersen
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| |
Collapse
|
15
|
Cornejo A, Pérez J, López-Rojo N, García G, Pérez E, Guerra A, Nieto C, Boyero L. Litter decomposition can be reduced by pesticide effects on detritivores and decomposers: Implications for tropical stream functioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117243. [PMID: 33962306 DOI: 10.1016/j.envpol.2021.117243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.
Collapse
Affiliation(s)
- Aydeé Cornejo
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama.
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gabriela García
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Edgar Pérez
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Alisson Guerra
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Carlos Nieto
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
16
|
Baudy P, Zubrod JP, Konschak M, Röder N, Nguyen TH, Schreiner VC, Baschien C, Schulz R, Bundschuh M. Environmentally relevant fungicide levels modify fungal community composition and interactions but not functioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117234. [PMID: 33962304 DOI: 10.1016/j.envpol.2021.117234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 05/25/2023]
Abstract
Aquatic hyphomycetes (AHs), a group of saprotrophic fungi adapted to submerged leaf litter, play key functional roles in stream ecosystems as decomposers and food source for higher trophic levels. Fungicides, controlling fungal pathogens, target evolutionary conserved molecular processes in fungi and contaminate streams via their use in agricultural and urban landscapes. Thus fungicides pose a risk to AHs and the functions they provide. To investigate the impacts of fungicide exposure on the composition and functioning of AH communities, we exposed four AH species in monocultures and mixed cultures to increasing fungicide concentrations (0, 5, 50, 500, and 2500 μg/L). We assessed the biomass of each species via quantitative real-time PCR. Moreover, leaf decomposition was investigated. In monocultures, none of the species was affected at environmentally relevant fungicide levels (5 and 50 μg/L). The two most tolerant species were able to colonize and decompose leaves even at very high fungicide levels (≥500 μg/L), although less efficiently. In mixed cultures, changes in leaf decomposition reflected the response pattern of the species most tolerant in monocultures. Accordingly, the decomposition process may be safeguarded by tolerant species in combination with functional redundancy. In all fungicide treatments, however, sensitive species were displaced and interactions between fungi changed from complementarity to competition. As AH community composition determines leaves' nutritional quality for consumers, the data suggest that fungicide exposures rather induce bottom-up effects in food webs than impairments in leaf decomposition.
Collapse
Affiliation(s)
- Patrick Baudy
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857, Eußerthal, Germany
| | - Marco Konschak
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Nina Röder
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Thu Huyen Nguyen
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Verena C Schreiner
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany
| | - Christiane Baschien
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstraße 7B, D-38124, Braunschweig, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857, Eußerthal, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms Väg 9, SWE-75007, Uppsala, Sweden.
| |
Collapse
|
17
|
Bonnineau C, Artigas J, Chaumet B, Dabrin A, Faburé J, Ferrari BJD, Lebrun JD, Margoum C, Mazzella N, Miège C, Morin S, Uher E, Babut M, Pesce S. Role of Biofilms in Contaminant Bioaccumulation and Trophic Transfer in Aquatic Ecosystems: Current State of Knowledge and Future Challenges. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 253:115-153. [PMID: 32166435 DOI: 10.1007/398_2019_39] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In freshwater environments, microbial assemblages attached to submerged substrates play an essential role in ecosystem processes such as primary production, supported by periphyton, or organic matter decomposition, supported by microbial communities attached to leaf litter or sediments. These microbial assemblages, also called biofilms, are not only involved in nutrients fluxes but also in contaminants dynamics. Biofilms can accumulate metals and organic contaminants transported by the water flow and/or adsorbed onto substrates. Furthermore, due to their high metabolic activity and their role in aquatic food webs, microbial biofilms are also likely to influence contaminant fate in aquatic ecosystems. In this review, we provide (1) a critical overview of the analytical methods currently in use for detecting and quantifying metals and organic micropollutants in microbial biofilms attached to benthic substrata (rocks, sediments, leaf litter); (2) a review of the distribution of those contaminants within aquatic biofilms and the role of these benthic microbial communities in contaminant fate; (3) a set of future challenges concerning the role of biofilms in contaminant accumulation and trophic transfers in the aquatic food web. This literature review highlighted that most knowledge on the interaction between biofilm and contaminants is focused on contaminants dynamics in periphyton while technical limitations are still preventing a thorough estimation of contaminants accumulation in biofilms attached to leaf litter or sediments. In addition, microbial biofilms represent an important food resource in freshwater ecosystems, yet their role in dietary contaminant exposure has been neglected for a long time, and the importance of biofilms in trophic transfer of contaminants is still understudied.
Collapse
Affiliation(s)
| | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Clermont-Ferrand, France
| | | | | | - Juliette Faburé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Versailles, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nagai T. Sensitivity differences among five species of aquatic fungi and fungus-like organisms for seven fungicides with various modes of action. JOURNAL OF PESTICIDE SCIENCE 2020; 45:223-229. [PMID: 33304191 PMCID: PMC7691557 DOI: 10.1584/jpestics.d20-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
Five species of aquatic fungi and fungus-like organisms were used for toxicity assays with seven fungicides to determine the differences in species sensitivity. A microplate toxicity assay with adenosine triphosphate luminescence detection was used as an efficient and economical high-throughput assay. The obtained toxicity data were standardized based on the species sensitivity distribution method. Species sensitivity differed among the fungicides: Rhizophydium brooksianum was most sensitive to hydroxyisoxazole, isoprothiolane, and ferimzone; Chytriomyces hyalinus was most sensitive to tricyclazole; Sporobolomyces roseus was most sensitive to ipconazole; Aphanomyces stellatus was most sensitive to orysastrobin and kasugamycin. Tetracladium setigerum was not the most sensitive species to any of the tested fungicides. The ranges of EC50s to fungal species were lower than to other aquatic organisms (primary producers, invertebrates, and vertebrates) for hydroxyisoxazole, kasugamycin, isoprothiolane, ipconazole, and ferimzone. These results suggest the usefulness of a battery of fungal species to assess the ecological effects of fungicides.
Collapse
|
19
|
Lu Y, Li S, Sha M, Wang B, Cheng G, Guo Y, Zhu J. Cascading effects caused by fenoxycarb in freshwater systems dominated by Daphnia carinata and Dolerocypris sinensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111022. [PMID: 32888608 DOI: 10.1016/j.ecoenv.2020.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
To evaluate the aquatic hazards of the insect juvenile hormone analogue fenoxycarb, a single application (0, 48.8, 156.3, 500, 1600, and 5120 μg/L) of it was done in indoor freshwater systems dominated by Daphnia carinata (daphnid) and Dolerocypris sinensis (ostracoda). The responses of zooplankton (counted by abundance and the activity and immuno-reactive content of free N-Acetyl-β-D-glucosaminidase (NAGase)), phytoplankton (counted by chlorophyll and phycocyanin), planktonic bacteria and fungi, and some water quality parameters were investigated in a period of 35 d. Results of the study showed that the ostracoda was more sensitive than daphnid, with time-weighted average (TWA)-based no observed effect concentrations (NOECs) to be 8.45 and 12.66 μg/L in systems without humic acid addition (HA-) and to be 6.37 and 9.54 μg/L in systems with humic acid addition (HA+). The duration of treatment-related effects in the ostracoda population was longer than the daphnid population (21 vs. 14 days). Besides, the data analysis indicated that the toxicity of fenoxycarb was significantly enhanced in the HA+ systems. Owing to the reduced grazing pressure, the concentrations of chlorophyll and phycocyanin increased in the two highest treatments. The increase in photosynthesis along with a reduced animal excretion led to an increase in pH and a decrease in nutrient contents. These changes seemed to have an effect on the microbial communities. For example, the abundances of some opportunistic pathogens of aquatic animals (e.g. Aeromonas and Cladosporium) and organic-pollutant-degrading microorganisms (e.g. Ancylobacter and Azospirillum) increased significantly in microbial communities, but the abundances of Pedobacter, Candidatus Planktoluna, and Rhodobacter (photosynthetic bacteria) markedly decreased. This study provides useful information to understand the ecotoxicological impacts of fenoxycarb at the population and community levels while integrating the effects of HA on toxicity.
Collapse
Affiliation(s)
- Yu Lu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shaonan Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Meng Sha
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Biao Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Gong Cheng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jinwen Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
20
|
Cuco AP, Wolinska J, Santos JI, Abrantes N, Gonçalves FJM, Castro BB. Can parasites adapt to pollutants? A multigenerational experiment with a Daphnia × Metschnikowia model system exposed to the fungicide tebuconazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105584. [PMID: 32795838 DOI: 10.1016/j.aquatox.2020.105584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
There is increasing evidence about negative effects of fungicides on non-target organisms, including parasitic species, which are key elements in food webs. Previous experiments showed that environmentally relevant concentrations of fungicide tebuconazole are toxic to the microparasite Metschnikowia bicuspidata, a yeast species that infects the planktonic crustacean Daphnia spp. However, due to their short-term nature, this and other experimental studies were not able to test if parasites could potentially adapt to these contaminants. Here, we tested if M. bicuspidata parasite can adapt to tebuconazole selective pressure. Infected D. magna lineages were reared under control conditions (no tebuconazole) and environmentally realistic tebuconazole concentrations, for four generations, and their performance was compared in a follow-up reciprocal assay. Additionally, we assessed whether the observed effects were transient (phenotypic) or permanent (genetic), by reassessing parasite fitness after the removal of selective pressure. Parasite fitness was negatively affected throughout the multigenerational exposure to the fungicide: prevalence of infection and spore load decreased, whereas host longevity increased, in comparison to control (naive) parasite lineages. In a follow-up reciprocal assay, tebuconazole-conditioned (TEB) lineages performed worse than naive parasite lineages, both in treatments without and with tebuconazole, confirming the cumulative negative effect of tebuconazole. The underperformance of TEB lineages was rapidly reversed after removing the influence of the selective pressure (tebuconazole), demonstrating that the costs of prolonged exposure to tebuconazole were phenotypic and transient. The microparasitic yeast M. bicuspidata did not reveal potential for rapid evolution to an anthropogenic selective pressure; instead, the long-term exposure to tebuconazole was hazardous to this non-target species. These findings highlight the potential environmental risks of azole fungicides on non-target parasitic fungi. The underperformance of these microbes and their inability to adapt to such stressors can interfere with the key processes where they intervene. Further research is needed to rank fungicides based on the hazard to non-target fungi (parasites, but also symbionts and decomposers), towards more effective management and protective legislation.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal.
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
21
|
Cornejo A, Pérez J, Alonso A, López-Rojo N, Monroy S, Boyero L. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110425. [PMID: 32179487 DOI: 10.1016/j.jenvman.2020.110425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Fungicides can reach streams through runoff or adhered to leaf litter, and have the potential to adversely affect processes such as litter decomposition and associated communities. This study investigated the effects of chlorothalonil, a widely used fungicide, on litter decomposition, detritivorous invertebrates (larvae of the insect Sericostoma pyrenaicum) and aquatic hyphomycetes (AHs), using stream microcosms. We considered the single and combined effects of two exposure modes: waterborne fungicide (at two concentrations: 0.125 μg L-1 and 1.25 μg L-1) and litter previously sprayed with the fungicide (i.e., pre-treated litter, using the application dose concentration of 1250 μg L-1). We also assessed whether fungicide effects on invertebrates, AHs and decomposition varied among litter types (i.e., different plant species), and whether plant diversity mitigated any of those effects. Invertebrate survival and AH sporulation rate and taxon richness were strongly reduced by most combinations of fungicide exposure modes; however, invertebrates were not affected by the low waterborne concentration, whereas AHs suffered the highest reduction at this concentration. Total decomposition was slowed down by both exposure modes, and microbial decomposition was reduced by litter pre-treatment, while the waterborne fungicide had different effects depending on plant species. In general, with the exception of microbial decomposition, responses varied little among litter types. Moreover, and contrary to our expectation, plant diversity did not modulate the fungicide effects. Our results highlight the severity of fungicide inputs to streams through effects on invertebrate and microbial communities and ecosystem functioning, even in streams with well-preserved, diverse riparian vegetation.
Collapse
Affiliation(s)
- Aydeé Cornejo
- Freshwater Macroinvertebrate Laboratory. Zoological Collection Dr. Eustorgio Mendez, Gorgas Memorial Institute for Health Studies (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama; Doctoral Program in Natural Sciences with emphasis in Entomology, University of Panama, Panama City, Panama.
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Alonso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Silvia Monroy
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
22
|
Pimentão AR, Pascoal C, Castro BB, Cássio F. Fungistatic effect of agrochemical and pharmaceutical fungicides on non-target aquatic decomposers does not translate into decreased fungi- or invertebrate-mediated decomposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135676. [PMID: 31787296 DOI: 10.1016/j.scitotenv.2019.135676] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Leaf litter decomposition is a key ecological process in freshwater ecosystems. Fungi, particularly aquatic hyphomycetes, play a major role in organic matter turnover and constitute a pivotal node in detrital food webs. The extensive use of antifungal formulations, which include agrochemicals and pharmaceuticals, is a threat to biodiversity and may affect non-target microbial and invertebrate decomposer communities. Using a laboratory approach, we assessed the effects of tebuconazole (agrochemical), clotrimazole and terbinafine (pharmaceuticals) on aquatic communities and on the decomposition of plant litter. Alder leaves were colonized by natural microbiota in a clean stream, and then exposed in microcosms to 8 concentrations of each fungicide (10 to 1280 μg L-1). Fungicides led to shifts in species dominance in all tested concentrations, but no effects on leaf decomposition were observed. In addition, tebuconazole and clotrimazole strongly reduced fungal biomass and reproduction, whilst terbinafine stimulated fungal reproduction at lower concentrations but had no measurable effects on fungal biomass. Subsequently, the indirect effects of the fungicides were assessed on the next trophic level (detritivore invertebrates), by evaluating leaf consumption by a specialist (Allogamus sp.) and a generalist (Chironomus riparius) species, when feeding on fungicide-preconditioned leaves. The feeding activity of C. riparius and Allogamus sp. was not affected, and as expected, specialists were more efficient than generalists in exploring leaves as a dietary resource. However, results indicated that these fungicides have direct negative effects on microbial decomposers, and thus may compromise ecosystem functions on the long term.
Collapse
Affiliation(s)
- Ana Rita Pimentão
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Bruno B Castro
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Fernanda Cássio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-sustainability (IB-S), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
23
|
Rico A, Brock TCM, Daam MA. Is the Effect Assessment Approach for Fungicides as Laid Down in the European Food Safety Authority Aquatic Guidance Document Sufficiently Protective for Freshwater Ecosystems? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2279-2293. [PMID: 31211455 DOI: 10.1002/etc.4520] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
In Europe, the European Food Safety Authority aquatic guidance document describes the procedures for the derivation of regulatory acceptable concentrations (RACs) for pesticides in edge-of-field surface waters on the basis of tier-1 (standard test species), tier-2 (geometric mean and species sensitivity distributions [SSDs]), and tier-3 (model ecosystem studies) approaches. In the present study, the protectiveness of such a tiered approach was evaluated for fungicides. Acute and chronic RACs for tier-1 and tier-2B (SSDs) were calculated using toxicity data for standard and additional test species, respectively. Tier-3 RACs based on ecological thresholds (not considering recovery) could be derived for 18 fungicides. We show that tier-1 RACs, in the majority of cases, are more conservative than RACs calculated based on model ecosystem experiments. However, acute tier-2B RACs do not show a sufficient protection level compared with tier-3 RACs from cosm studies that tested a repeated pulsed exposure regime or when relatively persistent compounds were tested. Chronic tier-2B RACs showed a sufficient protection level, although they could only be evaluated for 6 compounds. Finally, we evaluated the suitability of the calculated RACs for 8 compounds with toxicity data for fungi. The comparison shows that the current RACs for individual fungicides, with a few exceptions (e.g., tebuconazole), show a sufficient protection level for structural and functional fungal endpoints. However, more data are needed to extend this comparison to other fungicides with different modes of action. Environ Toxicol Chem 2019;38:2279-2293. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Andreu Rico
- Madrid Institute of Advanced Studies on Water (IMDEA Water Institute), Science and Technology Campus of the University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Theo C M Brock
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Michiel A Daam
- Center for Environmental and Sustainability Research, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Caparica, Portugal
| |
Collapse
|
24
|
Coman-Babusanu AC, Olariu RI, Butnaru E, Arsene C. Dissipation kinetics of tebuconazole on Malus domestica (Golden Delicious and Jonathan) in an apple orchard from north-eastern Romania. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1642918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Anda Cristina Coman-Babusanu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
- Faculty of Chemistry, Analytical Chemistry Laboratory, ”Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
| | - Romeo Iulian Olariu
- Faculty of Chemistry, Analytical Chemistry Laboratory, ”Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
- Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
| | - Elena Butnaru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania
| | - Cecilia Arsene
- Faculty of Chemistry, Analytical Chemistry Laboratory, ”Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
- Integrated Center of Environmental Science Studies in the North Eastern Region (CERNESIM), “Alexandru Ioan Cuza” University of Iasi, Iasi, Romania
| |
Collapse
|
25
|
Raby M, Maloney E, Poirier DG, Sibley PK. Acute Effects of Binary Mixtures of Imidacloprid and Tebuconazole on 4 Freshwater Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1093-1103. [PMID: 30724382 DOI: 10.1002/etc.4386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/20/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Receiving waters from agricultural areas can contain multiple pesticides such as the neonicotinoid imidacloprid and the fungicide tebuconazole, leading to the potential for aquatic life to be exposed to such mixtures. In the present study, the effects of tebuconazole were tested alone and in binary mixtures with imidacloprid on 4 aquatic invertebrates: Chironomus dilutus, Hyalella azteca, Lumbriculus variegatus, and Neocloeon triangulifer. Acute (96-h) median lethal concentrations (LC50s) were derived for individual compounds and used to design a binary mixture study to determine cumulative effects. The LC50s showed that imidacloprid was more potent than tebuconazole by 1 to 3 orders of magnitude for the 4 species. Lethality data from mixture experiments were analyzed using MIXTOX to determine deviations from independent action, followed by the model deviation ratio (MDR) technique to determine the biological significance and reproducibility of observed mixture effects. MIXTOX showed that the cumulative toxicities of imidacloprid-tebuconazole differed between the species: for C. dilutus there was no deviation from independent action; however, for H. azteca the mixture was antagonistic (specifically dose ratio-dependent), and for N. triangulifer it was synergistic. The MDR method showed that only observations with H. azteca significantly deviated from independent action. Because of the lack of evidence of a clear deviation from independent action and the much greater potency of imidacloprid, the weight of evidence indicates that the presence of tebuconazole is unlikely to appreciably increase the hazard from imidacloprid exposure to aquatic invertebrates. Environ Toxicol Chem 2019;00:1-17. © 2019 SETAC.
Collapse
Affiliation(s)
- Melanie Raby
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Erin Maloney
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David G Poirier
- Laboratory Services Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
26
|
Macirella R, Tripepi M, Brunelli E. Morphological and Immunohistochemical Modifications in Zebrafish (Danio rerio) Gills After Short-Term Exposure to the Fungicide Tebuconazole. Zebrafish 2019; 16:65-76. [DOI: 10.1089/zeb.2018.1638] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Rende, Italy
| | - Manuela Tripepi
- Department of Biology, Arcadia University, Glenside, Pennsylvania
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Rende, Italy
| |
Collapse
|
27
|
Konschak M, Zubrod JP, Baudy P, Englert D, Herrmann B, Schulz R, Bundschuh M. Waterborne and diet-related effects of inorganic and organic fungicides on the insect leaf shredder Chaetopteryx villosa (Trichoptera). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:33-42. [PMID: 30445370 DOI: 10.1016/j.aquatox.2018.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/27/2018] [Indexed: 06/09/2023]
Abstract
It is well-documented that fungicides can affect crustacean leaf shredders via two effect pathways, namely waterborne exposure and their diet (i.e., via dietary uptake of fungicides adsorbed to leaf material and an altered microorganism-mediated food quality). As a consequence of different life history strategies, the relevance of these effect pathways for aquatic shredders belonging to other taxonomic classes, for instance insects, remains unclear. Therefore, we investigated waterborne and diet-related effects in larvae of the caddisfly leaf shredder Chaetopteryx villosa (Insecta: Trichoptera) and compared our observations to previous reports on effects in adults of the crustacean leaf shredder Gammarus fossarum (Malacostraca: Amphipoda). We assessed acute waterborne effects of an organic fungicide mixture (OFM) and the inorganic fungicide copper (Cu) on the leaf consumption (n = 30) of the fourth-/fifth-instar larvae of C. villosa and their food choice (n = 49) when offered leaf material, which was either conditioned in presence or in absence of the respective fungicide(s). Moreover, the larval leaf consumption (n = 50) and physiological fitness (i.e., growth as well as lipid and protein content) were examined after subjecting C. villosa for 24 days towards the combination of both effect pathways at environmentally relevant concentrations. G. fossarum and C. villosa exhibited similar sensitivities and the same effect direction when exposed to the OFM (either waterborne or dietary pathways). Both shredders also showed the same effect direction when exposed to dietary Cu, while with regards to mortality and leaf consumption C. villosa was less sensitive to waterborne Cu than G. fossarum. Finally, as observed for G. fossarum, the combined exposure to OFM over 24 days negatively affected leaf consumption and the physiology (i.e., growth and lipid reserves) of C. villosa. While no combined Cu effects were observed for larval leaf consumption, contrasting to the observations for G. fossarum, the physiology of both shredders was negatively affected, despite partly differing effect sizes and directions. Our results suggest that C. villosa and G. fossarum are of comparable sensitivity towards waterborne and diet-related organic fungicide exposure, whereas the trichopteran is less sensitive to Cu-based waterborne fungicide exposure. However, when both pathways act jointly, organic and inorganic fungicides can affect the physiology of shredder species with completely different life history strategies. As caddisflies represent a subsidy for terrestrial consumers, these observations indicate that fungicide exposure might not only affect aquatic ecosystem functioning but also the flux of energy across ecosystem boundaries.
Collapse
Affiliation(s)
- M Konschak
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany.
| | - J P Zubrod
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857 Eußerthal, Germany
| | - P Baudy
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany
| | - D Englert
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany
| | - B Herrmann
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany
| | - R Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany; Eußerthal Ecosystem Research Station, University of Koblenz-Landau, Birkenthalstraße 13, D-76857 Eußerthal, Germany
| | - M Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007, Uppsala, Sweden.
| |
Collapse
|
28
|
Banos S, Lentendu G, Kopf A, Wubet T, Glöckner FO, Reich M. A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 2018; 18:190. [PMID: 30458701 PMCID: PMC6247509 DOI: 10.1186/s12866-018-1331-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several fungi-specific primers target the 18S rRNA gene sequence, one of the prominent markers for fungal classification. The design of most primers goes back to the last decades. Since then, the number of sequences in public databases increased leading to the discovery of new fungal groups and changes in fungal taxonomy. However, no reevaluation of primers was carried out and relevant information on most primers is missing. With this study, we aimed to develop an 18S rRNA gene sequence primer toolkit allowing an easy selection of the best primer pair appropriate for different sequencing platforms, research aims (biodiversity assessment versus isolate classification) and target groups. RESULTS We performed an intensive literature research, reshuffled existing primers into new pairs, designed new Illumina-primers, and annealing blocking oligonucleotides. A final number of 439 primer pairs were subjected to in silico PCRs. Best primer pairs were selected and experimentally tested. The most promising primer pair with a small amplicon size, nu-SSU-1333-5'/nu-SSU-1647-3' (FF390/FR-1), was successful in describing fungal communities by Illumina sequencing. Results were confirmed by a simultaneous metagenomics and eukaryote-specific primer approach. Co-amplification occurred in all sample types but was effectively reduced by blocking oligonucleotides. CONCLUSIONS The compiled data revealed the presence of an enormous diversity of fungal 18S rRNA gene primer pairs in terms of fungal coverage, phylum spectrum and co-amplification. Therefore, the primer pair has to be carefully selected to fulfill the requirements of the individual research projects. The presented primer toolkit offers comprehensive lists of 164 primers, 439 primer combinations, 4 blocking oligonucleotides, and top primer pairs holding all relevant information including primer's characteristics and performance to facilitate primer pair selection.
Collapse
Affiliation(s)
- Stefanos Banos
- Molecular Ecology, Institute of Ecology, FB02, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany
| | - Guillaume Lentendu
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Halle-Saale, Germany.,Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Anna Kopf
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Halle-Saale, Germany.,Present address: Department of Community Ecology, Helmholtz Centre for Environmental Research GmbH - UFZ, Halle-Saale, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Frank Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
| | - Marlis Reich
- Molecular Ecology, Institute of Ecology, FB02, University of Bremen, Leobener Str. 2, 28359, Bremen, Germany.
| |
Collapse
|
29
|
Nagai T. A novel, efficient, and ecologically relevant bioassay method using aquatic fungi and fungus-like organisms for fungicide ecological effect assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1980-1989. [PMID: 29572919 DOI: 10.1002/etc.4138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Fungicides are used to control fungal plant pathogens, but they may also be highly toxic to aquatic fungi, which play an important role in natural aquatic ecosystems. However, a bioassay method using aquatic fungi has not been sufficiently developed. In the present study, a novel, efficient, and ecologically relevant bioassay method was developed for the ecological effect assessment of fungicides. Candidate test species were selected by considering the following 4 factors: 1) their ecological relevance (i.e., widely distributed and frequently observed) in freshwater habitats, 2) inclusion of a wide range of taxonomic groups, 3) availability from public culture collections, and 4) suitability for culture experiments using a microplate. The following 5 fungal species were selected: Rhizophydium brooksiaum (Chitridiomycota), Chytriomyces hyalinus (Chitridiomycota), Tetracladium setigerum (Ascomycota), Sporobolomyces roseus (Basidiomycota), and Aphanomyces stellatus (Oomycota, fungus-like organism). An efficient test method using the 5 species was developed based on a microplate assay using a 96-well white microplate and a test duration of 48 h. Fungal biomass was determined as adenosine 5'-triphosphate (ATP) luminescence, which is known to be proportional to live cell density and can be determined with a microplate reader. Test performance was evaluated by conducting bioassays of 3,5-dichlorophenol and malachite green as standard test substances. Fungal species were clearly more sensitive than other species to the fungicide malachite green. Environ Toxicol Chem 2018;37:1980-1989. © 2018 SETAC.
Collapse
Affiliation(s)
- Takashi Nagai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
30
|
Arias-Andrés M, Rämö R, Mena Torres F, Ugalde R, Grandas L, Ruepert C, Castillo LE, Van den Brink PJ, Gunnarsson JS. Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13312-13321. [PMID: 27783250 DOI: 10.1007/s11356-016-7875-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Costa Rica is a tropical country with one of the highest biodiversity on Earth. It also has an intensive agriculture, and pesticide runoff from banana and pineapple plantations may cause a high toxicity risk to non-target species in rivers downstream the plantations. We performed a first tier risk assessment of the maximum measured concentrations of 32 pesticides detected over 4 years in the River Madre de Dios (RMD) and its coastal lagoon on the Caribbean coast of Costa Rica. Species sensitivity distributions (SSDs) were plotted in order to derive HC5 values for each pesticide, i.e., hazard concentrations for 5 % of the species, often used as environmental criteria values in other countries. We also carried out toxicity tests for selected pesticides with native Costa Rican species in order to calculate risk coefficients according to national guidelines in Costa Rica. The concentrations of herbicides diuron and ametryn and insecticides carbofuran, diazinon, and ethoprophos exceeded either the HC5 value or the lower limit of its 90 % confidence interval suggesting toxic risks above accepted levels. Risk coefficients of diuron and carbofuran derived using local guidelines indicate toxicity risks as well. The assessed fungicides did not present acute toxic risks according to our analysis. Overall, these results show a possible toxicity of detected pesticides to aquatic organisms and provide a comparison of Costa Rican national guidelines with more refined methods for risk assessment based on SSDs. Further higher tier risk assessments of pesticides in this watershed are also necessary in order to consider pesticide water concentrations over time, toxicity from pesticide mixtures, and eventual effects on ecosystem functions.
Collapse
Affiliation(s)
- M Arias-Andrés
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - R Rämö
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91, Stockholm, Sweden
| | - F Mena Torres
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - R Ugalde
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - L Grandas
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - C Ruepert
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - L E Castillo
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional de Costa Rica, 86-3000, Heredia, Costa Rica
| | - P J Van den Brink
- Alterra, Wageningen University and Research Centre, Wageningen, The Netherlands
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen University and Research centre, 47, 6700, AA, Wageningen, The Netherlands
| | - J S Gunnarsson
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
31
|
Yin XH, Brock TCM, Barone LE, Belgers JDM, Boerwinkel MC, Buijse L, van Wijngaarden RPA, Hamer M, Roessink I. Exposure and effects of sediment-spiked fludioxonil on macroinvertebrates and zooplankton in outdoor aquatic microcosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:1222-1238. [PMID: 28851143 DOI: 10.1016/j.scitotenv.2017.08.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Information from effects of pesticides in sediments at an ecosystem level, to validate current and proposed risk assessment procedures, is scarce. A sediment-spiked outdoor freshwater microcosm experiment was conducted with fludioxonil (lipophilic, non-systemic fungicide) to study exposure dynamics and treatment-related responses of benthic and pelagic macroinvertebrates and zooplankton. Besides blank control and solvent control systems the experiment had six different treatment levels (1.7-614mga.s./kg dry sediment) based around the reported 28-d No Observed Effect Concentration (NOEC) for Chironomus riparius (40mga.s./kg dry sediment). Twelve systems were available per treatment of which four were sacrificed on each of days 28, 56 and 84 after microcosm construction. Fludioxonil persisted in the sediment and mean measured concentrations were 53-82% of the initial concentration after 84days. The dissipation rate increased with the treatment level. Also exposure concentrations in overlying water were long-term, with highest concentrations 28days after initiation of the experiment. Sediment-dwelling Oligochaeta and pelagic Rotifera and Cladocera showed the most pronounced treatment-related declines. The most sensitive sediment-dwelling oligochaete was Dero digitata (population NOEC 14.2mga.s./kg dry sediment). The same NOEC was calculated for the sediment-dwelling macroinvertebrate community. The most sensitive zooplankton species was the cladoceran Diaphanosoma brachyurum (NOEC of 1.6μga.s./L in overlying water corresponding to 5.0mga.s./kg dry sediment). At the two highest treatments several rotifer taxa showed a pronounced decrease, while the zooplankton community-level NOEC was 5.6μga.s./L (corresponding to 14.2mga.s./kg dry sediment). Zooplankton taxa calanoid Copepoda and Daphnia gr. longispina showed a pronounced treatment-related increase (indirect effects). Consequently, an assessment factor of 10 to the chronic laboratory NOECs of Chironomus riparius (sediment) and Daphnia magna (water) results in a regulatory acceptable concentration that is sufficiently protective for both the sediment-dwelling and pelagic organisms in the microcosms.
Collapse
Affiliation(s)
- Xiao H Yin
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Zhe Jiang Agriculture and Forestry University, College of Agriculture and Food Science, 88 North Road of Huan Cheng, Lin'an, Hangzhou, Zhe Jiang 311300, China
| | - Theo C M Brock
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Lidia E Barone
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - J Dick M Belgers
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Laura Buijse
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - René P A van Wijngaarden
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Mick Hamer
- Syngenta, Jealotts Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Ivo Roessink
- Wageningen Environmental Research (Alterra), Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
32
|
Cuco AP, Santos JI, Abrantes N, Gonçalves F, Wolinska J, Castro BB. Concentration and timing of application reveal strong fungistatic effect of tebuconazole in a Daphnia-microparasitic yeast model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 193:144-151. [PMID: 29096087 DOI: 10.1016/j.aquatox.2017.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/06/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Given the importance of pollutant effects on host-parasite relationships and disease spread, the main goal of this study was to assess the influence of different exposure scenarios for the fungicide tebuconazole (concentration×timing of application) on a Daphnia-microparasitic yeast experimental system. Previous results had demonstrated that tebuconazole is able to suppress Metschnikowia bicuspidata infection at ecologically-relevant concentrations; here, we aimed to obtain an understanding of the mechanism underlying the anti-parasitic (fungicidal or fungistatic) action of tebuconazole. We exposed the Daphnia-yeast system to four nominal tebuconazole concentrations at four timings of application (according to the predicted stage of parasite development), replicated on two Daphnia genotypes, in a fully crossed experiment. An "all-or-nothing" effect was observed, with tebuconazole completely suppressing infection from 13.5μgl-1 upwards, independent of the timing of tebuconazole application. A follow-up experiment confirmed that the suppression of infection occurred within a narrow range of tebuconazole concentrations (3.65-13.5μgl-1), although a later application of the fungicide had to be compensated for by a slight increase in concentration to elicit the same anti-parasitic effect. The mechanism behind this anti-parasitic effect seems to be the inhibition of M. bicuspidata sporulation, since tebuconazole was effective in preventing ascospore production even when applied at a later time. However, this fungicide also seemed to affect the vegetative growth of the yeast, as demonstrated by the enhanced negative effect of the parasite (increasing mortality in one of the host genotypes) at a later time of application of tebuconazole, when no signs of infection were observed. Fungicide contamination can thus affect the severity and spread of disease in natural populations, as well as the inherent co-evolutionary dynamics in host-parasite systems.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal.
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
33
|
Zubrod JP, Englert D, Wolfram J, Rosenfeldt RR, Feckler A, Bundschuh R, Seitz F, Konschak M, Baudy P, Lüderwald S, Fink P, Lorke A, Schulz R, Bundschuh M. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2178-2189. [PMID: 28160498 DOI: 10.1002/etc.3756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/10/2016] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Leaf litter is a major source of carbon and energy for stream food webs, while both leaf-decomposing microorganisms and macroinvertebrate leaf shredders can be affected by fungicides. Despite the potential for season-long fungicide exposure for these organisms, however, such chronic exposures have not yet been considered. Using an artificial stream facility, effects of a chronic (lasting up to 8 wk) exposure to a mixture of 5 fungicides (sum concentration 20 μg/L) on leaf-associated microorganisms and the key leaf shredder Gammarus fossarum were therefore assessed. While bacterial density and microorganism-mediated leaf decomposition remained unaltered, fungicide exposure reduced fungal biomass (≤71%) on leaves from day 28 onward. Gammarids responded to the combined stress from consumption of fungicide-affected leaves and waterborne exposure with a reduced abundance (≤18%), which triggered reductions in final population biomass (18%) and in the number of precopula pairs (≤22%) but could not fully explain the decreased leaf consumption (19%), lipid content (≤43%; going along with an altered composition of fatty acids), and juvenile production (35%). In contrast, fine particulate organic matter production and stream respiration were unaffected. Our results imply that long-term exposure of leaf-associated fungi and shredders toward fungicides may result in detrimental implications in stream food webs and impairments of detrital material fluxes. These findings render it important to understand decomposer communities' long-term adaptational capabilities to ensure that functional integrity is safeguarded. Environ Toxicol Chem 2017;36:2178-2189. © 2017 SETAC.
Collapse
Affiliation(s)
- Jochen P Zubrod
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Dominic Englert
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Jakob Wolfram
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Ricki R Rosenfeldt
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
- nEcoTox, Schifferstadt, Germany
| | - Alexander Feckler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rebecca Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Frank Seitz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
- nEcoTox, Schifferstadt, Germany
| | - Marco Konschak
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Patrick Baudy
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Simon Lüderwald
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Patrick Fink
- Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Mirco Bundschuh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
34
|
Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Appl Microbiol Biotechnol 2017; 101:5163-5173. [PMID: 28299401 PMCID: PMC5486822 DOI: 10.1007/s00253-017-8212-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 11/06/2022]
Abstract
The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L−1, to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A2/O) concept. In the 50 mg L−1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L−1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L−1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L−1. Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L−1. The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.
Collapse
|
35
|
Baudy P, Zubrod JP, Konschak M, Weil M, Schulz R, Bundschuh M. Does long-term fungicide exposure affect the reproductive performance of leaf-shredders? A partial life-cycle study using Hyalella azteca. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:458-464. [PMID: 28012667 DOI: 10.1016/j.envpol.2016.11.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Leaf-shredding amphipods play a critical role in the ecosystem function of leaf litter breakdown, a key process in many low order streams. Fungicides, however, may adversely influence shredders' behavior and the functions they provide, while there is only limited knowledge concerning effects on their reproductive performance. To assess the latter, a semi-static 56-day partial life-cycle bioassay using the model shredder Hyalella azteca (n = 30) was performed applying two environmentally relevant concentrations of a model fungicide mixture (i.e., 5 and 25 μg/L) composed of five fungicides with different modes of toxic action. Variables related to the food processing (leaf consumption and feces production), growth (body length and dry weight), energy reserves (lipid content), and reproduction (amplexus pairs, number and length of offspring) were determined to understand potential implications in the organisms' energy budget. While the fungicides did not affect leaf consumption, both fungicide treatments significantly reduced amphipods' feces production (∼20%) compared to the control. This observation suggests an increased food utilization to counteract the elevated and stress-related energy demand: although growth as well as energy reserves were unaffected, amplexus pairs were less frequently observed in both fungicide treatments (∼50-100%) suggesting a tradeoff regarding energy allocation favoring the maintenance of fundamental functions at the organism level over reproduction. As a result, the time to release of first offspring was delayed in both fungicide treatments (7 and 14 days) and the median number of offspring was significantly lower in the 25-μg/L treatment (100%), whereas offspring length remained unaffected. The results of this study thus indicate that chronic fungicide exposures can negatively impact shredders' reproductive performance. This may translate into lower abundances and thus a reduced contribution to leaf litter breakdown in fungicide-impacted streams with potentially far-reaching consequences for detritus-based food webs.
Collapse
Affiliation(s)
- Patrick Baudy
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829 Landau/Palatinate, Germany.
| | - Jochen P Zubrod
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829 Landau/Palatinate, Germany
| | - Marco Konschak
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829 Landau/Palatinate, Germany
| | - Mirco Weil
- ECT Oekotoxikologie GmbH, Böttgerstrasse 2-14, 65439 Flörsheim, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, 76829 Landau/Palatinate, Germany
| | - Mirco Bundschuh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| |
Collapse
|
36
|
Vu HT, Keough MJ, Long SM, Pettigrove VJ. Effects of two commonly used fungicides on the amphipod Austrochiltonia subtenuis. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:720-726. [PMID: 27530466 DOI: 10.1002/etc.3584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Fungicides are used widely in agriculture and have been detected in adjacent rivers and wetlands. However, relatively little is known about the potential effects of fungicides on aquatic organisms. The present study investigated the effects of 2 commonly used fungicides, the boscalid fungicide Filan® and the myclobutanil fungicide Systhane™ 400 WP, on life history traits (survival, growth, and reproduction) and energy reserves (lipid, protein, and glycogen content) of the amphipod Austrochiltonia subtenuis under laboratory conditions, at concentrations detected in aquatic environments. Amphipods were exposed to 3 concentrations of Filan (1 μg active ingredient [a.i.]/L, 10 μg a.i./L, and 40 μg a.i./L) and Systhane (0.3 μg a.i./L, 3 μg a.i./L, and 30 μg a.i./L) over 56 d. Both fungicides had similar effects on the amphipod at the organism level. Reproduction was the most sensitive endpoint, with offspring produced in controls but none produced in any of the fungicide treatments, and total numbers of gravid females in all fungicide treatments were reduced by up to 95%. Female amphipods were more sensitive than males in terms of growth. Systhane had significant effects on survival at all concentrations, whereas significant effects of Filan on survival were observed only at 10 μg a.i./L and 40 μg a.i./L. The effects of fungicides on energy reserves of the female amphipod were different. Filan significantly reduced amphipod protein content, whereas Systhane significantly reduced the lipid content. The present study demonstrates wide-ranging effects of 2 common fungicides on an ecologically important species that has a key role in trophic transfer and nutrient recycling in aquatic environments. These results emphasize the importance of considering the long-term effects of fungicides in the risk assessment of aquatic ecosystems. Environ Toxicol Chem 2017;36:720-726. © 2016 SETAC.
Collapse
Affiliation(s)
- Hung T Vu
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Michael J Keough
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Sara M Long
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Vincent J Pettigrove
- Centre for Aquatic Pollution Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Feckler A, Goedkoop W, Zubrod JP, Schulz R, Bundschuh M. Exposure pathway-dependent effects of the fungicide epoxiconazole on a decomposer-detritivore system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 571:992-1000. [PMID: 27450951 DOI: 10.1016/j.scitotenv.2016.07.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Shredders play a central role in the breakdown of leaf material in aquatic systems. These organisms and the ecological function they provide may, however, be affected by chemical stressors either as a consequence of direct waterborne exposure or through alterations in food-quality (indirect pathway). To unravel the biological relevance of these effect pathways, we applied a 2×2-factorial test design. Leaf material was microbially colonized for 10days in absence or presence of the fungicide epoxiconazole (15μg/L) and subsequently fed to the shredder Asellus aquaticus under exposure to epoxiconazole (15μg/L) or in fungicide-free medium over a 28-day period (n=40). Both effect pathways caused alterations in asselids' food processing, physiological fitness, and growth, although not always statistically significantly: assimilation either increased or remained at a similar level relative to the control suggesting compensatory behavior of A. aquaticus to cope with the enhanced energy demand for detoxification processes and decreased nutritional quality of the food. The latter was driven by lowered microbial biomasses and the altered composition of fatty acids associated with the leaf material. Even with increased assimilation, direct and indirect effects caused decreases in the growth and lipid (fatty acid) content of A. aquaticus with relative effect sizes between 10 and 40%. Moreover, the concentrations of two essential polyunsaturated fatty acids (i.e., arachidonic acid and eicosapentaenoic acid) were non-significantly reduced (up to ~15%) in asselids. This effect was, however, independent of the exposure pathway. Although waterborne effects were generally stronger than the diet-related effects, results suggest impaired functioning of A. aquaticus via both effect pathways.
Collapse
Affiliation(s)
- Alexander Feckler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Willem Goedkoop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden
| | - Jochen P Zubrod
- Institute for Environmental Sciences, University of Koblenz-Landau, 76829 Landau, Germany
| | - Ralf Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, 76829 Landau, Germany
| | - Mirco Bundschuh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden; Institute for Environmental Sciences, University of Koblenz-Landau, 76829 Landau, Germany
| |
Collapse
|
38
|
Talk A, Kublik S, Uksa M, Engel M, Berghahn R, Welzl G, Schloter M, Mohr S. Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter. J Environ Sci (China) 2016; 46:116-125. [PMID: 27521943 DOI: 10.1016/j.jes.2015.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/27/2015] [Accepted: 11/19/2015] [Indexed: 06/06/2023]
Abstract
In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.
Collapse
Affiliation(s)
- Anne Talk
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Susanne Kublik
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Marie Uksa
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Marion Engel
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Gerhard Welzl
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit Environmental Genomics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Silvia Mohr
- Umweltbundesamt, Schichauweg 58, 12307, Berlin, Germany
| |
Collapse
|
39
|
Pesce S, Zoghlami O, Margoum C, Artigas J, Chaumot A, Foulquier A. Combined effects of drought and the fungicide tebuconazole on aquatic leaf litter decomposition. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:120-131. [PMID: 26859779 DOI: 10.1016/j.aquatox.2016.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/18/2016] [Accepted: 01/25/2016] [Indexed: 05/25/2023]
Abstract
Loss of biodiversity and altered ecosystem functioning are driven by the cumulative effects of multiple natural and anthropogenic stressors affecting both quantity and quality of water resources. Here we performed a 40-day laboratory microcosm experiment to assess the individual and combined effects of drought and the model fungicide tebuconazole (TBZ) on leaf litter decomposition (LLD), a fundamental biogeochemical process in freshwater ecosystems. Starting out from a worst-case scenario perspective, leaf-associated microbial communities were exposed to severe drought conditions (four 5-day drought periods alternated with 4-day immersion periods) and/or a chronic exposure to TBZ (nominal concentration of 20μgL(-1)). We assessed the direct effects of drought and fungicide on the structure (biomass, diversity) and activity (extracellular enzymatic potential) of fungal and bacterial assemblages colonizing leaves. We also investigated indirect effects on the feeding rates of the amphipod Gammarus fossarum on leaves previously exposed to drought and/or TBZ contamination. Results indicate a stronger effect of drought stress than fungicide contamination under the experimental conditions applied. Indeed, the drought stress strongly impacted microbial community structure and activities, inhibiting the LLD process and leading to cascading effects on macroinvertebrate feeding. However, despite the lack of significant effect of TBZ applied alone, the effects of drought on microbial functions (i.e., decrease in LLD and in enzymatic activities) and on Gammarus feeding rates were more pronounced when drought and TBZ stresses were applied together. In a perspective of ecological risk assessment and ecosystem management for sustainability, these findings stress the need for deeper insight into how multiple stressors can affect the functioning of aquatic ecosystems and associated services.
Collapse
Affiliation(s)
- Stéphane Pesce
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France.
| | - Olfa Zoghlami
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France.
| | - Christelle Margoum
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France.
| | - Joan Artigas
- Laboratoire Microorganismes: Génome et Environnement, Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France; CNRS, UMR 6023, LMGE, Aubiere, France.
| | - Arnaud Chaumot
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France.
| | - Arnaud Foulquier
- Irstea, UR MALY, Centre de Lyon-Villeurbanne, 5 Rue de la Doua, CS70077, 69626 Villeurbanne Cedex, France; Laboratoire d'Écologie Alpine, UMR 5553CNRS, Université Grenoble Alpes, BP 53, 38041 Grenoble Cedex 9, France.
| |
Collapse
|
40
|
Antimicrobial cocktails to control bacterial and fungal contamination in Chlamydomonas reinhardtii cultures. Biotechniques 2016; 60:145-9. [DOI: 10.2144/000114392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/03/2015] [Indexed: 11/23/2022] Open
Abstract
Chlamydomonas reinhardtii is a unicellular green alga widely used for research in photosynthesis, cell cycle regulation, ciliary biogenesis, and other physiological processes. Sterile cultures are needed for these studies, but contamination from bacteria and fungi occurs frequently. Although the One-shot Solution cocktail consisting of carbendazim, ampicillin, and cefotaxime has been developed for removing these contaminants from algal cultures, it is not always effective. Here we report two new antimicrobial cocktails for treating mixed bacterial and fungal contamination of Chlamydomonas cultures. A combination of the bactericide nalidixic acid with one of two fungicides, azoxystrobin or tebuconazole, was more effective than the One-shot Solution cocktail. In some of our tests, we find that alternating use of our new cocktails with One-shot Solution is needed to remove obstinate contaminants.
Collapse
|
41
|
Álvarez-Pérez S, de Vega C, Pozo MI, Lenaerts M, Van Assche A, Herrera CM, Jacquemyn H, Lievens B. Nectar yeasts of the Metschnikowia clade are highly susceptible to azole antifungals widely used in medicine and agriculture. FEMS Yeast Res 2015; 16:fov115. [PMID: 26703195 DOI: 10.1093/femsyr/fov115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2015] [Indexed: 11/14/2022] Open
Abstract
The widespread use of azole antifungals in medicine and agriculture and the resulting long-persistent residues could potentially affect beneficial fungi. However, there is very little information on the tolerance of non-target environmental fungi to azoles. In this study, we assessed the susceptibility of diverse plant- and insect-associated yeasts from the Metschnikowia clade, including several ecologically important species, to widely used medical and agricultural azoles (epoxiconazole, imazalil, ketoconazole and voriconazole). A total of 120 strains from six species were tested. Minimum inhibitory concentrations (MICs) were determined by the EUCAST broth microdilution procedure after some necessary modifications were made. The majority of species tested were highly susceptible to epoxiconazole, ketoconazole and voriconazole (>95% of strains showed MICs ≤ 0.125 mg l(-1)). Most strains were also very susceptible to imazalil, although MIC values were generally higher than for the other azoles. Furthermore, certain Metschnikowia reukaufii strains displayed a 'trailing' phenotype (i.e. showed reduced but persistent growth at antifungal concentrations above the MIC), but this characteristic was dependent on test conditions. It was concluded that exposure to azoles may pose a risk for ecologically relevant yeasts from the Metschnikowia clade, and thus could potentially impinge on the tripartite interaction linking these fungi with plants and their insect pollinators.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, E-28040 Madrid, Spain Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium
| | - Clara de Vega
- Estación Biológica de Doñana, CSIC, E-41092 Sevilla, Spain
| | - María I Pozo
- Plant Population and Conservation Biology, Biology Department, KU Leuven, B-3001 Heverlee, Belgium
| | - Marijke Lenaerts
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium
| | | | - Hans Jacquemyn
- Plant Population and Conservation Biology, Biology Department, KU Leuven, B-3001 Heverlee, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M2S), KU Leuven, Campus De Nayer, B-2860 Sint-Katelijne-Waver, Belgium
| |
Collapse
|
42
|
Zubrod JP, Englert D, Wolfram J, Wallace D, Schnetzer N, Baudy P, Konschak M, Schulz R, Bundschuh M. Waterborne toxicity and diet-related effects of fungicides in the key leaf shredder Gammarus fossarum (Crustacea: Amphipoda). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:105-112. [PMID: 26520670 DOI: 10.1016/j.aquatox.2015.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Animals involved in leaf litter breakdown (i.e., shredders) play a central role in detritus-based stream food webs, while their fitness and functioning can be impaired by anthropogenic stressors. Particularly fungicides can affect shredders via both waterborne exposure and their diet, namely due to co-ingestion of adsorbed fungicides and shifts in the leaf-associated fungal community, on which shredders' nutrition heavily relies. To understand the relevance of these effect pathways, we used a full 2×2-factorial test design: the leaf material serving as food was microbially colonized for 12 days either in a fungicide-free control or exposed to a mixture of five current-use fungicides (sum concentration of 62.5μg/L). Similarly, the amphipod shredder Gammarus fossarum was subjected to the same treatments but for 24 days. Waterborne exposure reduced leaf consumption by ∼20%, which did not fully explain the reduction in feces production (∼30%), indicating an enhanced utilization of food to compensate for detoxification mechanisms. This may also explain the reduced feces production (∼10%) of gammarids feeding on fungicide-exposed leaves. The reduction may, however, also be caused by a decreased nutritious quality of the leaves indicated by a reduced species richness (∼40%) of leaf-associated fungi. However, compensation for these effects by Gammarus was seemingly incomplete, since both waterborne exposure and the consumption of the fungicide-affected diet drastically reduced gammarid growth (∼110% and ∼40%, respectively). Our results thus indicate that fungicide mixtures have the potential for detrimental implications in aquatic ecosystem functioning by affecting shredders via both effect pathways.
Collapse
Affiliation(s)
- J P Zubrod
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany.
| | - D Englert
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - J Wolfram
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - D Wallace
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - N Schnetzer
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - P Baudy
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - M Konschak
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - R Schulz
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany
| | - M Bundschuh
- Institute for Environmental Sciences, University of Koblenz-Landau, Fortstrasse 7, 76829, Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 75007, Uppsala, Sweden
| |
Collapse
|
43
|
Diepens NJ, Dimitrov MR, Koelmans AA, Smidt H. Molecular Assessment of Bacterial Community Dynamics and Functional End Points during Sediment Bioaccumulation Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13586-13595. [PMID: 26466173 DOI: 10.1021/acs.est.5b02992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Whole sediment toxicity tests play an important role in environmental risk assessment of organic chemicals. It is not clear, however, to what extent changing microbial community composition and associated functions affect sediment test results. We assessed the development of bacterial communities in artificial sediment during a 28 day bioaccumulation test with polychlorinated biphenyls, chlorpyrifos, and four marine benthic invertebrates. DGGE and 454-pyrosequencing of PCR-amplified 16S rRNA genes were used to characterize bacterial community composition. Abundance of total bacteria and selected genes encoding enzymes involved in important microbially mediated ecosystem functions were measured by qPCR. Community composition and diversity responded most to the time course of the experiment, whereas organic matter (OM) content showed a low but significant effect on community composition, biodiversity and two functional genes tested. Moreover, OM content had a higher influence on bacterial community composition than invertebrate species. Medium OM content led to the highest gene abundance and is preferred for standard testing. Our results also indicated that a pre-equilibration period is essential for growth and stabilization of the bacterial community. The observed changes in microbial community composition and functional gene abundance may imply actual changes in such functions during tests, with consequences for exposure and toxicity assessment.
Collapse
Affiliation(s)
- Noël J Diepens
- Aquatic Ecology and Water Quality Management Group, Wageningen University , P.O Box 47, 6700 AA, Wageningen, The Netherlands
| | - Mauricio R Dimitrov
- Aquatic Ecology and Water Quality Management Group, Wageningen University , P.O Box 47, 6700 AA, Wageningen, The Netherlands
- Laboratory of Microbiology, Wageningen University , Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University , P.O Box 47, 6700 AA, Wageningen, The Netherlands
- IMARES, Institute for Marine Resources & Ecosystem Studies, Wageningen UR , P.O. Box 68, 1970 AB IJmuiden, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University , Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| |
Collapse
|
44
|
Scientific Opinion on the effect assessment for pesticides on sediment organisms in edge‐of‐field surface water. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.4176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Zubrod JP, Englert D, Feckler A, Koksharova N, Konschak M, Bundschuh R, Schnetzer N, Englert K, Schulz R, Bundschuh M. Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1173-1181. [PMID: 25517729 DOI: 10.1021/es5050453] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The level of protection provided by the present environmental risk assessment (ERA) of fungicides in the European Union for fungi is unknown. Therefore, we assessed the structural and functional implications of five fungicides with different modes of action (azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebuconazole) individually and in mixture on communities of aquatic hyphomycetes. This is a polyphyletic group of fungi containing key drivers in the breakdown of leaf litter, governing both microbial leaf decomposition and the palatability of leaves for leaf-shredding macroinvertebrates. All fungicides impaired leaf palatability to the leaf-shredder Gammarus fossarum and caused structural changes in fungal communities. In addition, all compounds except for quinoxyfen altered microbial leaf decomposition. Our results suggest that the European Union’s first-tier ERA provides sufficient protection for the tested fungicides, with the exception of tebuconazole and the mixture, while higher-tier ERA does not provide an adequate level of protection for fungicides in general. Therefore, our results show the need to incorporate aquatic fungi as well as their functions into ERA testing schemes to safeguard the integrity of aquatic ecosystems.
Collapse
|