1
|
Kim WI, Pak SW, Lee SJ, Park SH, Shin IS, Moon C, Yu WJ, Kim SH, Kim JC. In vitro study of silver nanoparticles-induced embryotoxicity using a rat whole embryo culture model. Toxicol Res 2025; 41:189-197. [PMID: 40013083 PMCID: PMC11850682 DOI: 10.1007/s43188-024-00274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 02/28/2025] Open
Abstract
Recently, our in vivo experiment showed that silver nanoparticles (AgNPs) did not cause developmental toxicity. However, the putative influences of direct exposure of AgNPs on the embryo-fetuses could not be elucidated because the embryo-fetus was exposed to AgNPs through their dams. In this study, the potential impact of AgNPs on embryonic development during the critical phase of organogenesis was examined utilizing a rat whole embryo culture model. This system could separate the direct effects of AgNPs from those that are maternally mediated. To evaluate the embryotoxic potential of AgNPs, embryos were exposed to 1.67, 5, and 15 μg/mL of AgNPs for 48 h. At the conclusion of the culture period, embryonic growth and development were assessed, and morphological abnormalities were systematically evaluated. Also, apoptosis induced by AgNPs was evaluated by TUNEL and immunohistochemistry for caspase-3. At 15 μg/mL, a retardation in embryonic growth and differentiation, accompanied by a heightened frequency of morphological abnormalities, including abnormal axial rotation, open neural tube, absent optic vesicle, and growth retarded were observed in a dose-dependent manner. At this concentration, caspase-3-positive cells appeared in the treated embryonic tissues compared to controls. At 5 μg/mL, AgNPs also caused a decrease in the embryonic otic system, somite number, and total morphological score. No adverse effects on embryonic growth and development associated with the treatment were observed at 1.67 μg/mL. The findings demonstrated that the direct exposure of AgNPs to rat embryos induces developmental delays and morphological abnormalities, and that AgNPs can induce a direct developmental toxicity and caspase-dependent apoptosis in rat embryos.
Collapse
Affiliation(s)
- Woong-Il Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sin-Hyang Park
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Wook-Jun Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 56212 Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, 56212 Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
2
|
Wang P, Chen Z, Guo E, Xiang Q, Li C, Feng X, Lian L, Luo X, Chen L. Silver nanoparticles alter planktonic community structure and promote ecosystem respiration in freshwater mesocosms. ENVIRONMENTAL RESEARCH 2024; 262:119824. [PMID: 39173815 DOI: 10.1016/j.envres.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/11/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The widespread use of silver nanoparticles (AgNPs) has resulted in their release into the aquatic environment, which threatens the health of aquatic ecosystems. Although the ecotoxicological effects of AgNPs have been widely reported at individual and population levels, the impact of long-term exposure to AgNPs on community structure and ecosystem function in aquatic ecosystems remains poorly understood. Herein, the present study investigated the effects of long-term exposure (28 d) to environmentally relevant concentrations (1 μg/L and 10 μg/L) of AgNPs on the community structure and function of freshwater ecosystems by artificially constructed 28 mesocosms freshwater ecosystem in experimental greenhouses, using plastic water tanks and food web manipulation. The results showed that long-term exposure to AgNPs significantly altered the community structure of zooplankton, phytoplankton, and bacterioplankton in the aquatic ecosystem. Exposure to 10 μg/L AgNPs significantly reduced the zooplankton density (70.3%, p < 0.05) and increased the phytoplankton biomass and bacterial richness and diversity via a "top-down effect." With regards to ecosystem function, AgNPs exposure significantly increased the respiration in freshwater ecosystems but did not have a significant effect on decomposition. The partial least squares path modeling (PLS-PM) further revealed that AgNPs may have a negative impact on ecosystem functions by reducing zooplankton community density and thus increasing phytoplankton biomass. This study is the first to show that long-term exposure to environmentally relevant concentrations of AgNPs leads to alterations in plankton community structure and promotes respiration in freshwater ecosystems. It emphasizes the need for assessing the environmental risk of long-term exposure to AgNPs at the ecosystem level.
Collapse
Affiliation(s)
- Peng Wang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhiying Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ende Guo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Qianqian Xiang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Chengjing Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xia Feng
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Lihong Lian
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xia Luo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| | - Liqiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming, 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
3
|
Furxhi I, Perucca M, Koivisto AJ, Bengalli R, Mantecca P, Nicosia A, Burrueco-Subirà D, Vázquez-Campos S, Lahive E, Blosi M, de Ipiña JL, Oliveira J, Carriere M, Vineis C, Costa A. A roadmap towards safe and sustainable by design nanotechnology: Implementation for nano-silver-based antimicrobial textile coatings production by ASINA project. Comput Struct Biotechnol J 2024; 25:127-142. [PMID: 39040658 PMCID: PMC11262112 DOI: 10.1016/j.csbj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU's Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work's scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.
Collapse
Affiliation(s)
- Irini Furxhi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Massimo Perucca
- Project HUB360, C.so Laghi 22, 10051 Avigliana, Turin, Italy
| | - Antti Joonas Koivisto
- APM Air Pollution Management, Mattilanmäki 38, FI-33610 Tampere, Finland
- INAR Institute for Atmospheric and Earth System Research, University of Helsinki, PL 64, UHEL, FI-00014 Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, Wondelgem B-9032, Belgium
| | - Rossella Bengalli
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Alessia Nicosia
- CNR-ISAC Institute of Atmospheric Sciences and Climate, Via Gobetti 101, 40129 Bologna, Italy
| | | | | | - Elma Lahive
- Centre for Ecology & Hydrology (UKCEH), England, United Kingdom
| | - Magda Blosi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Jesús Lopez de Ipiña
- TECNALIA Research and Innovation - Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, 01510 Miñano, Spain
| | - Juliana Oliveira
- CeNTI - Centre of Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Marie Carriere
- CEA, CNRS, Univ. Grenoble Alpes, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Claudia Vineis
- CNR-STIIMA Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Italy
| | - Anna Costa
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| |
Collapse
|
4
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Sun P, Bai J, Lian J, Tan Y, Chen X. Single and Combined Effects of Phenanthrene and Silver Nanoparticles on Denitrification Processes in Coastal Marine Sediments. Microorganisms 2024; 12:745. [PMID: 38674689 PMCID: PMC11051833 DOI: 10.3390/microorganisms12040745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
The increasing production and utilization of polycyclic aromatic hydrocarbons (PAHs) and commercial silver nanoparticles (AgNPs) have raised concerns about their potential environmental release, with coastal sediments as a substantial sink. To better understanding the effects of these contaminants on denitrification processes in coastal marine sediments, a short-term exposure simulation experiment was conducted. We investigated the effects of single and combined contamination of phenanthrene (Phe) and AgNPs on denitrification processes in a coastal marine sediment. Results showed that all contaminated treatment groups had different degrees of inhibitory effect on denitrification activity, denitrifying enzyme activity, total bacteria count and denitrifying genes. The inhibitory effect sequence of each treatment group was combined treatment > AgNPs treatment > Phe treatment. Moreover, the inhibitory effects of denitrifying genes were much larger than that of total bacteria count, indicating that the pollutants had specific toxic effects on denitrifying bacteria. The sequence of sensitivity of three reduction process to pollutants was N2O > NO2- > NO3-. All contaminated treatment groups could increase NO3-, NO2- and N2O accumulation. Furthermore, according to the linear relationship between functional gene or reductase and denitrification process, we also found that the abundance of denitrifying genes could better predict the influence of Phe and AgNPs on sediment denitrification than the denitrifying bacterial diversity. In addition, at the genus level, the community structure of nirS- and nosZ-type denitrifying bacteria changed dramatically, while changes at the phylum level were comparatively less pronounced. Single and combined contamination of Phe and AgNPs could reduce the dominance of Pseudomonas, which may lead to a potential slow-down in the degradation of Phe and inhibition of denitrification, especially the combined contamination. Overall, our study revealed that combined contamination of Phe and AgNPs could lead to an increase in NO3-, NO2- and N2O accumulation in coastal sediment, which poses a risk of eutrophication in coastal areas, exacerbates the greenhouse effect and has adverse effects on global climate change.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
| | - Jie Lian
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Yongyu Tan
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China; (P.S.); (J.L.); (Y.T.)
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
6
|
Kong B, Jin L, Zhao Y, Huang H, Wang Y, Ren H. Adaptive Evolution Laws of Biofilm under Emerging Pollutant-Induced Stress: Community Assembly-Driven Structure Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10721-10732. [PMID: 37433138 DOI: 10.1021/acs.est.3c01899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The widely used biofilm process in advanced wastewater treatment is currently challenged by numerous exotic emerging pollutants (EPs), and the underlying principle of the challenge is the adaptive evolution laws of biofilm under EP stress. However, there is still a knowledge gap in exploration of the biofilm adaptive evolution theory. Herein, we comprehensively analyzed the morphological variation, community succession, and assembly mechanism of biofilms to report the mechanism underlying their adaptive evolution under sulfamethoxazole and carbamazepine stress for the first time. The ecological role of the dominant species was driven as a pioneer and assembly hub by EP stress, and the deterministic processes indicated the functional basis of the transformation. In addition, the characteristic responses of dispersal limitation and homogenizing dispersal adequately revealed the assembly pathways in adaptive evolution and the resulting structural variation. Therefore, the "interfacial exposure-structural variation-mass transfer feedback" mechanism was inferred to underly the adaptive evolution process of biofilms. Overall, this study highlighted the internal drivers of the adaptive evolution of the biofilm at the phylogenetic level and deepened our understanding of the mechanism of biofilm development under EP stress in advanced wastewater purification.
Collapse
Affiliation(s)
- Boning Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Lili Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Ying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hui Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Yanru Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
7
|
Dias Samarajeewa A, Velicogna JR, Schwertfeger DM, Meier MJ, Subasinghe RM, Princz JI, Scroggins RP, Beaudette LA. Cerium oxide nanoparticles (nCeO 2) exert minimal adverse effects on microbial communities in soils with and without biosolids amendment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27313-6. [PMID: 37166732 DOI: 10.1007/s11356-023-27313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Increased use of nano-cerium oxide (nCeO2) in an array of industrial applications has raised environmental concerns due to potential increased loadings to the soil environment. This research investigated the potential adverse effects of nCeO2 (10-30 nm) on the soil microbial community in two exposure scenarios: direct application to soil, and indirect application to soil through chemical spiking of biosolids, followed by mixing into soil. Total Ce in test soils without, and with biosolids amendment, ranged from 44 to 770, and 73 to 664 mg Ce kg-1 soil, respectively. In order to help distinguish whether observed effects were elicited by the solid-phase colloids or the activity of dissolved Ce, a soluble Ce salt (Ce (NO3)3) treatment was included in select assays. A suite of tests was used to investigate effects on critical processes: microbial growth (heterotrophic plate count), microbial activity (organic matter (OM) decomposition, enzyme activity and, nitrification) and diversity (structural and functional). Although results showed significant inhibition on microbial growth in soil without biosolids amendment at ≥ 156 mg Ce kg-1 soil by week 5, these results were inconsistent and non-significant thereafter. In general, nCeO2 showed no evidence of consistent adverse effects on OM decomposition, nitrification, soil enzyme activities and functional diversity. Leucine aminopeptidase showed significant (p< 0.05) stimulatory effects over time at ≥ 44 mg Ce kg-1 in soils without biosolids, which was not observed in soils with biosolids amendment. The lack of inhibitory effects of nCeO2 may be attributed to its low solubility; Ce in soil extracts (0.01 M CaCl2) were all below detection (< 0.003 mg kg-1) in the nCeO2-spiked soils, but detectable in the Ce (NO3)3 samples. In contrast, soluble Ce at 359 mg Ce kg-1 showed a significant reduction in OM decomposition and effects on microbial genomic diversity based on the 16S rDNA data in soils with and without biosolids amendment (359 and 690 mg Ce kg-1). The nCeO2 behaviour and effects information described herein are expected to help fulfill data gaps for the characterization of this priority nanomaterial.
Collapse
Affiliation(s)
- Ajith Dias Samarajeewa
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada.
| | - Jessica R Velicogna
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Dina M Schwertfeger
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Matthew J Meier
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Renuka M Subasinghe
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Juliska I Princz
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Rick P Scroggins
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| | - Lee A Beaudette
- Biological Assessment and Standardization Section, Environment and Climate Change Canada, 335 River Road, Ottawa, Ontario, K1V 1C7, Canada
| |
Collapse
|
8
|
Ahmed SF, Mofijur M, Ahmed B, Mehnaz T, Mehejabin F, Maliat D, Hoang AT, Shafiullah GM. Nanomaterials as a sustainable choice for treating wastewater. ENVIRONMENTAL RESEARCH 2022; 214:113807. [PMID: 35798266 DOI: 10.1016/j.envres.2022.113807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Wastewater containing toxic substances is a major threat to the health of both aquatic and terrestrial ecosystems. In order to treat wastewater, nanomaterials are currently being studied intensively due to their unprecedented properties. The unique features of nanoparticles are prompting an increasing number of studies into their use in wastewater treatment. Although several studies have been undertaken in recent years, most of them did not focus on some of the nanomaterials that are now often utilized for wastewater treatment. It is essential to investigate the most recent advances in all the types of nanomaterials that are now frequently employed for wastewater treatment. The recent advancements in common nanomaterials used for sustainable wastewater treatment is comprehensively reviewed in this paper. This paper also thoroughly assesses unique features, proper utilization, future prospects, and current limitations of green nanotechnology in wastewater treatment. Zero-valent metal and metal oxide nanoparticles, especially iron oxides were shown to be more effective than traditional carbon nanotubes (CNTs) for recovering heavy metals in wastewater. Iron oxide achieved 75.9% COD (chemical oxygen demand) removal efficiency while titanium oxide (TiO2) achieved 75.5% COD. Iron nanoparticles attained 72.1% methyl blue removal efficiency. However, since only a few types of nanomaterials have been commercialized, it is important to also focus on the economic feasibility of each nanomaterial. This study found that the large surface area, high reactivity, and strong mechanical properties of nanoparticles means they can be considered as a promising option for successful wastewater treatment.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Bushra Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Tabassum Mehnaz
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Fatema Mehejabin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Daina Maliat
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam.
| | - G M Shafiullah
- Discipline of Engineering and Energy, Murdoch University, Western Australia, 6150, Australia.
| |
Collapse
|
9
|
Lyu Y, Shi Y, Zhu S, Jia Y, Tong C, Liu S, Sun B, Zhang J. Three-Dimensional Reduced Graphene Oxide Hybrid Nano-Silver Scaffolds with High Antibacterial Properties. SENSORS (BASEL, SWITZERLAND) 2022; 22:7952. [PMID: 36298303 PMCID: PMC9607190 DOI: 10.3390/s22207952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
In recent years, hazardous wastewater treatment has been a complex and global problem. In this work, by considering the antimicrobial activity of Ag nanoparticles (AgNPs) and reduced graphene oxide (rGO), we constructed an antibacterial device (G-AgNP) with AgNPs conformably deposited onto a 3D scaffold of reduced graphene oxide in situ. The major limitation, which is difficult to recycle, of two-dimensional graphene-silver composite materials in previous studies is improved. Characterization techniques, SEM, TEM, XRD, and XPS, confirmed the synthesis of nanocomposites. Attributed to its larger specific area, more active sites, and synergistic enhancement, the G-AgNP device demonstrated the best bacterial removal capacity, with an antibacterial rate for both E. coli and S. aureus as high as 100% at quite low AgNP contents. The reported G-AgNP has potential application as a wearable sewage treatment device and for the protection of wearable sensors as a promising sterilizing candidate based on its high and stable antibacterial efficiency.
Collapse
Affiliation(s)
- Yueshui Lyu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yingying Shi
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuan Jia
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Chunfeng Tong
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Shixiong Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Bo Sun
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
- Northwest Research Institute Co., Ltd. of C.R.E.C., Lanzhou 730000, China
| | - Jingxiang Zhang
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Zhang C, Lu J. Legionella: A Promising Supplementary Indicator of Microbial Drinking Water Quality in Municipal Engineered Water Systems. FRONTIERS IN ENVIRONMENTAL SCIENCE 2021; 9:1-22. [PMID: 35004706 PMCID: PMC8740890 DOI: 10.3389/fenvs.2021.684319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opportunistic pathogens (OPs) are natural inhabitants and the predominant disease causative biotic agents in municipal engineered water systems (EWSs). In EWSs, OPs occur at high frequencies and concentrations, cause drinking-water-related disease outbreaks, and are a major factor threatening public health. Therefore, the prevalence of OPs in EWSs represents microbial drinking water quality. Closely or routinely monitoring the dynamics of OPs in municipal EWSs is thus critical to ensuring drinking water quality and protecting public health. Monitoring the dynamics of conventional (fecal) indicators (e.g., total coliforms, fecal coliforms, and Escherichia coli) is the customary or even exclusive means of assessing microbial drinking water quality. However, those indicators infer only fecal contamination due to treatment (e.g., disinfection within water utilities) failure and EWS infrastructure issues (e.g., water main breaks and infiltration), whereas OPs are not contaminants in drinking water. In addition, those indicators appear in EWSs at low concentrations (often absent in well-maintained EWSs) and are uncorrelated with OPs. For instance, conventional indicators decay, while OPs regrow with increasing hydraulic residence time. As a result, conventional indicators are poor indicators of OPs (the major aspect of microbial drinking water quality) in EWSs. An additional or supplementary indicator that can well infer the prevalence of OPs in EWSs is highly needed. This systematic review argues that Legionella as a dominant OP-containing genus and natural inhabitant in EWSs is a promising candidate for such a supplementary indicator. Through comprehensively comparing the behavior (i.e., occurrence, growth and regrowth, spatiotemporal variations in concentrations, resistance to disinfectant residuals, and responses to physicochemical water quality parameters) of major OPs (e.g., Legionella especially L. pneumophila, Mycobacterium, and Pseudomonas especially P. aeruginosa), this review proves that Legionella is a promising supplementary indicator for the prevalence of OPs in EWSs while other OPs lack this indication feature. Legionella as a dominant natural inhabitant in EWSs occurs frequently, has a high concentration, and correlates with more microbial and physicochemical water quality parameters than other common OPs. Legionella and OPs in EWSs share multiple key features such as high disinfectant resistance, biofilm formation, proliferation within amoebae, and significant spatiotemporal variations in concentrations. Therefore, the presence and concentration of Legionella well indicate the presence and concentrations of OPs (especially L. pneumophila) and microbial drinking water quality in EWSs. In addition, Legionella concentration indicates the efficacies of disinfectant residuals in EWSs. Furthermore, with the development of modern Legionella quantification methods (especially quantitative polymerase chain reactions), monitoring Legionella in ESWs is becoming easier, more affordable, and less labor-intensive. Those features make Legionella a proper supplementary indicator for microbial drinking water quality (especially the prevalence of OPs) in EWSs. Water authorities may use Legionella and conventional indicators in combination to more comprehensively assess microbial drinking water quality in municipal EWSs. Future work should further explore the indication role of Legionella in EWSs and propose drinking water Legionella concentration limits that indicate serious public health effects and require enhanced treatment (e.g., booster disinfection).
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, OH, United States
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, United States
| |
Collapse
|
11
|
Abstract
Although several metal ions/metal nanoparticles (NPs) are toxic to both plants and animals, some of them are used as nutrients and growth promoters. Plants exposed to silver nanoparticles (Ag-NPs) have shown both beneficial and harmful effects. All concentrations of Ag-NPs are not effective for a given plant because any excess can block the passage of essential nutrients. Regulated treatment of plants by Ag-NPs may enhance their overall growth and development. It has been noticed that Ag-NPs decrease the mass of edible plants (Cucurbita pepo, Allium cepa, cabbage, and lettuce) and vegetables, but they also induce the germination of seeds in many cases. NPs interact with proteins, enzymes, and carbohydrates influencing the total biomass, root, and shoot growth of plants. Also, Ag-NPs act as an ethylene inhibitor and activate the antioxidants in onions. Their substantial quantity becomes deposited in onion leaves and bulbs. Size and concentration are the two major factors responsible for the increase/decrease of plant growth and biomass. Plants make adaptations to reduce the toxicity caused by Ag-NPs. In some cases, Ag-NPs induce root elongation and increase chlorophyll, carbohydrate, proteins, rate of photosynthesis and inhibit the biosynthesis of ethylene. This review article provides a comprehensive overview of both the beneficial and adverse effects of Ag-NPs on germination, growth, development, physiological, and biochemical characteristics of a wide range of edible and crop plants. We have also critically discussed: the chemistry, toxicity, uptake, translocation, and accumulation of Ag-NPs in plant systems.
Collapse
|
12
|
Dong Z, Wu Q, Long J, Lu B, Zheng N, Hu C, Chen P, Hu N, Lu C, Pan M. Silver nanoparticles are effective in controlling microsporidia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112106. [PMID: 33965113 DOI: 10.1016/j.msec.2021.112106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Many approaches and technologies have been developed as treatments for microsporidian, infections but effective, broad-spectrum, and sustainable therapeutic approaches have not been found. Silver nanoparticles (AgNPs) have antimicrobial activity and are widely used against many different pathogens. AgNPs provide an opportunity to develop formulations that will control microsporidia. In this study, we synthesized AgNPs via a chemical reduction method and evaluated their formation, morphology, and stability using transmission electron microscopy (TEM) and ultraviolet spectroscopy analysis. We verified that AgNPs could disrupt the spore cell membrane and spore germination of microsporidia Nosema bombycis. This resulted in the release of microsporidia nucleic acids, proteins, and respiratory chain enzymes. The anti-microsporidia activity of AgNPs was studied by measuring the silkworm larvae survival rate and spore genome replication after microsporidia infection. AgNPs have anti-microsporidian activity and could be effective components of formulations for treating or preventing microsporidia infection.
Collapse
Affiliation(s)
- Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jiangqiong Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Ning Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Congwu Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Nan Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
13
|
Temizel-Sekeryan S, Hicks AL. Cradle-to-grave environmental impact assessment of silver enabled t-shirts: Do nano-specific impacts exceed non nano-specific emissions? NANOIMPACT 2021; 22:100319. [PMID: 35559976 DOI: 10.1016/j.impact.2021.100319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 06/15/2023]
Abstract
Consumption of silver nanoparticles (nAg) is increasing due to their use in various industries. A comprehensive analysis is needed to elucidate the potential environmental and human health benefits and costs of the silver-enabled consumer products. For this purpose, four commercially available silver/nanosilver enabled polyester textiles with different initial silver/nanosilver loadings (1.07-4030 μg Ag/g textile) are included in the current research and cradle-to-grave life cycle assessments (LCA) are conducted to identify hotspots associated with production and use of these products throughout their lifetimes (100 cycles). Both non nano-specific and nano-specific impacts are calculated using nano-specific ecotoxicity characterization factors for nAg, instead of the commonly utilized ionic silver (Ag+) surrogate. Additionally, four different laundering scenarios were modeled to analyze the impacts resulting from using conventional and high efficiency machines. In the majority of environmental impact categories, either polyester textile manufacturing (regardless of Ag/nAg enabling) or laundering were identified as hotspots. Non nano-specific ecotoxicity impacts ranged from 1.58 × 101-2.91 × 101 CTUe/textile (CTUe: comparative toxic units for ecosystems) and nano-specific ecotoxicity impacts ranged from 2.01 × 10-4-3.10 × 10-3 CTUe/textile for the lowest and the highest Ag/nAg containing textiles, respectively. It is also found that unless the initial silver loading per textile is significantly high (in this case 4030 μg Ag/g textile comparing to the lowest load of 1.07 μg Ag/g textile), ecotoxicity and human health impacts of released silver species would be lower than ecotoxicity and human health impacts resulting from raw materials acquisition and manufacturing of the antibacterial textiles.
Collapse
Affiliation(s)
- Sila Temizel-Sekeryan
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Andrea L Hicks
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Zhao Z, Xu L, Wang Y, Li B, Zhang W, Li X. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15032-15042. [PMID: 33222069 DOI: 10.1007/s11356-020-11714-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Silver nanoparticles (Ag-NPs) are widely used in daily life and inevitably discharged into the aquatic environment, causing increasingly serious pollution. Research on the toxicity of Ag-NPs is still in infancy, little information is available on the relationships between oxidative stress and antioxidant, as well as damaging degrees of Ag-NPs to cellular structural components of Chlamydomonas reinhardtii (C. reinhardtiii). In the present study, we revealed the toxicity mechanism of C. reinhardtii under Ag-NPs stress using flow cytometry (FCM), metabolic methods, and transmission electron microscopy. The results showed that the chloroplasts were damaged and the synthesis of photosynthetic pigments was inhibited under Ag-NPs stress, which inhibited the growth of C. reinhardtii. Meanwhile, Ag-NPs also caused C. reinhardtii to produce excessive reactive oxygen species (ROS), increased malondialdehyde content and changed the permeability of cell membrane, resulting in the acceleration of internalization of Ag-NPs. The decrease of cell size and intracellular chlorophyll autofluorescence was observed with FCM. To deal with the induced excessive ROS that could lead to lethal and irreversible structure damage, C. reinhardtii activated antioxidant enzymes including superoxide dismutase and peroxidase. This study provides new information for better understanding the potential toxicity risks of Ag-NPs in the aquatic environment.
Collapse
Affiliation(s)
- Zhilin Zhao
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Limei Xu
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Bihan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Xiaochen Li
- Water Conservancy and Civil Engineering College, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
15
|
Islam MA, Jacob MV, Antunes E. A critical review on silver nanoparticles: From synthesis and applications to its mitigation through low-cost adsorption by biochar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111918. [PMID: 33433370 DOI: 10.1016/j.jenvman.2020.111918] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Silver nanoparticles are one of the most beneficial forms of heavy metals in nanotechnology applications. Due to its exceptional antimicrobial properties, low electrical and thermal resistance, and surface plasmon resonance, silver nanoparticles are used in a wide variety of products, including consumer goods, healthcare, catalysts, electronics, and analytical equipment. As the production and applications of silver nanoparticles containing products increase daily, the environmental pollution due to silver nanoparticles release is increasing and affecting especially the aqueous ecosystem. Silver nanoparticles can kill useful bacteria in soil and water, and bioaccumulate in living organisms even at low concentrations from 10-2 to 10 μg/mL silver can show antibacterial effect. On the other hand, the maximum silver discharge limit into freshwater is 0.1 μg/L and 3.2 μg/L for Australia and the USA, respectively. To reduce its toxic consequences and meet the regulatory guidelines, it is crucial to remove silver nanoparticles from wastewater before it is discharged into other water streams. Several technologies are available to remove silver nanoparticles, but the adsorption process using low-cost adsorbents is a promising alternative to mitigate silver nanoparticle pollution in the bulk stage. As one of the low-cost adsorbents, biochar produced from the biomass waste could be a suitable adsorbent. This review focuses on collating the latest evidence on silver nanoparticle production, applications, environmental consequences, and cost-effective technological approaches for silver removal from wastewater.
Collapse
Affiliation(s)
- Md Anwarul Islam
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohan V Jacob
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Elsa Antunes
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
16
|
Ahmed T, Noman M, Shahid M, Niazi MBK, Hussain S, Manzoor N, Wang X, Li B. Green synthesis of silver nanoparticles transformed synthetic textile dye into less toxic intermediate molecules through LC-MS analysis and treated the actual wastewater. ENVIRONMENTAL RESEARCH 2020; 191:110142. [PMID: 32898565 DOI: 10.1016/j.envres.2020.110142] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 05/02/2023]
Abstract
The illegal disposal of waste from textile industries having recalcitrant pollutants is a worldwide problem with more severity in developing nations. We used an ecofriendly method to synthesize silver nanoparticles (AgNPs) from a locally-isolated bacterial strain Bacillus marisflavi TEZ7 and employed them as photocatalysts to degrade not only synthetic azo dyes but also actual textile effluents followed by phytotoxicity evaluation and identification of degradation molecules. The strain TEZ7 was taxonomically identified through the 16S rRNA gene sequence analysis. Biogenic AgNPs were characterized for stabilizing molecules, crystal structure, size, shape and elemental composition by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The photocatalytic degradation efficiency of biogenic AgNPs for three azo dyes such as Direct Blue-1, Methyl Red, and Reactive Black-5 ranged between 54.14 and 96.92% after 5 h of sunlight exposure at a concentration of 100 mg/L. Moreover, the actual wastewater treatment analysis revealed that the 100 mg/L dose of AgNPs significantly decreased the concentration of various physico-chemical parameters of textile effluents such as pH, EC, chlorides, sulphates, hardness, BOD, COD, TSS and TDS. Furthermore, six intermediate molecules of methyl red degradation were identified by LC-MS and it was established by a pot study that these degradation molecules have no phytotoxic effects on rice plants. It was concluded that the AgNPs can be used as an efficient and low-cost strategy for the degradation of azo dyes containing textile wastewaters.
Collapse
Affiliation(s)
- Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China; Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China; Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Bilal Khan Niazi
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000, Islamabad, Pakistan
| | - Sabir Hussain
- Department of Environmental Science & Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
17
|
Gilcrease E, Williams R, Goel R. Evaluating the effect of silver nanoparticles on bacteriophage lytic infection cycle-a mechanistic understanding. WATER RESEARCH 2020; 181:115900. [PMID: 32504909 DOI: 10.1016/j.watres.2020.115900] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bacteriophages and engineered nano-material (AgNPS) interactions is a relatively unexplored area of research. To answer the fundamental question whether bacteriophage lytic growth cycle is affected by the presence of AgNPs, laboratory experiments were performed with phages of Klebsiella pneumoniae, Delftia tsuruhatensis, Salmonella typhimurium, and Shigella flexneri using silver nanoparticles (AgNPs) with coating materials. One-step growth curves of bacteriophages indicated that the presence of these nanoparticles, and the associated ions of silver, produced pronounced effects on the lytic infection of certain bacteriophages. Effects included 96% reductions in post-infection phage yield in terms of plaque forming units (PFUs) after phages were incubated with silver nanoparticles and 28%-43% reductions from the presence of Ag+ alone. However, when Klebsiella pneumonia phage KL and Salmonella typhimurium phage Det7 were exposed to silver nanoparticles coated with poly-N-vinyl-2 pyrrolidone (PVP), an increase in final phage yield by as much as 250% was observed compared with the same phage not incubated with nanoparticles. A proposed mechanism, observed by transmission electron microscopy and verified using synthetic biology by which the nanoparticle binding phenotype can be produced, is that the binding of metal nanomaterial to phage virions results in potentially inhibitory effects. This binding was found to be dependent on the presence of exposed positively charged C-terminal amino-acid residues on the phage capsid surface, implied at first by amino-acid sequence comparisons between capsid proteins of the different phages used in this study. This was then proven experimentally using targeted DNA editing methods to fuse positive charged amino-acid residues to the coat protein C-terminus of non-binding phage. This induced the AgNP binding phenotype, as observed by TEM, DLS size measurements, and growth curve data that show the mutant constructs to be functionally inhibited after exposure to AgNPs. This research sets up a first platform for further research in the unexplored area of phage and AgNP interactions and provides useful findings.
Collapse
Affiliation(s)
- Eddie Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ryan Williams
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
18
|
Kalčíková G, Skalar T, Marolt G, Jemec Kokalj A. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. WATER RESEARCH 2020; 175:115644. [PMID: 32169692 DOI: 10.1016/j.watres.2020.115644] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/19/2020] [Accepted: 02/22/2020] [Indexed: 05/22/2023]
Abstract
Microplastics are very complex pollutants; they can be made of many polymer types and exist in various shapes and sizes. When they enter the environment they are affected by biotic and abiotic factors that cause their properties to change. In this context, the aim of our study was to evaluate the extent to which biofouling affects the properties and toxicity of microplastics. Cosmetic polyethylene microbeads were incubated in stream water for four weeks resulting in biofouling and aging. Subsequently, the changes in properties (sinking, particle size, adsorption, and leaching of model metal - silver) and the microplastics toxicity to daphnids Daphnia magna and duckweed Lemna minor were evaluated. Pristine microplastics did not affect daphnids but they significantly affected the root growth of duckweed. On the other hand, reference natural particles (beech sawdust) did not show any negative effects. We observed significant differences in the properties of aged versus pristine microplastics. When compared to pristine microplastics, aged microplastics adsorbed more silver and the subsequent leaching of silver was more intensive, especially in the medium with an acidic pH. Microplastics with adsorbed silver had a high ecotoxicological potential and at environmentally relevant concentrations affected both daphnids and duckweed. This study suggests that biofouling is an important parameter that affects microplastics properties, pollutant adsorption and release into the environment, and toxicity. Overall, there are significant alterations of the microplastics properties, behaviour, and fate in the environment.
Collapse
Affiliation(s)
- Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000, Ljubljana, Slovenia.
| | - Tina Skalar
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000, Ljubljana, Slovenia
| | - Gregor Marolt
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000, Ljubljana, Slovenia
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
19
|
Quan X, Wang X, Zheng Y, Li W, Chen L, Pei Y. Effects of biogenic nanopalladium precipitation on the performance and microbial community structure of anaerobic granular sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135765. [PMID: 31787279 DOI: 10.1016/j.scitotenv.2019.135765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/09/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Biogenic nanopalladium (BioPd) catalysts have drawn increasing attentions recently as a combination of metal catalyst over the support of biomass. Anaerobic granular sludge (AGS), as a special microbial granule, demonstrates a strong potential to reduce Pd(II) and precipitate Bio-Pd in the sludge body. The problem how the Bio-Pd precipitates would influence the function and microbial community of the Pd hosting AGS (Pd-AGS) remains unknown. In this study, Pd-AGS with different Bio-Pd loadings (1.7, 3.0, 4.4 and 8.0 wt% of Pd) was obtained through bio-reduction at different Na2PdCl4 concentrations. Effects of Bio-Pd precipitates on acidogenesis and methanogenesis of AGS were assayed. Response of bacterial and archaeal community of AGS towards Bio-Pd precipitation were also revealed based on high-throughput sequencing data on Illumina Miseq platform. Results showed that Bio-Pd precipitates affected the acidogenesis and methanogenesis process of the Pd-AGS, as the produced total volatile fatty acids (VFA) and methane were reduced by 25.8-53.0% and 33.9-87.7%, respectively, comparing to the native AGS. Bio-Pd precipitation resulted in microbial community shift and a decrease in the microbial diversity. The bacterial community suffered more influence than the archaeal community. Hydrogenotrophic methanogens were more sensitive to the toxicity of Pd(II)/Bio-Pd than acetotrophic methanogens. Overall, when the heterogeneous Pd-AGS catalyst is designed to possess both the function of microbial metabolism and Pd catalysis, it is necessary to control a suitable Pd(II) concentration during reduction process and the final Bio-Pd loading in AGS (<4.4 wt% of Pd).
Collapse
Affiliation(s)
- Xiangchun Quan
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinrui Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yu Zheng
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wanlin Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Liang Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuansheng Pei
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
20
|
Li W, Zheng T, Ma Y, Liu J. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133815. [PMID: 31416035 DOI: 10.1016/j.scitotenv.2019.133815] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
With rapid urbanization, sewer systems are extensively being constructed for the collection and transportation of sewage to minimize the severe environmental and health issues, especially relating to the spread diseases. The existence of abundant biofilms on the inner walls of sewers could lead to potential risks such as sewer explosions, poisonous gas leaks, and pipe corrosions with the transformations of various kinds of pollutants. Therefore, it is urgent to clarify their inner mechanisms to safely govern sewer systems. In this study, the characteristics of sewer biofilms including their structure, influencing factors, and substance transformations were analyzed in-depth. The results reveal that sewer biofilms (1.0 mm depth approximately) consist of large quantities of inorganic and some organic substances, while the abundant functional genus of the bacteria and archaea are summarized. Sewer biofilms influencing factors were determined to be sewer operation mode, sewage characteristics, and shear stress. Further, the transformation of organics, sulfur, and nitrogen as well as emerging micropollutants (such as, biomarkers, antibiotic resistance genes, and engineered nanoparticles) was investigated to guarantee sewer security and public health. Therefore, the current review could be considered as guidance for researchers and decision-makers.
Collapse
Affiliation(s)
- Wenkai Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Tianlong Zheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Junxin Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; University of Chinese Academy of Sciences, 19 (A) Yuquan Road, Shijingshan District, Beijing 100049, China.
| |
Collapse
|
21
|
Baukum J, Pranjan J, Kaolaor A, Chuysinuan P, Suwantong O, Supaphol P. The potential use of cross-linked alginate/gelatin hydrogels containing silver nanoparticles for wound dressing applications. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02873-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Zhou H, Xu G. Effect of silver nanoparticles on an integrated fixed-film activated sludge-sequencing batch reactor: Performance and community structure. J Environ Sci (China) 2019; 80:229-239. [PMID: 30952340 DOI: 10.1016/j.jes.2018.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
The effects of silver nanoparticles (AgNPs) on reactor performance, extracellular polymeric substances composition and microbial community structure and function in integrated fixed-film activated sludge-sequencing batch reactors (IFAS-SBRs) were investigated. Results showed that the addition of AgNPs from 0.1 to 10 mg/L exhibited no significant effects on nutrient removal. The average overall removal of COD, NH4+-N and PO43--P was 96.6%, 99.9% and 98.8%, respectively. The introduction of AgNPs caused an increase in extracellular polymeric substances content for the sludge and biofilm of IFAS-SBRs. The release of Ag+ from AgNPs and lactate dehydrogenase test implied the low toxicity of AgNPs to IFAS-SBRs. High-throughput sequencing revealed that microbial community structure showed significant shifts at phylum and genus levels after long-term exposure to AgNPs, but core functional groups responsible for nutrient removal remained at high abundance. Bacterial function prediction indicated that the metabolic categories showed no significant shifts under AgNPs stress, therefore good process performance could still be achieved.
Collapse
Affiliation(s)
- Hexi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guoren Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; National Engineering Laboratory for Sustainable Sludge Management & Resourcelization Technology, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Cervantes-Avilés P, Huang Y, Keller AA. Incidence and persistence of silver nanoparticles throughout the wastewater treatment process. WATER RESEARCH 2019; 156:188-198. [PMID: 30913422 DOI: 10.1016/j.watres.2019.03.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 05/23/2023]
Abstract
While the predicted or observed concentrations of Ag NPs in wastewater treatment plants (WWTPs) have ranged from μg/L to ng/L, there is still uncertainty with regards to the realistic concentration range of Ag NPs in WWTPs. In addition, the persistence, removal, and size of Ag NPs throughout WWTP process is also not well investigated, particularly in real operating conditions. In this study, the incidence and persistence of Ag NPs in the wastewater process were studied by using single particle inductively coupled plasma mass spectrometry (sp-ICP-MS). The incidence of Ag NPs was determined in samples collected at the influent and effluent of the conventional process, as well as reclaimed and backwash waters of the ultrafiltration (UF) system in a WWTP (Santa Barbara, CA), showing a concentration of 13.5, 3.2, 0.5 and 9.8 ng/L, respectively, with relative standard deviations (RSDs) < 5%. Total Ag concentration (Ag NP and Ag+) ranged from 40 to 70 ng/L, in line with lower predicted values. Most of the Ag NPs detected were below 100 nm, with a few above 100 nm in the conventional effluent. Biological and physical processes in the secondary treatment removed 76.3% of the colloidal Ag fraction, while with the tertiary treatment (UF) the WWTP achieved a removal of 96.3% of the colloidal fraction. Persistence of Ag NPs in various water matrixes, including a synthetic wastewater (SWW), was determined by spiking 300 ng/L of Ag NPs (40 nm) and monitoring the concentrations and size change for 15 days. The persistence of Ag NPs in suspension was Influent > Effluent > Reclaimed > SWW. Partial dissolution of NPs in all waters was observed from time 0 h. Although the current concentrations in the outlet flows from WWTP (effluent and reclaimed waters) were low, the presence of small and stable Ag NPs may raise ecotoxicological concerns via bioaccumulation.
Collapse
Affiliation(s)
- Pabel Cervantes-Avilés
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA
| | - Yuxiong Huang
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA; Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
24
|
Yan A, Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int J Mol Sci 2019; 20:E1003. [PMID: 30813508 PMCID: PMC6429054 DOI: 10.3390/ijms20051003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
Nanotechnology was well developed during past decades and implemented in a broad range of industrial applications, which led to an inevitable release of nanomaterials into the environment and ecosystem. Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in various fields, especially in the agricultural sector. Plants are the basic component of the ecosystem and the most important source of food for mankind; therefore, understanding the impacts of AgNPs on plant growth and development is crucial for the evaluation of potential environmental risks on food safety and human health imposed by AgNPs. The present review summarizes uptake, translocation, and accumulation of AgNPs in plants, and exemplifies the phytotoxicity of AgNPs on plants at morphological, physiological, cellular, and molecular levels. It also focuses on the current understanding of phytotoxicity mechanisms via which AgNPs exert their toxicity on plants. In addition, the tolerance mechanisms underlying survival strategy that plants adopt to cope with adverse effects of AgNPs are discussed.
Collapse
Affiliation(s)
- An Yan
- Natural Sciences and Sciences Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| | - Zhong Chen
- Natural Sciences and Sciences Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore.
| |
Collapse
|
25
|
Alizadeh S, Ghoshal S, Comeau Y. Fate and inhibitory effect of silver nanoparticles in high rate moving bed biofilm reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1199-1210. [PMID: 30180328 DOI: 10.1016/j.scitotenv.2018.08.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Municipal water resource recovery facilities are the primary recipients of a significant fraction of discharged silver nanoparticle (AgNP)-containing wastes, yet the fate and potential risks of AgNPs in attached-growth biological wastewater treatment processes are poorly understood. The fate and inhibitory effects of polyvinylpyrrolidone (PVP)-coated AgNPs at environmentally-relevant nominal concentrations (10, 100, 600 μg/L) were investigated, for the first time, in high rate moving bed biofilm reactors (MBBRs) for soluble organic matter removal. The behavior and removal of continuously added AgNPs were characterized using single-particle inductively coupled plasma mass spectrometry (spICP-MS). While no inhibitory effect at average influent concentration of 10.8 μg/L Ag was observed, soluble COD removal efficiency was significantly decreased at 131 μg/L Ag in 18 days and 631 μg/L Ag in 5 days with suppressed biofilm viability. The inhibitory effect of AgNPs on treatment efficiency was highly correlated to the retained mass of total Ag in attached biofilm on the carriers. Biofilm demonstrated limited retention capacity for AgNPs over 18 days. Considerable mass of Ag (38% to 75%) was released via effluent, predominantly as NPs. We detected some chemically transformed and potentially less toxic forms of silver nanoparticles (Ag2S, AgCl), over the exposure period. This study demonstrated the distinct interaction dynamics, bioavailability and inhibitory effects of AgNPs in a biofilm system. Release of bioavailable AgNPs via effluent and AgNP-rich biofilm, sloughing off the carriers, can affect the treatment chain efficiency of downstream processes. Thus, the inhibitory effects of AgNPs can be a concern even at concentrations as low as 100 to 600 μg/L Ag in biological attached growth wastewater treatments.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2500 Polytechnique road, Montreal, (Quebec) H3T 1J4, Canada.
| | - Subhasis Ghoshal
- Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal, (Quebec) H3A 0C3, Canada
| | - Yves Comeau
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2500 Polytechnique road, Montreal, (Quebec) H3T 1J4, Canada
| |
Collapse
|
26
|
Kumar R, Negi S, Sharma P, Prasher IB, Chaudhary S, Dhau JS, Umar A. Wastewater cleanup using Phlebia acerina fungi: An insight into mycoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 228:130-139. [PMID: 30216827 DOI: 10.1016/j.jenvman.2018.07.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/13/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The scarcity of available drinking water has led the researchers to develop novel and cost-effective ways of bioremediation process for wastewater treatment. Bioremediation is a cost-effective and environmentally sound method for the removal of toxic compounds. Such approach is not only a chemical-less effort but also an energy savior. In the present work Phlebia acerina, a white rot wood rotting fungi have been used to degrade the toxic wastewater pollutants. Congo Red (CR) and Eriochrome Black T (EBT) have been selected as model pollutants to test the wastewater cleaning ability of the fungus. The Lignin modifying enzyme (LME) and Cellulolytic enzyme assays (CMC) potential of Phlebia acerina helped in understanding the dye degradation mechanism. Under the optimum conditions, the fungi was able to degrade as high as 92.4% CR while the EBT was degraded to a maximum of 50%. Phlebia acerina was found to show first-order kinetics of dyes degradation. Further, the seed germination and antimicrobial assay of treated and untreated water were carried out in order to establish the formation of non-toxic end product after degradation.
Collapse
Affiliation(s)
- Rajeev Kumar
- Department of Environment Studies, Panjab University, Chandigarh 160014, India.
| | - Sushma Negi
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - Priyanka Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160014, India
| | - I B Prasher
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Savita Chaudhary
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | | | - Ahmad Umar
- Department of Chemistry, College of Science and Arts, Najran University, Najran, 11001, Saudi Arabia; Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia.
| |
Collapse
|
27
|
Liang L, Tang H, Deng Z, Liu Y, Chen X, Wang H. Ag nanoparticles inhibit the growth of the bryophyte, Physcomitrella patens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:739-748. [PMID: 30122261 DOI: 10.1016/j.ecoenv.2018.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
The wide use of Ag nanoparticles (Ag NPs) as antimicrobial agents has resulted in a massive release of Ag NPs into environment, such as water and soil. As bryophytes live ubiquitously in water and soil, their tolerance and response to Ag NPs could be employed as an indicator for the harm of Ag NPs to the environment. Herein, we report the study on the physiological and biochemical responses of bryophytes to Ag NPs with different surface coatings at the gametophyte stages: protonema and leafy gametophyte, by using Physcomitrella patens as a model system. We found that Ag NPs, including AgNPs-B (Ag NPs without surface coating), AgNPs-PVP (Ag NPs coated with poly (N-vinyl-2-pyrrolidone)) and AgNPs-Cit (Ag NPs coated with citrate), were toxic to P. patens in terms of growth and development of the gametophyte. The toxicity was closely related to the concentration and surface coating of Ag NPs, and the growth stage of P. patens. The protonema was more sensitive to Ag NPs than the leafy gametophyte. Ag NPs inhibited the growth of the protonema following the trend of AgNPs-B > AgNPs-Cit > AgNPs-PVP. Ag NPs changed the thylakoid and chlorophyll contents, but did not affect the contents of essential elements in the protonema. At the leafy gametophyte stage, Ag NPs inhibited the growth of P. patens following a different order: AgNPs-Cit > AgNPs-B ≈ AgNPs-PVP. Ag NPs decreased the chlorophyll b content and disturbed the balance of some important essential elements in the leafy gametophytes. Both the dissolved fraction of Ag NPs and Ag NPs per se contributed to the toxicity. This study for the first time reveals the effects of Ag NPs on bryophytes at different growth stages, which calls for more attention to the nanoecotoxicology of Ag NPs.
Collapse
Affiliation(s)
- Lin Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huan Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Zhaoguo Deng
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanfang Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Vilela P, Liu H, Lee S, Hwangbo S, Nam K, Yoo C. A systematic approach of removal mechanisms, control and optimization of silver nanoparticle in wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:989-998. [PMID: 29758920 DOI: 10.1016/j.scitotenv.2018.03.247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The release of silver nanoparticles (AgNPs) to wastewater caused by over-generation and poor treatment of the remaining nanomaterial has raised the interest of researchers. AgNPs can have a negative impact on watersheds and generate degradation of the effluent quality of wastewater treatment plants (WWTPs). The aim of this research is to design and analyze an integrated model system for the removal of AgNPs with high effluent quality in WWTPs using a systematic approach of removal mechanisms modeling, optimization, and control of the removal of silver nanoparticles. The activated sludge model 1 was modified with the inclusion of AgNPs removal mechanisms, such as adsorption/desorption, dissolution, and inhibition of microbial organisms. Response surface methodology was performed to minimize the AgNPs and total nitrogen concentrations in the effluent by optimizing operating conditions of the system. Then, the optimal operating conditions were utilized for the implementation of control strategies into the system for further analysis of enhancement of AgNPs removal efficiency. Thus, the overall AgNP removal efficiency was found to be slightly higher than 80%, which was an improvement of almost 7% compared to the BSM1 reference value. This study provides a systematic approach to find an optimal solution for enhancing AgNP removal efficiency in WWTPs and thereby to prevent pollution in the environment.
Collapse
Affiliation(s)
- Paulina Vilela
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea; ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Hongbin Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - SeungChul Lee
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - Soonho Hwangbo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - KiJeon Nam
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea
| | - ChangKyoo Yoo
- Dept. of Environmental Science and Engineering, College of Engineering, Center for Environmental Studies, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, Republic of Korea.
| |
Collapse
|
29
|
Zhang C, Brown PJB, Hu Z. Thermodynamic properties of an emerging chemical disinfectant, peracetic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:948-959. [PMID: 29191692 DOI: 10.1016/j.scitotenv.2017.10.195] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 05/22/2023]
Abstract
Peracetic acid (PAA or CH3COOOH) is an emerging disinfectant with a low potential to form carcinogenic disinfection by-products (DBPs). Basic thermodynamic properties of PAA are, however, absent or inconsistently reported in the literature. This review aimed to summarize important thermodynamic properties of PAA, including standard Gibbs energy of formation and oxidation-reduction (redox) potential. The standard Gibbs energies of formation of CH3COOOH(aq), CH3COOOH(g), CH3COOOH(l), and CH3COOO(aq)- are -299.41kJ·mol-1, -283.02kJ·mol-1, -276.10kJ·mol-1, and -252.60kJ·mol-1, respectively. The standard redox potentials of PAA are 1.748V and 1.005V vs. standard hydrogen electrode (SHE) at pH 0 and pH 14, respectively. Under biochemical standard state conditions (pH 7, 25°C, 101,325Pa), PAA has a redox potential of 1.385V vs. SHE, higher than many disinfectants. Finally, the environmental implications of the thermodynamic properties of PAA were systematically discussed. Those properties can be used to predict the physicochemical and biological behavior of aquatic systems exposed to PAA.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, United States
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
30
|
Zheng X, Wang J, Chen Y, Wei Y. Comprehensive analysis of transcriptional and proteomic profiling reveals silver nanoparticles-induced toxicity to bacterial denitrification. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:291-298. [PMID: 29055833 DOI: 10.1016/j.jhazmat.2017.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 05/12/2023]
Abstract
Although the toxicity of silver nanoparticles (Ag NPs or nanosilver) to model bacteria has been reported, the effects of Ag NPs on microbial denitrification under anoxic conditions and the mechanism of Ag NPs induced-toxicity to denitrification remain unclear. In this study, the effects of Ag NPs on Paracoccus denitrificans under anoxic conditions were investigated, and the mechanism was explored by analyzing the transcriptional and proteomic responses of bacteria to Ag NPs. The presence of 5mg/L Ag NPs led to excessive nitrate accumulation (232.5 versus 5.3mg/L) and increased nitrous oxide emission. Transcriptional analysis indicated that Ag NPs restrained the expression of key genes related to denitrification. Specifically, the genes involved in denitrifying catalytic reduction and electron transfer were significantly down-regulated. Moreover, the expression of the genes responsible for polyhydroxybutyrate synthesis was enhanced, which was adverse to denitrification. Proteomic profiling revealed that the syntheses of the proteins involved in catalytic process, electron transfer, and metabolic process were inhibited by Ag NPs. The activities of nitrate reductase and nitrite reductase in the presence of 5mg/L Ag NPs were only 42% and 61% of those in the control, respectively, indicating the inhibition of denitrifying enzymes. These results improve understanding of the inhibitory mechanism of Ag NPs toward bacterial denitrification.
Collapse
Affiliation(s)
- Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Juan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yuanyuan Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
31
|
Van de Moortel N, Van den Broeck R, Degrève J, Dewil R. Comparing glow discharge plasma and ultrasound treatment for improving aerobic respiration of activated sludge. WATER RESEARCH 2017; 122:207-215. [PMID: 28601033 DOI: 10.1016/j.watres.2017.05.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
In this paper, a new and innovative technique, glow discharge plasma, is introduced for the treatment of activated sludge, whereby its effect on sludge solubilization, settleability, floc structure and biomass activity for carbon removal and nitrification is investigated. The obtained results are compared to the use of ultrasound for activated sludge treatment, a technique known for its potential to enhancing biomass activity. Results indicate that ultrasound is up to 9 times more efficient in solubilizing activated sludge and disrupting the sludge floc. However, ultrasound has a detrimental effect on sludge settling, even the lowest treatment intensity of 180 kJ/kgMLSS induced a 12% increase in sludge volume index (SVI). Glow discharge plasma on the other hand, improved settleability up to 51%. Glow discharge plasma and ultrasound both positively affect the carbon removal rate. On the long term, extreme conditions even gave rise to a maximum improvement in respiration by 58.6% and 176.5% for a glow discharge plasma and ultrasound treatment. Nitrification, however, was never positively influenced by either of the treatments. Starting from 8297 kJ/kgMLSS for glow discharge plasma and 9000 kJ/kgMLSS for ultrasound, a negative effect on the nitrification rate was found.
Collapse
Affiliation(s)
- Nina Van de Moortel
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Rob Van den Broeck
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
| | - Jan Degrève
- KU Leuven, Department of Chemical Engineering, Bio- & Chemical Systems Technology, Reactor Engineering and Safety, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| |
Collapse
|
32
|
Chen Z, Yang P, Yuan Z, Guo J. Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa. Sci Rep 2017; 7:7398. [PMID: 28785059 PMCID: PMC5547109 DOI: 10.1038/s41598-017-07989-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023] Open
Abstract
The intensive applications of silver nanoparticles (AgNPs) inevitably cause continuous release of such materials into environments, as a consequence posing potential risks to microbial communities in engineered or natural ecosystems. However, the magnitude of antibacterial capacity of nanoparticles is still inconclusive, owing to influential factors such as the size of nanoparticle, microbial species, or environmental conditions. To reveal whether the presence of air would alter AgNPs ecotoxicity, Pseudomonas aeruginosa PAO1, a facultative denitrifying bacterium and an opportunity pathogen, was used to study antibacterial assays under both anaerobic and aerobic conditions. The results indicate that the respiration status of P. aeruginosa affect the ecotoxicity of AgNPs. P. aeruginosa cultured under aerobic condition were more susceptible to AgNPs than that under anaerobic condition. Aerobic condition greatly enhanced bacteriostatic effects of AgNPs but not their bactericidal effects, as the ratio of viable but nonculturable (VBNC) bacteria remained above 90% when 5 mg L−1 AgNPs applied. Our findings offer further understanding for the degree of toxicity of nanoparticles on microbial ecosystems and underscore the importance of exposure condition (e.g. oxygen) in the mode of action of AgNPs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- Department of Environmental Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.,Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ping Yang
- Department of Environmental Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|