1
|
Xiang Q, Shen X, Li K, Wang Z, Zhao X, Chen Q. Occurrence, distribution, and environmental risk of 61 glucocorticoids in surface water of the Yellow River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167504. [PMID: 37783438 DOI: 10.1016/j.scitotenv.2023.167504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Glucocorticoids (GCs), as important endocrine disrupting compounds and emerging contaminants, could have irreversible adverse effects on aquatic organisms even at ng/L levels. However, previous studies have only focused on the dissolved concentrations of GCs in the water, and limited data are available for their occurrences in the solid phase. In this study, the occurrence, distribution, and environmental risks of 61 natural and synthetic GCs in surface water of the Yellow River Delta (YRD) were simultaneously analyzed by investigating water, suspended particulate matter (SPM) and sediment samples at 64 sites in six major rivers in the wet season. Overall, 51 GCs were detected in all samples from different matrices, and their concentrations were in the range of not detected (ND)-274 ng/L in water, ND-42 ng/g dry weight (dw) in SPM and ND-9.98 ng/g dw in sediment. Natural GCs were the dominant compounds in all samples, followed by synthetic halogenated esters. High concentrations of GCs were observed in discharge outlet samples from livestock farming, aquaculture and industrial production, and the composition differences of GCs between human/animal sources and industrial sources could be used as indicators to identify pollution sources. Most GCs were distributed in the water phase, while compounds with higher log octanol/water partition coefficients (log Kow) tended to be adsorbed to SPM and sediment. The spatial distribution of GCs was primarily affected by anthropogenic activities and hydrodynamic conditions. Four synthetic compounds (budesonide [BD], fluocinolone acetonide [FOA], fluticasone propionate [FP], and clobetasol propionate [CBSP]) were identified as the main contributors to GC activity with a combined contribution of 57 %-95 %. Risk assessment using the risk quotient revealed that low to moderate risks are posed to aquatic organisms in surface water.
Collapse
Affiliation(s)
- Qingyue Xiang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xiaoyan Shen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| | - Kun Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zihao Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xinkun Zhao
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
2
|
Glassmeyer ST, Burns EE, Focazio MJ, Furlong ET, Gribble MO, Jahne MA, Keely SP, Kennicutt AR, Kolpin DW, Medlock Kakaley EK, Pfaller SL. Water, Water Everywhere, but Every Drop Unique: Challenges in the Science to Understand the Role of Contaminants of Emerging Concern in the Management of Drinking Water Supplies. GEOHEALTH 2023; 7:e2022GH000716. [PMID: 38155731 PMCID: PMC10753268 DOI: 10.1029/2022gh000716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 12/30/2023]
Abstract
The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.
Collapse
Affiliation(s)
- Susan T. Glassmeyer
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | | | - Michael J. Focazio
- Retired, Environmental Health ProgramEcosystems Mission AreaU.S. Geological SurveyRestonVAUSA
| | - Edward T. Furlong
- Emeritus, Strategic Laboratory Sciences BranchLaboratory & Analytical Services DivisionU.S. Geological SurveyDenverCOUSA
| | - Matthew O. Gribble
- Gangarosa Department of Environmental HealthRollins School of Public HealthEmory UniversityAtlantaGAUSA
| | - Michael A. Jahne
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Scott P. Keely
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| | - Alison R. Kennicutt
- Department of Civil and Mechanical EngineeringYork College of PennsylvaniaYorkPAUSA
| | - Dana W. Kolpin
- U.S. Geological SurveyCentral Midwest Water Science CenterIowa CityIAUSA
| | | | - Stacy L. Pfaller
- U.S. Environmental Protection AgencyOffice of Research and DevelopmentCincinnatiOHUSA
| |
Collapse
|
3
|
Jonkers TJH, Houtman CJ, van Oorschot Y, Lamoree MH, Hamers T. Identification of antimicrobial and glucocorticoid compounds in wastewater effluents with effect-directed analysis. ENVIRONMENTAL RESEARCH 2023; 231:116117. [PMID: 37178748 DOI: 10.1016/j.envres.2023.116117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
Pharmaceuticals, such as glucocorticoids and antibiotics, are inadequately removed from wastewater and may cause unwanted toxic effects in the receiving environment. This study aimed to identify contaminants of emerging concern in wastewater effluent with antimicrobial or glucocorticoid activity by applying effect-directed analysis (EDA). Effluent samples from six wastewater treatment plants (WWTPs) in the Netherlands were collected and analyzed with unfractionated and fractionated bioassay testing. Per sample, 80 fractions were collected and in parallel high-resolution mass spectrometry (HRMS) data were recorded for suspect and nontarget screening. The antimicrobial activity of the effluents was determined with an antibiotics assay and ranged from 298 to 711 ng azithromycin equivalents·L-1. Macrolide antibiotics were identified in each effluent and found to significantly contribute to the antimicrobial activity of each sample. Agonistic glucocorticoid activity determined with the GR-CALUX assay ranged from 98.1 to 286 ng dexamethasone equivalents·L-1. Bioassay testing of several tentatively identified compounds to confirm their activity revealed inactivity in the assay or the incorrect identification of a feature. Effluent concentrations of glucocorticoid active compounds were estimated from the fractionated GR-CALUX bioassay response. Subsequently, the biological and chemical detection limits were compared and a sensitivity gap between the two monitoring approaches was identified. Overall, these results emphasize that combining sensitive effect-based testing with chemical analysis can more accurately reflect environmental exposure and risk than chemical analysis alone.
Collapse
Affiliation(s)
- Tim J H Jonkers
- Amsterdam Institute for Life and Environment, Department of Environment & Health, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Corine J Houtman
- The Water Laboratory, J.W. Lucasweg 2, 2031 BE, Haarlem, the Netherlands
| | | | - Marja H Lamoree
- Amsterdam Institute for Life and Environment, Department of Environment & Health, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Timo Hamers
- Amsterdam Institute for Life and Environment, Department of Environment & Health, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Tue NM, Matsukami H, Tuyen LH, Suzuki G, Viet PH, Sudaryanto A, Subramanian A, Tanabe S, Kunisue T. Estrogenic, androgenic, and glucocorticoid activities and major causative compounds in river waters from three Asian countries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20765-20774. [PMID: 36255587 DOI: 10.1007/s11356-022-23674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Estrogen, androgen, and glucocorticoid receptors (ER, AR, and GR) agonist activities in river water samples from Chennai and Bangalore (India), Jakarta (Indonesia), and Hanoi (Vietnam) were evaluated using a panel of chemical-activated luciferase gene expression (CALUX) assays and were detected mainly in the dissolved phase. The ER agonist activity levels were 0.011-55 ng estradiol (E2)-equivalent/l, higher than the proposed effect-based trigger (EBT) value of 0.5 ng/l in most of the samples. The AR agonist activity levels were < 2.1-110 ng dihydrotestosterone (DHT)-equivalent/l, and all levels above the limit of quantification exceeded the EBT value of 3.4 ng/l. GR agonist activities were detected in only Bangalore and Hanoi samples at dexamethasone (Dex)-equivalent levels of < 16-150 ng/l and exceeded the EBT value of 100 ng/l in only two Bangalore samples. Major compounds contributing to the ER, AR, and GR agonist activities were identified for water samples from Bangalore and Hanoi, which had substantially higher activities in all assays, by using a combination of fractionation, CALUX measurement, and non-target and target chemical analysis. The results for pooled samples showed that the major ER agonists were the endogenous estrogens E2 and estriol, and the major GR agonists were the synthetic glucocorticoids Dex and clobetasol propionate. The only AR agonist identified in major androgenic water extract fractions was DHT, but several unidentified compounds with the same molecular formulae as endogenous androgens were also found.
Collapse
Affiliation(s)
- Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Hidenori Matsukami
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Le Huu Tuyen
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506, Japan
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam
| | - Agus Sudaryanto
- National Research and Innovation Agency (BRIN), Jl. M.H. Thamrin 8, Jakarta, Indonesia
| | - Annamalai Subramanian
- Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan.
| |
Collapse
|
5
|
Zan K, Wang Z, Hu XW, Li YL, Wang Y, Jin HY, Zuo TT, Ma SC. Pyrrolizidine alkaloids and health risk of three Boraginaceae used in TCM. Front Pharmacol 2023; 14:1075010. [PMID: 37033649 PMCID: PMC10076571 DOI: 10.3389/fphar.2023.1075010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Objective: The aim of this study was to systematically explore the pyrrolizidine alkaloids (PAs) type, content and risk assessment in the three Boraginaceae used in TCM, involving Arnebia euchroma (AE), A. guttata (AG), and Lithospermum erythrorhizon (LE). Method: A UHPLC-MS/MS method was established to simultaneously determine eight pyrrolizidine alkaloids (PAs), namely intermedine, lycopsamine, intermedine N-oxide, lycopsamine N-oxide, 7-acetyllycopsamine, 7-acetyllycopsamine N-oxide, echimidine N-oxide, and echimidine in the three herbs. Based on these results, the risk assessment was explored using the routine margin of exposure (MOE) combined with relative potency (REP) for oral and external usage, respectively. Results and Conclusion: Imermedine and imermedine N-oxide were common components in the eight tested PAs. 7-acetyllycopsamine and its N-oxide were not detected in AE; echimidine and its N-oxide were not detected in AG; lycopsamine and its N-oxide, 7-acetyllycopsamine and its N-oxide were not detected in LE. The total contents of 8 PAs in 11 batches of AG was341.56-519.51 μg/g; the content in 15 batches of LE was 71.16-515.73 μg/g, and the content in 11 batches of AE was 23.35-207.13 μg/g. Based on these results, the risk assessment was explored using MOE combined with REP for oral and external usage, respectively. The findings of the risk assessment method of PAs based on MOE combined with the REP factor were consistent with the clinical toxicity results. As an oral herb, AE had low risk or no risk due to its low PA contents, and individual batches of LE were medium risk, while attention should be paid to their clinical use.AG was also low risk. The external use of the three Boraginaceae used in TCM was not associated with any risk. This study systematically explored the PA type and content of the three Boraginaceae used in TCM. Additionally, the refined risk assessment of PAs based on REP provided a more scientific basis for quality evaluation and rational use of the medicinal Boraginaceae used in TCM to improve public health.
Collapse
Affiliation(s)
- Ke Zan
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Xiao-Wen Hu
- National Institutes for Food and Drug Control, Beijing, China
| | - Yao-Lei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Tian-Tian Zuo, ; Shuang-Cheng Ma,
| |
Collapse
|
6
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
7
|
Liu Y, Zhou Q, Li Z, Zhang A, Zhan J, Miruka AC, Gao X, Wang J. Effectiveness of chelating agent-assisted Fenton-like processes on remediation of glucocorticoid-contaminated soil using chemical and biological assessment: performance comparison of CaO 2 and H 2O 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67310-67320. [PMID: 34245411 PMCID: PMC8271340 DOI: 10.1007/s11356-021-15150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Glucocorticoids (GCs) have drawn great concern due to widespread contamination in the environment and application in treating COVID-19. Most studies on GC removal mainly focused on aquatic environment, while GC behaviors in soil were less mentioned. In this study, degradation of three selected GCs in soil has been investigated using citric acid (CA)-modified Fenton-like processes (H2O2/Fe(III)/CA and CaO2/Fe(III)/CA treatments). The results showed that GCs in soil can be removed by modified Fenton-like processes (removal efficiency gt; 70% for 24 h). CaO2/Fe(III)/CA was more efficient than H2O2/Fe(III)/CA at low oxidant dosage (< 0.28-0.69 mmol/g) for long treatment time (> 4 h). Besides the chemical assessment with GC removal, effects of Fenton-like processes were also evaluated by biological assessments with bacteria and plants. CaO2/Fe(III)/CA was less harmful to the richness and diversity of microorganisms in soil compared to H2O2/Fe(III)/CA. Weaker phytotoxic effects were observed on GC-contaminated soil treated by CaO2/Fe(III)/CA than H2O2/Fe(III)/CA. This study, therefore, recommends CaO2-based treatments to remediate GC-contaminated soils.
Collapse
Affiliation(s)
- Yanan Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Quan Zhou
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Zhenyu Li
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ai Zhang
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| | - Jiaxun Zhan
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Andere Clement Miruka
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaoting Gao
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, Shanghai, 200092, China
| |
Collapse
|
8
|
Medlock Kakaley E, Cardon MC, Evans N, Iwanowicz LR, Allen JM, Wagner E, Bokenkamp K, Richardson SD, Plewa MJ, Bradley PM, Romanok KM, Kolpin DW, Conley JM, Gray LE, Hartig PC, Wilson VS. In vitro effects-based method and water quality screening model for use in pre- and post-distribution treated waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144750. [PMID: 33736315 PMCID: PMC8085790 DOI: 10.1016/j.scitotenv.2020.144750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 05/20/2023]
Abstract
Recent urban public water supply contamination events emphasize the importance of screening treated drinking water quality after distribution. In vitro bioassays, when run concurrently with analytical chemistry methods, are effective tools to evaluating the efficacy of water treatment processes and water quality. We tested 49 water samples representing the Chicago Department of Water Management service areas for estrogen, (anti)androgen, glucocorticoid receptor-activating contaminants and cytotoxicity. We present a tiered screening approach suitable to samples with anticipated low-level activity and initially tested all extracts for statistically identifiable endocrine activity; performing a secondary dilution-response analysis to determine sample EC50 and biological equivalency values (BioEq). Estrogenic activity was detected in untreated Lake Michigan intake water samples using mammalian (5/49; median: 0.21 ng E2Eq/L) and yeast cell (5/49; 1.78 ng E2Eq/L) bioassays. A highly sensitive (anti)androgenic activity bioassay was applied for the first time to water quality screening and androgenic activity was detected in untreated intake and treated pre-distribution samples (4/49; 0.93 ng DHTEq/L). No activity was identified above method detection limits in the yeast androgenic, mammalian anti-androgenic, and both glucocorticoid bioassays. Known estrogen receptor agonists were detected using HPLC/MS-MS (estrone: 0.72-1.4 ng/L; 17α-estradiol: 1.3-1.5 ng/L; 17β-estradiol: 1.4 ng/L; equol: 8.8 ng/L), however occurrence did not correlate with estrogenic bioassay results. Many studies have applied bioassays to water quality monitoring using only relatively small samples sets often collected from surface and/or wastewater effluent. However, to realistically adapt these tools to treated water quality monitoring, water quality managers must have the capacity to screen potentially hundreds of samples in short timeframes. Therefore, we provided a tiered screening model that increased sample screening speed, without sacrificing statistical stringency, and detected estrogenic and androgenic activity only in pre-distribution Chicago area samples.
Collapse
Affiliation(s)
- Elizabeth Medlock Kakaley
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America.
| | - Mary C Cardon
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Nicola Evans
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Luke R Iwanowicz
- U.S. Geological Survey, Leetown Science Center, 11649 Leetown Rd, Kearneysville, WV 25430, United States of America
| | - Joshua M Allen
- University of South Carolina, Department of Chemistry & Biochemistry, Graduate Science Research Center, 631 Sumter St, Columbia, SC 29208, United States of America
| | - Elizabeth Wagner
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Katherine Bokenkamp
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Susan D Richardson
- University of South Carolina, Department of Chemistry & Biochemistry, Graduate Science Research Center, 631 Sumter St, Columbia, SC 29208, United States of America
| | - Michael J Plewa
- University of Illinois at Urbana-Champaign, Department of Crop Sciences, 1102 S. Goodwin Ave, Urbana, IL 61801, United States of America
| | - Paul M Bradley
- U.S. Geological Survey, South Carolina Water Science Center, 720 Gracern Rd, Columbia, SC 29210, United States of America
| | - Kristin M Romanok
- U.S. Geological Survey, Water Science Center, 3450 Princeton Pike, Lawrenceville, NJ 08648, United States of America
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 S Clinton St Room 269, Iowa City, IA 52240, United States of America
| | - Justin M Conley
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - L Earl Gray
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Phillip C Hartig
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| | - Vickie S Wilson
- U.S. Environmental Protection Agency, Public Health and Integrated Toxicology Division, 109 TW Alexander Dr., Research Triangle Park, NC 27511, United States of America
| |
Collapse
|
9
|
de la Rosa R, Vazquez S, Tachachartvanich P, Daniels SI, Sillé F, Smith MT. Cell-Based Bioassay to Screen Environmental Chemicals and Human Serum for Total Glucocorticogenic Activity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:177-186. [PMID: 33085113 PMCID: PMC7793542 DOI: 10.1002/etc.4903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
Glucocorticoids are steroid hormones that have systemic effects that are mediated by the glucocorticoid receptor. Environmental chemicals that disrupt glucocorticoid receptor signaling and/or glucocorticoid homeostasis could adversely affect the health of human and nonhuman vertebrates. A major challenge in identifying environmental chemicals that alter glucocorticoid receptor signaling and/or glucocorticoid homeostasis is a lack of adequate screening methods. We developed a cell-based bioassay to measure total glucocorticogenic activity (TGA) of environmental chemicals and human serum. Human MDA-MB-231 breast cancer cells were stably transfected with a luciferase reporter gene driven by 3 tandem glucocorticoid-response elements. Dose-response curves for 6 glucocorticoids and 4 non-glucocorticoid steroid hormones were generated to evaluate the specificity of the bioassay. Cells were also optimized to measure TGA of 176 structurally diverse environmental chemicals and human serum samples in a high-throughput format. Reporter activity was glucocorticoid-specific and induced 400-fold by 1 μM dexamethasone. Furthermore, 3 of the screened chemicals (3,4,4'-trichlorocarbanilide, isopropyl-N-phenylcarbamate, and benzothiazole derivative 2-[4-chlorophenyl]-benzothiazole) potentiated cortisol-induced glucocorticoid receptor activity. Serum TGA estimates from the bioassay were highly correlated with a cortisol enzyme-linked immunosorbent assay. The present study establishes an in vitro method to rapidly screen environmental chemicals and human serum for altered glucocorticogenic activity. Future studies can utilize this tool to quantify the joint effect of endogenous glucocorticoids and environmental chemicals. Environ Toxicol Chem 2021;40:177-186. © 2020 SETAC.
Collapse
Affiliation(s)
- Rosemarie de la Rosa
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Sergio Vazquez
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Phum Tachachartvanich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Sarah I. Daniels
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Fenna Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| |
Collapse
|
10
|
Application of generalized concentration addition to predict mixture effects of glucocorticoid receptor ligands. Toxicol In Vitro 2020; 69:104975. [PMID: 32858110 DOI: 10.1016/j.tiv.2020.104975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022]
Abstract
Environmental exposures often occur in complex mixtures and at low concentrations. Generalized concentration addition (GCA) is a method used to estimate the joint effect of receptor ligands that vary in efficacy. GCA models have been successfully applied to mixtures of aryl hydrocarbon receptor (AhR) and peroxisome proliferator-activated receptor gamma (PPARγ) ligands, each of which can be modeled as a receptor with a single binding site. Here, we evaluated whether GCA could be applied to homodimer nuclear receptors, which have two binding sites, to predict the combined effect of full glucocorticoid receptor (GR) agonists with partial agonists. We measured transcriptional activation of GR using a cell-based bioassay. Individual concentration-response curves for dexamethasone (full agonist), prednisolone (full agonist), and medroxyprogesterone 17-acetate (partial agonist) were generated and applied in three additivity models, GCA, effect summation (ES), and relative potency factor (RPF), to generate response surfaces. GCA and RPF yielded adequate predictions of the experimental data for two full agonists. However, GCA fit experimental data significantly better than ES and RPF for all other binary mixtures. This work extends the application of GCA to homodimer nuclear receptors and improves prediction accuracy of mixture effects of GR agonists.
Collapse
|
11
|
Welter JB, da Silva SW, Schneider DE, Rodrigues MAS, Ferreira JZ. Performance of Nb/BDD material for the electrochemical advanced oxidation of prednisone in different water matrix. CHEMOSPHERE 2020; 248:126062. [PMID: 32032880 DOI: 10.1016/j.chemosphere.2020.126062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Glucocorticoids are widely used to treat a variety of diseases. Consequently, these compounds have been found in water and wastewater matrix. Despite studies have proven its toxicity, just a few works investigate techniques to degrade and mineralize them. To solve this issue, this work presents the degradation and mineralization of prednisone (PRED) by electrochemical advanced oxidation (EAO) using a boron-doped diamond supported on niobium (Nb/BDD) anode in synthetic and real wastewater. Cyclic voltammetry (CV) was performed to investigate the PRED oxidation mechanisms. CV suggest that PRED will be oxidized via HO• and other oxidants generated from the ions present in the liquid matrix (S2O82-, SO4•-, HClO, ClO- etc.). Different EAO conditions as initial pH (3, 7 and 11) and applied current densities (5, 10 and 20 mA cm-2) were evaluated. The best result was obtained at alkaline pH (11) and a current density of 20 mA cm-2, achieving 78% of degradation and 42% of mineralization. Using the best conditions, the EAO was applied as a polishing treatment stage to remove PRED from a biological pre-treated municipal wastewater spiked with PRED. The results indicate that EAO applied in the real matrix provides better results than the synthetic solution, probably associated with the presence of ions that can be electrochemically converted into oxidant species, resulting in higher kinetic constant, mineralization current efficiency and lower energetic consumption. Therefore, the EAO process without the addition of chemicals has proven to be an effective alternative as a tertiary treatment of municipal wastewater contaminated with PRED.
Collapse
Affiliation(s)
- Júlia Bitencourt Welter
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | - Salatiel Wohlmuth da Silva
- UFRGS - Instituto de Pesquisas Hidráulicas (IPH), Programa de Pós-Graduação em Recursos Hídricos e Saneamento Ambiental, Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil.
| | - Daniela Eduarda Schneider
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| | | | - Jane Zoppas Ferreira
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais (PPGE3M), Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Jones RR, Stavreva DA, Weyer PJ, Varticovski L, Inoue-Choi M, Medgyesi DN, Chavis N, Graubard BI, Cain T, Wichman M, Beane Freeman LE, Hager GL, Ward MH. Pilot study of global endocrine disrupting activity in Iowa public drinking water utilities using cell-based assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136317. [PMID: 32018941 PMCID: PMC8459208 DOI: 10.1016/j.scitotenv.2019.136317] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/15/2019] [Accepted: 12/22/2019] [Indexed: 06/02/2023]
Abstract
Some anthropogenic substances in drinking water are known or suspected endocrine disrupting compounds (EDCs), but EDCs are not routinely measured. We conducted a pilot study of 10 public drinking water utilities in Iowa, where common contaminants (e.g., pesticides) are suspected EDCs. Raw (untreated) and finished (treated) drinking water samples were collected in spring and fall and concentrated using solid phase extraction. We assessed multiple endocrine disrupting activities using novel mammalian cell-based assays that express nuclear steroid receptors (aryl hydrocarbon [AhR], androgenic [AR], thyroid [TR], estrogenic [ER] and glucocorticoid [GR]). We quantified each receptor's activation relative to negative controls and compared activity by season and utility/sample characteristics. Among 62 samples, 69% had AhR, 52% AR, 3% TR, 2% ER, and 0% GR activity. AhR and AR activities were detected more frequently in spring (p =0 .002 and < 0.001, respectively). AR activity was more common in samples of raw water (p =0 .02) and from surface water utilities (p =0 .05), especially in fall (p =0 .03). Multivariable analyses suggested spring season, surface water, and nitrate and disinfection byproduct concentrations as determinants of bioactivity. Our results demonstrate that AR and AhR activities are commonly found in Iowa drinking water, and that their detection varies by season and utility/sample characteristics. Screening EDCs with cell-based bioassays holds promise for characterizing population exposure to diverse EDCs mixtures.
Collapse
Affiliation(s)
- Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Diana A Stavreva
- Laboratory of Receptor Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Peter J Weyer
- Center for Health Effects of Environmental Contamination, University of Iowa, Iowa City, IA, United States
| | - Lyuba Varticovski
- Laboratory of Receptor Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maki Inoue-Choi
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Danielle N Medgyesi
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Nicole Chavis
- Milken Institute of Public Health, George Washington University, Washington, DC, United States
| | - Barry I Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terence Cain
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Michael Wichman
- State Hygienic Laboratory, University of Iowa, Coralville, IA, United States
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gordon L Hager
- Laboratory of Receptor Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Medlock Kakaley E, Cardon MC, Gray LE, Hartig PC, Wilson VS. Generalized Concentration Addition Model Predicts Glucocorticoid Activity Bioassay Responses to Environmentally Detected Receptor-Ligand Mixtures. Toxicol Sci 2020; 168:252-263. [PMID: 30535411 DOI: 10.1093/toxsci/kfy290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Many glucocorticoid receptor (GR) agonists have been detected in waste and surface waters domestically and around the world, but the way a mixture of these environmental compounds may elicit a total glucocorticoid activity response in water samples remains unknown. Therefore, we characterized 19 GR ligands using a CV1 cell line transcriptional activation assay applicable to water quality monitoring. Cells were treated with individual GR ligands, a fixed ratio mixture of full or partial agonists, or a nonequipotent mixture with full and partial agonists. Efficacy varied (48.09%-102.5%) and potency ranged over several orders of magnitude (1.278 × 10-10 to 3.93 × 10-8 M). Concentration addition (CA) and response addition (RA) mixtures models accurately predicted equipotent mixture responses of full agonists (r2 = 0.992 and 0.987, respectively). However, CA and RA models assume mixture compounds produce full agonist-like responses, and therefore they overestimated observed maximal efficacies for mixtures containing partial agonists. The generalized concentration addition (GCA) model mathematically permits < 100% maximal responses, and fell within the 95% confidence interval bands of mixture responses containing partial agonists. The GCA, but not CA and RA, model predictions of nonequipotent mixtures containing both full and partial agonists fell within the same statistical distribution as the observed values, reinforcing the practicality of the GCA model as the best overall model for predicting GR activation. Elucidating the mechanistic basis of GR activation by mixtures of previously detected environmental GR ligands will benefit the interpretation of environmental sample contents in future water quality monitoring studies.
Collapse
Affiliation(s)
- Elizabeth Medlock Kakaley
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee 37831
- University of North Carolina at Chapel Hill, Curriculum in Toxicology, Chapel Hill, North Carolina 27599
| | - Mary C Cardon
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| | - L Earl Gray
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| | - Phillip C Hartig
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| | - Vickie S Wilson
- *U.S. Environmental Protection Agency, Toxicity Assessment Division, Research Triangle Park, North Carolina 27711
| |
Collapse
|
14
|
Shen X, Chang H, Sun Y, Wan Y. Determination and occurrence of natural and synthetic glucocorticoids in surface waters. ENVIRONMENT INTERNATIONAL 2020; 134:105278. [PMID: 33387883 DOI: 10.1016/j.envint.2019.105278] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
Glucocorticoids (GCs) have been increasingly reported to have adverse effects on aquatic organisms, but the lack of comprehensive analytical methods for a broad number of GCs has limited the effective management of pollution by these molecules in surface and coastal waters. In this study, we developed an original analytical method for simultaneously monitoring 25 natural GCs, and 43 synthetic GCs (4 hydrocortisone types, 6 acetonide types, 8 betamethasone types, 14 halogenated esters, and 11 labile prodrug esters) in water samples. Of the river samples investigated, 15 natural and 25 synthetic compounds were detected with the concentrations ranging from 0.13 ng/L (11-epitetrahydrocortisol) to 433 ng/L (cortisone) and from 0.05 (clobetasol) to 94 ng/L (prednisolone), respectively. Thirteen natural metabolites of cortisol (CRL) were first detected, and their concentrations were up to 36 times higher than that of CRL. Hydrocortisone-type GCs were the dominant synthetic compounds (≤154 ng/L), followed by halogenated esters (≤81 ng/L), acetonide type GCs (≤57 ng/L), betamethasone type GCs (≤32 ng/L), and labile prodrug esters (≤22 ng/L). Considering the relative potencies for detected GCs compared to dexamethasone, halogenated esters predominantly contributed to the GC activities in the samples. Notably, this is the first report of the halogenated esters 11-oxo fluticasone propionate (OFP) and cloticasone propionate (CTP) in environmental waters. Untreated wastewater is the main source of GCs in the studied waters, and the concentration ratios between natural and synthetic GCs can be used as potential indicators of sewage input. Because of the high detected concentrations and bioactivity potency of halogenated GCs, they are the main contributors to GC activities in the studied waters, and deserved more study in the future.
Collapse
Affiliation(s)
- Xiaoyan Shen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Yu Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Prediction of in vivo genotoxicity of lasiocarpine and riddelliine in rat liver using a combined in vitro-physiologically based kinetic modelling-facilitated reverse dosimetry approach. Arch Toxicol 2019; 93:2385-2395. [PMID: 31289892 DOI: 10.1007/s00204-019-02515-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are naturally occurring genotoxic compounds, and PA-containing plants can pose a risk to humans through contaminated food sources and herbal products. Upon metabolic activation, PAs can form DNA adducts, DNA and protein cross links, chromosomal aberrations, micronuclei, and DNA double-strand breaks. These genotoxic effects may induce gene mutations and play a role in the carcinogenesis of PAs. This study aims to predict in vivo genotoxicity for two well-studied PAs, lasiocarpine and riddelliine, in rat using in vitro genotoxicity data and physiologically based kinetic (PBK) modelling-based reverse dosimetry. The phosphorylation of histone protein H2AX was used as a quantitative surrogate endpoint for in vitro genotoxicity of lasiocarpine and riddelliine in primary rat hepatocytes and human HepaRG cells. The in vitro concentration-response curves obtained from primary rat hepatocytes were subsequently converted to in vivo dose-response curves from which points of departure (PoDs) were derived that were compared to available in vivo genotoxicity data. The results showed that the predicted PoDs for lasiocarpine and riddelliine were comparable to in vivo genotoxicity data. It is concluded that this quantitative in vitro-in silico approach provides a method to predict in vivo genotoxicity for the large number of PAs for which in vivo genotoxicity data are lacking by integrating in vitro genotoxicity assays with PBK modelling-facilitated reverse dosimetry.
Collapse
|
16
|
Trace analysis of corticosteroids (CSs) in environmental waters by liquid chromatography-tandem mass spectrometry. Talanta 2018; 195:830-840. [PMID: 30625625 DOI: 10.1016/j.talanta.2018.11.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022]
Abstract
Natural and synthetic corticosteroids (CSs) are a class of steroid hormones which could potentially disturb the corticosteroid signaling pathways in wildlife and humans. In this study, a sensitive and robust analytical method using solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for simultaneous analysis of sub-ng/L concentrations of 26 CSs in highly complex natural water matrices. The method performance was validated for WWTP influent, effluent, surface water and finished drinking water. Low practical quantification levels (PQLs) were achieved as 0.008-0.16 ng/L in finished drinking water, 0.019-0.50 ng/L in surface water, 0.047-1.5 ng/L in WWTP effluent, and 0.10-3.1 ng/L in WWTP influent, respectively, with the recoveries ranging from 70% to 130%. The cleanup performance and matrix interferences were also evaluated. This method was then applied to the analysis of target CSs in WWTP influent and effluent samples collected from a local WWTP, as well as surface water downstream of the WWTP outfall, detecting an average summed CS concentration of 744 ng/L in influent, 23.4 ng/L in effluent and 10.9 ng/L in surface water. Four synthetic CSs (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) were found poorly removed in the WWTP. The developed method provides a tool to obtain occurrence data of corticosteroids in environmental waters, which will permit assessing their risk to environmental organisms.
Collapse
|
17
|
Neale PA, Leusch FDL, Escher BI. What is driving the NF-κB response in environmental water extracts? CHEMOSPHERE 2018; 210:645-652. [PMID: 30031348 DOI: 10.1016/j.chemosphere.2018.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In vitro bioassays are increasingly applied for water quality monitoring, with assays indicative of adaptive stress responses commonly included in test batteries. The NF-κB assay is responsive to surface water and wastewater extracts, but the causative compounds are unknown and micropollutants typically found in water do not activate the NF-κB assay. The current study aimed to investigate if co-extracted organic matter and/or endotoxins could cause the NF-κB response in surface water extracts. The effect of model bacterial lipopolysaccharides (LPS) and dissolved organic carbon (DOC) was evaluated in the NF-κB assay both before and after solid-phase extraction (SPE), with 7% effect recovery for LPS and between 7 and 52% effect recovery for DOC observed. The NF-κB response, endotoxin activity, micropollutant concentration and total organic carbon concentration was measured in four surface water extracts. All water extracts showed a response in the NF-κB assay, but the detected micropollutants could not explain the effect. Comparison of predicted bioanalytical equivalent concentrations based on micropollutant, DOC and endotoxin concentrations in surface water with experimental bioanalytical equivalent concentrations suggest that co-extracted endotoxins are the most important drivers of the observed effect, with DOC only having a minor contribution. While in vitro bioassays typically detect mixtures of organic micropollutants, the current study shows that the NF-κB assay can integrate the effects of co-extracted endotoxins. Given that endotoxins can pose a risk for human health, the NF-κB assay is a valuable inclusion in bioanalytical test batteries used for water quality monitoring.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba QLD 4102, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), Woolloongabba QLD 4102, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geoscience, 72074 Tübingen, Germany
| |
Collapse
|
18
|
Sonavane M, Schollée JE, Hidasi AO, Creusot N, Brion F, Suter MJF, Hollender J, Aїt-Aїssa S. An integrative approach combining passive sampling, bioassays, and effect-directed analysis to assess the impact of wastewater effluent. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2079-2088. [PMID: 29667746 DOI: 10.1002/etc.4155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/31/2017] [Accepted: 04/16/2018] [Indexed: 05/07/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are major sources of endocrine-disrupting chemicals (EDCs) and other chemicals of toxicological concern for the aquatic environment. In the present study, we used an integrated strategy combining passive sampling (Chemcatcher®), developmental toxicity, and mechanism-based in vitro and in vivo bioassays to monitor the impacts of a WWTP on a river. In vitro screening revealed the WWTP effluent as a source of estrogen, glucocorticoid, and aryl hydrocarbon (AhR) receptor-mediated activities impacting the downstream river site where significant activities were also measured, albeit to a lesser extent than in the effluent. Effect-directed analysis of the effluent successfully identified the presence of potent estrogens (estrone, 17α-ethinylestradiol, and 17β-estradiol) and glucocorticoids (clobetasol propionate and fluticasone propionate) as the major contributors to the observed in vitro activities, even though other unidentified active chemicals were likely present. The impact of the WWTP was also assessed using zebrafish embryo assays, highlighting its ability to induce estrogenic response through up-regulation of the aromatase promoter-dependent reporter gene in the transgenic (cyp19a1b-green fluorescent protein [GFP]) zebrafish assay and to generate teratogenic effects at nonlethal concentrations in the zebrafish embryo toxicity test. The present study argues for the use of such an integrated approach, combining passive sampling, bioassays, and effect-directed analysis, to comprehensively identify endocrine active compounds and associated hazards of WTTP effluents. Environ Toxicol Chem 2018;37:2079-2088. © 2018 SETAC.
Collapse
Affiliation(s)
- Manoj Sonavane
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| | - Jennifer E Schollée
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Anita O Hidasi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Federal Institute of Technology (EPF Lausanne), Lausanne, Switzerland
| | - Nicolas Creusot
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| | - François Brion
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
| | - Selim Aїt-Aїssa
- Institut National de l'Environnement Industriel et des risques (INERIS), Verneuil-en-Halatte, France
| |
Collapse
|
19
|
Leusch FDL, Neale PA, Arnal C, Aneck-Hahn NH, Balaguer P, Bruchet A, Escher BI, Esperanza M, Grimaldi M, Leroy G, Scheurer M, Schlichting R, Schriks M, Hebert A. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. WATER RESEARCH 2018; 139:10-18. [PMID: 29621713 DOI: 10.1016/j.watres.2018.03.056] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 05/22/2023]
Abstract
The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs.
Collapse
Affiliation(s)
- Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia.
| | - Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia
| | - Charlotte Arnal
- Veolia Research & Innovation, 78600 Maisons-Laffitte, France
| | - Natalie H Aneck-Hahn
- Environmental Chemical Pollution and Health Research Unit, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier, INSERM/Université de Montpellier, 34298 Montpellier, France
| | - Auguste Bruchet
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) - Suez Environnement, 78230 Le Pecq, France
| | - Beate I Escher
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD 4222, Australia; UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Center for Applied Geosciences, 72074 Tübingen, Germany
| | - Mar Esperanza
- CIRSEE (Centre International de Recherche Sur l'Eau et l'Environnement) - Suez Environnement, 78230 Le Pecq, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier, INSERM/Université de Montpellier, 34298 Montpellier, France
| | - Gaela Leroy
- Veolia Research & Innovation, 78600 Maisons-Laffitte, France
| | - Marco Scheurer
- DVGW - Technologiezentrum Wasser, Karlsruher Str.84, 76139 Karlsruhe, Germany
| | - Rita Schlichting
- UFZ - Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Merijn Schriks
- KWR Watercycle Research Institute, 3433 PE Nieuwegein, The Netherlands; Vitens drinking water company, 8019 BE Zwolle, The Netherlands
| | - Armelle Hebert
- Veolia Research & Innovation, 78600 Maisons-Laffitte, France
| |
Collapse
|
20
|
Houtman CJ, Ten Broek R, Brouwer A. Steroid hormonal bioactivities, culprit natural and synthetic hormones and other emerging contaminants in waste water measured using bioassays and UPLC-tQ-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:1492-1501. [PMID: 29554767 DOI: 10.1016/j.scitotenv.2018.02.273] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Emission of compounds with biological activities from waste water treatment plant (WWTP) effluents into surface waters is a topic of concern for ecology and drinking water quality. We investigated the occurrence of hormone-like activities in waste water sample extracts from four Dutch WWTPs and pursued to identify compounds responsible for them. To this aim, in vitro reporter gene bioassays for androgenic, anti-androgenic, estrogenic, glucocorticoid and progestogenic activity and a UPLC-tQ-MS target analysis method for 25 steroid hormones used in high volumes in pharmacy were applied. Principal component analysis of the data was performed to further characterize the detected activities and compounds. All five types of activities tested were observed in the WWTP samples. Androgenic and estrogenic activities were almost completely removed during WW treatment, anti-androgenic activity was only found in treated WW. Glucocorticoid and progestogenic activities persisted throughout the treatment. The androgenic activity in both influent could predominantly be attributed to the presence of androstenedione and testosterone. Anti-androgenic activity was explained by the presence of cyproterone acetate. The glucocorticoid activity in influent was fully explained by prednicarbate, triamcinolone acetonide, dexamethasone and amcinonide. In effluent however, detected hormones could only explain 10-32% of the activity, indicating the presence of unknown glucocorticoids or their metabolites in effluent. Progesterone and levonorgestrel could explain the observed progestogenic activity. The principle component analysis confirmed the way in which hormones fit in the spectrum of other emerging contaminants concerning occurrence and fate in WWTPs.
Collapse
Affiliation(s)
- Corine J Houtman
- The Water Laboratory, P.O. Box 734, 2003 RS Haarlem, The Netherlands.
| | - Rob Ten Broek
- The Water Laboratory, P.O. Box 734, 2003 RS Haarlem, The Netherlands
| | - Abraham Brouwer
- BioDetection Systems B.V, Science Park 406, 1098 XH Amsterdam, The Netherlands; Faculty of Earth and Life Sciences, Animal Ecology, Vrije Universiteit, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
21
|
Conley JM, Evans N, Cardon MC, Rosenblum L, Iwanowicz LR, Hartig PC, Schenck KM, Bradley PM, Wilson VS. Occurrence and In Vitro Bioactivity of Estrogen, Androgen, and Glucocorticoid Compounds in a Nationwide Screen of United States Stream Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4781-4791. [PMID: 28401766 PMCID: PMC11247474 DOI: 10.1021/acs.est.6b06515] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In vitro bioassays are sensitive, effect-based tools used to quantitatively screen for chemicals with nuclear receptor activity in environmental samples. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR) activity, along with a broad suite of chemical analytes, in streamwater from 35 well-characterized sites (3 reference and 32 impacted) across 24 states and Puerto Rico. ER agonism was the most frequently detected with nearly all sites (34/35) displaying activity (range, 0.054-116 ng E2Eq L-1). There was a strong linear relationship (r2 = 0.917) between in vitro ER activity and concentrations of steroidal estrogens after correcting for the in vitro potency of each compound. AR agonism was detected in 5/35 samples (range, 1.6-4.8 ng DHTEq L-1) but concentrations of androgenic compounds were largely unable to account for the in vitro activity. Similarly, GR agonism was detected in 9/35 samples (range, 6.0-43 ng DexEq L-1); however, none of the recognized GR-active compounds on the target-chemical analyte list were detected. The utility of in vitro assays in water quality monitoring was evident from both the quantitative agreement between ER activity and estrogen concentrations, as well as the detection of AR and GR activity for which there were limited or no corresponding target-chemical detections to explain the bioactivity. Incorporation of in vitro bioassays as complements to chemical analyses in standard water quality monitoring efforts would allow for more complete assessment of the chemical mixtures present in many surface waters.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division , Research Triangle Park, North Carolina 27711 United States
| | - Nicola Evans
- U.S. Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division , Research Triangle Park, North Carolina 27711 United States
| | - Mary C Cardon
- U.S. Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division , Research Triangle Park, North Carolina 27711 United States
| | - Laura Rosenblum
- CB&I Federal Services , Cincinnati, Ohio 45212 United States
| | - Luke R Iwanowicz
- U.S. Geological Survey/Leetown Science Center , Kearneysville, West Virginia 25430 United States
| | - Phillip C Hartig
- U.S. Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division , Research Triangle Park, North Carolina 27711 United States
| | - Kathleen M Schenck
- U.S. Environmental Protection Agency/National Risk Management Research Laboratory/Water Supply and Water Resources Division , Cincinnati, Ohio 45220 United States
| | - Paul M Bradley
- U.S. Geological Survey/South Atlantic Water Science Center , Columbia, South Carolina 29210 United States
| | - Vickie S Wilson
- U.S. Environmental Protection Agency/National Health and Environmental Effects Research Laboratory/Toxicity Assessment Division , Research Triangle Park, North Carolina 27711 United States
| |
Collapse
|
22
|
Hidasi AO, Groh KJ, Suter MJF, Schirmer K. Clobetasol propionate causes immunosuppression in zebrafish (Danio rerio) at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:16-24. [PMID: 27987419 DOI: 10.1016/j.ecoenv.2016.11.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Synthetic glucocorticoids (GCs) are potential endocrine disrupting compounds that have been detected in the aquatic environment around the world in the low ng/L (nanomolar) range. GCs are used as immunosuppressants in medicine. It is of high interest whether clobetasol propionate (CP), a highly potent GC, suppresses the inflammatory response in fish after exposure to environmentally relevant concentrations. Bacterial lipopolysaccharide (LPS) challenge was used to induce inflammation and thus mimic pathogen infection. Zebrafish embryos were exposed to ≤1000nM CP from ~1h post fertilization (hpf) to 96 hpf, and CP uptake, survival after LPS challenge, and expression of inflammation-related genes were examined. Our initial experiments were carried out using 0.001% DMSO as a solvent vehicle, but we observed that DMSO interfered with the LPS challenge assay, and thus masked the effects of CP. Therefore, DMSO was not used in the subsequent experiments. The internal CP concentration was quantifiable after exposure to ≥10nM CP for 96h. The bioconcentration factor (BCF) of CP was determined to be between 16 and 33 in zebrafish embryos. CP-exposed embryos showed a significantly higher survival rate in the LPS challenge assay after exposure to ≥0.1nM in a dose dependent manner. This effect is an indication of immunosuppression. Furthermore, the regulation pattern of several genes related to LPS challenge in mammals supported our results, providing evidence that LPS-mediated inflammatory pathways are conserved from mammals to teleost fish. Anxa1b, a GC-action related anti-inflammatory gene, was significantly down-regulated after exposure to ≥0.05nM CP. Our results show for the first time that synthetic GCs can suppress the innate immune system of fish at environmentally relevant concentrations. This may reduce the chances of fish to survive in the environment, as their defense against pathogens is weakened.
Collapse
Affiliation(s)
- Anita O Hidasi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland
| | - Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland
| | - Kristin Schirmer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne 1015, Switzerland; ETHZ, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland.
| |
Collapse
|
23
|
Ternes TA, Prasse C, Eversloh CL, Knopp G, Cornel P, Schulte-Oehlmann U, Schwartz T, Alexander J, Seitz W, Coors A, Oehlmann J. Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:308-319. [PMID: 27936620 DOI: 10.1021/acs.est.6b04855] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.
Collapse
Affiliation(s)
- Thomas A Ternes
- Federal Institute of Hydrology (BfG) , Am Mainzer Tor 1, D-56068 Koblenz, Germany
| | - Carsten Prasse
- Federal Institute of Hydrology (BfG) , Am Mainzer Tor 1, D-56068 Koblenz, Germany
- Department of Civil & Environmental Engineering, University of California, Berkeley , 406 O'Brien Hall, Berkeley, California 94720, United States
| | | | - Gregor Knopp
- Institute IWAR, Department Wastewater Technology and Water Reuse, Technische Universität Darmstadt , Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Peter Cornel
- Institute IWAR, Department Wastewater Technology and Water Reuse, Technische Universität Darmstadt , Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - Ulrike Schulte-Oehlmann
- Department of Aquatic Ecotoxicology, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT)-Campus North, Institute of Functional Interfaces (IFG) , Bioengineering and Biosystems Department, 76344 Eggenstein-Leopoldshafen, Germany
| | - Johannes Alexander
- Karlsruhe Institute of Technology (KIT)-Campus North, Institute of Functional Interfaces (IFG) , Bioengineering and Biosystems Department, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wolfram Seitz
- Zweckverband Landeswasserversorgung , 89129 Langenau, Germany
| | - Anja Coors
- ECT Oekotoxikologie GmbH , 65439 Flörsheim, Germany
| | - Jörg Oehlmann
- Department of Aquatic Ecotoxicology, Goethe University Frankfurt , 60438 Frankfurt am Main, Germany
| |
Collapse
|
24
|
Mehinto AC, Jayasinghe BS, Vandervort DR, Denslow ND, Maruya KA. Screening for Endocrine Activity in Water Using Commercially-available In Vitro Transactivation Bioassays. J Vis Exp 2016. [PMID: 28060336 DOI: 10.3791/54725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In vitro transactivation bioassays have shown promise as water quality monitoring tools, however their adoption and widespread application has been hindered partly due to a lack of standardized methods and availability of robust, user-friendly technology. In this study, commercially available, division-arrested cell lines were employed to quantitatively screen for endocrine activity of chemicals present in water samples of interest to environmental quality professionals. A single, standardized protocol that included comprehensive quality assurance/quality control (QA/QC) checks was developed for Estrogen and Glucocorticoid Receptor activity (ER and GR, respectively) using a cell-based Fluorescence Resonance Energy Transfer (FRET) assay. Samples of treated municipal wastewater effluent and surface water from freshwater systems in California (USA), were extracted using solid phase extraction and analyzed for endocrine activity using the standardized protocol. Background and dose-response for endpoint-specific reference chemicals met QA/QC guidelines deemed necessary for reliable measurement. The bioassay screening response for surface water samples was largely not detectable. In contrast, effluent samples from secondary treatment plants had the highest measurable activity, with estimated bioassay equivalent concentrations (BEQs) up to 392 ng dexamethasone/L for GR and 17 ng 17β-estradiol/L for ER. The bioassay response for a tertiary effluent sample was lower than that measured for secondary effluents, indicating a lower residual of endocrine active chemicals after advanced treatment. This protocol showed that in vitro transactivation bioassays that utilize commercially available, division-arrested cell "kits", can be adapted to screen for endocrine activity in water.
Collapse
Affiliation(s)
| | | | | | | | - Keith A Maruya
- Southern California Coastal Water Research Project Authority;
| |
Collapse
|
25
|
Interim relative potency factors for the toxicological risk assessment of pyrrolizidine alkaloids in food and herbal medicines. Toxicol Lett 2016; 263:44-57. [PMID: 27157086 DOI: 10.1016/j.toxlet.2016.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are among the most potent natural toxins occurring in a broad spectrum of plant species from various families. Recently, findings of considerable contamination of teas/herbal infusions prepared from non-PA plants have been reported. These are obviously due to cross-contamination with minor amounts of PA plants and can affect both food and herbal medicines. Another source of human exposure is honey collected from PA plants. These findings illustrate the requirement for a comprehensive risk assessment of PAs, hampered by the enormous number of different PA congeners occurring in nature. Up to now, risk assessment is based on the carcinogenicity of certain PAs after chronic application to rats using the sum of detected PAs as dose metric. Because of the well-documented large structure-dependent differences between sub-groups of PA congeners with respect to their genotoxicity and (cyto)toxicity, however, this procedure is inadequate. Here we provide an overview of recent attempts to assess the risk of PA exposure and the available literature on the toxic effects and potencies of different congeners. Based on these considerations, we have derived interim Relative Potency (REP) factors for a number of abundant PAs suggesting a factor of 1.0 for cyclic di-esters and open-chain di-esters with 7S configuration, of 0.3 for mono-esters with 7S configuration, of 0.1 for open-chain di-esters with 7R configuration and of 0.01 for mono-esters with 7R configuration. For N-oxides we suggest to apply the REP factor of the corresponding PA. We are confident that the use of these values can provide a more scientific basis for PA risk assessment until a more detailed experimental analysis of the potencies of all relevant congeners can be carried out.
Collapse
|
26
|
Nakayama K, Sato K, Shibano T, Isobe T, Suzuki G, Kitamura SI. Occurrence of glucocorticoids discharged from a sewage treatment plant in Japan and the effects of clobetasol propionate exposure on the immune responses of common carp (Cyprinus carpio) to bacterial infection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:946-952. [PMID: 26126539 DOI: 10.1002/etc.3136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/13/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The present study evaluated the environmental risks to common carp (Cyprinus carpio) posed by glucocorticoids present in sewage treatment plant (STP) effluent. To gather information on the seasonal variations in glucocorticoid concentration, the authors sampled the effluent of a Japanese STP every other week for 12 mo. Six of 9 selected glucocorticoids were detected in the effluent, with clobetasol propionate and betamethasone 17-valerate detected at the highest concentrations and frequencies. The present study's results indicated that effluent glucocorticoid concentration may depend on water temperature, which is closely related to the removal efficiency of the STP or to seasonal variations in the public's use of glucocorticoids. In a separate experiment, to clarify whether glucocorticoids in environmental water increase susceptibility to bacterial infection in fish, the authors examined the responses to bacterial infection (Aeromonas veronii) of common carp exposed to clobetasol propionate. Clobetasol propionate exposure did not affect bacterial infection-associated mortality. In fish infected with A. veronii but not exposed to clobetasol propionate, head kidney weight and number of leukocytes in the head kidney were significantly increased (p < 0.05), whereas these effects were not observed in infected fish exposed to clobetasol. This suggests that clobetasol propionate alleviated bacterial infection-associated inflammation. Together, these results indicate that susceptibility to bacterial infection in common carp is not affected by exposure to glucocorticoids at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Kentaro Sato
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Takazumi Shibano
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Tomohiko Isobe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
- Center for Environmental Health Science, National Institute for Environmental Studies, Tsukuba, Japan
| | - Go Suzuki
- Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Shin-Ichi Kitamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| |
Collapse
|
27
|
Jia A, Wu S, Daniels KD, Snyder SA. Balancing the Budget: Accounting for Glucocorticoid Bioactivity and Fate during Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2870-80. [PMID: 26840181 DOI: 10.1021/acs.est.5b04893] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Numerous studies have identified the presence and bioactivity of glucocorticoid receptor (GR) active substances in water; however, the identification and activity-balance of GR compounds remained elusive. This study determined the occurrence and attenuation of GR bioactivity and closed the balance by determining those substances responsible. The observed in vitro GR activity ranged from 39 to 155 ng dexamethasone-equivalent/L (ng Dex-EQ/L) in the secondary effluents of four wastewater treatment plants. Monochromatic ultraviolet light of 80 mJ/cm(2) disinfection dose was efficient for GR activity photolysis, whereas chlorination could not appreciably attenuate the observed GR activity. Ozonation was effective only at relatively high dose (ozone/TOC 1:1). Microfiltration membranes were not efficient for GR activity attenuation; however, reverse osmosis removed GR activity to levels below the limits of detection. A high-sensitivity liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was then developed to screen 27 GR agonists. Twelve were identified and quantified in effluents at summed concentrations of 9.6-21.2 ng/L. The summed Dex-EQ of individual compounds based on their measured concentrations was in excellent agreement with the Dex-EQ obtained from bioassay, which demonstrated that the detected glucocorticoids can entirely explain the observed GR bioactivity. Four synthetic glucocorticoids (triamcinolone acetonide, fluocinolone acetonide, clobetasol propionate, and fluticasone propionate) predominantly accounted for GR activity. These data represent the first known publication where a complete activity balance has been determined for GR agonists in an aquatic environment.
Collapse
Affiliation(s)
- Ai Jia
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shimin Wu
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Kevin D Daniels
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| | - Shane A Snyder
- University of Arizona , 1133 E. James E. Rogers Way, Harshbarger 108, Tucson, Arizona 85721-0011, United States
| |
Collapse
|