1
|
Quon H, Jiang S. Quantitative Microbial Risk Assessment of Antibiotic-Resistant E. coli, Legionella pneumophila, and Mycobacteria in Nonpotable Wastewater Reuse Applications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12888-12898. [PMID: 39004818 PMCID: PMC11270989 DOI: 10.1021/acs.est.4c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Antibiotic-resistant bacteria (ARB) have become a major threat to public health and modern medicine. A simple death kinetics-based dose-response model (SD-DRM) was incorporated into a quantitative microbial risk assessment (QMRA) to assess the risks of exposure to reclaimed wastewater harboring antibiotic-resistant E. coli, Legionella pneumophila, and Mycobacterium avium for multiple exposure scenarios. The fractions of ARB and trace antibiotics present in the body were incorporated to demonstrate their impact on infection risks. Both ARB and antibiotic susceptible bacteria, ASB, are assumed to have the same dose-response in the absence of antibiotics but behave differently in the presence of residual antibiotics in the body. Annual risk of L. pneumophila infection exceeded the EPA 10-4 pppy (per person per year) benchmark at concentrations in reclaimed water greater than 103-104 CFU/L, depending on parameter variation. Enteropathogenic E. coli infection risks meet the EPA annual benchmark at concentrations around 105-106 total E. coli. The results illustrated that an increase in residual antibiotics from 0 to 40% of the minimum inhibitory concentration (MIC) reduced the risk by about 1 order of magnitude for E. coli but was more likely to result in an untreatable infection.
Collapse
Affiliation(s)
- Hunter Quon
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| | - Sunny Jiang
- Department of Civil and Environmental
Engineering, University of California, Irvine, California 92697-2175, United States
| |
Collapse
|
2
|
Itarte M, Calvo M, Martínez-Frago L, Mejías-Molina C, Martínez-Puchol S, Girones R, Medema G, Bofill-Mas S, Rusiñol M. Assessing environmental exposure to viruses in wastewater treatment plant and swine farm scenarios with next-generation sequencing and occupational risk approaches. Int J Hyg Environ Health 2024; 259:114360. [PMID: 38555823 DOI: 10.1016/j.ijheh.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lola Martínez-Frago
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
3
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Yan C, Wan WD, Wang RN, Lai TN, Ali W, He SS, Liu S, Li X, Nasir ZA, Coulon F. Quantitative health risk assessment of microbial hazards from water sources for community and self-supply drinking water systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133324. [PMID: 38150760 DOI: 10.1016/j.jhazmat.2023.133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
In low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.
Collapse
Affiliation(s)
- Cheng Yan
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Wei-di Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Rui-Ning Wang
- Jiangsu Yancheng Port Holding Group Co., LTD., Yancheng 320900, PR China
| | - Tian-Nuo Lai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shan-Shan He
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, PR China
| | - Sai Liu
- CITIC Treated Water into River Engineering Investment Co., Ltd., Wuhan 430200, PR China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
5
|
Brągoszewska E, Mainka A. Assessment of personal deposited dose and particle size distribution of bacterial aerosol in kindergarten located in southern Poland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123208. [PMID: 38142028 DOI: 10.1016/j.envpol.2023.123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/28/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
The study's primary focus lies in examining the relationship between respiratory and deposition doses of bacterial aerosols in urban kindergarten, providing valuable insights into the specific doses absorbed by individuals in different sections of their respiratory systems based on the aerodynamic diameter of bacterial particles. Samples were collected twice a week, using by an Andersen cascade impactor during autumn and winter seasons 2018/2019 resulting in a total of 1152 Petri dishes analyzed. The highest average concentration of bacterial aerosol was observed during autumn (1698 ± 663 CFU/m3) in comparison to winter months (723 ± 134 CFU/m3). Respirable doses for children and staff were 2945 and 2441 CFU/day during winter and 5988 and 4964 CFU/day during autumn, respectively. Deposition doses incorporated from empirical models for regional deposition in the respiratory tract showed that children in kindergarten absorb 33% less of bacteria into alveolar region if breath by nose instead of mouth. Additionally, risk assessment results indicate that the hazard indices for children attending kindergartens for 3 years and for staff working 25 years are below 1, suggesting minor risks associated with the inhalation of bioaerosols during autumn and winter. HI was <1, so the non-carcinogenic effects are on an acceptable level, but the indoor/outdoor ratio were 3.5 and 2.4 for autumn and winter, respectively, indicating children's and adult's exposure to bacterial aerosol should be reduced.
Collapse
Affiliation(s)
- Ewa Brągoszewska
- Department of Technologies and Installations for Waste Management, Faculty of Energy and Environmental Engineering, Silesian University of Technology, 18 Konarskiego St., 44-100, Gliwice, Poland.
| | - Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100, Gliwice, Poland.
| |
Collapse
|
6
|
Cui B, An D, Li H, Luo X, Zhu H, Li M, Ai X, Ma J, Ali W, Yan C. Evaluating the threshold limit value of acceptable exposure concentration for exposure to bioaerosols in a wastewater treatment plant: Reverse-quantitative microbial risk assessment and sensitivity analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:130687. [PMID: 36989774 DOI: 10.1016/j.jhazmat.2022.130687] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 05/03/2023]
Abstract
Agitation operations produce numerous pathogenic bioaerosols in WWTPs1. QMRA2 can determine risks of persons exposed to these bioaerosols. However, QMRA framework cannot help stakeholders in immediately deciding whether a risk is intolerable. Thus, evaluating threshold of acceptable exposure concentration is an urgent issue but is still rarely addressed in WWTPs. This study analyzed TLV3 benchmarks of E. coli and S. aureus bioaerosols emitted from a WWTP by reverse-QMRA. Furthermore, variance of input parameters was clarified by sensitivity analysis. Results showed that, under conservative and optimistic estimates, TLV of technicians was 1.52-2.06 and 1.26-1.68 times as large as those of workers, respectively; wearing mask drive TLV up to 1-2 orders of magnitude; TLV of M4 was at most 1.33 and 1.31 times as large as that of RD5, respectively. For sensitivity analysis, removal fraction by equipping PPE enlarge TLV for effortlessly obtaining an acceptable assessment result; exposure time was dominant when without PPE excepting the scenario of technicians exposed to E. coli bioaerosol. This study helps establish threshold guidelines for bioaerosols in WWTPs and contribute innovative perspectives for stakeholders.
Collapse
Affiliation(s)
- Beibei Cui
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China
| | - Dongzi An
- China Construction Eco-Environmental Group Co., Ltd, Beijing 100037, PR China
| | - Haojun Li
- Yunnan Design Institute Group Co., Ltd, Kunming 650100, PR China
| | - Xi Luo
- Yangtze Ecology and Environment Co., Ltd, Wuhan 430062, PR China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Xiaojun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Jiaxin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
7
|
Bhatt A, Dada AC, Prajapati SK, Arora P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160842. [PMID: 36509266 DOI: 10.1016/j.scitotenv.2022.160842] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
8
|
Yan C, Zhao XY, Luo X, An DZ, Zhu H, Li M, Ai XJ, Ali W. Quantitative microbial risk assessment with nasal/oral breathing pattern for S. aureus bioaerosol emission from aeration tanks and residual sludge storage yard in a wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21252-21262. [PMID: 36269474 DOI: 10.1007/s11356-022-23621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
A large number of pathogenic bioaerosols are generated during the treatment process of wastewater treatment plants (WWTPs), and they can pose potential risks to human health. Therefore, this study systematically analyzed the emission characteristics of Staphylococcus aureus bioaerosols released from an inverted umbrella aeration tank, a microporous aeration tank, and a residual sludge storage yard in a WWTP, and quantitatively evaluated the health risks of four kinds of exposed populations with nasal/oral breathing patterns under optimistic and conservative estimations. The results displayed that the bioaerosol concentration in inverted umbrella aeration tank was higher than that in microporous aeration tank and residual sludge storage yard. Aerosolization ratio in residual sludge storage yard was an order of magnitude lower than that in aeration tanks. Sludge workers were at higher health risks than the other three exposed populations. The health risks of nasal breathers (infection risk: 1.62 × 10-5-2.56 × 10-3 pppy; disease burden: 4.24 × 10-8-6.72 × 10-6 DALYs pppy) were 0.61-0.63 times higher than those of oral breathers (infection risk: 9.95 × 10-6-1.59 × 10-3 pppy; disease burden: 2.61 × 10-8-4.18 × 10-6 DALYs pppy). For female field engineers using oral breathing, laboratory technicians, and researchers without personal protective equipment (PPE), infection risk and disease burden had the opposite results, which indicated that satisfying one certain benchmark did not mean absolute safety. In addition, health risks of exposed populations were reduced by an order of magnitude after wearing PPE. This study can provide a reliable theoretical basis for the risk prevention of bioaerosols and supply data support for the strategies of health risk control perspectives for local sewage utilities.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xi Luo
- Yangtze Ecology and Environment Co., Ltd., Wuhan, 430062, People's Republic of China
| | - Dong-Zi An
- China Construction Eco-Environmental Group Co., Ltd., Beijing, 100037, People's Republic of China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd., Wuhan, 430040, People's Republic of China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd., Wuhan, 430040, People's Republic of China
| | - Xiao-Jun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd., Wuhan, 430040, People's Republic of China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
9
|
Zhao XY, An DZ, Liu ML, Ma JX, Ali W, Zhu H, Li M, Ai XJ, Nasir ZA, Alcega SG, Coulon F, Yan C. Bioaerosols emission characteristics from wastewater treatment aeration tanks and associated health risk exposure assessment during autumn and winter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158106. [PMID: 35987237 DOI: 10.1016/j.scitotenv.2022.158106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Aeration tanks from activated sludge wastewater treatment plants (WWTPs) can release a large amount of bioaerosols that can pose health risks. However, risk characterization of bioaerosols emissions form wastewater treatment plants is currently not systematically carried out and still in its infancy. Therefore, this study investigated emission characteristic of two indicator model bioaerosols Staphylococcus aureus and Escherichia coli, emitted from aeration tanks of a municipal WWTP. Monte Carlo simulation was then used to quantitatively assess microbial risk posed by different aeration modes under optimistic and conservative estimates. Further to this, two different exposure scenarios were considered during 3 days sampling campaign in autumn and winter. Results showed that the bioaerosol concentration from microporous aeration tank (20-262 CFU m-3) was one order of magnitude lower than rotating disc aeration tank. Average aerosolization rate was 7.5 times higher with mechanical aeration mode. Health risks of exposed populations were 0.4 and 9.6 times higher in winter than in autumn for E. coli and S. aureus bioaerosol, respectively. Health risks of staff members were 10 times higher than academic visitors. Interesting results were observed for academic visitors without personal protective equipment (PPE) respectively exposed to S. aureus and E. coli bioaerosol in autumn and winter: while the derived infection risk met the United States Environmental Protection Agency (U.S. EPA) benchmark under optimistic estimation, the disease risk burden was over the World Health Organization (WHO) benchmark under conservative estimation. These revealed that only satisfying one of the two benchmarks didn't mean absolute acceptable health risk. This study could facilitate the development of better understanding of bioaerosol quantitative assessment of risk characterizations and corresponding appropriate risk control strategies for wastewater utilities.
Collapse
Affiliation(s)
- Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China
| | - Dong-Zi An
- China Construction Eco-Environmental Group Co., Ltd., Beijing 100037, PR China
| | - Man-Li Liu
- Department of Hydraulic Engineering, Hubei Water Resources Technical College, Wuhan 430202, PR China
| | - Jia-Xin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Xiao-Jun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan 430040, PR China
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, PR China.
| |
Collapse
|
10
|
Ma J, An D, Cui B, Liu M, Zhu H, Li M, Ai X, Ali W, Yan C. What are the disease burden and its sensitivity analysis of workers exposing to Staphylococcus aureus bioaerosol during warm and cold periods in a wastewater treatment plant? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82938-82947. [PMID: 35754082 PMCID: PMC9243853 DOI: 10.1007/s11356-022-21447-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Biological treatment in wastewater treatment plants releases high amounts of pathogenic bioaerosols. Quantitative microbial risk assessment is a framework commonly used for quantitative risk estimation for occupational exposure scenarios. However, the quantitative contributions of health-risk-estimate inputted parameters remain ambiguous. Therefore, this research aimed to study the disease burden of workers exposed to Staphylococcus aureus bioaerosol during warm and cold periods and strictly quantify the contributions of the inputted parameters by sensitivity analysis on the basis of Monte Carlo simulation. Results showed that the disease health risk burden of workers in the warm period was 1.15-6.11 times higher than that of workers in the cold period. The disease health risk burden of workers without personal protective equipment was 23.83-36.55 times higher than that of workers with personal protective equipment. Sensitivity analysis showed that exposure concentration and aerosol ingestion rate were the first and second predominant factors, respectively; the sensitivity partitioning coefficient of the former was 1.17-1.35 times the value of the latter. In addition, no remarkable differences were revealed in the sensitivity percentage ratio between warm and cold periods. The findings could contribute to the mitigation measures for the management of public health risks.
Collapse
Affiliation(s)
- Jiaxin Ma
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Dongzi An
- China Construction Eco-Environmental Group Co., Ltd, Beijing, 100037, People's Republic of China
| | - Beibei Cui
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Manli Liu
- Department of Hydraulic Engineering, HuBei Water Resources Technical College, Wuhan, 430202, People's Republic of China
| | - Hao Zhu
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan, 430040, People's Republic of China
| | - Ming Li
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan, 430040, People's Republic of China
| | - Xiaojun Ai
- POWERCHINA Hubei Electric Engineering Co., Ltd, Wuhan, 430040, People's Republic of China
| | - Wajid Ali
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
11
|
Ishaq S, Sadiq R, Chhipi-Shrestha G, Farooq S, Hewage K. Developing an Integrated "Regression-QMRA method" to Predict Public Health Risks of Low Impact Developments (LIDs) for Improved Planning. ENVIRONMENTAL MANAGEMENT 2022; 70:633-649. [PMID: 35543727 DOI: 10.1007/s00267-022-01657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Worldwide Low Impact Developments (LIDs) are used for sustainable stormwater management; however, both the stormwater and LIDs carry microbial pathogens. The widespread development of LIDs is likely to increase human exposure to pathogens and risk of infection, leading to unexpected disease outbreaks in urban communities. The risk of infection from exposure to LIDs has been assessed via Quantitative Microbial Risk Assessment (QMRA) during the operation of these infrastructures; no effort is made to evaluate these risks during the planning phase of LID treatment train in urban communities. We developed a new integrated "Regression-QMRA method" by examining the relationship between pathogens' concentration and environmental variables. Applying of this methodology to a planned LID train shows that the predicted disease burden of diarrhea from Campylobacter is highest (i.e. 16.902 DALYs/1000 persons/yr) during landscape irrigation and playing on the LID train, followed by Giardia, Cryptosporidium, and Norovirus. These results illustrate that the risk of microbial infection can be predicted during the planning phase of LID treatment train. These predictions are of great value to municipalities and decision-makers to make informed decisions and ensure risk-based planning of stormwater systems before their development.
Collapse
Affiliation(s)
- Sadia Ishaq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
| | - Gyan Chhipi-Shrestha
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| | - Shaukat Farooq
- King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, V1V 1V7, Canada
| |
Collapse
|
12
|
Gholipour S, Hosseini M, Nikaeen M, Hadi M, Sarmadi M, Saderi H, Hassanzadeh A. Quantification of human adenovirus in irrigation water-soil-crop continuum: are consumers of wastewater-irrigated vegetables at risk? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54561-54570. [PMID: 35304720 DOI: 10.1007/s11356-022-19588-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Because of health concerns regarding the presence of enteric viruses in wastewater effluents, this study was designed to investigate the occurrence of human adenovirus (HAdV) in the irrigation water-soil-crop continuum. Viral particles were extracted from wastewater and wastewater- or water-irrigated soil and crop samples and analyzed using real-time PCR. Concentration of fecal indicator bacteria (FIB) were also determined. Quantitative microbial risk assessment was performed to determine the HAdV illness risk associated with the consumption of wastewater-irrigated vegetables. HAdV-F was detected in 74% of wastewater effluent samples with a mean concentration of 38 Genomic Copy (GC)/mL. HAdV was also detected in wastewater-irrigated soil (2 × 102 GC/g) and crop (< 10 GC/g) samples, with no statistically significant difference in concentrations between wastewater- and freshwater-irrigated samples. The results showed no correlation between concentrations of FIB and HAdV in the analyzed samples. Mean probability of illness risk from consumption of wastewater-irrigated vegetables was 4 × 10-1 per person per year (pppy) which was about two orders of magnitude higher than the proposed value by WHO (10-3 pppy) for safe reuse of wastewater. This finding suggests that the wastewater reuse for irrigation of vegetables eaten raw could pose a threat to human health with respect to the risk of viral illness, signifying stricter management of wastewater reuse. However, because of uncertainties in the QMRA model, particularly the ratio of infectious to non-infectious virus particles, more data is required to validate the predicted risk. This information is especially important in arid and semi-arid regions where high temperatures, UV radiation intensity, and desiccation can efficiently inactivate microorganisms in the environment.
Collapse
Affiliation(s)
- Sahar Gholipour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mona Hosseini
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Nikaeen
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Sarmadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Horieh Saderi
- Molecular Microbiology Research Center (MMRC), Shahed University, Tehran, Iran
| | - Akbar Hassanzadeh
- Department of Statistics & Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Gui ZC, Li X, Liu ML, Peng ZD, Yan C, Nasir ZA, Alcega SG, Coulon F. Seasonal variation of quantitative microbial risk assessment for three airborne enteric bacteria from wastewater treatment plant emissions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 240:113689. [PMID: 35636240 DOI: 10.1016/j.ecoenv.2022.113689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Airborne E. coli, fecal coliform, and Enterococcus are all related to sewage worker's syndrome and therefore used as target enteric bioaerosols about researches in wastewater treatment plants (WWTPs). However, most of the studies are often inadequately carried out because they lack systematic studies reports bioaerosols emission characteristics and health risk assessments for these three enteric bacteria during seasonal variation. Therefore, quantitative microbial risk assessment based on Monte Carlo simulation was utilized in this research to assess the seasonal variations of health risks of the three enteric bioaerosols among exposure populations (academic visitors, field engineers, and office staffs) in a WWTP equipped with rotating-disc and microporous aeration modes. The results show that the concentrations of the three airborne bacteria from the rotating-disc aeration mode were 2-7 times higher than the microporous aeration mode. Field engineers had health risks 1.5 times higher than academic visitors due to higher exposure frequency. Health risks of airborne Enterococcus in summer were up to 3 times higher than those in spring and winter. Similarly, health risks associated to E. coli aerosol exposure were 0.3 times higher in summer compared to spring. In contrast, health risks associated with fecal coliform aerosol were between 2 and 19 times lower in summer compared to spring and winter seasons. Data further suggest that wearing of N95 mask could minimize health risks by 1-2 orders of magnitude. This research shed light on seasonal variation of health risks associated with bioaerosol emission from wastewater utilities.
Collapse
Affiliation(s)
- Zi-Cheng Gui
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang 443002, People's Republic of China
| | - Man-Li Liu
- Department of Hydraulic Engineering, Hubei Water Resource Technical College, Wuhan 430202, People's Republic of China
| | - Zhang-di Peng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China; Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430074, People's Republic of China.
| | - Zaheer Ahmad Nasir
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sonia Garcia Alcega
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK6 7AA, UK
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
14
|
Jiang SC, Bischel HN, Goel R, Rosso D, Sherchan S, Whiteson KL, Yan T, Solo-Gabriele HM. Integrating Virus Monitoring Strategies for Safe Non-potable Water Reuse. WATER 2022; 14:1187. [PMID: 37622131 PMCID: PMC10448804 DOI: 10.3390/w14081187] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wastewater reclamation and reuse have the potential to supplement water supplies, offering resiliency in times of drought and helping meet increased water demands associated with population growth. Non-potable water reuse represents the largest potential reuse market. Yet economic constraints for new water reuse infrastructure and safety concerns due to microbial water quality, and especially viral pathogen exposure, limit widespread implementation of water reuse. Cost-effective, real-time methods to measure or indicate viral quality of recycled water would do much to instill greater confidence in the practice. This manuscript discusses advancements in monitoring and modeling of viral health risks in the context of water reuse. First, we describe the current wastewater reclamation processes and treatment technologies with an emphasis on virus removal. Second, we review technologies for the measurement of viruses, both culture- and molecular-based, along with their advantages and disadvantages. We introduce promising viral surrogates and specific pathogenic viruses that can serve as indicators of viral risk for water reuse. We suggest metagenomic analyses for viral screening and flow cytometry for quantification of virus-like particles as new approaches to complement more traditional methods. Third, we describe modeling to assess health risks through quantitative microbial risk assessments (QMRAs), the most common strategy to couple data on virus concentrations with human exposure scenarios. We then explore the potential of artificial neural networks (ANNs) to incorporate suites of data from wastewater treatment processes, water quality parameters, and viral surrogates. We recommend ANNs as a means to utilize existing water quality data, alongside new complementary measures of viral quality, to achieve cost-effective strategies to assess risks associated with infectious human viruses in recycled water. Given the review, we conclude that technologies are ready for identifying and implementing viral surrogates for health risk reduction in the next decade. Incorporating modeling with monitoring data would likely result in more robust assessment of water reuse risk.
Collapse
Affiliation(s)
- Sunny C Jiang
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Heather N Bischel
- Department of Civil & Environmental Engineering, University of California, Davis CA 95616
| | - Ramesh Goel
- Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, Utah 84112
| | - Diego Rosso
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697, USA
- Water-Energy Nexus Center, 844G Engineering Tower, University of California, Irvine, CA 92697-2175
| | - Samendra Sherchan
- Department of Environmental Health sciences, Tulane university, New Orleans, LA 70112
| | - Katrine L Whiteson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Tao Yan
- Department of Civil and Environmental Engineering, and Water Resources Research Center, University of Hawaii at Manoa, HI 96822, USA
| | - Helena M Solo-Gabriele
- Department of Chemical, Environmental, and Materials Engineering, College of Engineering, University of Miami, Coral Gables, FL, 33146, USA
| |
Collapse
|
15
|
Wu JT, Song XQ, Liang LW, Yan C. Estimating acceptable exposure time for bioaerosols emission in a wastewater treatment plant by reverse quantitative microbial risk assessment based on various risk benchmarks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13345-13355. [PMID: 34590226 DOI: 10.1007/s11356-021-16699-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Populations exposed to bioaerosols over time in wastewater treatment plants (WWTPs) will be infected. Then, the reverse quantitative microbial risk assessment (QMRA) provides a quantitative framework for the estimation of acceptable exposure time to protect people from excessive exposure and then manage their health risk. In this study, the acceptable exposure time for staffs and visiting researchers exposed to S. aureus or E. coli bioaerosols emitted from aeration ponds in WWTPs was estimated and analyzed by Monte Carlo simulation-based reverse QMRA (using the 1E-4 pppy suggested by the US EPA or 1E-6 DALYs pppy suggested by the WHO as benchmarks). The 1E-3 and 1E-2 pppy were selected as a series of loose annual infection risk benchmarks to calculate a practical acceptable exposure time. The results showed that for the acceptable exposure time in each specific exposure scenario, the exposure of females was consistently 0.3-0.4 times longer than that of males; the exposure of staffs was 3.6-3.9 times shorter than that of visiting researchers; the exposures of populations in the rotating-disc aeration mode were consistently 6.3-6.6 and 2.8-3.1 times longer than those in the microporous aeration mode for S. aureus and E. coli bioaerosols, respectively. The acceptable exposure time with the use of personal protective equipment (PPE) was 33.4-35.0 times as long as that without PPE. The US EPA benchmark is stricter than the WHO benchmark with regard to the estimation of the acceptable exposure time of S. aureus or E. coli bioaerosols. The 1E-3 pppy is more appropriate and practical than the US EPA benchmark, but the 1E-2 pppy is notably too loose for health risk management. This research can assist managers of WWTPs to formulate a justified exposure time and develop applicable administrative and personal intervention strategies. The results can enrich the knowledge bases of reverse QMRA to elect a series of loose health-based target risk benchmarks for health risk management.
Collapse
Affiliation(s)
- Jun-Ting Wu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Xiao-Qing Song
- The Pollution Control Engineering Technology Center of Taizhou, Taizhou, 318000, People's Republic of China
| | - Lan-Wei Liang
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
16
|
Shubo T, Maranhão AG, Ferreira FC, de Silva E Mouta Júnior S, de Pedrosa Macena LDG, do Rosário Vaz Morgado C, Warish A, Sidhu JPS, Miagostovich MP. Microbiological characterization of stormwater in a high-income neighborhood in Rio de Janeiro, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:51. [PMID: 34985601 DOI: 10.1007/s10661-021-09677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Stormwater harvesting and reuse in the urban environment is emerging as an alternative water source, despite human pathogens in the stormwater may represent a hazard to public health. This study presents the results of 1-year monitoring to evaluate the quality of stormwater obtained in a high-income neighborhood in Rio de Janeiro for a set of microbiological parameters as total coliforms, Escherichia coli (E. coli), human adenovirus (HAdV), human JC polyomavirus (JCPyV), Group A rotavirus (RVA), and norovirus GI and GII. Forty-eight stormwater samples obtained from two multiplex units presented total coliforms and E. coli in 91.7% (n = 44) and 58.3% (n = 28) of samples, while HAdV and JCPyV were detected in 20.8% (n = 10) and 12.5% (n = 6), respectively. Viral quantification ranged from 103 to 104 genomic copies/liter (GC/L) for HAdV and from 101 to 104 GC/L for JCPyV. Neither RVA nor norovirus GI and GII was detected. Fifteen out of sixteen (93.8%) samples containing viruses were compliant as per fecal indicator bacteria (FIB) according to Brazilian standards for rainwater reuse and US EPA Guidelines for Water Reuse, suggesting that viruses monitoring should complement the study of bacterial indicators.
Collapse
Affiliation(s)
- Tatsuo Shubo
- Environmental Engineering Program (PEA), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Fundação Oswaldo Cruz, Av. Brazil, 4365, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Adriana Gonçalves Maranhão
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Fernando César Ferreira
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Sérgio de Silva E Mouta Júnior
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Lorena da Graça de Pedrosa Macena
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Ahmed Warish
- Environmental Contaminant Mitigation & Biotechnologies (ECMB), Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD, Australia
| | - Jatinder P S Sidhu
- Ecoscience Precinct, CSIRO Oceans and Atmosphere, 41 Boggo Road, Brisbane, 4102, Australia
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Wang RN, Li X, Yan C. Seasonal fluctuation of aerosolization ratio of bioaerosols and quantitative microbial risk assessment in a wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68615-68632. [PMID: 34273075 DOI: 10.1007/s11356-021-15462-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment plants (WWTPs) play a vital role in public health because it can emit a large quantity of bioaerosols. Exposure to bioaerosols from WWTPs is a potential health risk to WWTP workers and surrounding residents. In this study, the seasonal fluctuation of aerosolization ratios of several bioaerosols and quantitative health risks of the WWTP workers and the surrounding residents exposed to total coliform, fecal coliform, and enterococcal bioaerosols were analyzed. Results showed that the aerosolization ratio of airborne bacteria was higher in the cold seasons and lower in the warm seasons, whereas the aerosolization ratio of airborne fungi was the highest in summer. The aerosolization ratio of airborne fungi was evidently higher than that of other bioaerosols. Moreover, the aerosolization ratio under the inverted umbrella aerator mode was generally higher than that under the microporous aerator mode. For each exposure scenario, the health risks of males were generally 7.2-26.7% higher than those of females. The health risks of the exposure population exposed to total coliform and enterococcal bioaerosols were generally higher in warm seasons, whereas those of the population exposed to fecal coliform bioaerosol were the highest in winter. Additionally, the health risks of exposure population without masks under the imprudent/conservative estimate all exceeded the benchmarks. However, when equipped with masks, all the exposure populations' health risks decreased 1-2 orders of magnitude and approached acceptable levels. This research methodically provides new scientific data on the aerosolization ratio of microorganism bioaerosols in a WWTP and promotes the comprehension of their quantitative health risks under imprudent/conservative estimates.
Collapse
Affiliation(s)
- Rui-Ning Wang
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Xiang Li
- Three Gorges Base Development Co., Ltd., Yichang, 443002, People's Republic of China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
18
|
Sobolik JS, Newman KL, Jaykus LA, Bihn EA, Leon JS. Norovirus transmission mitigation strategies during simulated produce harvest and packing. Int J Food Microbiol 2021; 357:109365. [PMID: 34488004 PMCID: PMC8510003 DOI: 10.1016/j.ijfoodmicro.2021.109365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 02/07/2023]
Abstract
In the agricultural setting, core global food safety elements, such as hand hygiene and worker furlough, should reduce the risk of norovirus contamination on fresh produce. However, the effect of these practices has not been characterized. Using a quantitative microbial risk model, we evaluated the individual and combined effect of farm-based hand hygiene and worker furlough practices on the maximum risk of norovirus infection from three produce commodities (open leaf lettuce, vine tomatoes, and raspberries). Specifically, we tested two scenarios where a harvester's and packer's norovirus infection status was: 1) assumed positive; or 2) assigned based on community norovirus prevalence estimates. In the first scenario with a norovirus-positive harvester and packer, none of the individual interventions modeled reduced produce contamination to below the norovirus infectious dose. However, combined interventions, particularly high handwashing compliance (100%) and efficacy (6 log10 virus removal achieved using soap and water for 30 s), reduced produce contamination to <1-82 residual virus. Translating produce contamination to maximum consumer infection risk, 100% handwashing with a 5 log10 virus removal was necessary to achieve an infection risk below the threshold of 0.032 infections per consumption event. When community-based norovirus prevalence estimates were applied to the harvester and packer, the single interventions of 100% handwashing with 3 log10 virus removal (average 0.02 infection risk per consumption event) or furlough of the packer (average 0.03 infection risk per consumption event) reduced maximum infection risk to below the 0.032 threshold for all commodities. Bundled interventions (worker furlough, 100% glove compliance, and 100% handwashing with 1-log10 virus reduction) resulted in a maximum risk of 0.02 per consumption event across all commodities. These results advance the evidence-base for global produce safety standards as effective norovirus contamination and risk mitigation strategies.
Collapse
Affiliation(s)
- Julia S Sobolik
- Emory University, Gangarosa Department of Environmental Health, Atlanta, GA 30322, USA.
| | - Kira L Newman
- Emory University, Hubert Department of Global Health, Atlanta, GA 30322, USA
| | - Lee-Ann Jaykus
- North Carolina State University, Food, Bioprocessing, & Nutrition Sciences, Raleigh, NC 27695, USA
| | - Elizabeth A Bihn
- Cornell University, Department of Food Science, Ithaca, NY 14853, USA
| | - Juan S Leon
- Emory University, Hubert Department of Global Health, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Yan C, Leng YL, Wu JT. Quantitative microbial risk assessment for occupational health of temporary entrants and staffs equipped with various grade PPE and exposed to microbial bioaerosols in two WWTPs. Int Arch Occup Environ Health 2021; 94:1327-1343. [PMID: 33721095 PMCID: PMC7957280 DOI: 10.1007/s00420-021-01663-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/17/2021] [Indexed: 12/07/2022]
Abstract
PURPOSE This study was to evaluate the occupational health risks of infection from Gram-negative bacteria and Staphylococcus aureus bioaerosols to temporary entrants and staffs equipped with various grade personal protection equipment (PPE) related to wastewater treatment plants (WWTPs). METHODS This study determined the emission concentrations of Gram-negative bacteria and Staphylococcus aureus bioaerosols from two WWTPs under various aeration modes. Then, a strict quantitative microbial risk assessment (QMRA) was performed on several exposure scenarios associated with occupational health risks of temporary entrants (researchers, visitors, and inspectors) and staffs (field engineer and laboratory technician). RESULTS Although the bioaerosol concentrations were generally regarded as safe according to existing standards, these bioaerosols' health risks were still unacceptable. The microbial bioaerosols posed considerable infection health risks in WWTPs. These risks were generally above the WHO and US EPA benchmarks. The health risks of females were always smaller than those of male of grown-up age group. Staffs that had been exposed to bioaerosols for a long time were found to have higher health risks compared with temporary entrants. In addition, field engineers equipped with PPE rendered low health risks, thus revealing that wearing PPE could effectively reduce the occupational health risks. CONCLUSION This study provided novel data and enriched the knowledge of microbial bioaerosol emission's health risks from various aeration modes in WWTPs. Management decisions could be executed by authorities on the basis of the results of QMRA for field engineers equipped with PPE to reduce the related occupational health risks.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Ya-Li Leng
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jun-Ting Wu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
20
|
Mohapatra S, Menon NG, Mohapatra G, Pisharody L, Pattnaik A, Menon NG, Bhukya PL, Srivastava M, Singh M, Barman MK, Gin KYH, Mukherji S. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142746. [PMID: 33092831 PMCID: PMC7536135 DOI: 10.1016/j.scitotenv.2020.142746] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 04/14/2023]
Abstract
The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; NUS Environmental Research Institute, National University of Singapore (NUS), Singapore
| | - N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India; nEcoTox GmbH, An der Neümuhle 2, Annweiler am Trifels, Germany
| | | | - Lakshmi Pisharody
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln (UNL), USA
| | - N Gowri Menon
- Department of Veterinary Epidemiology and Preventive Medicine, Kerala Veterinary and Animal Sciences University (KVASU), Wayanad, Kerala, India
| | | | | | | | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore (NUS), Singapore.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India.
| |
Collapse
|
21
|
Shi KW, Huang YH, Quon H, Ou-Yang ZL, Wang C, Jiang SC. Quantifying the risk of indoor drainage system in multi-unit apartment building as a transmission route of SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143056. [PMID: 33268249 PMCID: PMC7560110 DOI: 10.1016/j.scitotenv.2020.143056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic has had a profound impact on human society. The isolation of SARS-CoV-2 from patients' feces on human cell line raised concerns of possible transmission through human feces including exposure to aerosols generated by toilet flushing and through the indoor drainage system. Currently, routes of transmission, other than the close contact droplet transmission, are still not well understood. A quantitative microbial risk assessment was conducted to estimate the health risks associated with two aerosol exposure scenarios: 1) toilet flushing, and 2) faulty connection of a floor drain with the building's main sewer pipe. SARS-CoV-2 data were collected from the emerging literature. The infectivity of the virus in feces was estimated based on a range of assumption between viral genome equivalence and infectious unit. The human exposure dose was calculated using Monte Carlo simulation of viral concentrations in aerosols under each scenario and human breathing rates. The probability of COVID-19 illness was generated using the dose-response model for SARS-CoV-1, a close relative of SARS-CoV-2, that was responsible for the SARS outbreak in 2003. The results indicate the median risks of developing COVID-19 for a single day exposure is 1.11 × 10-10 and 3.52 × 10-11 for toilet flushing and faulty drain scenario, respectively. The worst case scenario predicted the high end of COVID-19 risk for the toilet flushing scenario was 5.78 × 10-4 (at 95th percentile). The infectious viral loads in human feces are the most sensitive input parameter and contribute significantly to model uncertainty.
Collapse
Affiliation(s)
- Kuang-Wei Shi
- School of Environment, Tsinghua University, Beijing, China
| | - Yen-Hsiang Huang
- Civil and Environmental Engineering, University of California, Irvine, USA
| | - Hunter Quon
- Civil and Environmental Engineering, University of California, Irvine, USA
| | - Zi-Lu Ou-Yang
- School of Environment, Tsinghua University, Beijing, China
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing, China.
| | - Sunny C Jiang
- Civil and Environmental Engineering, University of California, Irvine, USA.
| |
Collapse
|
22
|
Chen YH, Yan C, Yang YF, Ma JX. Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142615. [PMID: 33038813 PMCID: PMC7527313 DOI: 10.1016/j.scitotenv.2020.142615] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 04/14/2023]
Abstract
Wastewater treatment plants (WWTPs) could emit a large amount of bioaerosols containing pathogenic bacteria. Assessing the health risks of exposure to these bioaerosols by using quantitative microbial risk assessment (QMRA) is important to protect workers in WWTPs. However, the relative impacts of the stochastic input variables on the health risks determined in QMRA remain vague. Hence, this study performed a Monte Carlo simulation-based QMRA case study for workers exposing to S. aureus or E. coli bioaerosols and a sensitivity analysis in two WWTPs with various aeration modes. Results showed that when workers equipped without personal protective equipment (PPE) were exposed to S. aureus or E. coli bioaerosol in the two WWTPs, the annual probability of infection considerably exceeded the U.S. EPA benchmark (≤10E-4 pppy), and the disease burden did not satisfy the WHO benchmark (≤10E-6 DALYs pppy) (except exposure to E. coli bioaerosol for disease health risk burden). Nevertheless, the use of PPE effectively reduced the annual infection health risk to an acceptable level and converted the disease health risk burden to a highly acceptable level. Referring to the sensitivity analysis, the contribution of mechanical aeration modes to the variability of the health risks was absolutely dominated in the WWTPs. On the aeration mode that showed high exposure concentration, the three input exposure parameters (exposure time, aerosol ingestion rate, and breathing rate) had a great impact on health risks. The health risks were also prone to being highly influenced by the various choices of the dose-response model and related parameters. Current research systematically delivered new data and a novel perspective on the sensitivity analysis of QMRA. Then, management decisions could be executed by authorities on the basis of the results of this sensitivity analysis to reduce related occupational health risks of workers in WWTPs.
Collapse
Affiliation(s)
- Yan-Huan Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China.
| | - Ya-Fei Yang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Jia-Xin Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
23
|
Yan C, Wang RN, Zhao XY. Emission characteristics of bioaerosol and quantitative microbiological risk assessment for equipping individuals with various personal protective equipment in a WWTP. CHEMOSPHERE 2021; 265:129117. [PMID: 33272663 DOI: 10.1016/j.chemosphere.2020.129117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Wastewater treatment plants (WWTPs) are a nonnegligible source of bioaerosols that can pose health risks to workers and nearby residents. Thus, this study systematically investigated the emission characteristics of the size distribution and concentration of Staphylococcus aureus bioaerosol in a WWTP. Then, the research focused on the quantitative microbiological risk assessment (QMRA) of workers and nearby residents for equipping them with various grades personal protective equipment (PPE). Results showed that the peak proportion of the size distributions of bioaerosol particles in the three sources all obtained a size range between 3.3 and 4.7 μm. In the residential building, the peak proportion was larger (>7.0 μm). Referring to the three sources, the average bioaerosol concentrations were in the following sequence: inverted umbrella aerator tank > residual sludge storage yard > microporous aerator tank. The health risks of residents were generally 1-2 orders of magnitude higher than the other two exposure scenarios and were clearly beyond the benchmarks. Meanwhile, the health risks of the field engineer were usually lower than those of the staff at the residual sludge storage yard. In general, equipping workers and residents with PPE could at least decrease the health risks by one order of magnitude, and higher-grade PPE could appropriately promote the reduction of health risks. This research systematically delivered a series of novel data about the emission characteristics of Staphylococcus aureus bioaerosol in a WWTP. It advanced the understanding of the quantitative health risks of equipping individuals with various PPE.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China.
| | - Rui-Ning Wang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiao-Yan Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| |
Collapse
|
24
|
Yan C, Gui ZC, Wu JT. Quantitative microbial risk assessment of bioaerosols in a wastewater treatment plant by using two aeration modes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8140-8150. [PMID: 33051848 DOI: 10.1007/s11356-020-11180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nonnegligible emission of bioaerosols usually occurs during aeration of wastewater in aerator tanks in wastewater treatment plants (WWTPs). Literature had shown that the respiratory and intestinal diseases of workers at WWTPs are related to bioaerosols. Thus, quantitative microbial risk assessment (QMRA) based on Monte Carlo simulation was utilized in this research to assess the health risks of Gram-negative bacteria bioaerosol (GNBB) and Staphylococcus aureus bioaerosol (SAB) among academic visitors and staffs. Results showed that the concentrations of GNBB and SAB in the inverted umbrella aeration mode were consistently higher than those in the microporous aeration mode under all six size distribution ranges of the Anderson six-stage impactor. Thus, GNBB and SAB can be highly threatening to the weasand and first bronchus (or alveoli and third bronchus) for the exposure populations. The health risks (annual probability of infection (Py) and disease burden (DB)) of males were constantly higher than those of females for each certain exposure scenario. The health risks of staffs were higher than those of academic visitors when assessed by Monte Carlo simulation. The wearing of mask is an effective measure to minimize health risks through reducing the bioaerosol concentration intake. Especially, for the academic visitors and staffs exposed to GNBB, all their DB failed to meet the World Health Organization DB benchmark under various credible intervals when they were without a mask on. In a word, the results of health risk assessment in this research can be utilized as an educational tool and policy basis to facilitate the implementation of efficacious prevention measures to protect the public health from bioaerosol health threats in WWTPs.
Collapse
Affiliation(s)
- Cheng Yan
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China.
| | - Zi-Cheng Gui
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| | - Jun-Ting Wu
- School of Environmental Studies, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, People's Republic of China
| |
Collapse
|
25
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 DOI: 10.1016/j.envre.2020.110309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/24/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
26
|
Adelodun B, Ajibade FO, Ighalo JO, Odey G, Ibrahim RG, Kareem KY, Bakare HO, Tiamiyu AO, Ajibade TF, Abdulkadir TS, Adeniran KA, Choi KS. Assessment of socioeconomic inequality based on virus-contaminated water usage in developing countries: A review. ENVIRONMENTAL RESEARCH 2021; 192:110309. [PMID: 33045227 PMCID: PMC7546968 DOI: 10.1016/j.envres.2020.110309] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/20/2020] [Accepted: 10/04/2020] [Indexed: 05/05/2023]
Abstract
Water is an essential resource required for various human activities such as drinking, cooking, and other recreational activities. While developed nations have made significant improvement in providing adequate quality water and sanitation devoid of virus contaminations to a significant percentage of the residences, many of the developing countries are still lacking in these regards, leading to many death cases among the vulnerable due to ingestion of virus-contaminated water and other waterborne pathogens. However, the recent global pandemic of COVID-19 seems to have changed the paradigm by reawakening the importance of water quality and sanitation, and focusing more attention on the pervasive effect of the use of virus-contaminated water as it can be a potential driver for the spread of the virus and other waterborne diseases, especially in developing nations that are characterized by low socioeconomic development. Therefore, this review assessed the socioeconomic inequalities related to the usage of virus-contaminated water and other waterborne pathogens in developing countries. The socioeconomic factors attributed to the various waterborne diseases due to the use of virus-contaminated water in many developing countries are poverty, the standard of living, access to health care facilities, age, gender, and level of education. Some mitigation strategies to address the viral contamination of water sources are therefore proposed, while future scope and recommendations on tackling the essential issues related to socioeconomic inequality in developing nations are highlighted.
Collapse
Affiliation(s)
- Bashir Adelodun
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria.
| | - Fidelis Odedishemi Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; Key Laboratory of Environmental Biotechnology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Joshua O Ighalo
- Department of Chemical Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria; Department of Chemical Engineering, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Golden Odey
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea
| | | | - Kola Yusuff Kareem
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | | | | | - Temitope F Ajibade
- Department of Civil and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Nigeria; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | | | - Kamoru Akanni Adeniran
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Kyung Sook Choi
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, South Korea; Institute of Agricultural Science & Technology, Kyungpook, National University, Daegu, South Korea.
| |
Collapse
|
27
|
Life-Cycle Assessment of the Wastewater Treatment Technologies in Indonesia’s Fish-Processing Industry. ENERGIES 2020. [DOI: 10.3390/en13246591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, a comprehensive life-cycle assessment (LCA) is carried out in order to evaluate the multiple environmental-health impacts of the biological wastewater treatment of the fish-processing industry throughout its life cycle. To this aim, the life-cycle impact assessment method based on endpoint modeling (LIME) was considered as the main LCA model. The proposed methodology is based on an endpoint modeling framework that uses the conjoint analysis to calculate damage factors for human health, social assets, biodiversity, and primary production, based on Indonesia’s local data inventory. A quantitative microbial risk assessment (QMRA) is integrated with the LIME modeling framework to evaluate the damage on human health caused by five major biological treatment technologies, including chemical-enhanced primary clarification (CEPC), aerobic-activated sludge (AS), up-flow anaerobic sludge blanket (UASB), ultrafiltration (UF) and reverse osmosis (RO) in this industry. Finally, a life-cycle costing (LCC) is carried out, considering all the costs incurred during the lifetime. The LCA results revealed that air pollution and gaseous emissions from electricity consumption have the most significant environmental impacts in all scenarios and all categories. The combined utilization of the UF and RO technologies in the secondary and tertiary treatment processes reduces the health damage caused by microbial diseases, which contributes significantly to reducing overall environmental damage.
Collapse
|
28
|
Ishaq S, Sadiq R, Farooq S, Chhipi-Shrestha G, Hewage K. Investigating the public health risks of low impact developments at residential, neighbourhood, and municipal levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140778. [PMID: 32717466 PMCID: PMC7336927 DOI: 10.1016/j.scitotenv.2020.140778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 05/04/2023]
Abstract
Low Impact Developments (LIDs) employ a series of vegetative techniques to retain rainfall close to the site of origin. Although LIDs offer sustainable runoff management, these infrastructures can be considered a risk to public health due to the presence of pathogens in the runoff and human exposure to contaminated water held in and transported by LIDs. The objective of this study is to examine the disease burden of Gastrointestinal illness (GI) from exposure to LIDs at the residential, neighbourhood, and municipal levels. The authors conducted a meta-analysis of literature on three water features: (1) harvested rainwater obtained from LIDs, (2) surface water, and (3) floodwater. A set of 32 studies were systematically selected to collect values of risks of infection and expressed as the disease burden, i.e. disability adjusted life years (DALYs). The results showed that the percentage of GI illness exceeding the health guidelines were high for harvested rainwater, i.e. 22% of annual disease burden exceeded the WHO guidelines (0.001 DALYs/1000 persons), and 2% exceeded the US EPA guidelines (5.75 DALYs/1000 bathers). Among the six exposures for harvested rainwater, exposure to spray irrigation, exceeded US EPA guidelines whereas; five exposures, i.e. flushing, hosing, daily shower, spray irrigation, and children playing, surpassed the WHO guidelines. Considering LID treatment, the values of annual disease burden from all the selected barriers were below US EPA guidelines however, these values exceeded the WHO guidelines for three barriers i.e. water plaza, grass swale, and open storage ponds. These findings provide a broader perspective of the disease burden associated with LIDs and emphasise to consider the type of exposures and required treatment barriers for developing LID infrastructures in urban areas.
Collapse
Affiliation(s)
- Sadia Ishaq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Shaukat Farooq
- King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Gyan Chhipi-Shrestha
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
29
|
Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, Haramoto E, Rose JB. SARS-CoV-2 in wastewater: State of the knowledge and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139076. [PMID: 32758929 PMCID: PMC7191289 DOI: 10.1016/j.scitotenv.2020.139076] [Citation(s) in RCA: 491] [Impact Index Per Article: 122.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 04/13/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern, which was officially declared by the World Health Organization. SARS-CoV-2 is a member of the family Coronaviridae that consists of a group of enveloped viruses with single-stranded RNA genome, which cause diseases ranging from common colds to acute respiratory distress syndrome. Although the major transmission routes of SARS-CoV-2 are inhalation of aerosol/droplet and person-to-person contact, currently available evidence indicates that the viral RNA is present in wastewater, suggesting the need to better understand wastewater as potential sources of epidemiological data and human health risks. Here, we review the current knowledge related to the potential of wastewater surveillance to understand the epidemiology of COVID-19, methodologies for the detection and quantification of SARS-CoV-2 in wastewater, and information relevant for human health risk assessment of SARS-CoV-2. There has been growing evidence of gastrointestinal symptoms caused by SARS-CoV-2 infections and the presence of viral RNA not only in feces of infected individuals but also in wastewater. One of the major challenges in SARS-CoV-2 detection/quantification in wastewater samples is the lack of an optimized and standardized protocol. Currently available data are also limited for conducting a quantitative microbial risk assessment (QMRA) for SARS-CoV-2 exposure pathways. However, modeling-based approaches have a potential role to play in reducing the impact of the ongoing COVID-19 outbreak. Furthermore, QMRA parameters obtained from previous studies on relevant respiratory viruses help to inform risk assessments of SARS-CoV-2. Our understanding on the potential role of wastewater in SARS-CoV-2 transmission is largely limited by knowledge gaps in its occurrence, persistence, and removal in wastewater. There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kyle Bibby
- Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno, 35-39, I-56123 Pisa, Italy
| | - Charles P Gerba
- Department of Environmental Science and Water & Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
30
|
Kordana S, Słyś D. An analysis of important issues impacting the development of stormwater management systems in Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138711. [PMID: 32498191 DOI: 10.1016/j.scitotenv.2020.138711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
There is a clear trend in the world to increase the use of sustainable drainage systems. In Poland, it is not as much noticeable, and as a consequence, the conventional stormwater system remains the most common method of stormwater management. As part of the research, an assessment of the issues affecting the implementation of sustainable stormwater management systems in an engineering practices was performed. For that purpose the PESTLE analysis was applied. Its results indicate that legal factors are the key for the development of sustainable drainage systems in Poland. The scale of public support and availability of funding is also not without importance. The possibilities of the implementation growth of sustainable drainage systems should be sought in changes in legal regulations regarding stormwater management, while ensuring at the same time an appropriate level of financing for sustainable solutions. In the second stage of the research, stormwater management models used in Poland were identified. The strengths and weaknesses of these models were presented. There were also discussed the potential opportunities and threats associated with their implementation. The balances of positive and negative sides that were created through a SWOT analysis could be treated as the basis for the detailed analyses of the legitimate application of individual systems in specific areas. It is expected that the results of the research will allow formulating clear principles of an innovation policy in the field of stormwater management and appointing objective and transparent criteria for financing individual types of drainage investments.
Collapse
Affiliation(s)
- Sabina Kordana
- Department of Infrastructure and Water Management, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.
| | - Daniel Słyś
- Department of Infrastructure and Water Management, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
| |
Collapse
|
31
|
Xu D, Lee LY, Lim FY, Lyu Z, Zhu H, Ong SL, Hu J. Water treatment residual: A critical review of its applications on pollutant removal from stormwater runoff and future perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:109649. [PMID: 32072941 DOI: 10.1016/j.jenvman.2019.109649] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
In recent years, many studies have been conducted on using different filter media in bioretention systems for stormwater runoff treatment. This critical review paper provides a comprehensive review on the current state of water treatment residual (WTR), a recycled material that can be used as bioretention filter media for removals of key stormwater runoff pollutants (especially phosphorus) and future perspectives with innovative modification on WTR applied for pathogen removal from stormwater runoff. This review paper comprised (i) a brief summary of the reported WTR characteristics, (ii) a thorough evaluation of WTR performance on major pollutants removal from stormwater runoff (iii) a discussion on phosphorus removal mechanisms by WTR applied in the stormwater runoff treatment, and (iv) a review of the future perspectives of WTR for pathogen removal and other potential practical application in the field of stormwater treatment. As outlined in this review, WTR in stormwater runoff treatment has yet to be fully explored. The possible enhancements, especially metal surface modification on WTR are reviewed to bring about the widespread use of WTR in stormwater reuse practices.
Collapse
Affiliation(s)
- Dong Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Lai Yoke Lee
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Fang Yee Lim
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Zhiyang Lyu
- Department of Materials Science and Engineering, National University of Singapore, 117574, Singapore
| | - Hao Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Say Leong Ong
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jiangyong Hu
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
32
|
Ahmed W, Hamilton K, Toze S, Cook S, Page D. A review on microbial contaminants in stormwater runoff and outfalls: Potential health risks and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1304-1321. [PMID: 31539962 PMCID: PMC7126443 DOI: 10.1016/j.scitotenv.2019.07.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 04/14/2023]
Abstract
Demands on global water supplies are increasing in response to the need to provide more food, water, and energy for a rapidly growing population. These water stressors are exacerbated by climate change, as well as the growth and urbanisation of industry and commerce. Consequently, urban water authorities around the globe are exploring alternative water sources to meet ever-increasing demands. These alternative sources are primarily treated sewage, stormwater, and groundwater. Stormwater including roof-harvested rainwater has been considered as an alternative water source for both potable and non-potable uses. One of the most significant issues concerning alternative water reuse is the public health risk associated with chemical and microbial contaminants. Several studies to date have quantified fecal indicators and pathogens in stormwater. Microbial source tracking (MST) approaches have also been used to determine the sources of fecal contamination in stormwater and receiving waters. This review paper summarizes occurrence and concentrations of fecal indicators, pathogens, and MST marker genes in urban stormwater. A section of the review highlights the removal of fecal indicators and pathogens through water sensitive urban design (WSUD) or Best Management Practices (BMPs). We also discuss approaches for assessing and mitigating health risks associated with stormwater, including a summary of existing quantitative microbial risk assessment (QMRA) models for potable and non-potable reuse of stormwater. Finally, the most critical research gaps are identified for formulating risk management strategies.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - Kerry Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Stephen Cook
- CSIRO Land and Water, Research way, Clayton South, VIC 3169, Australia
| | - Declan Page
- CSIRO Land and Water, Waite Laboratories, Waite Rd., Urrbrae, SA 5064, Australia
| |
Collapse
|
33
|
Goodwin D, Raffin M, Jeffrey P, Smith HM. Stakeholder evaluations of risk interventions for non-potable recycled water schemes: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:439-450. [PMID: 31005845 DOI: 10.1016/j.scitotenv.2019.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Non-potable recycled water schemes can benefit sustainable urban water management through reducing demand for drinking water and mitigating environmental loadings through the provision of advanced wastewater treatment. However, scheme feasibility can be diminished by high capital and operating costs which can be elevated by perceptions of health risks and subsequently overly cautious risk reduction measures. Conversely, a failure to anticipate the risk management expectations of stakeholders can undermine scheme feasibility through insufficient demand for recycled water. The aim of this study was to explore how stakeholders' perceptions and preferences for risk management and recycled water end-uses might influence scheme design. Using a case study scheme in London, four risk management intervention scenarios and six alternative end uses were evaluated using a stochastic PROMETHEE-based method that incorporated quantitative microbial risk assessment and stakeholder criteria weights together with an attitudinal survey of stakeholders' risk perceptions. Through pair-wise criteria judgements, results showed that stakeholders prioritised health risk reductions which led to the more conservative management intervention of adding water treatment processes being ranked the highest. In contrast, responses to the attitudinal survey indicated that the stakeholders favoured maintaining the case study's existing levels of risk control but with more stakeholder engagement. The findings highlighted potential benefits of understanding risk perceptions associated with different design options and contrasting these with multi-criteria model results. Extrapolating from these findings, future research could explore potential challenges and benefits of providing flexibility in scheme designs to appeal to a wider range of stakeholder needs as well as being more adaptable to future social, environmental or economic challenges. The study concludes that contemporary risk management guidance would benefit from more explicitly outlining constructive ways to engage stakeholders in scheme evaluation.
Collapse
Affiliation(s)
- D Goodwin
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - M Raffin
- Thames Water Utilities Ltd, Innovation, Reading STW, Island Road, Reading RG2 0RP, UK
| | - P Jeffrey
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - H M Smith
- Cranfield Water Science Institute, Cranfield University, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
34
|
Brouwer AF, Masters NB, Eisenberg JNS. Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens. Curr Environ Health Rep 2019; 5:293-304. [PMID: 29679300 DOI: 10.1007/s40572-018-0196-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Waterborne enteric pathogens remain a global health threat. Increasingly, quantitative microbial risk assessment (QMRA) and infectious disease transmission modeling (IDTM) are used to assess waterborne pathogen risks and evaluate mitigation. These modeling efforts, however, have largely been conducted independently for different purposes and in different settings. In this review, we examine the settings where each modeling strategy is employed. RECENT FINDINGS QMRA research has focused on food contamination and recreational water in high-income countries (HICs) and drinking water and wastewater in low- and middle-income countries (LMICs). IDTM research has focused on large outbreaks (predominately LMICs) and vaccine-preventable diseases (LMICs and HICs). Human ecology determines the niches that pathogens exploit, leading researchers to focus on different risk assessment research strategies in different settings. To enhance risk modeling, QMRA and IDTM approaches should be integrated to include dynamics of pathogens in the environment and pathogen transmission through populations.
Collapse
Affiliation(s)
- Andrew F Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nina B Masters
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
35
|
Zhang S, Zhang J, Yue T, Jing X. Impacts of climate change on urban rainwater harvesting systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:262-274. [PMID: 30772557 DOI: 10.1016/j.scitotenv.2019.02.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Rainwater harvesting (RWH) is promoted in many cities (e.g., Beijing and Shenzhen) as a climate change adaptation measure to relieve urban water supply and drainage pressures. In this study, the impacts of future climate change on water saving and stormwater capture performances of RWH systems at cities across four climatic zones of China are investigated. A downscaling technique based on the Climate Generator is evaluated and employed to generate future (2020-2050) daily rainfall data. Performance indices of RWH systems (i.e., water saving efficiency, reliability, and stormwater capture efficiency) calculated using both the future and historical (1985-2015) daily rainfall data are compared. Two water demand scenarios (i.e., lawn irrigation and toilet flushing) are included in the investigation. The water saving performance is positively affected by the increases in future rainfall at the four cities, while the stormwater capture performance is negatively affected as a larger tank size is required to achieve a desired stormwater capture efficiency in the future period. The responses of water saving and stormwater capture performances of RWH systems to climate change are varying with not only the system dimensions (i.e., storage capacity and catchment area), but also the water demand scenarios and locations. RWH systems with larger storage capacity for larger water demand scenarios at humid and semi-humid cities is expected to be more resilient to climate change. The various changing patterns of the performance indices highlight the importance of incorporating climate change in the design of RWH systems. Location-specific adaptive adjustments (e.g., adjusting tank sizes, catchment areas or water demand rates) need to be adopted so that RWH systems can sustainably meet water saving and stormwater control requirements under future climate conditions.
Collapse
Affiliation(s)
- Shouhong Zhang
- School of Soil & Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China.
| | - Jianjun Zhang
- School of Soil & Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China.
| | - Tongjia Yue
- School of Soil & Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| | - Xueer Jing
- School of Soil & Water Conservation, Beijing Forestry University, 35 Qinghua East Road, Beijing 100083, China
| |
Collapse
|
36
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN, Gurian PL. Risk-Based Critical Concentrations of Legionella pneumophila for Indoor Residential Water Uses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4528-4541. [PMID: 30629886 DOI: 10.1021/acs.est.8b03000] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Legionella spp. is a key contributor to the United States waterborne disease burden. Despite potentially widespread exposure, human disease is relatively uncommon, except under circumstances where pathogen concentrations are high, host immunity is low, or exposure to small-diameter aerosols occurs. Water quality guidance values for Legionella are available for building managers but are generally not based on technical criteria. To address this gap, a quantitative microbial risk assessment (QMRA) was conducted using target risk values in order to calculate corresponding critical concentrations on a per-fixture and aggregate (multiple fixture exposure) basis. Showers were the driving indoor exposure risk compared to sinks and toilets. Critical concentrations depended on the dose response model (infection vs clinical severity infection, CSI), risk target used (infection risk vs disability adjusted life years [DALY] on a per-exposure or annual basis), and fixture type (conventional vs water efficient or "green"). Median critical concentrations based on exposure to a combination of toilet, faucet, and shower aerosols ranged from ∼10-2 to ∼100 CFU per L and ∼101 to ∼103 CFU per L for infection and CSI dose response models, respectively. As infection model results for critical L. pneumophila concentrations were often below a feasible detection limit for culture-based assays, the use of CSI model results for nonhealthcare water systems with a 10-6 DALY pppy target (the more conservative target) would result in an estimate of 12.3 CFU per L (arithmetic mean of samples across multiple fixtures and/or over time). Single sample critical concentrations with a per-exposure-corrected DALY target at each conventional fixture would be 1.06 × 103 CFU per L (faucets), 8.84 × 103 CFU per L (toilets), and 14.4 CFU per L (showers). Using a 10-4 annual infection risk target would give a 1.20 × 103 CFU per L mean for multiple fixtures and single sample critical concentrations of 1.02 × 105, 8.59 × 105, and 1.40 × 103 CFU per L for faucets, toilets, and showers, respectively. Annual infection risk-based target estimates are in line with most current guidance documents of less than 1000 CFU per L, while DALY-based guidance suggests lower critical concentrations might be warranted in some cases. Furthermore, approximately <10 CFU per mL L. pneumophila may be appropriate for healthcare or susceptible population settings. This analysis underscores the importance of the choice of risk target as well as sampling program considerations when choosing the most appropriate critical concentration for use in public health guidance.
Collapse
Affiliation(s)
- Kerry A Hamilton
- School for Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85281 , United States
- The Biodesign Institute Center for Environmental Health Engineering , Arizona State University , Tempe , Arizona 85281 , United States
| | - Mark T Hamilton
- Microsoft Applied Artificial Intelligence Group , 1 Memorial Drive , Cambridge , Massachusetts 02142 , United States
| | - William Johnson
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Patrick Jjemba
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Zia Bukhari
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Mark LeChevallier
- American Water Research Laboratory , 213 Carriage Lane , Delran , New Jersey 08075 , United States
| | - Charles N Haas
- Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| | - P L Gurian
- Drexel University , 3141 Chestnut Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
37
|
Nappier SP, Hong T, Ichida A, Goldstone A, Eftim SE. Occurrence of coliphage in raw wastewater and in ambient water: A meta-analysis. WATER RESEARCH 2019; 153:263-273. [PMID: 30735956 PMCID: PMC7169987 DOI: 10.1016/j.watres.2018.12.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 05/20/2023]
Abstract
Coliphage have been proposed as indicators of fecal contamination in recreational waters because they better reflect the persistence of pathogenic viruses in the environment and through wastewater treatment than traditional fecal indicator bacteria. Herein, we conducted a systematic literature search of peer-reviewed publications to identify coliphage density data (somatic and male-specific, or MSC) in raw wastewater and ambient waters. The literature review inclusion criteria included scope, study quality, and data availability. A non-parametric two-stage bootstrap analysis was used to estimate the coliphage distributions in raw wastewater and account for geographic region and season. Additionally, two statistical methodologies were explored for developing coliphage density distributions in ambient waters, to account for the nondetects in the datasets. In raw wastewater, the analysis resulted in seasonal density distributions of somatic coliphage (SC) (mean 6.5 log10 plaque forming units (PFU)/L; 95% confidence interval (CI): 6.2-6.8) and MSC (mean 5.9 log10 PFU/L; 95% CI: 5.5-6.1). In ambient waters, 49% of MSC samples were nondetects, compared with less than 5% for SC. Overall distributional estimates of ambient densities of coliphage were statistically higher for SC than for MSC (mean 3.4 and 1.0 log10 PFU/L, respectively). Distributions of coliphage in raw wastewater and ambient water will be useful for future microbial risk assessments.
Collapse
Affiliation(s)
- Sharon P Nappier
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460, USA.
| | - Tao Hong
- ICF, LLC, 9300 Lee Highway, Fairfax, VA, 22031, USA
| | | | | | | |
Collapse
|
38
|
Clark GG, Jamal R, Weidhaas J. Roofing material and irrigation frequency influence microbial risk from consuming homegrown lettuce irrigated with harvested rainwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1011-1019. [PMID: 30266046 DOI: 10.1016/j.scitotenv.2018.09.277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Rooftop harvested rainwater has become an alternative, potable, and non-potable water source used around the world. In the United States, rooftop harvested rainwater is most commonly used for irrigation. Rooftop harvested rainwater may contain contaminants from bird or animal feces that may present a risk to water users. Different roofing materials may influence the survival of fecal bacteria on the rooftop prior to runoff during rainfall. In this study, three pathogen groups (E. coli, enterococci and Salmonella enterica) in rooftop runoff from three, replicated roof types (asphalt shingle, synthetic slate, and wood shake) were quantified in multiple rain events. Matched roofs were selected from locations with differing amounts of tree cover. Enterococci were the most frequently detected bacteria from all roof types. Wood shake and asphalt shingle roofing materials had the poorest microbial water quality. Rainwater runoff from two of the six buildings failed to meet United States Food and Drug Administration microbial standards for irrigation water. A quantitative microbial risk assessment indicated that the annual probability of illness from consuming lettuce irrigated with rooftop harvested rainwater varied by roofing material, irrigation water withholding period, and exposure frequency. Consuming lettuce immediately after irrigation with rooftop rainwater presented the highest human health risk based on the probability of illness from E. coli and enterococci exposure. Withholding irrigation by 1 day prior to harvest decreased the annual probability of illness from E. coli by 2 log, but had a minimal effect on the risk from enterococci.
Collapse
Affiliation(s)
- Gemma G Clark
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA
| | - Rubayat Jamal
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA
| | - Jennifer Weidhaas
- Civil and Environmental Engineering, University of Utah, 110 Central Campus Drive Suite 2000, Salt Lake City, UT 84112, USA.
| |
Collapse
|
39
|
Moreira R, Malheiros TF, Alfaro JF, Cetrulo TB, Ávila LV. Solid waste management index for Brazilian Higher Education Institutions. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 80:292-298. [PMID: 30455010 DOI: 10.1016/j.wasman.2018.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/17/2018] [Accepted: 09/13/2018] [Indexed: 06/09/2023]
Abstract
This paper presents the Solid Waste Management Index (SWaMI) for Higher Education Institutions (HEIs). The main objectives are to present how SWaMI was developed, to apply the Index in three different universities in Brazil and one in United States, to statistically compare the results and to present an analysis of these HEIs under the SWaMI assessment dimensions perspective. The SwaMI fills a gap regarding a specific waste management tool for HEIs decision makers, considering the responsibility of educating and training future leaders and the need to insert the sustainable waste management discussion in its end activities. Criteria were selected through literature review and divided in dimensions, further weighted according to their significance in waste management. These weights were discussed and stipulated based on expert opinion using the Budget Allocation Process (BAP) weighting method. The individual indexes for each dimension were further combined into a composite index through the Linear Aggregation Method. Main findings shows that when comparisons were deployed between HEIs, no statistical significance was noticed when the means were compared between universities using ANOVA with Tukey test. Nevertheless, when comparing each dimension within each HEI, there was significant difference between the Policy and Management dimension and the other three dimensions of the evaluation criteria at USP. Researchers concluded that the SWaMI provides decision makers with graphic results concerning HEIs solid waste management situation, hence, it allows the creation of a baseline data on how the current system works, pointing out the dimensions that present the greatest weakness allowing to perform benchmarking between buildings, institutes, and even between HEIs.
Collapse
Affiliation(s)
- Rodrigo Moreira
- Mato Grosso do Sul State University, 370 General Ozório St., Center, Coxim, MS, Brazil.
| | - Tadeu F Malheiros
- Sanitation and Hydraulics Department, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Jose F Alfaro
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, United States
| | - Tiago B Cetrulo
- Agriculture Sciences Department, Mato Grosso State University, Nova Mutum, MT, Brazil
| | - Lucas V Ávila
- Business School, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
40
|
Shi KW, Wang CW, Jiang SC. Quantitative microbial risk assessment of Greywater on-site reuse. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1507-1519. [PMID: 29710672 PMCID: PMC6024565 DOI: 10.1016/j.scitotenv.2018.04.197] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 05/19/2023]
Abstract
Recycle domestic greywater for on-site non-potable uses can lessen the demand on potable water and the burden on wastewater treatment plants. However, lack of studies to assess health risk associated with such practices has hindered their popularity. A Quantitative Microbial Risk Assessment was conducted to estimate the public health risks for two greywater reuse scenarios: toilet flushing and food-crop irrigation. Household greywater quality from three sources (bathroom, laundry and kitchen) was analyzed. Mathematical exposure rates of different scenarios were established based on human behavior using Monte-Carlo simulation. The results showed that, greywater from all three household sources could be safely used for toilet flushing after a simple treatment of microfiltration. The median range of annual infection risk was 8.8 × 10-15-8.3 × 10-11 per-person-per-year (pppy); and the median range of disease burden was 7.6 × 10-19-7.3 × 10-15 disability-adjusted life years (DALYs) pppy. In food-crop irrigation scenario, the annual infection risks and disease burdens of treated greywater from bathroom and laundry (2.8 × 10-8, 4.9 × 10-8 pppy; 2.3 × 10-12-4.2 × 10-12 DALYs pppy) were within the acceptable levels of U.S. EPA annual infection risk (≤10-4 pppy) and WHO disease burden (≤10-6 DALYs pppy) benchmarks, while kitchen greywater was not suitable for food-crop irrigation (4.9 × 10-6 pppy; 4.3 × 10-10 DALYs pppy) based on these benchmarks. The model uncertainties were discussed, which suggests that a more accurate risk estimation requires improvements on data collection and model refinement.
Collapse
Affiliation(s)
- Kuang-Wei Shi
- School of Environment, Tsinghua University, Beijing, China; Civil and Environmental Engineering, University of California, Irvine, USA
| | - Cheng-Wen Wang
- School of Environment, Tsinghua University, Beijing, China.
| | - Sunny C Jiang
- Civil and Environmental Engineering, University of California, Irvine, USA.
| |
Collapse
|
41
|
Ahmed W, Hamilton KA, Lobos A, Hughes B, Staley C, Sadowsky MJ, Harwood VJ. Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. ENVIRONMENT INTERNATIONAL 2018; 117:243-249. [PMID: 29772486 DOI: 10.1016/j.envint.2018.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 05/09/2023]
Abstract
Microbial source tracking (MST) methods have provided the means to identify sewage contamination in recreational waters, but the risk associated with elevated levels of MST targets such as sewage-associated Bacteroides HF183 and other markers is uncertain. Quantitative microbial risk assessment (QMRA) modeling allows interpretation of MST data in the context of the risk of gastrointestinal (GI) illness caused by exposure to pathogens. In this study, five sewage-associated, quantitative PCR (qPCR) MST markers [Bacteroides HF183 (HF183), Methanobrevibacter smithii nifH (nifH), human adenovirus (HAdV), human polyomavirus (HPyV) and pepper mild mottle virus (PMMoV)] were evaluated to determine at what concentration these nucleic acid markers reflected a significant health risk from exposure to fresh untreated or secondary treated sewage in beach water. The QMRA models were evaluated for a target probability of illness of 36 GI illnesses/1000 swimming events (i.e., risk benchmark 0.036) for the reference pathogens norovirus (NoV) and human adenovirus 40/41 (HAdV 40/41). Sewage markers at several dilutions exceeded the risk benchmark for reference pathogens NoV and HAdV 40/41. HF183 concentrations 3.22 × 103 (for both NoV and HAdV 40/41) gene copies (GC)/100 mL of water contaminated with fresh untreated sewage represented risk >0.036. Similarly, HF183 concentrations 3.66 × 103 (for NoV and HAdV 40/41) GC/100 mL of water contaminated with secondary treated sewage represented risk >0.036. HAdV concentration as low as 4.11 × 101 GC/100 mL of water represented risk >0.036 when water was contaminated with secondary treated sewage. Results of this study provide a valuable context for water quality managers to evaluate human health risks associated with contamination from fresh sewage. The approach described here may also be useful in the future for evaluating health risks from contamination with aged or treated sewage or feces from other animal sources as more data are made available.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| | - Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Aldo Lobos
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Bridie Hughes
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA; Department of Soil, Water and Climate, 1991 Upper Buford Circle, Room 439, Saint Paul, MN 55108, USA
| | - Valerie J Harwood
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| |
Collapse
|
42
|
Hamilton KA, Chen A, de-Graft Johnson E, Gitter A, Kozak S, Niquice C, Zimmer-Faust AG, Weir MH, Mitchell J, Gurian P. Salmonella risks due to consumption of aquaculture-produced shrimp. MICROBIAL RISK ANALYSIS 2018; 9:22-32. [PMID: 30525084 PMCID: PMC6277047 DOI: 10.1016/j.mran.2018.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of aquaculture is increasing to meet the growing global demand for seafood. However, the use of aquaculture for seafood production incurs potential human health risks, especially from enteric bacteria such as Salmonella spp. Salmonella spp. was the most frequently reported cause of outbreaks associated with crustaceans from 1998 to 2004. Among crustacean species, shrimp are the most economically important, internationally traded seafood commodity, and the most commonly aquaculture-raised seafood imported to the United States. To inform safe aquaculture practices, a quantitative microbial risk assessment (QMRA) was performed for wastewater-fed aquaculture, incorporating stochastic variability in shrimp growth, processing, and consumer preparation. Several scenarios including gamma irradiation, proper cooking, and improper cooking were considered in order to examine the relative importance of these practices in terms of their impact on risk. Median annual infection risks for all scenarios considered were below 10-4, however 95th percentile risks were above 10-4 annual probability of infection and 10-6 DALY per person per year for scenarios with improper cooking and lack of gamma irradiation. The greatest difference between microbiological risks for the scenarios tested was observed when comparing proper vs. improper cooking (5 to 6 orders of magnitude) and gamma irradiation (4 to 5 orders of magnitude) compared to (up to less than 1 order of magnitude) for peeling and deveining vs. peeling only. The findings from this research suggest that restriction of Salmonella spp. to low levels (median 5 to 30 per L aquaculture pond water) may be necessary for scenarios in which proper downstream food handling and processing cannot be guaranteed.
Collapse
Affiliation(s)
- Kerry A. Hamilton
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| | - Arlene Chen
- Maryland Pathogen Research Center, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Emmanuel de-Graft Johnson
- Department of Mathematics, Faculty of Physical and Computational Sciences, College of Science, Kwame Nkrumah University of Science and Technology, SCB/AMC SF 24/B6-KNUST, Kumasi Ghana
| | - Anna Gitter
- Water Management and Hydrological Sciences Program, Texas A&M University, 400 Bizzell Street, College Station, Texas 77843
| | - Sonya Kozak
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Celma Niquice
- Faculty of Civil Engineering and Geosciences, Technical University of Delft, Netherlands
| | - Amity G. Zimmer-Faust
- Western Ecology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, USA
| | - Mark H. Weir
- Division of Environmental Health Sciences and Department of Civil Environmental and Geodetic Engineering, The Ohio State University
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S. Shaw Lane, East Lansing, MI 48824
| | - Patrick Gurian
- Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104
| |
Collapse
|
43
|
Abtahi M, Koolivand A, Dobaradaran S, Yaghmaeian K, Khaloo SS, Jorfi S, Keshmiri S, Nafez AH, Saeedi R. National and subnational mortality and disability-adjusted life years (DALYs) attributable to 17 occupational risk factors in Iran, 1990-2015. ENVIRONMENTAL RESEARCH 2018; 165:158-175. [PMID: 29705621 DOI: 10.1016/j.envres.2018.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 05/15/2023]
Abstract
We estimated age-sex specific and cause-specific mortality, years of life lost due to premature mortality (YLLs), years lived with disability (YLDs) and disability-adjusted life years (DALYs) attributable to 17 individual occupational risks in Iran at the national and subnational levels in 1990-2015 based on the Global Burden of Disease Study 2015 (GBD 2015). The burden of disease attributable to occupational risk factors was calculated using the comparative risk assessment methodology based on 10 outcomes and 21 risk-outcome pairs. The temporal changes in the attributable burden of disease were decomposed into the contribution of population growth, population ageing, risk-deleted DALY rate, and risk exposure. National DALYs attributable to occupational risks at the national level in 1990, 2005, and 2015 were 138,210 (95% uncertainty interval 64,429-223,028), 193,243 (91,645-310,281), and 228,310 (106,782-371,709), respectively indicating a total increase of 65% (65-67) during the study period. Between 1990 and 2015, the share of the attributable DALYs for women rose by 55% (51-58) from 13% (12-14) to 20% (19-21). The proportion of YLLs in national DALYs attributable to occupational risks during the study period slightly decreased from 24% in 1990 to 23% in 2015. The five occupational risks with the highest contributions in the national attributable DALYs in 2015 were ergonomic factors (107,490), noise (52,122), exposure to particulate matter, gases, and fumes (26,847), asthmagens (19,347), and exposure to asbestos (7842). From 1990 to 2015, the increase in total DALYs attributable to occupational carcinogens (112%) was higher than that for other occupational risks. During the study period, changes in risk deleted DALY rate and risk exposure led to decreases in total DALYs attributable to occupational risks by 14% and 30%, respectively. Based on the Gini coefficient, spatial inequality in DALY rate attributable to occupational risks at the provincial level decreased during 1990-2015. A comprehensive plan for management of exposure to occupational risks, especially occupational carcinogens can cause an important effect for control of the increasing trend of occupational health losses.
Collapse
Affiliation(s)
- Mehrnoosh Abtahi
- Department of Environmental Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Koolivand
- Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sina Dobaradaran
- The Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health, Oil, Gas and Energy Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health and Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokooh Sadat Khaloo
- School of Health, Safety and Environment, Shahid Beheshti University of Medical Sciences, P.O. Box 16858-116, Tehran, Iran
| | - Sahand Jorfi
- Environmental Technology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Keshmiri
- Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Amir Hossein Nafez
- Department of Environmental Health Engineering, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Saeedi
- Department of Health Sciences, School of Health, Safety and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Quantitative Microbial Risk Assessment for Workers Exposed to Bioaerosol in Wastewater Treatment Plants Aimed at the Choice and Setup of Safety Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071490. [PMID: 30011925 PMCID: PMC6069154 DOI: 10.3390/ijerph15071490] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Biological risk assessment in occupational settings currently is based on either qualitative or semiquantitative analysis. In this study, a quantitative microbial risk assessment (QMRA) has been applied to estimate the human adenovirus (HAdV) health risk due to bioaerosol exposure in a wastewater treatment plant (WWTP). A stochastic QMRA model was developed considering HAdV as the index pathogen, using its concentrations in different areas and published dose–response relationship for inhalation. A sensitivity analysis was employed to examine the impact of input parameters on health risk. The QMRA estimated a higher average risk in sewage influent and biological oxidation tanks (15.64% and 12.73% for an exposure of 3 min). Sensitivity analysis indicated HAdV concentration as a predominant factor in the estimated risk. QMRA results were used to calculate the exposure limits considering four different risk levels (one illness case per 100, 1.000, 10.000, and 100.000 workers): for 3 min exposures, we obtained 565, 170, 54, and 6 GC/m3 of HAdV. We also calculated the maximum time of exposure for each level for different areas. Our findings can be useful to better define the effectiveness of control measures, which would thus reduce the virus concentration or the exposure time.
Collapse
|
45
|
Lundy L, Revitt M, Ellis B. An impact assessment for urban stormwater use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19259-19270. [PMID: 29082472 DOI: 10.1007/s11356-017-0547-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Stormwater has the potential to provide a non-potable water supply which requires less treatment than municipal wastewaters with the added benefit of reducing pollution and erosion issues in receiving water bodies. However, the adoption of stormwater collection and use as an accepted practice requires that the perceived risks, particularly those associated with public health, are addressed. This paper considers the human health concerns associated with stormwater quality when used for a range of non-potable applications using E. coli, a commonly found pollutant in urban stormwater which is also widely included in human health-based water quality standards and guidelines. Based on a source-pathway-receptor model, scores are allocated, on a scale of 0 to 5, to benchmark increasing the likelihoods of exposure to stormwater during different occupational and non-occupational applications and magnitude of impacts which may result. The impacts are assessed by comparing median stormwater E. coli levels with the reported guideline levels relating to different stormwater uses. Combination of the exposure and impact scores provides an overall risk score for each stormwater application. Low or medium risks are shown to be associated with most stormwater uses except for domestic car washing and occupational irrigation of edible raw food crops where the predicted highest levels of risk posed by median E. coli levels in stormwater necessitate the introduction of remedial actions.
Collapse
Affiliation(s)
- Lian Lundy
- Urban Pollution Research Centre, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK.
| | - Michael Revitt
- Urban Pollution Research Centre, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK
| | - Bryan Ellis
- Urban Pollution Research Centre, Middlesex University, The Burroughs, Hendon, London, NW4 4BT, UK
| |
Collapse
|
46
|
Hamilton KA, Hamilton MT, Johnson W, Jjemba P, Bukhari Z, LeChevallier M, Haas CN. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. WATER RESEARCH 2018; 134:261-279. [PMID: 29428779 DOI: 10.1016/j.watres.2017.12.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 12/12/2017] [Indexed: 05/05/2023]
Abstract
The use of reclaimed water brings new challenges for the water industry in terms of maintaining water quality while increasing sustainability. Increased attention has been devoted to opportunistic pathogens, especially Legionella pneumophila, due to its growing importance as a portion of the waterborne disease burden in the United States. Infection occurs when a person inhales a mist containing Legionella bacteria. The top three uses for reclaimed water (cooling towers, spray irrigation, and toilet flushing) that generate aerosols were evaluated for Legionella health risks in reclaimed water using quantitative microbial risk assessment (QMRA). Risks are compared using data from nineteen United States reclaimed water utilities measured with culture-based methods, quantitative PCR (qPCR), and ethidium-monoazide-qPCR. Median toilet flushing annual infection risks exceeded 10-4 considering multiple toilet types, while median clinical severity infection risks did not exceed this value. Sprinkler and cooling tower risks varied depending on meteorological conditions and operational characteristics such as drift eliminator performance. However, the greatest differences between risk scenarios were due to 1) the dose response model used (infection or clinical severity infection) 2) population at risk considered (residential or occupational) and 3) differences in laboratory analytical method. Theoretical setback distances necessary to achieve a median annual infection risk level of 10-4 are proposed for spray irrigation and cooling towers. In both cooling tower and sprinkler cases, Legionella infection risks were non-trivial at potentially large setback distances, and indicate other simultaneous management practices could be needed to manage risks. The sensitivity analysis indicated that the most influential factors for variability in risks were the concentration of Legionella and aerosol partitioning and/or efficiency across all models, highlighting the importance of strategies to manage Legionella occurrence in reclaimed water.
Collapse
Affiliation(s)
- Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | | | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Patrick Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Zia Bukhari
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Mark LeChevallier
- American Water Research Laboratory, 213 Carriage Lane, Delran, New Jersey 08075, USA
| | - Charles N Haas
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| |
Collapse
|
47
|
Petit-Boix A, Devkota J, Phillips R, Vargas-Parra MV, Josa A, Gabarrell X, Rieradevall J, Apul D. Life cycle and hydrologic modeling of rainwater harvesting in urban neighborhoods: Implications of urban form and water demand patterns in the US and Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:434-443. [PMID: 29190566 DOI: 10.1016/j.scitotenv.2017.11.206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Water management plays a major role in any city, but applying alternative strategies might be more or less feasible depending on the urban form and water demand. This paper aims to compare the environmental performance of implementing rainwater harvesting (RWH) systems in American and European cities. To do so, two neighborhoods with a water-stressed Mediterranean climate were selected in contrasting cities, i.e., Calafell (Catalonia, Spain) and Ukiah (California, US). Calafell is a high-density, tourist city, whereas Ukiah is a typical sprawled area. We studied the life cycle impacts of RWH in urban contexts by using runoff modeling before (i.e. business as usual) and after the implementation of this system. In general, cisterns were able to supply >75% of the rainwater demand for laundry and toilet flushing. The exception were multi-story buildings with roofs smaller than 200m2, where the catchment area was insufficient to meet demand. The implementation of RWH was environmentally beneficial with respect to the business-as-usual scenario, especially because of reduced runoff treatment needs. Along with soil features, roof area and water demand were major parameters that affected this reduction. RWH systems are more attractive in Calafell, which had 60% lower impacts than in Ukiah. Therefore, high-density areas can potentially benefit more from RWH than sprawled cities.
Collapse
Affiliation(s)
- Anna Petit-Boix
- Sostenipra (ICTA-IRTA-Inèdit; 2014 SGR 1412) Institute of Environmental Science and Technology (ICTA; Unidad de excelencia «María de Maeztu» (MDM-2015-0552)), Universitat Autonòma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain; Chair of Societal Transition and Circular Economy, University of Freiburg, Tennenbacher Str. 4, 79106 Freiburg i. Br., Germany
| | - Jay Devkota
- The University of Toledo, Department of Civil Engineering, 2801 W. Bancroft St., Toledo, OH 43606, United States; Clemson Industrial Assessment Center, Clemson University, 130 Freeman Hall Clemson, SC 29634, United States
| | - Robert Phillips
- The University of Toledo, Department of Civil Engineering, 2801 W. Bancroft St., Toledo, OH 43606, United States; Department of Civil and Environmental Engineering, Northeastern University, 400 Snell Engineering Center, 360 Huntington Ave., Boston, MA 02115, United States
| | - María Violeta Vargas-Parra
- Sostenipra (ICTA-IRTA-Inèdit; 2014 SGR 1412) Institute of Environmental Science and Technology (ICTA; Unidad de excelencia «María de Maeztu» (MDM-2015-0552)), Universitat Autonòma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain; Department of Civil and Environmental Engineering, School of Civil Engineering, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Jordi Girona 1-3, Building D2, 08034 Barcelona, Spain
| | - Alejandro Josa
- Department of Civil and Environmental Engineering, School of Civil Engineering, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Jordi Girona 1-3, Building D2, 08034 Barcelona, Spain; Institute of Sustainability (IS.UPC), Universitat Politècnica de Catalunya (UPC-BarcelonaTech), Jordi Girona 31, 08034 Barcelona, Spain
| | - Xavier Gabarrell
- Sostenipra (ICTA-IRTA-Inèdit; 2014 SGR 1412) Institute of Environmental Science and Technology (ICTA; Unidad de excelencia «María de Maeztu» (MDM-2015-0552)), Universitat Autonòma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Xarxa de Referència en Biotecnologia (XRB), School of Engineering (ETSE), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Joan Rieradevall
- Sostenipra (ICTA-IRTA-Inèdit; 2014 SGR 1412) Institute of Environmental Science and Technology (ICTA; Unidad de excelencia «María de Maeztu» (MDM-2015-0552)), Universitat Autonòma de Barcelona (UAB), Edifici ICTA-ICP, Carrer de les Columnes, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, Xarxa de Referència en Biotecnologia (XRB), School of Engineering (ETSE), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Defne Apul
- The University of Toledo, Department of Civil Engineering, 2801 W. Bancroft St., Toledo, OH 43606, United States.
| |
Collapse
|
48
|
Reusing Treated Wastewater: Consideration of the Safety Aspects Associated with Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes. WATER 2018. [DOI: 10.3390/w10030244] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Chhipi-Shrestha G, Hewage K, Sadiq R. Fit-for-purpose wastewater treatment: Conceptualization to development of decision support tool (I). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:600-612. [PMID: 28709094 DOI: 10.1016/j.scitotenv.2017.06.269] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
This article is the first in a series of two papers. Paper I focuses on model conceptualization and development, and Paper II in the series focuses on model validation and implementation. The amount of water reuse has been increasing across the globe. Wastewater can be treated based on the intended end use of reclaimed water. Fit-for-purpose wastewater treatment (WWT) simultaneously considers intended end use, economic viability, and environmental sustainability. WWT technologies differ mainly in terms of treatment efficiency, cost, energy use, and associated carbon emissions. The planning and evaluation of water reuse projects requires a decision support tool (DST) to evaluate alternative WWT trains and water reuse applications. However, such a DST is not available in the publically accessible literature. A DST, FitWater, has been developed for the evaluation of WWT for various urban reuses. The evaluation is based on the following criteria: amount of reclaimed water production, health risk of water reuse, cost, energy use, and carbon emissions. The cost is estimated as annualized life cycle cost and health risk is estimated using quantitative microbial risk assessment. The uncertainty analysis has been performed using probabilistic and fuzzy-based methods. A multi-criteria decision analysis, using fuzzy weighted average, is employed to aggregate different criteria and generate a final score. FitWater ranks alternative WWT trains based on the resulting final score. The proposed FitWater DST is user-friendly, and its application is demonstrated using an example. The DST can be enhanced to include additional treatment technologies and carbon emissions of different treatment processes.
Collapse
Affiliation(s)
- Gyan Chhipi-Shrestha
- School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada.
| | - Kasun Hewage
- School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| | - Rehan Sadiq
- School of Engineering, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
50
|
Troldborg M, Duckett D, Allan R, Hastings E, Hough RL. A risk-based approach for developing standards for irrigation with reclaimed water. WATER RESEARCH 2017; 126:372-384. [PMID: 28985601 DOI: 10.1016/j.watres.2017.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
A generalised quantitative risk assessment (QRA) is developed to assess the potential harm to human health resulting from irrigation with reclaimed water. The QRA is conducted as a backward calculation starting from a pre-defined acceptable risk level at the receptor point (defined as an annual infection risk of 10-4 for pathogens and by reference doses (RfD) for chemical hazards) and results in an estimate of the corresponding acceptable concentration levels of the given hazards in the effluent. In this way the QRA is designed to inform the level of water treatment required to achieve an acceptable risk level and help establish reclaimed water quality standards. The QRA considers the exposure of human receptors to microbial and chemical hazards in the effluent through various exposure pathways and routes depending on the specific irrigation scenario. By considering multiple pathways and routes, a number of key aspects relevant to estimating human exposure to recycled water can be accounted for, including irrigation and crop handling practices (e.g., non-edible vs edible, spray vs. drip, withholding time) and volumes consumed (directly vs indirectly). The QRA relies on a large number of inputs, many of which were found to be highly uncertain. A possibilistic approach, based on fuzzy set theory, was used to propagate the uncertain input values through the QRA model to estimate the possible range of hazard concentrations that are deemed acceptable/safe for reclaimed water irrigation. Two scenarios were considered: amenity irrigation and irrigation of ready-to-eat food crops, and calculations were carried out for six example hazards (norovirus, Cryptosporidium, cadmium, lead, PCB118 and naphthalene) and using UK-specific input values. The human health risks associated with using reclaimed water for amenity irrigation were overall deemed low, i.e. the calculated acceptable concentration levels for most of the selected hazards were generally far greater than levels typically measured in effluent from wastewater treatment plants; however the predicted acceptable concentration levels for norovirus and Cryptosporidium suggested that disinfection by UV may be required before use. It was found that stricter concentration standards were required for hazards that are more strongly bound to soil and/or are more toxic/infectious. It was also found that measures that reduce the amount of effluent directly ingested by the receptor would significantly reduce the risks (by up to 2 orders of magnitude for the two pathogens). The results for the food crop irrigation scenario showed that stricter concentration standards are required to ensure the effluent is safe to use. For pathogens, the dominant exposure route was found to be ingestion of effluent captured on the surface of the crops indicating that risks could be significantly reduced by restricting irrigation to the non-edible parts of the crop. The results also showed that the exposure to some organic compounds and heavy metals through plant uptake and attached soil particles could be high and possibly pose unacceptable risk to human health. For both scenarios, we show that the predicted acceptable concentration levels are associated with large uncertainty and discuss the implications this has for defining quality standards and how the uncertainty can be reduced.
Collapse
Affiliation(s)
- Mads Troldborg
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom.
| | - Dominic Duckett
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| | - Richard Allan
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| | - Emily Hastings
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| | - Rupert L Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, United Kingdom
| |
Collapse
|