1
|
Dhanda N, Kumar S. Water disinfection and disinfection by products. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:461. [PMID: 40128505 DOI: 10.1007/s10661-025-13915-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/26/2025]
Abstract
For ecological safety and public health, it is essential to identify the causes of pollution in water sources and the effects of both natural and human activities. A class of secondary pollutants known as disinfection byproducts (DBPs) is produced when water is treated with disinfectant. Global problems include DBP formation, monitoring, and health effects in drinkable water. Because of the negative health effects of drinking chlorinated water and some DBPs, water manufacturers have made an attempt to balance pathogen elimination with DBP monitoring. The primary obstacles to managing DBPs are their low concentrations and the viability of their extensive use from a technical and economic perspective. Adsorption on activated carbons, ion exchange, membrane processes, and reducing precursors like NOMs are some of the techniques that may be used in controlling DBPs. The application of both new and conventional disinfection technologies in the removal of ARB and ARGs is also summarized in this review, with an emphasis on bacterial inactivation mechanisms like ozonation, chlorination, ultraviolet (UV), sunlight, sunlight-dissolved organic matter (DOM), and photocatalysis/photoelectrocatalysis (PEC).
Collapse
Affiliation(s)
- Nishu Dhanda
- Department of Chemistry, Banasthali Vidyapith, Banasthali, 304022, India
| | - Sudesh Kumar
- DESM, National Institute of Education, NCERT, New Delhi, 110016, India.
| |
Collapse
|
2
|
Baradaran Mahdavi S, Javadirad SM, Rafieian M, Poursafa P, Azimian Zavareh V, Daniali SS, Heidari-Beni M, Goodarzi-Khoigani M, Vahdatpour B, Mirhendi H, Kelishadi R. A procedure for DNA methylation assessment in osteoporosis-related gene promoters of umbilical cord blood: A study on the Prospective Epidemiological Research Studies in Iran (PERSIAN) birth cohort. BIOIMPACTS : BI 2024; 15:30095. [PMID: 40161946 PMCID: PMC11954747 DOI: 10.34172/bi.30095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 04/02/2025]
Abstract
Introduction It is believed that DNA methylation can modify disease susceptibility in response to environmental factors as early as the perinatal period. In this study, we aimed to present a streamlined DNA methylation analysis procedure for osteoporosis-related gene promoters in the umbilical cord blood. Methods The Prospective Epidemiological Research Studies in Iran (PERSIAN) birth cohort was established in 2016. In this study, a total of 300 umbilical cord blood samples were collected at the time of delivery. For all samples, DNA was extracted and converted using sodium bisulfite. Multiple primer sets were designed for Wnt1, Wnt10b, β-catenin, OPG, and RANKL gene promoters in the online MethPrimer platform. Next, bisulfite sequencing PCR (BSP), as the gold standard method for exploring methylated and unmethylated cytosines, was performed in a gradient-controlled setting. The PCR products were then purified and directly sequenced. Subsequently, the chromatograms were interpreted. Results For Wnt10b, β-catenin, and OPG genes, the converted DNA could be successfully amplified. The frequency of acceptable chromatograms for analysis was 195 for Wnt10b (195/300, 0.65%), 198 for β-catenin (198/300, 0.66%), and 50 for OPG (50/50, 100%). Conclusion BSP can be efficiently used to investigate the methylation of target gene promoters in umbilical cord blood DNA.
Collapse
Affiliation(s)
- Sadegh Baradaran Mahdavi
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Morteza Javadirad
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahsa Rafieian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Poursafa
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Seyede Shahrbanoo Daniali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahar Heidari-Beni
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Goodarzi-Khoigani
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Vahdatpour
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Mirhendi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Zeng JY, Zhang M, Chen XH, Liu C, Deng YL, Chen PP, Miao Y, Cui FP, Shi T, Lu TT, Liu XY, Wu Y, Li CR, Liu CJ, Zeng Q. Prenatal exposures to phthalates and bisphenols in relation to oxidative stress: single pollutant and mixtures analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13954-13964. [PMID: 38267646 DOI: 10.1007/s11356-024-32032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Prenatal exposures to phthalates and bisphenols have been shown to be linked with adverse birth outcomes. Oxidative stress (OS) is considered a potential mechanism. The objective of this study was to explore the individual and mixtures of prenatal exposures to phthalates and bisphenols in associations with OS biomarkers. We measured eight phthalate metabolites and three bisphenols in the urine samples from 105 pregnant women in Wuhan, China. Urinary 8-hydroxydeoxyguanosine (8-OHdG), 8-isoprostaglandin F2α (8-isoPGF2α), and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) were determined as OS biomarkers. The OS biomarkers in associations with the individual chemicals were estimated by linear regression models and restricted cubic spline (RCS) models, and their associations with the chemical mixtures were explored by quantile g-computation (qg-comp) models. In single-pollutant analyses, five phthalate metabolites including monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were positively associated with urinary 8-OHdG levels (all FDR-adjusted P = 0.06). These associations were further confirmed by the RCS models and were linear (P for overall association ≤ 0.05 and P for non-linear association > 0.05). In mixture analyses, qg-comp models showed that a one-quartile increase in the chemical mixtures of phthalate metabolites and bisphenols was positively associated with urinary levels of 8-OHdG and 8-isoPGF2α, and bisphenol A (BPA) and bisphenol F (BPF) were the most contributing chemicals, respectively. Prenatal exposures to individual phthalates and mixtures of phthalates and bisphenols were associated with higher OS levels.
Collapse
Affiliation(s)
- Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xu-Hui Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, People's Republic of China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, People's Republic of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Yao X, Wang Y, Ma Y, Fu M, Wang H, Tang D, Nie J. Associations between prenatal exposure to polycyclic aromatic hydrocarbons and thyroid hormones in umbilical cord blood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27379-2. [PMID: 37249775 DOI: 10.1007/s11356-023-27379-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
We explored the association between maternal urinary polycyclic aromatic hydrocarbon (PAH) metabolites and thyroid hormones in umbilical cord blood in 120 pairs of pregnant women and newborns. Maternal urinary PAH metabolites were measured using high-performance liquid chromatography with tandem mass spectrometry. Thyroid hormones were measured using a flow fluorescence assay. The dose-response relationship between PAH metabolites and thyroid hormones was analyzed using the generalized linear model and restricted cubic spline model. Results showed that ƩOH PAHs in maternal urine had a negative effect on triiodothyronine (T3). Associations between maternal urinary PAH metabolites and thyroid hormones in umbilical cord blood plasma were observed. Prenatal exposure to PAHs could affect neonatal thyroid hormones, thereby disrupting neonatal thyroid function.
Collapse
Affiliation(s)
- Xiyuan Yao
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China
| | - Yidong Wang
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China
| | - Yifei Ma
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China
| | - Mengmeng Fu
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China
| | - Huimin Wang
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China
| | - Deliang Tang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168Th Street, New York, NY, 10032, USA
| | - Jisheng Nie
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Zhang M, Deng YL, Liu C, Lu WQ, Zeng Q. Impacts of disinfection byproduct exposures on male reproductive health: Current evidence, possible mechanisms and future needs. CHEMOSPHERE 2023; 331:138808. [PMID: 37121289 DOI: 10.1016/j.chemosphere.2023.138808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Disinfection byproducts (DBPs) are a class of ubiquitous chemicals in drinking water and inevitably result in widespread human exposures. Potentially adverse health effects of DBP exposures, including reproductive and developmental outcomes, have been increasing public concerns. Several reviews have focused on the adverse pregnancy outcomes of DBPs. This review summarized current evidence on male reproduction health upon exposure to DBPs from toxicological and epidemiological literature. Based on existing experimental studies, there are sufficient evidence showing that haloacetic acids (HAAs) are male reproductive toxicants, including reduced epididymal weight, decreased semen parameters and sperm protein 22, and declined testosterone levels. However, epidemiological evidence remains insufficient to support a link of DBP exposures with adverse male reproductive outcomes, despite that blood and urinary DBP biomarkers are associated with decreased semen quality. Eight potential mechanisms, including germ/somatic cell dysfunction, oxidative stress, genotoxicity, inflammation, endocrine hormones, folate metabolism, epigenetic alterations, and gut microbiota, are likely involved in male reproductive toxicity of DBPs. We also identified knowledge gaps in toxicological and epidemiological studies to enhance future needs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Urinary trihalomethane concentrations and liver function indicators: a cross-sectional study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39724-39732. [PMID: 36596971 DOI: 10.1007/s11356-022-25072-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
While it is known that exposure to disinfection by-products (DBPs), including trihalomethanes (THMs), impairs liver function, few epidemiological studies have explored this association. Here, we determined the concentrations of four urinary trihalomethanes (chloroform [TCM], and three Br-THMs, bromodichloromethane [BDCM], dibromochloromethane [DBCM], and bromoform [TBM]), and nine serum liver function indicators in 182 adults ≥ 18 years of age, examined at a medical examination center in Wuxi, China, in 2020 and 2021. Generalized linear model analysis revealed positive associations between urinary DBCM and alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), total protein (TP), and albumin (ALB). Urinary Br-THMs and total THMs (TTHMs) were positively associated with ALT, AST, TBIL, indirect bilirubin (IBIL), TP, and ALB (all P < 0.05). Urinary THMs were not associated with alkaline phosphatase (ALP) or glutamine transaminase (GGT) (all P > 0.05). Generalized additive model-based penalized regression splines were used to confirm these associations. In conclusion, THM exposure was associated with altered serum biomarkers of liver function.
Collapse
|
7
|
Navarro-Lafuente F, Adoamnei E, Arense-Gonzalo JJ, Prieto-Sánchez MT, Sánchez-Ferrer ML, Parrado A, Fernández MF, Suarez B, López-Acosta A, Sánchez-Guillamón A, García-Marcos L, Morales E, Mendiola J, Torres-Cantero AM. Maternal urinary concentrations of bisphenol A during pregnancy are associated with global DNA methylation in cord blood of newborns in the "NELA" birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156540. [PMID: 35688234 DOI: 10.1016/j.scitotenv.2022.156540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) set a public health risk through disruption of normal physiological processes. The toxicoepigenetic mechanisms of developmental exposure to common EDCs, such as bisphenol A (BPA), are poorly known. The present study aimed to evaluate associations between perinatal maternal urinary concentrations of BPA, bisphenol S (BPS) and bisphenol F (BPF) and LINE-1 (long interspersed nuclear elements) and Alu (short interspersed nuclear elements, SINEs) DNA methylation levels in newborns, as surrogate markers of global DNA methylation. Data come from 318 mother-child pairs of the `Nutrition in Early Life and Asthma´ (NELA) birth cohort. Urinary bisphenol concentration was measured by dispersive liquid-liquid microextraction and ultrahigh performance liquid chromatography with tandem mass spectrometry detection. DNA methylation was quantitatively assessed by bisulphite pyrosequencing on 3 LINEs and 5 SINEs. Unadjusted linear regression analyses showed that higher concentration of maternal urinary BPA in 24th week's pregnancy was associated with an increase in LINE-1 methylation in all newborns (p = 0.01) and, particularly, in male newborns (p = 0.03). These associations remained in full adjusted models [beta = 0.09 (95 % CI = 0.03; 0.14) for all newborns; and beta = 0.10 (95 % CI = 0.03; 0.17) for males], including a non-linear association for female newborns as well (p-trend = 0.003). No associations were found between maternal concentrations of bisphenol and Alu sequences. Our results suggest that exposure to environmental levels of BPA may be associated with a modest increase in LINE-1 methylation -as a relevant marker of epigenomic stability- during human fetal development. However, any effects on global DNA methylation are likely to be small, and of uncertain biological significance.
Collapse
Affiliation(s)
| | - Evdochia Adoamnei
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
| | - Julián J Arense-Gonzalo
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María T Prieto-Sánchez
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain
| | - María L Sánchez-Ferrer
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain
| | - Antonio Parrado
- Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mariana F Fernández
- University of Granada, Centro de Investigación Biomédica, Granada, Spain; Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Suarez
- University of Granada, Centro de Investigación Biomédica, Granada, Spain; Instituto de Investigación Biosanitaria Ibs. Granada, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Luis García-Marcos
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain; Network of Asthma and Adverse and Allergic Reactions (ARADyAL), Spain
| | - Eva Morales
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Jaime Mendiola
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto M Torres-Cantero
- University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB), Murcia, Spain; "Virgen de la Arrixaca" University Clinical Hospital, Murcia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER Epidemiología y Salud Pública, CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Zhang M, Liu C, Li WD, Xu XD, Cui FP, Chen PP, Deng YL, Miao Y, Luo Q, Zeng JY, Lu TT, Shi T, Zeng Q. Individual and mixtures of metal exposures in associations with biomarkers of oxidative stress and global DNA methylation among pregnant women. CHEMOSPHERE 2022; 293:133662. [PMID: 35063557 DOI: 10.1016/j.chemosphere.2022.133662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Prenatal exposure to metals has been linked with adverse pregnancy outcomes. Oxidative stress and epigenetic changes are potential mechanisms of action. OBJECTIVES We aimed to examine the associations of individual and mixtures of metal exposures with oxidative stress and DNA methylation among pregnant women. METHODS We measured a panel of 16 metals and 3 oxidative stress biomarkers including 8-hydroxydeoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) and 8-isoprostaglandin F2α (8-isoPGF2α) in urine from 113 pregnant women in a Chinese cohort. Biomarkers of global DNA methylation including Alu and long interspersed nucleotide element-1 (LINE-1) in cord blood were measured. Multivariable linear regression and Bayesian kernel machine regression (BKMR) models were separately applied to estimate the associations between individual and mixtures of metal exposures and biomarkers of oxidative stress and global DNA methylation. RESULTS In single-metal analyses, we observed positive associations between 11 metals [arsenic (As), cadmium (Cd), thallium (Tl), barium (Ba), nickel (Ni), vanadium (V), cobalt (Co), zinc (Zn), copper (Cu), selenium (Se) and molybdenum (Mo)] and at least one of oxidative stress biomarkers (all FDR-adjusted P-values < 0.05). In mixture analyses, we found positive overall associations of metal mixtures with 8-OHdG and 8-isoPGF2α, and Se was the most important predictor. There was no evidence on associations of urinary metals as individual chemicals and mixtures with Alu and LINE-1 methylation. CONCLUSION Urinary metals as individual chemicals and mixtures were associated with increased oxidative stress, especially Se.
Collapse
Affiliation(s)
- Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Ding Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xue-Dan Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
9
|
Liu C, Sun Y, Mustieles V, Chen YJ, Huang LL, Deng YL, Wang YX, Lu WQ, Messerlian C. Prenatal Exposure to Disinfection Byproducts and Intrauterine Growth in a Chinese Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16011-16022. [PMID: 34813313 DOI: 10.1021/acs.est.1c04926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Disinfection byproduct (DBP) exposure has been associated with birth size, pregnancy oxidative stress, and other adverse perinatal outcomes. However, little is known about the potential effect of prenatal DBP exposure on intrauterine growth. The present study included 1516 pregnant women from the Xiaogan Disinfection By-Products (XGDBP) birth cohort who were measured for four blood trihalomethanes [i.e., chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)] and two urinary haloacetic acids [i.e., dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA)] across pregnancy trimesters. Second- and third-trimester fetal ultrasound measures of the abdominal circumference (AC), head circumference, biparietal diameter, femur length, and estimated fetal weight and birth weight were converted into z-scores. After adjusting for potential confounders, linear mixed models showed a decreasing AC z-score across tertiles of blood brominated THM (Br-THMs, the sum of BDCM, DBCM, and TBM) and total THM (THM4, the sum of Br-THMs and TCM) concentrations (both p for trend <0.01). We also observed a decreasing AC z-score across categories of blood TBM during pregnancy trimesters (p for trend = 0.03). Urinary haloacetic acids were unrelated to fetal growth parameters. In summary, prenatal exposure to THMs, particularly during the first trimester, was associated with reduced fetal abdominal circumference.
Collapse
Affiliation(s)
- Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yang Sun
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Madrid 28029, Spain
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Li-Li Huang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yan-Ling Deng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Sun Y, Wang YX, Liu C, Chen YJ, Lu WQ, Messerlian C. Trimester-Specific Blood Trihalomethane and Urinary Haloacetic Acid Concentrations and Adverse Birth Outcomes: Identifying Windows of Vulnerability during Pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:107001. [PMID: 33026246 PMCID: PMC7539675 DOI: 10.1289/ehp7195] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Some disinfection by-products (DBPs) are reproductive and developmental toxicants in laboratory animals. However, studies of trimester-specific DBP exposure on adverse birth outcomes in humans are inconsistent. OBJECTIVE We examined whether trimester-specific blood and urinary biomarkers of DBP were associated with small for gestational age (SGA), low birth weight (LBW), and preterm birth. METHODS A total of 4,086 blood and 3,951 urine samples were collected across pregnancy trimesters among 1,660 mothers from Xiaogan City, China. Blood samples were quantified for biomarkers of trihalomethanes (THMs): chloroform (TCM), bromodichloromethane, dibromochloromethane, and bromoform. Urine samples were quantified for biomarkers of haloacetic acids (HAA): dichloroacetic acid and trichloroacetic acid. Birth outcomes were abstracted at delivery from medical records. We used Poisson regression models with log link functions to estimate risk ratios (RRs) and 95% confidence intervals (CIs) for SGA, LBW, and preterm birth across tertiles (or categories) of DBP biomarker concentrations measured across pregnancy trimesters. We also examined the relative exposure differences across gestation comparing adverse outcomes with normal births using mixed-effects models. RESULTS Blood TCM concentrations in the second trimester were associated with an elevated risk of SGA comparing middle vs. lowest (RR, 2.34; 95% CI: 1.02, 5.35) and highest vs. lowest (RR, 2.47; 95% CI: 1.09, 5.58) exposure groups. Third-trimester blood TCM concentrations were also associated with an increased risk of SGA comparing the second tertile with the first (RR, 2.61; 95% CI: 1.15, 5.92). We found that maternal blood TCM concentrations were significantly higher for SGA compared with non-SGA births across the period from 23 to 34 wk gestation. Other blood and urinary DBP biomarkers examined were unrelated to SGA, LBW, or preterm birth. CONCLUSION Blood TCM concentrations in mid to late pregnancy were associated with an increased risk of SGA, whereas other biomarkers of DBPs examined across pregnancy were not associated with birth outcomes. https://doi.org/10.1289/EHP7195.
Collapse
Affiliation(s)
- Yang Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chong Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Carmen Messerlian
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Chen YJ, Duan P, Meng TQ, Chen HG, Chavarro JE, Xiong CL, Pan A, Wang YX, Lu WQ, Messerlian C. Associations of blood trihalomethanes with semen quality among 1199 healthy Chinese men screened as potential sperm donors. ENVIRONMENT INTERNATIONAL 2020; 134:105335. [PMID: 31783240 DOI: 10.1016/j.envint.2019.105335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Trihalomethanes (THMs) have demonstrated adverse effects on male reproductive systems in experimental animals, but human evidence has been inconsistent. Prior researches have been limited by small sample sizes and inadequate exposure assessment. OBJECTIVES To investigate the association between blood THMs and repeated measurements of semen quality parameters among 1199 healthy men screened as potential sperm donors. METHODS We recruited healthy men presenting to the Hubei Province Human Sperm Bank from April to December 2017. At study entry, each participant provided a spot blood sample which was used to quantify blood concentrations of four THMs: chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (TBM). The summary measures of exposure for brominated THMs (Br-THMs; molar sum of BDCM, DBCM and TBM) and total THMs (TTHMs; molar sum of TCM and Br-THMs) were also calculated. We used multivariable linear regression models to estimate the cross-sectional associations of tertiles of blood THM concentrations with semen quality parameters measured at study entry, and mixed-effect models to estimate the longitudinal associations accounting for repeated measures of semen quality, adjusting for relevant confounding factors. RESULTS In the cross-sectional analysis, several inverse dose-response relationships were observed across tertiles of blood TCM concentrations and sperm count, total motility and progressive motility, and between blood DBCM, and Br-THMs, and TTHMs and sperm count and concentration. The inverse associations of blood TCM, DBCM, Br-THMs and TTHMs with sperm count were confirmed in the longitudinal, repeated measure analysis. CONCLUSION Our results suggest that exposure to THMs from drinking water may be related to decreased semen quality in young healthy men.
Collapse
Affiliation(s)
- Ying-Jun Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Peng Duan
- Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, PR China
| | - Tian-Qing Meng
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Hubei Province Human Sperm Bank, Wuhan, Hubei, PR China
| | - Heng-Gui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jorge E Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cheng-Liang Xiong
- Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Hubei Province Human Sperm Bank, Wuhan, Hubei, PR China
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Yi-Xin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Wen-Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Carmen Messerlian
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Hu J, Yu Y. Epigenetic response profiles into environmental epigenotoxicant screening and health risk assessment: A critical review. CHEMOSPHERE 2019; 226:259-272. [PMID: 30933735 DOI: 10.1016/j.chemosphere.2019.03.096] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/06/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The epigenome may be an important interface between exposure to environmental contaminants and adverse outcome on human health. Many environmental pollutants deregulate gene expression and promote diseases by modulating the epigenome. Adverse epigenetic responses have been widely used for risk assessment of chemical substances. Various pollutants, including trace elements and persistent organic pollutants, have been detected frequently in the environment. Epigenetic toxicity of environmental matrices including water, air, soil, and food cannot be ignored. This review provides a comprehensive overview of epigenetic effects of pollutants and environmental matrices. We start with an overview of the mechanisms of epigenetic regulation and the effects of several types of environmental pollutants (trace elements, persistent organic pollutants, endocrine disrupting chemicals, and volatile organic pollutants) on epigenetic modulation. We then discuss the epigenetic responses to environmental water, air, and soil based on in vivo and in vitro assays. Finally, we discuss recommendations to promote the incorporation of epigenotoxicity into contamination screening and health risk assessment.
Collapse
Affiliation(s)
- Junjie Hu
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, Guangdong, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
13
|
Deng YL, Yang P, Cao WC, Wang YX, Liu C, Chen YJ, Huang LL, Lu WQ, Wang LQ, Zeng Q. Urinary biomarker of late pregnancy exposure to drinking water disinfection by-products and ultrasound measures of fetal growth in Wuhan, China. ENVIRONMENTAL RESEARCH 2019; 170:128-133. [PMID: 30579986 DOI: 10.1016/j.envres.2018.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/24/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Disinfection by-products (DBPs) have been shown to be reproductive and developmental toxicity. However, few studies examine the effect of prenatal exposure to DBPs on fetal growth via ultrasound measures. OBJECTIVE To investigate the associations between maternal exposure to DBPs during late pregnancy and ultrasound measures of fetal growth. METHODS We included 332 pregnant women who presented to a hospital to wait for delivery in Wuhan, China. Ultrasound parameters of fetal growth including femur length (FL), head circumference (HC), abdominal circumference (AC) and biparietal diameter (BPD) were assessed. We measured maternal TCAA concentrations in first morning urine collected from late pregnancy as a biomarker of in utero DBP exposure levels. Multivariable linear regression models were used to examine the associations between maternal urinary TCAA concentrations during late pregnancy and ultrasound parameters of fetal growth. RESULTS We found that elevated maternal creatinine (Cr)-adjusted urinary TCAA levels had negative associations with BPD, HC and FL in boys but not in girls (P interaction = 0.04, 0.05 and 0.08, respectively). Male fetal BPD, HC and FL had decreases of 0.21 cm (95% CI: -0.35, -0.07; P for trend = 0.003), 0.46 cm (95% CI: -0.81, -0.10; P for trend = 0.01) and 0.17 cm (95% CI: -0.30, -0.04; P for trend = 0.01) for the highest vs. lowest tertile of Cr-adjusted urinary TCAA, respectively. These negative associations persisted for maternal Cr-adjusted urinary TCAA concentrations modeled as continuous variables. CONCLUSION The results from our study suggest that maternal exposure to TCAA during late pregnancy may have adverse effects on male fetal growth.
Collapse
Affiliation(s)
- Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Cheng Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Long-Qiang Wang
- Department of Thyroid and Breast Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
14
|
Salas LA, Baker ER, Nieuwenhuijsen MJ, Marsit CJ, Christensen BC, Karagas MR. Maternal swimming pool exposure during pregnancy in relation to birth outcomes and cord blood DNA methylation among private well users. ENVIRONMENT INTERNATIONAL 2019; 123:459-466. [PMID: 30622071 PMCID: PMC6599635 DOI: 10.1016/j.envint.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 05/19/2023]
Abstract
Swimming in pools during pregnancy may expose the fetus to water disinfection by-products (DBP). As yet, our understanding of the impacts on DBPs on the fetus is uncertain. Individuals with public water systems are typically exposed to DBPs through drinking, showering and bathing, whereas among those on private water systems, swimming in pools may be the primary exposure source. We analyzed the effects of maternal swimming on birth outcomes and cord blood epigenetic changes in the New Hampshire Birth Cohort Study, a cohort of pregnant women with households on private water systems. Information about swimming in pools during pregnancy was obtained from 1033 women via questionnaires. Swimming pool use and duration were modeled using linear regression with newborn weight, length, and head circumference (z-scores) and genome wide cord blood DNA methylation as the outcomes and with adjustment for potential confounders. Overall 19.7% of women reported swimming in a pool during pregnancy. Among swimmers, duration of swimming was inversely related to head circumference (-0.02 z-score per 10% increase in duration, P = 0.004). No associations were observed with birth weight, length or DNA methylation modifications. Our findings suggest swimming pool exposure may impact the developing fetus although longer-term studies are needed.
Collapse
Affiliation(s)
- Lucas A Salas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; The Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon 03756, NH, USA.
| | - Emily R Baker
- Department of Obstetrics and Gynecology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA.
| | - Mark J Nieuwenhuijsen
- ISGlobal, The Barcelona Institute for Global Health, Barcelona 08003, Catalonia, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Catalonia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona 08003, Catalonia, Spain.
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health of Emory University, Atlanta 30322, GA, USA.
| | - Brock C Christensen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon 03756, NH, USA; Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon 03756, NH, USA.
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Dartmouth College, Lebanon 03756, NH, USA; The Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon 03756, NH, USA.
| |
Collapse
|
15
|
Nie J, Li J, Cheng L, Li Y, Deng Y, Yan Z, Duan L, Niu Q, Perera F, Tang D. Maternal urinary 2-hydroxynaphthalene and birth outcomes in Taiyuan, China. Environ Health 2018; 17:91. [PMID: 30572877 PMCID: PMC6302466 DOI: 10.1186/s12940-018-0436-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 12/04/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Naphthalene is the simplest polycyclic aromatic hydrocarbon (PAH). It is easily emitted into the atmosphere, posing a significant risk to human health. However, limited studies have described the impact of naphthalene exposure on birth outcomes. In this study, we investigated the association between the maternal urinary metabolites of naphthalene, 2-hydroxynaphthalene (2-OH NAP), and birth outcomes. METHOD In the present study, four urinary PAH metabolites were measured in 263 pregnant women during late pregnancy. Multiple linear regression analysis was used to analyze the relationship between the concentrations of 2-OH NAP and birth outcomes, and restricted cubic spline models were further used to examine the shapes of the dose-response association. RESULT General linear models showed that prenatal urinary 2-OH NAP was associated with lower birth weight (BW) (- 4.38% for the high vs. low exposure group of 2-OH NAP; p for trend = 0.049) and higher cephalization index (CI) (4.30% for the high vs. low exposure group of 2-OH NAP; p for trend = 0.038). These associations were linear and significant when 2-OH NAP was modeled as a continuous variable in restricted cubic spline models (P linear = 0.0293 for 2-OH NAP and BW; P linear = 0.0326 for 2-OH NAP and CI). Multiple linear regression data indicated that each 1 ln-unit increase in 2-OH NAP was significantly associated with a 2.09 g/cm increase in the CI. The associations among 2-OH NAP, BW, and CI were also observed in a subset of participants residing close to arterial traffic. CONCLUSION Our data indicated that prenatal exposure to naphthalene had an adverse effect on fetal birth outcomes, especially the brain development index. Reduced exposure to naphthalene may improve newborn health outcomes. In Taiyuan, naphthalene may result from traffic pollution.
Collapse
Affiliation(s)
- Jisheng Nie
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th Street, New York, NY 10032 USA
| | - Jinyu Li
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Lin Cheng
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Yanning Li
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Yunjun Deng
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Zhiwei Yan
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Lei Duan
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Qiao Niu
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th Street, New York, NY 10032 USA
| | - Deliang Tang
- Department of Occupational and Environmental Health, School of Public Health, Shanxi Medical University, Xinjiannan Road 56, Taiyuan, 030001 China
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722W. 168th Street, New York, NY 10032 USA
| |
Collapse
|
16
|
Williams AL, Bates CA, Pace ND, Leonhard MJ, Chang ET, DeSesso JM. Impact of chloroform exposures on reproductive and developmental outcomes: A systematic review of the scientific literature. Birth Defects Res 2018; 110:1267-1313. [PMID: 30350414 DOI: 10.1002/bdr2.1382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 12/26/2022]
Abstract
AIMS We assessed the animal and epidemiological data to determine if chloroform exposure causes developmental and/or reproductive toxicity. RESULTS AND DISCUSSION Initial scoping identified developmental toxicity as the primary area of concern. At levels producing maternal toxicity in rats and mice, chloroform caused decrements in fetal weights and associated delays in ossification. In a single mouse inhalation study, exposure to a high concentration of chloroform was associated with small fetuses and increased cleft palate. However, oral exposure of mice to chloroform at a dose 4 times higher was negative for cleft palate; multiple inhalation studies in rats were also negative. Epidemiologic data on low birth weight and small for gestational age were generally equivocal, preventing conclusions from being drawn for humans. The animal data also show evidence of very early (peri-implantation) total litter losses at very high exposure levels. This effect is likely maternally mediated rather than a direct effect on the offspring. Finally, the epidemiologic data indicate a possible association of higher chloroform exposure with lower risk of preterm birth (<37 weeks gestation). CONCLUSIONS The available animal data suggest that exposures lower than those causing maternal toxicity should be without developmental effects in the offspring. Also, most studies in humans rely on group-level geographic exposure data, providing only weak epidemiologic evidence for an association with development outcomes and fail to establish a causal role for chloroform in the induction of adverse developmental outcomes at environmentally relevant concentrations.
Collapse
Affiliation(s)
| | | | | | | | | | - John M DeSesso
- Exponent, Inc., Alexandria, Virginia.,Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
17
|
Huang LL, Zhou B, Ai SH, Yang P, Chen YJ, Liu C, Deng YL, Lu Q, Miao XP, Lu WQ, Wang YX, Zeng Q. Prenatal phthalate exposure, birth outcomes and DNA methylation of Alu and LINE-1 repetitive elements: A pilot study in China. CHEMOSPHERE 2018; 206:759-765. [PMID: 29793068 DOI: 10.1016/j.chemosphere.2018.05.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Epigenetic mechanisms, such as altered DNA methylation, may participate in the relationship between prenatal phthalate exposure and adverse birth outcomes. OBJECTIVE To explore the mediation effect of DNA methylation in the associations of phthalate exposure before delivery with birth outcomes in a Chinese cohort. METHODS Eight phthalate metabolites in maternal urine before delivery and DNA methylation of Alu and long interspersed nucleotide elements (LINE-1) in cord blood were determined among 106 mother-infant pairs. General additive models were used to assess the associations of maternal urinary phthalate metabolites with birth outcomes and DNA methylation; the mediating role of DNA methylation in cord blood was evaluated by mediation analysis. RESULTS We found sex-specific associations between prenatal phthalate exposure and birth outcomes and DNA methylation of cord blood. For example, the molar sum of di-2-(ethylhexyl) phthalate (∑DEHPm) metabolites in maternal urine was positively associated with gestational age among male newborns only (P < 0.05); maternal urinary monobenzyl phthalate (MBzP) was negatively associated with Alu methylation among female newborns only (P < 0.05). Mediation analysis did not find that methylation of Alu and LINE-1 to be a direct mediator in the relationships between maternal urinary phthalate metabolites before delivery and birth outcomes. CONCLUSION Prenatal exposure to certain phthalates was associated with altered birth outcomes and decreased repetitive element methylation of newborns. However, the altered birth outcomes exerted by prenatal phthalate exposure does not seem to be directly mediated through repetitive element methylation in cord blood.
Collapse
Affiliation(s)
- Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, WuHan, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Song-Hua Ai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiao-Ping Miao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
18
|
Yang P, Gong YJ, Cao WC, Wang RX, Wang YX, Liu C, Chen YJ, Huang LL, Ai SH, Lu WQ, Zeng Q. Prenatal urinary polycyclic aromatic hydrocarbon metabolites, global DNA methylation in cord blood, and birth outcomes: A cohort study in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:396-405. [PMID: 29202418 DOI: 10.1016/j.envpol.2017.11.082] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/17/2017] [Accepted: 11/26/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) is a potential risk factor for adverse birth outcomes. Epigenetic mechanisms may play a key role in which PAHs exert its effects. OBJECTIVE Our study aimed to examine whether prenatal PAH exposure was associated with adverse birth outcomes and altered DNA methylation and to explore potential mediating roles of DNA methylation. METHODS Ten urinary PAH metabolites were measured from 106 pregnant women during late pregnancy in a Chinese cohort study. Cord blood DNA methylation in long interspersed nucleotide element-1 (LINE-1) and Alu repetitive elements as surrogates of global DNA methylation was analyzed by bisulfite pyrosequencing. Multivariable linear regression was used to estimate the associations of urinary PAH metabolites with birth outcomes and DNA methylation, and a mediation analysis was also conducted. RESULTS Prenatal urinary 2-hydroxynaphthalene (2-OHNa), ∑OHNa (sum of 1- and 2-OHNa), and sum of monohydroxy-PAH (∑OH-PAHs) were associated with lower birth length (e.g., -0.80%, 95% CI: -1.39%, -0.20% for the third vs. first tertile of 2-OHNa; p for trend = 0.01). Prenatal urinary 2-OHNa and 1-hydroxyphenanthrene (1-OHPh) were associated with lower Alu and LINE-1 methylation (e.g., -1.88%, 95% CI: -3.73%, -0.10% for the third vs. first tertile tertile of 2-OHNa in Alu methylation; p for trend = 0.04). Mediation analysis failed to show a mediator effect of global DNA methylation in the association between prenatal urinary OH-PAHs and birth outcomes. CONCLUSIONS Prenatal specific PAH exposures are associated with decreased birth length and global DNA methylation. However, global DNA methylation does not mediate the associations of prenatal PAH exposure with birth outcomes. Further studies are needed to confirm the results.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ya-Jie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wen-Cheng Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Rui-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Song-Hua Ai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|