1
|
Jürison M, Pent K, Raimets R, Naudi S, Mänd M, Karise R. Azoxystrobin hides the respiratory failure of low dose sulfoxaflor in bumble bees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 289:117487. [PMID: 39647372 DOI: 10.1016/j.ecoenv.2024.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Pollinators are exposed to multiple pesticides during their lifetime. Various pesticides are used in agriculture and thus not all mixtures have been tested against each other and little is known about them. In this article, we investigate the impact of sulfoxaflor, a novel sulfoximine insecticide, and azoxystrobin, a widely used strobilurin fungicide, on bumble bee Bombus terrestris worker survival and physiological functions. The dosages used in this experiment are selected from dose response experiments based on LD50 data. Due to variable interactive effects on survival, our findings reveal distinct effects on bumble bee metabolic rate and respiratory patterns induced by sulfoxaflor in combination with azoxystrobin, shedding light on previously unexplored aspects of its physiological impact. Notably, we observed noteworthy differences between oral and contact treatments, emphasizing the importance of considering distinct application methods when evaluating pesticide effects and interactions. Specifically, our results indicate that azoxystrobin can mitigate the impact of sulfoxaflor, suggesting dose-dependent antagonistic interaction between these pesticides in contact exposure. In oral exposure, however, Amistar tended to potentiate the sulfoxaflor effect. This study contributes valuable insights into the multifaceted dynamics of pesticide exposure and interactions, paving the way for a more nuanced understanding of their implications on pollinator health.
Collapse
Affiliation(s)
- Margret Jürison
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | - Kaarel Pent
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Risto Raimets
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Sigmar Naudi
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Marika Mänd
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Reet Karise
- Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
2
|
Vázquez DE, Verellen F, Farina WM. Early exposure to glyphosate during larval development induces late behavioural effects on adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124674. [PMID: 39111532 DOI: 10.1016/j.envpol.2024.124674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/12/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
As the most abundant pollinator insect in crops, Apis mellifera is a sentinel species of the pollinator communities. In these ecosystems, honey bees of different ages and developmental stages are exposed to diverse agrochemicals. However, most toxicological studies analyse the immediate effects during exposure. Late effects during adulthood after early exposure to pollutants during larval development are poorly studied in bees. The herbicide glyphosate (GLY) is the most applied pesticide worldwide. GLY has been detected in honey and beebread from hives near treated crops. Alterations in growth, morphogenesis or organogenesis during pre-imaginal development could induce late adverse effects after the emergence. Previous studies have demonstrated that GLY alters honey bee development, immediately affecting survival, growth and metabolism, followed by late teratogenic effects. The present study aims to determine the late impact on the behaviour and physiology of adult bees after pre-imaginal exposure to GLY. For that, we reared brood in vitro or in the hive with sub-chronic exposure to the herbicide with the average detected concentration in hives. Then, all newly emerged bees were reared in an incubator until maturity and tested when they became nurse-aged bees. Three behavioural responses were assessed as markers of cognitive and physiological impairment. Our results show i) decreased sensitivity to sucrose regardless of the rearing procedure, ii) increased choice latency and locomotor alterations during chemotaxis and iii) impaired associative learning. These late toxicity signs could indicate adverse effects on task performance and colony efficiency.
Collapse
Affiliation(s)
- Diego E Vázquez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Facundo Verellen
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Walter M Farina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Insectos Sociales, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Tiritelli R, Zavatta L, Tadei R, Mathias da Silva EC, Sgolastra F, Cilia G. Microplastic ingestion and co-exposure to Nosema ceranae and flupyradifurone reduce the survival of honey bees (Apis mellifera L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104571. [PMID: 39401539 DOI: 10.1016/j.etap.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Bees are exposed to several threats, including pathogens (i.e. Nosema ceranae), pesticides and environmental contaminants. The new insecticide flupyradifurone, and the microplastics in the environment, have raised significant concerns on bee health. This study evaluated the simultaneous effects of microplastics, flupyradifurone, and N. ceranae on honey bee health, focusing on survival rates, N. ceranae replication, daily food consumption, and bee midgut histological alterations. Results showed a significant decrease in bee longevity across all treatments compared to the control, with the combination of flupyradifurone, microplastics, and N. ceranae having the most severe impact. Microplastics and flupyradifurone exposure also increased N. ceranae proliferation, especially in bees subjected to both stressors. Histological analysis revealed reduced regenerative cell nests in the midgut and changes in the nuclear matrix, indicating stress responses. Overall, the simultaneous presence of both biotic and abiotic stressors in nature can synergistically interact, leading to harmful effects on bees.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Rafaela Tadei
- São Paulo State University, Institute of Biosciences, Rio Claro, Brazil
| | | | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy.
| |
Collapse
|
4
|
Wang Z, Du Z, Shi Y, Qi P, Di S, Zhao H, Ji X, Lu C, Wang X. Transfer and risk assessment of fipronil in laying hen tissues and eggs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172811. [PMID: 38701918 DOI: 10.1016/j.scitotenv.2024.172811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Fipronil is a persistent insecticide known to transfer into hen eggs from exposure from animal drinking water and feed, but some questions remain regarding its transfer behavior and distribution characteristics. Therefore, the dynamic metabolism, residue distribution and transfer factor (TF) of fipronil were investigated in 11 edible tissues of laying hens and eggs over 21 days. After a continuous low-dose drinking water exposure scenario, the sum of fipronil and all its metabolites (defined as fipronilT) quickly transferred to each edible tissue and gradually increased with exposure time. FipronilT residue in eggs first appeared at 3 days and then gradually increased. After a single high-dose feed exposure scenario, fipronilT residue in edible tissues first appeared after 2 h, quickly peaked at 1 day, and then gradually decreased. In eggs, fipronilT residue first appeared at 2 days, peaked 6-7 days and then gradually decreased. The TF values followed the order of the skin (0.30-0.73) > egg yolk (0.30-0.71) > bottom (0.21-0.59) after drinking water exposure, and the order of the skin (1.01-1.59) > bottom (0.75-1.1) > egg yolk (0.58-1.10) for feed exposure. Fipronil sulfone, a more toxic compound, was the predominant metabolite with higher levels distributed in the skin and bottom for both exposure pathways. FipronilT was distributed in egg yolks rather than in albumen owing to its lipophilicity, and the ratio of egg yolk to albumen may potentially reflect the time of exposure. The distinction is that the residues after feed exposure were much higher than that after drinking water exposure in edible tissues and eggs. The study highlights the residual characteristics of two exposure pathways, which would contribute to the tracing of contamination sources and risk assessment.
Collapse
Affiliation(s)
- Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Ziyan Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yanke Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Chunbo Lu
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
5
|
Pereira RC, Vieira Júnior JOL, Barcelos JVPL, Peçanha LS, França TA, Mendonça LVP, da Silva WR, Samuels RI, Silva GA. The stingless bee Trigona spinipes (Hymenoptera: Apidae) is at risk from a range of insecticides via direct ingestion and trophallactic exchanges. PEST MANAGEMENT SCIENCE 2024; 80:2188-2198. [PMID: 38158650 DOI: 10.1002/ps.7956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The stingless bee, Trigona spinipes, is an important pollinator of numerous native and cultivated plants. Trigona spinipes populations can be negatively impacted by insecticides commonly used for pest control in crops. However, this species has been neglected in toxicological studies. Here we observed the effects of seven insecticides on the survival of bees that had fed directly on insecticide-contaminated food sources or received insecticides via trophallactic exchanges between nestmates. The effects of insecticides on flight behavior were also determined for the compounds considered to be of low toxicity. RESULTS Imidacloprid, spinosad and malathion were categorized as highly toxic to T. spinipes, whereas lambda-cyhalothrin, methomyl and chlorfenapyr were of medium to low toxicity and interfered with two aspects of flight behavior evaluated here. Chlorantraniliprole was the only insecticide tested here that had no significant effect on T. spinipes survival, although it did interfere with one aspect of flight capacity. A single bee that had ingested malathion, spinosad or imidacloprid, could contaminate three, four and nineteen other bees, respectively via trophallaxis, resulting in the death of the recipients. CONCLUSION This is the first study to evaluate the ecotoxicology of a range of insecticides that not only negatively affected T. spinipes survival, but also interfered with flight capacity, a very important aspect of pollination behavior. The toxicity of the insecticides was observed following direct ingestion and also via trophallactic exchanges between nestmates, highlighting the possibility of lethal effects of these insecticides spreading throughout the colony, reducing the survival of non-foraging individuals. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renata Cunha Pereira
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - José Olívio Lopes Vieira Júnior
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | | | - Ludimila Simões Peçanha
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Thalles Alves França
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Laís Viana Paes Mendonça
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Wanderson Rosa da Silva
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Richard Ian Samuels
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| | - Gerson Adriano Silva
- Laboratory of Entomology and Plant Pathology, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Encerrado-Manriquez AM, Pouv AK, Fine JD, Nicklisch SCT. Enhancing knowledge of chemical exposures and fate in honey bee hives: Insights from colony structure and interactions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170193. [PMID: 38278225 DOI: 10.1016/j.scitotenv.2024.170193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Honey bees are unintentionally exposed to a wide range of chemicals through various routes in their natural environment, yet research on the cumulative effects of multi-chemical and sublethal exposures on important caste members, including the queen bee and brood, is still in its infancy. The hive's social structure and food-sharing (trophallaxis) practices are important aspects to consider when identifying primary and secondary exposure pathways for residential hive members and possible chemical reservoirs within the colony. Secondary exposures may also occur through chemical transfer (maternal offloading) to the brood and by contact through possible chemical diffusion from wax cells to all hive members. The lack of research on peer-to-peer exposures to contaminants and their metabolites may be in part due to the limitations in sensitive analytical techniques for monitoring chemical fate and dispersion. Combined application of automated honey bee monitoring and modern chemical trace analysis techniques could offer rapid progress in quantifying chemical transfer and accumulation within the hive environment and developing effective mitigation strategies for toxic chemical co-exposures. To enhance the understanding of chemical fate and toxicity within the entire colony, it is crucial to consider both the intricate interactions among hive members and the potential synergistic effects arising from combinations of chemical and their metabolites.
Collapse
Affiliation(s)
| | - Amara K Pouv
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA; Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Julia D Fine
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, 3026 Bee Biology Rd., Davis, CA 95616, USA
| | - Sascha C T Nicklisch
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Kiljanek T. Application of 3D-printed pollen traps as a useful tool for exposure and risk assessment of pesticide residues on bumblebees. CHEMOSPHERE 2024; 348:140748. [PMID: 37992905 DOI: 10.1016/j.chemosphere.2023.140748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
The study was designed to test the feasibility of using 3D-printed pollen traps for long-term monitoring of Bombus terrestris colonies' exposure to pesticide residues in pollen loads collected by them, along with an assessment of the resulting risks to the bumblebee's adults, larvae, and queens. Bumblebee colonies were placed in the vicinity of flowering orchards, winter oilseed rape, allotments, or home gardens for 6 weeks of the experiment. Pollen traps printed in 3D technology were installed in the hive inlets. The weight of bumblebee pollen loads obtained using pollen traps was in the range of 0.036-5.83 g. Pollen load samples were analyzed for residues of up to 261 pesticides and their metabolites by liquid and gas chromatography techniques coupled to tandem mass spectrometry (LC-MS/MS and GC-MS/MS). Residues of 18 fungicides, 12 herbicides, 6 insecticides, and an acaricide were detected. Herbicide - pendimethalin, fungicide - thiophanate-methyl, and insecticide - chlorpyrifos-ethyl were the most commonly detected pesticides. Chlorpyrifos and thiacloprid residues were detected in pollen load samples in the next year after their ban from use as plant protection products in the European Union. The risk of acute or chronic effects was assessed as negligible or low, although the chronic risk of bumblebee queens to insecticide chlorpyrifos and the acute risk of larvae exposed to acaricide fenpyroximate could be interpreted as moderate. The risk of sublethal effects related to chronic exposure of adult bumblebees and queens to pollen loads contaminated by chlorpyrifos-ethyl and cypermethrin cannot be excluded. The risk of chronic toxicity or sublethal effects may be particularly relevant for bumblebee queens, especially during their foraging in the initial period of establishing a new colony.
Collapse
Affiliation(s)
- Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Pulawy, Poland.
| |
Collapse
|
8
|
Kaila L, Antinoja A, Toivonen M, Jalli M, Loukola OJ. Oral exposure to thiacloprid-based pesticide (Calypso SC480) causes physical poisoning symptoms and impairs the cognitive abilities of bumble bees. BMC Ecol Evol 2023; 23:9. [PMID: 37020270 PMCID: PMC10077645 DOI: 10.1186/s12862-023-02111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Pesticides are identified as one of the major reasons for the global pollinator decline. However, the sublethal effects of pesticide residue levels found in pollen and nectar on pollinators have been studied little. The aim of our research was to study whether oral exposure to the thiacloprid levels found in pollen and nectar affect the learning and long-term memory of bumble bees. We tested the effects of two exposure levels of thiacloprid-based pesticide (Calypso SC480) on buff-tailed bumble bee (Bombus terrestris) in laboratory utilizing a learning performance and memory tasks designed to be difficult enough to reveal large variations across the individuals. RESULTS The lower exposure level of the thiacloprid-based pesticide impaired the bees' learning performance but not long-term memory compared to the untreated controls. The higher exposure level caused severe acute symptoms, due to which we were not able to test the learning and memory. CONCLUSIONS Our results show that oral exposure to a thiacloprid-based pesticide, calculated based on residue levels found in pollen and nectar, not only causes sublethal effects but also acute lethal effects on bumble bees. Our study underlines an urgent demand for better understanding of pesticide residues in the environment, and of the effects of those residue levels on pollinators. These findings fill the gap in the existing knowledge and help the scientific community and policymakers to enhance the sustainable use of pesticides.
Collapse
Affiliation(s)
- Lotta Kaila
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Antinoja
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Biology Centre of the Czech Academy of Sciences, Inst of Entomology, and Univ. of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Marjaana Toivonen
- Finnish Environment Institute (SYKE), Biodiversity Centre, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Marja Jalli
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Olli J. Loukola
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Biodiversity Unit, University of Oulu, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| |
Collapse
|
9
|
McKinnon AC, Collins L, Wood JL, Murphy N, Franks AE, Steinbauer MJ. Precision Monitoring of Honey Bee (Hymenoptera: Apidae) Activity and Pollen Diversity during Pollination to Evaluate Colony Health. INSECTS 2023; 14:95. [PMID: 36662023 PMCID: PMC9865544 DOI: 10.3390/insects14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Certain crops depend upon pollination services for fruit set, and, of these, almonds are of high value for Australia. Stressors, such as diseases, parasites, pesticides, and nutrition, can contribute to honey bee Apis mellifera L. colony decline, thereby reducing bee activity and pollination efficiency. In Australia, field studies are required to monitor honey bee health and to ascertain whether factors associated with colony decline are impacting hives. We monitored honey bee colonies during and after pollination services of almond. Video surveillance technology was used to quantify bee activity, and bee-collected pollen was periodically tested for pesticide residues. Plant species diversity was also assessed using DNA metabarcoding of the pollen. Results showed that bee activity increased in almond but not in bushland. Residues detected included four fungicides, although the quantities were of low risk of oral toxicity to bees. Floral diversity was lower in the pollen collected by bees from almonds compared to bushland. However, diversity was higher at the onset and conclusion of the almond bloom, suggesting that bees foraged more widely when availability was low. Our findings suggest that commercial almond orchards may sustain healthier bee colonies compared to bushland in early spring, although the magnitude of the benefit is likely landscape-dependent.
Collapse
Affiliation(s)
- Aimee C. McKinnon
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| | - Luke Collins
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC 3086, Australia
| | - Nick Murphy
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC 3086, Australia
| | - Martin J. Steinbauer
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
10
|
Hou R, Li C, Tan Y, Wang Y, Huang S, Zhao C, Zhang Z. Eco-friendly O-carboxymethyl chitosan base chlorfenapyr nanopesticide for effective pest control and reduced toxicity to honey bees. Int J Biol Macromol 2022; 224:972-983. [DOI: 10.1016/j.ijbiomac.2022.10.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
11
|
Inoue LVB, Domingues CEC, Gregorc A, Silva-Zacarin ECM, Malaspina O. Harmful Effects of Pyraclostrobin on the Fat Body and Pericardial Cells of Foragers of Africanized Honey Bee. TOXICS 2022; 10:530. [PMID: 36136494 PMCID: PMC9501569 DOI: 10.3390/toxics10090530] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Managed honey bees are daily exposed in agricultural settings or wild environments to multiple stressors. Currently, fungicide residues are increasingly present in bees' pollen and nectar and can harm colonies' production and survival. Therefore, our study aimed to evaluate the effects of the fungicide pyraclostrobin on the fat body and pericardial cells of Africanized honey bees. The foragers were divided into three experimental treatment groups and two controls: pyraclostrobin 0.125 ng/µL (FG1), 0.025 ng/µL (FG2), 0.005 ng/µL (FG3), untreated control (CTL), and acetone control (CAC). After five days of oral exposure (ad libitum), the bees were dissected and prepared for histopathological and morphometric analysis. The FG1-treated bees showed extensive cytoarchitecture changes in the fat body and pericardial cells, inducing cell death. Bees from the FG2 group showed disarranged oenocytes, peripheral vacuolization, and pyknotic nuclei of pericardial cells, but the cytoarchitecture was not compromised as observed in FG1. Additionally, immune system cells were observed through the fat body in the FG1 group. Bees exposed to FG3 demonstrated only oenocytes vacuolization. A significant decrease in the oenocyte's surface area for bees exposed to all pyraclostrobin concentrations was observed compared to the CTL and CAC groups. The bees from the FG1 and FG2 treatment groups presented a reduced surface area of pericardial cells compared to the controls and the FG3 group. This study highlighted the harmful effects of fungicide pyraclostrobin concentrations at the individual bee cellular level, potentially harming the colony level on continuous exposure.
Collapse
Affiliation(s)
- Lais V. B. Inoue
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)-“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil
| | - Caio E. C. Domingues
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)-“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Aleš Gregorc
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| | - Elaine C. M. Silva-Zacarin
- Laboratório de Ecotoxicologia e Análise de Integridade Ambiental (LEIA), Departamento de Biologia (DBio), Universidade Federal de São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais (CEIS), Departamento de Biologia Geral e Aplicada, Instituto de Biociências (IB), Universidade Estadual Paulista (UNESP)-“Júlio de Mesquita Filho”, Rio Claro 13506-900, SP, Brazil
| |
Collapse
|
12
|
Farruggia FT, Garber K, Hartless C, Jones K, Kyle L, Mastrota N, Milone JP, Sankula S, Sappington K, Stebbins K, Steeger T, Summers H, Thompson PG, Wagman M. A retrospective analysis of honey bee (Apis mellifera) pesticide toxicity data. PLoS One 2022; 17:e0265962. [PMID: 35390011 PMCID: PMC8989193 DOI: 10.1371/journal.pone.0265962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
Current USEPA ecological risk assessments for pesticide registration include a determination of potential risks to bees. Toxicity data are submitted to support these assessments and the USEPA maintains a large database containing acute and chronic toxicity data on adult and larval honey bees (Apis mellifera), which USEPA considers a surrogate for Apis and non-Apis bees. We compared these toxicity data to explore possible trends. This analysis indicated a significant correlation between acute contact and oral median lethal dose (LD50) values for adult honey bees (ρ = 0.74, p <0.0001). Using default EPA modeling assumptions, where exposure for an individual bee is roughly 12x lower through contact than through ingestion, the analysis indicates that the oral LD50 is similarly if not more protective of the contact LD50 for the majority of pesticides and modes of action evaluated. The analysis also provided evidence that compounds with a lower acute toxicity for adults through contact and oral exposure pathways may still be acutely toxic for larvae. The acute toxicity of herbicides and fungicides was higher for larvae relative to oral and contact toxicity for adult honey bees for the same compounds and the no observed adverse effect level (NOAEL) from chronic toxicity studies were lower for larvae relative to adults, indicating increased sensitivity of larvae. When comparing 8-day LD50 values between single dose larval acute studies to those derived from repeat dose 22-day larval chronic toxicity studies, the LD50 values derived from chronic studies were significantly lower than those from acute toxicity tests (Z = -37, p = 0.03).
Collapse
Affiliation(s)
- Frank T. Farruggia
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
- * E-mail:
| | - Kristina Garber
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Christine Hartless
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Kristin Jones
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Lee Kyle
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Nicholas Mastrota
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Joseph P. Milone
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Sujatha Sankula
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Keith Sappington
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Katherine Stebbins
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Thomas Steeger
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Holly Summers
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Pamela G. Thompson
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| | - Michael Wagman
- Environmental Fate and Effects Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC, United States of America
| |
Collapse
|
13
|
Kaila L, Ketola J, Toivonen M, Loukola O, Hakala K, Raiskio S, Hurme T, Jalli M. Pesticide residues in honeybee-collected pollen: does the EU regulation protect honeybees from pesticides? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18225-18244. [PMID: 34689272 PMCID: PMC8873129 DOI: 10.1007/s11356-021-16947-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Researchers globally identify pesticides as one of the main reasons for pollinator decline. In the European Union (EU), extensive legislation is implemented to protect pollinators from harmful pesticide exposure. The aim of our study was to discover whether the pesticide residue levels in honeybee matrices, such as nectar and pollen, exceeded the chronic or acute toxicity levels when beehives were located next to fields treated with specific insecticides. The insecticides were used according to the EU legislation and its national implementation. The experiments were conducted in turnip rape, oilseed rape, and caraway fields in southern Finland during the years 2019 and 2020. The pesticides used in the experiments contained the active substances lambda-cyhalothrin (2019), esfenvalerate (2020), and tau-fluvalinate (2020). However, the honeybee-collected pollen and nectar were analyzed for residues of more than 100 active substances. The results showed that the pesticide residue levels clearly remained under the oral acute toxicity for honeybees, although we found high levels of thiacloprid residues in the pollen collected in 2019. The pesticide residues in nectar were below LOQ values, which was most likely due to the rainy weather conditions together with the chosen sampling method. No statistically significant differences were observed between the insecticide-treated and untreated fields. In light of our research, the EU legislation protected honeybees from oral acute toxicity during the years 2019 and 2020. However, potential sublethal effects of thiacloprid and other pesticide compounds found in the collected pollen cannot be ruled out. In the future, constant monitoring of pesticide exposure of honeybees and wild pollinators should be established to ensure that pesticide legislation, and its implementation across the EU successfully protects pollinators and their services in agricultural environments.
Collapse
Affiliation(s)
- Lotta Kaila
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Jarmo Ketola
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Marjaana Toivonen
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Finnish Environment Institute (SYKE), Biodiversity Centre, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Olli Loukola
- Ecology and Genetics Research Unit, University of Oulu, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Kati Hakala
- Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | - Sakari Raiskio
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Timo Hurme
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Marja Jalli
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| |
Collapse
|
14
|
Mokkapati JS, Bednarska AJ, Laskowski R. Physiological and biochemical response of the solitary bee Osmia bicornis exposed to three insecticide-based agrochemicals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113095. [PMID: 34953273 DOI: 10.1016/j.ecoenv.2021.113095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The physiological and biochemical stress induced by pesticides need to be addressed in economically and ecologically important non-Apis solitary bees, particularly at lower than field-applied concentrations. Thus, the aim of the present study was to analyse the physiological and biochemical changes in female adult Osmia bicornis bees upon continuous oral exposure to three insecticide-based agrochemicals - i.e. Dursban 480 EC (active ingredient - a.i. chlorpyrifos), Sherpa 100 EC (a.i. cypermethrin), and Mospilan 20 SP (a.i. acetamiprid), in a toxicokinetic manner (feeding with either insecticide-contaminated food or uncontaminated food (controls) for 8 d in the contamination phase followed by 8 d of decontamination (i.e. feeding with uncontaminated food)). All three tested agrochemicals altered the energetic budget of bees by the deprivation of energy derived from lipids and carbohydrates (but not proteins) and/or a decrease in respiration based metabolic rate (energy consumption) compared to the controls. The activities of acetylcholinesterase and glutathione-S-transferase enzymes were not altered by insecticides at tested concentrations. These results show that chronic exposure to at least some pesticides even at relatively low concentrations may cause severe physiological disruptions that could potentially be damaging for the solitary bees.
Collapse
Affiliation(s)
- Jaya Sravanthi Mokkapati
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Christen V, Grossar D, Charrière JD, Eyer M, Jeker L. Correlation Between Increased Homing Flight Duration and Altered Gene Expression in the Brain of Honey Bee Foragers After Acute Oral Exposure to Thiacloprid and Thiamethoxam. FRONTIERS IN INSECT SCIENCE 2021; 1:765570. [PMID: 38468880 PMCID: PMC10926505 DOI: 10.3389/finsc.2021.765570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/19/2021] [Indexed: 03/13/2024]
Abstract
Neonicotinoids as thiamethoxam and thiacloprid are suspected to be implicated in the decline of honey bee populations. As nicotinic acetylcholine receptor agonists, they disturb acetylcholine receptor signaling in insects, leading to neurotoxicity and are therefore globally used as insecticides. Several behavioral studies have shown links between neonicotinoid exposure of bees and adverse effects on foraging activity, homing flight performance and reproduction, but the molecular aspects underlying these effects are not well-understood. In the last years, several studies through us and others showed the effects of exposure to neonicotinoids on gene expression in the brain of honey bees. Transcripts of acetylcholine receptors, hormonal regulation, stress markers, detoxification enzymes, immune system related genes and transcripts of the energy metabolism were altered after neonicotinoid exposure. To elucidate the link between homing flight performance and shifts in gene expression in the brain of honey bees after neonicotinoid exposure, we combined homing flight activity experiments applying RFID technology and gene expression analysis. We analyzed the expression of endocrine factors, stress genes, detoxification enzymes and genes linked to energy metabolism in forager bees after homing flight experiments. Three different experiments (experiment I: pilot study; experiment II: "worst-case" study and experiment III: laboratory study) were performed. In a pilot study, we wanted to investigate if we could see differences in gene expression between controls and exposed bees (experiment I). This first study was followed by a so-called "worst-case" study (experiment II), where we investigated mainly differences in the expression of transcripts linked to energy metabolism between fast and slow returning foragers. We found a correlation between homing flight duration and the expression of cytochrome c oxidase subunit 5A, one transcript linked to oxidative phosphorylation. In the third experiment (experiment III), foragers were exposed in the laboratory to 1 ng/bee thiamethoxam and 8 ng/bee thiacloprid followed by gene expression analysis without a subsequent flight experiment. We could partially confirm the induction of cytochrome c oxidase subunit 5A, which we detected in experiment II. In addition, we analyzed the effect of the feeding mode (group feeding vs. single bee feeding) on data scattering and demonstrated that single bee feeding is superior to group feeding as it significantly reduces variability in gene expression. Based on the data, we thus hypothesize that the disruption of energy metabolism may be one reason for a prolongation of homing flight duration in neonicotinoid treated bees.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | | | | | - Michael Eyer
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
- Laboratory of Soil Biodiversity, University of Neuchâtel, Neuchâtel, Switzerland
| | - Lukas Jeker
- Agroscope, Swiss Bee Research Center, Bern, Switzerland
| |
Collapse
|
16
|
Tsvetkov N, Zayed A. Searching beyond the streetlight: Neonicotinoid exposure alters the neurogenomic state of worker honey bees. Ecol Evol 2021; 11:18733-18742. [PMID: 35003705 PMCID: PMC8717355 DOI: 10.1002/ece3.8480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Neonicotinoid insecticides have been implicated in honey bee declines, with many studies showing that sublethal exposure impacts bee behaviors such as foraging, learning, and memory. Despite the large number of ecotoxicological studies carried out to date, most focus on a handful of worker phenotypes leading to a "streetlight effect" where the a priori choice of phenotypes to measure may influence the results and conclusions arising from the studies. This bias can be overcome with the use of toxicological transcriptomics, where changes in gene expression can provide a more objective view of how pesticides alter animal traits. Here, we used RNA sequencing to examine the changes in neurogenomic states of nurse and forager honey bees that were naturally exposed to neonicotinoids in the field and artificially exposed to neonicotinoids in a controlled experiment. We found that neonicotinoid exposure influenced the neurogenomic state of foragers and nurses in different ways; foragers experienced shifts in expression of genes involved in cognition and development, while nurses experienced shifts in expression of genes involved in metabolism. Our study suggests that neonicotinoids influence nurse and forager bees in a different manner. We also found no to minimal overlap in the differentially expressed genes in our study and in previously published studies, which might help reconcile the seemingly contradictory results often reported in the neonicotinoid literature.
Collapse
Affiliation(s)
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
17
|
Kiljanek T, Niewiadowska A, Małysiak M, Posyniak A. Miniaturized multiresidue method for determination of 267 pesticides, their metabolites and polychlorinated biphenyls in low mass beebread samples by liquid and gas chromatography coupled with tandem mass spectrometry. Talanta 2021; 235:122721. [PMID: 34517589 DOI: 10.1016/j.talanta.2021.122721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022]
Abstract
Current work presents developed and validated miniaturized method for residue analysis of 261 pesticides and their metabolites as well as 6 congeners of non-dioxin like polychlorinated biphenyls (ndl-PCB) in a very low mass beebread sample. Sample preparation is based on modified QuEChERS protocol with all steps miniaturized to enable multiresidue analysis of sample with extremely low weight. Sample of beebread (0.3 g) was extracted with 1 mL of acetonitrile containing 5% formic acid and ammonium formate salt were added, then extract was subjected to clean-up by freezing and two-step dispersive solid phase extraction (dSPE) with a Supel QuE Verde sorbents (Supelclean ENVI-Carb Y; Supelclean PSA; Z-Sep+; magnesium sulfate). After 1st step dSPE a portion of extract was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS) for 200 pesticide residues. Remaining extract was subjected to 2nd step dSPE clean-up by another Supel QuE Verde and then after concentration and solvent exchange it was analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS) for another 61 pesticide and 6 ndl-PCB residues. Method enables determination of residues of 101 insecticides, 72 herbicides, 67 fungicides, 10 acaricides, 6 growth regulators, 5 veterinary drugs and 6 ndl-PCB's. Particular attention was paid to the pesticides being active substances of plant protection products recommended for the protection of winter oilseed rape and apple orchards which during their blooming periods are one of the most attractive sources of food for pollinators and could serve as representatives of other economically important crops. Method was validated according to the Guidance document SANTE/12682/2019 at six concentration levels from 0.001 to 0.5 mg kg-1. The analysis of beebread samples spiked at the level of 0.01 mg kg-1showed mean recovery (trueness) value of about 98% and RSDr (precision) below 20%. The small weight of the sample did not adversely affect the limits of quantification and 75% of analytes could be quantified at least at concentration of 0.005 mg kg-1. Developed mini-method was tested in the analysis of beebread samples, each extracted from individual cell of honeycomb. It is the first time when analyses at single comb cell level were possible.
Collapse
Affiliation(s)
- Tomasz Kiljanek
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland.
| | - Alicja Niewiadowska
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Marta Małysiak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| | - Andrzej Posyniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100, Puławy, Poland
| |
Collapse
|
18
|
Bondareva L, Fedorova N. Pesticides: Behavior in Agricultural Soil and Plants. Molecules 2021; 26:5370. [PMID: 34500803 PMCID: PMC8434383 DOI: 10.3390/molecules26175370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
This review considers potential approaches to solve an important problem concerning the impact of applied pesticides of various classes on living organisms, mainly agricultural crops used as food. We used the method of multi-residual determination of several pesticides in agricultural food products with its practical application for estimating pesticides in real products and in model experiments. The distribution of the pesticide between the components of the soil-plant system was studied with a pesticide of the sulfonylureas class, i.e., rimsulfuron. Autoradiography showed that rimsulfuron inhibits the development of plants considered as weeds. Cereals are less susceptible to the effects of pesticides such as acetamiprid, flumetsulam and florasulam, while the development of legume shoots was inhibited with subsequent plant death.
Collapse
Affiliation(s)
- Lydia Bondareva
- Federal Scientific Center of Hygiene Named after F.F. Erisman, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 141014 Mytischi, Moscow Region, Russia;
| | | |
Collapse
|
19
|
McAfee A, Milone JP, Metz B, McDermott E, Foster LJ, Tarpy DR. Honey bee queen health is unaffected by contact exposure to pesticides commonly found in beeswax. Sci Rep 2021; 11:15151. [PMID: 34312437 PMCID: PMC8313582 DOI: 10.1038/s41598-021-94554-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/01/2021] [Indexed: 11/24/2022] Open
Abstract
Honey bee queen health is crucial for colony health and productivity, and pesticides have been previously associated with queen loss and premature supersedure. Prior research has investigated the effects of indirect pesticide exposure on queens via workers, as well as direct effects on queens during development. However, as adults, queens are in constant contact with wax as they walk on comb and lay eggs; therefore, direct pesticide contact with adult queens is a relevant but seldom investigated exposure route. Here, we conducted laboratory and field experiments to investigate the impacts of topical pesticide exposure on adult queens. We tested six pesticides commonly found in wax: coumaphos, tau-fluvalinate, atrazine, 2,4-DMPF, chlorpyriphos, chlorothalonil, and a cocktail of all six, each administered at 1, 4, 8, 16, and 32 times the concentrations typically found in wax. We found no effect of any treatment on queen mass, sperm viability, or fat body protein expression. In a field trial testing queen topical exposure of a pesticide cocktail, we found no impact on egg-laying pattern, queen mass, emergence mass of daughter workers, and no proteins in the spermathecal fluid were differentially expressed. These experiments consistently show that pesticides commonly found in wax have no direct impact on queen performance, reproduction, or quality metrics at the doses tested. We suggest that previously reported associations between high levels of pesticide residues in wax and queen failure are most likely driven by indirect effects of worker exposure (either through wax or other hive products) on queen care or queen perception.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada.
| | - Joseph P Milone
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Bradley Metz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Erin McDermott
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
20
|
Mokkapati JS, Bednarska AJ, Laskowski R. The development of the solitary bee Osmia bicornis is affected by some insecticide agrochemicals at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145588. [PMID: 33611176 DOI: 10.1016/j.scitotenv.2021.145588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Solitary bees provide essential pollination services for many arable crops, but are prone to global decline. Agricultural intensification, which is connected with pesticide usage, is among major threats to bees and, thus, to the food security and ecosystem stability. As it may not be possible to cease pesticide usage currently because of the growing demand for food, it is crucial to understand the pesticide toxicities to bees for better protection of pollinator populations. The majority of studies have focused on social bees, and those on solitary bees studied effects of adult exposure, whereas these bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here, the effects of three commonly used insecticide-based plant protection products on the development of the solitary bee, Osmia bicornis (red mason bee), were studied by exposing larvae to insecticide-contaminated multifloral pollen. The tested insecticides were: Dursban480EC, containing the organophosphate chlorpyrifos (CHP), Sherpa100EC, containing the pyrethroid cypermethrin (CYP), and Mospilan20SP with the neonicotinoid acetamiprid (ACT). When compared to the control larvae fed with uncontaminated-pollen, both CHP and CYP significantly reduced the O. bicornis larval survival and their body mass at all tested concentrations. In contrast, ACT did not affect either larval survival or body mass, but the length of larval stage to cocoon formation was significantly shortened compared to controls. None of studied insecticides affected the mass of cocooned individuals. However, at least 80% of individuals exposed to any of the tested insecticides died before reaching the adult stage, whereas 43% of the controls emerged successfully after overwintering. Although no clear monotonic dose-response relationships were found, our study showed that at least some insecticide formulations affect the development of O. bicornis even at concentrations actually found in pollen in the field, indicating an urgent need for revising current pesticide usage recommendations.
Collapse
Affiliation(s)
- Jaya Sravanthi Mokkapati
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
21
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
22
|
Haas J, Nauen R. Pesticide risk assessment at the molecular level using honey bee cytochrome P450 enzymes: A complementary approach. ENVIRONMENT INTERNATIONAL 2021; 147:106372. [PMID: 33418197 DOI: 10.1016/j.envint.2020.106372] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 05/21/2023]
Abstract
Honey bee (Apis mellifera) first-tier pesticide risk assessment is largely based on standardized laboratory toxicity bioassays after both acute and chronic exposure. Recent research on honey bee cytochrome P450 monooxygenases (P450s) uncovered CYP9Q3 as the molecular determinant mediating neonicotinoid insecticide selectivity and explaining why certain neonicotinoids such as thiacloprid show > 1000-fold lower acute toxicity than others (e.g. imidacloprid). Here this knowledge is leveraged for mechanistic risk assessment at the molecular level using a fluorescence-based high-throughput in vitro assay, predicting the interaction of diverse pesticidal chemotypes, including azole fungicides, with recombinantly expressed honey bee CYP9Q enzymes, known to metabolize thiacloprid, acetamiprid and tau-fluvalinate. Some azole fungicides were shown to be synergistic in combination with certain insecticides, including neonicotinoids and pyrethroids, whereas others such as prothioconazole were not. We demonstrate that biochemical CYP9Q2/CYP9Q3 inhibition data of azoles revealed a striking correlation with their synergistic potential at the organismal level, and even allow to explain combined toxicity effects observed for tank mixtures under field conditions. Our novel toxicogenomics-based approach is designed to complement existing methods for pesticide risk assessment with unprecedented screening capacity, by utilizing honey bee P450 enzymes known to confer pesticide selectivity, in order to biochemically address issues of ecotoxicological concern.
Collapse
Affiliation(s)
- Julian Haas
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Alfred Nobel Str. 50, 40789 Monheim, Germany.
| |
Collapse
|
23
|
Milone JP, Chakrabarti P, Sagili RR, Tarpy DR. Colony-level pesticide exposure affects honey bee (Apis mellifera L.) royal jelly production and nutritional composition. CHEMOSPHERE 2021; 263:128183. [PMID: 33297150 DOI: 10.1016/j.chemosphere.2020.128183] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
Honey bees provision glandular secretions in the form of royal jelly as larval nourishment to developing queens. Exposure to chemicals and nutritional conditions can influence queen development and thus impact colony fitness. Previous research reports that royal jelly remains pesticide-free during colony-level exposure and that chemical residues are buffered by the nurse bees. However, the impacts of pesticides can also manifest in quality and quantity of royal jelly produced by nurse bees. Here, we tested how colony exposure to a multi-pesticide pollen treatment influences the amount of royal jelly provisioned per queen and the additional impacts on royal jelly nutritional quality. We observed differences in the metabolome, proteome, and phytosterol compositions of royal jelly synthesized by nurse bees from multi-pesticide exposed colonies, including significant reductions of key nutrients such as 24-methylenecholesterol, major royal jelly proteins, and 10-hydroxy-2-decenoic acid. Additionally, quantity of royal jelly provisioned per queen was lower in colonies exposed to pesticides, but this effect was colony-dependent. Pesticide treatment had a greater impact on royal jelly nutritional composition than the weight of royal jelly provisioned per queen cell. These novel findings highlight the indirect effects of pesticide exposure on queen developmental nutrition and allude to social consequences of nurse bee glandular degeneration.
Collapse
Affiliation(s)
- Joseph P Milone
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Ramesh R Sagili
- Department of Horticulture, Oregon State University, Corvallis, OR, 97331, USA
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
24
|
Milone JP, Rinkevich FD, McAfee A, Foster LJ, Tarpy DR. Differences in larval pesticide tolerance and esterase activity across honey bee (Apis mellifera) stocks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111213. [PMID: 32890926 DOI: 10.1016/j.ecoenv.2020.111213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Honey bee populations in North America are an amalgamation of diverse progenitor ecotypes experiencing varying levels of artificial selection. Genetic differences between populations can result in variable susceptibility towards environmental stressors, and here we compared pesticide tolerances across breeding stocks using a mixture of seven pesticides frequently found in colonies providing pollination services. We administered the pesticide mixture chronically to in vitro reared larvae at four concentrations of increasing Hazard Quotient (HQ, or cumulative toxicity) and measured mortality during larval development. We found that different stocks had significantly different tolerances to our pesticide mixture as indicated by their median lethal toxicity (HQ50). The intensively selected Pol-Line stock exhibited the greatest pesticide sensitivity while Old World (progenitor) and putatively feral stocks were the most pesticide-tolerant. Furthermore, we found that activity of the detoxification enzyme esterase was positively correlated with pesticide tolerance when measured using two different substrate standards, and confirmed that larvae from the Pol-Line stock had generally lower esterase activity. Consistent with an increased pesticide tolerance, the Old World and putatively feral stocks had higher esterase activities. However, esterases and other detoxification enzymes (CYP450s and GSTs) were found in similar abundances across stocks, suggesting that the differences in enzyme activity we observed might arise from stock-specific single nucleotide polymorphisms or post-translational modifications causing qualitative variation in enzyme activity. These results suggest that selective breeding may inadvertently increase honey bees' sensitivity to pesticides, whereas unselected, putatively feral and Old World stocks have larvae that are more tolerant.
Collapse
Affiliation(s)
- Joseph P Milone
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| | - Frank D Rinkevich
- USDA-ARS Honey Bee Breeding, Genetics, And Physiology Laboratory, Baton Rouge, LA, USA
| | - Alison McAfee
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA; Biology Graduate Program, Ecology & Evolution, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
25
|
Toselli G, Sgolastra F. Seek and you shall find: An assessment of the influence of the analytical methodologies on pesticide occurrences in honey bee-collected pollen with a systematic review. CHEMOSPHERE 2020; 258:127358. [PMID: 32563069 DOI: 10.1016/j.chemosphere.2020.127358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Honey bee mortality and colony losses have been reported worldwide. Although this phenomenon is caused by a combination of factors, agrochemicals have received special attention due to their potential effects on bees. In agricultural and urban environments bees are exposed to several compounds that may interact in unexpected ways, but information on the extent of pesticide exposure remains unclear. Several monitoring studies have been conducted to evaluate the field-realistic exposure of bees to pesticides after their release on the market. However, their outputs are difficult to compare and harmonize due to differences in the analytical methodologies and the sampling protocols (e.g. number of screened compounds and analysed samples, and detection limits (LODs)). Here, we hypothesize that the analytical methodologies used in the monitoring studies may strongly affect the pesticide occurrences in pollen underestimating the real pesticide exposure. By mean of a systematic literature review, we have collected relevant information on pesticide contaminations in the honey bee-collected pollen. Our findings showed that the pesticide occurrences were associated with the analytical methodologies and the real pesticide exposure has likely been underestimated in some monitoring studies. For four highly toxic compounds, the LOD used in these monitoring studies exceeded the doses that cause toxic effects on honey bees. We recommend that, especially for the highly toxic compounds, the LODs used in the monitoring studies should be low enough to exclude lethal or sublethal effects on bees and avoid "false negative" samples.
Collapse
Affiliation(s)
- Gioele Toselli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Italy
| | - Fabio Sgolastra
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum Università di Bologna, Italy.
| |
Collapse
|
26
|
Abstract
In recent decades, independent national and international research programs have revealed possible reasons for the death of managed honey bee colonies worldwide. Such losses are not due to a single factor, but instead are due to highly complex interactions between various internal and external influences, including pests, pathogens, honey bee stock diversity, and environmental change. Reduced honey bee vitality and nutrition, exposure to agrochemicals, and quality of colony management contribute to reduced colony survival in beekeeping operations. Our Special Issue (SI) on ‘’Monitoring of Honey Bee Colony Losses’’ aims to address specific challenges facing honey bee researchers and beekeepers. This SI includes four reviews, with one being a meta-analysis that identifies gaps in the current and future directions for research into honey bee colonies mortalities. Other review articles include studies regarding the impact of numerous factors on honey bee mortality, including external abiotic factors (e.g., winter conditions and colony management) as well as biotic factors such as attacks by Vespa velutina and Varroa destructor.
Collapse
|
27
|
Zioga E, Kelly R, White B, Stout JC. Plant protection product residues in plant pollen and nectar: A review of current knowledge. ENVIRONMENTAL RESEARCH 2020; 189:109873. [PMID: 32795671 DOI: 10.1016/j.envres.2020.109873] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to Plant Protection Products, PPPs, (fungicides, herbicides and insecticides) is a significant stressor for bees and other pollinators, and has recently been the focus of intensive debate and research. Specifically, exposure through contaminated pollen and nectar is considered pivotal, as it presents the highest risk of PPP exposure across all bee species. However, the actual risk that multiple PPP residues might pose to non-target species is difficult to assess due to the lack of clear evidence of their actual concentrations. To consolidate the existing knowledge of field-realistic residues detected in pollen and nectar directly collected from plants, we performed a systematic literature review of studies over the past 50 years (1968-2018). We found that pollen was the matrix most frequently evaluated and, of the compounds investigated, the majority were detected in pollen samples. Although the overall most studied category of PPPs were the neonicotinoid insecticides, the compounds with the highest median concentrations of residues in pollen were: the broad spectrum carbamate carbofuran (1400 ng/g), the fungicide and nematicide iprodione (524 ng/g), and the organophosphate insecticide dimethoate (500 ng/g). In nectar, the highest median concentration of PPP residues detected were dimethoate (1595 ng/g), chlorothalonil (76 ng/g), and the insecticide phorate (53.5 ng/g). Strong positive correlation was observed between neonicotinoid residues in pollen and nectar of cultivated plant species. The maximum concentrations of several compounds detected in nectar and pollen were estimated to exceed the LD50s for honey bees, bumble bees and four solitary bee species, by several orders of magnitude. However, there is a paucity of information for the biggest part of the world and there is an urgent need to expand the range of compounds evaluated in PPP studies.
Collapse
Affiliation(s)
- Elena Zioga
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.
| | - Ruth Kelly
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland; Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast, BT9 5PX, Northern Ireland, UK
| | - Blánaid White
- School of Chemical Sciences, DCU Water Institute, Dublin City University, Dublin 9, Ireland
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
28
|
Wang Y, Zhu YC, Li W. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6971-6980. [PMID: 31879892 DOI: 10.1007/s11356-019-07214-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Potential synergistic toxicity of pesticide mixtures has increasingly become a concern to the health of crop pollinators. The toxicities of individual and mixture of chlorpyrifos (CHL), acephate (ACE), or tetraconazole (TET) with nine pyrethroid insecticides to honey bees (Apis mellifera L.) were evaluated to reveal any aggregated interaction between pesticides. Results from feeding toxicity tests of individual pesticides indicated that organophosphate insecticides CHL and ACE had higher toxicities to honey bees compared to nine pyrethroids. Moreover, different pyrethroids exhibited considerable variation in toxicity with LC50 values ranging from 10.05 (8.60-11.69) to 1125 (922.4-1442) mg a.i. L-1 after exposure for 7 days. Among the 12 examined pesticides, a relatively low toxicity to A. mellifera was detected from the fungicide TET. All the binary mixtures of ACE or TET in combination with pyrethroids exhibited synergistic effects. However, TET in combination with pyrethroids showed greater synergistic toxicity to A. mellifera than ACE in combination with pyrethroids. Approximately 50% binary mixtures of CHL in combination with pyrethroids also showed synergistic responses in honey bees. In particular, CHL, ACE, or TET in combination with either lambda-cyhalothrin (LCY) or bifenthrin (BIF) showed the strongest synergy in A. mellifera, followed by CHL, ACE, or TET in combination with either zeta-cypermethrin (ZCY) or cypermethrin (CYP). The findings indicated that the co-exposure of various pesticides in natural settings might lead to severe injury to crop pollinators. Therefore, pesticide mixtures should be applied carefully in order to minimize negative effects on honey bees while maintaining effective management against crop pests.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, People's Republic of China
- Southern Insect Management Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS)USDA-ARS-JWDSRC, 141 Experiment Station Road /PO Box 346, Stoneville, MS, 38776, USA
| | - Yu Cheng Zhu
- Southern Insect Management Research Unit, United States Department of Agriculture, Agricultural Research Service (USDA-ARS)USDA-ARS-JWDSRC, 141 Experiment Station Road /PO Box 346, Stoneville, MS, 38776, USA.
| | - Wenhong Li
- Guizhou Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, Guizhou, People's Republic of China
| |
Collapse
|
29
|
Sari MF, Gurkan Ayyildiz E, Esen F. Determination of polychlorinated biphenyls in honeybee, pollen, and honey samples from urban and semi-urban areas in Turkey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4414-4422. [PMID: 31832954 DOI: 10.1007/s11356-019-07013-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
In recent years, honeybees and bee products such as pollen and honey have been used as bioindicators for monitoring environmental pollution. Unfortunately, there are few studies about polychlorinated biphenyl (PCB) concentrations in honeybees and bee products from Turkey. Honeybee and pollen samples were taken between May and September 2017, and honey samples were taken between July and September 2017 at urban and semi-urban areas in Bursa (Turkey). PCB concentrations measured by gas chromatography-microelectron capture detector (GC-μECD) were found to be 135.46 ± 6.53, 81.47 ± 23.52, and 106.35 ± 21.60 ng g-1 dry weight (dw) for honeybee, pollen, and honey samples in the urban area, respectively; and 126.35 ± 26.54, 67.57 ± 27.34, and 118.88 ± 55.28 ng g-1 dw for honeybee, pollen, and honey samples in the semi-urban area, respectively. Pearson correlation was made between meteorological parameters and pollutant concentrations. According to the correlation results, a significant relationship was found between the pollen and honey results and the total cloudiness and temperature in the semi-urban area. The coefficient of divergence (COD) and Pearson correlation coefficient (PCC) methods were applied to determine the similarities and differences between the pollutant concentrations and sources of the two areas and the temporal variation. According to these two methods, PCB concentrations and emission sources in honeybee and pollen samples in urban and semi-urban areas were generally different in May and June, and similar in August and September.
Collapse
Affiliation(s)
- Mehmet Ferhat Sari
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey
| | - Emine Gurkan Ayyildiz
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey
| | - Fatma Esen
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey.
| |
Collapse
|
30
|
Impact of Stressors on Honey Bees (Apis mellifera; Hymenoptera: Apidae): Some Guidance for Research Emerge from a Meta-Analysis. DIVERSITY 2019. [DOI: 10.3390/d12010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bees play an essential role in plant pollination and their decline is a threat to crop yields and biodiversity sustainability. The causes of their decline have not yet been fully identified, despite the numerous studies that have been carried out, especially on Apis mellifera. This meta-analysis was conducted to identify gaps in the current research and new potential directions for research. The aim of this analysis of 293 international scientific papers was to achieve an inventory of the studied populations, the stressors and the methods used to study their impact on Apis mellifera. It also aimed to investigate the stressors with the greatest impact on bees and explore whether the evidence for an impact varies according to the type of study or the scale of study. According to this analysis, it is important to identify the populations and the critical developmental stages most at risk, and to determine the differences in stress sensibility between subspecies. This meta-analysis also showed that studies on climate change or habitat fragmentation were lacking. Moreover, it highlighted that technical difficulties in the field and the buffer effect of the colony represent methodological and biological barriers that are still difficult to overcome. Mathematical modeling or radio frequency identification (RFID) chips represent promising ways to overcome current methodological difficulties.
Collapse
|
31
|
Hooven LA, Chakrabarti P, Harper BJ, Sagili RR, Harper SL. Potential Risk to Pollinators from Nanotechnology-Based Pesticides. Molecules 2019; 24:E4458. [PMID: 31817417 PMCID: PMC6943562 DOI: 10.3390/molecules24244458] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/24/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
The decline in populations of insect pollinators is a global concern. While multiple factors are implicated, there is uncertainty surrounding the contribution of certain groups of pesticides to losses in wild and managed bees. Nanotechnology-based pesticides (NBPs) are formulations based on multiple particle sizes and types. By packaging active ingredients in engineered particles, NBPs offer many benefits and novel functions, but may also exhibit different properties in the environment when compared with older pesticide formulations. These new properties raise questions about the environmental disposition and fate of NBPs and their exposure to pollinators. Pollinators such as honey bees have evolved structural adaptations to collect pollen, but also inadvertently gather other types of environmental particles which may accumulate in hive materials. Knowledge of the interaction between pollinators, NBPs, and other types of particles is needed to better understand their exposure to pesticides, and essential for characterizing risk from diverse environmental contaminants. The present review discusses the properties, benefits and types of nanotechnology-based pesticides, the propensity of bees to collect such particles and potential impacts on bee pollinators.
Collapse
Affiliation(s)
- Louisa A. Hooven
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Priyadarshini Chakrabarti
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Bryan J. Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Ramesh R. Sagili
- Department of Horticulture, Oregon State University, 4017 Agriculture and Life Science Building, Corvallis, OR 97331, USA;
| | - Stacey L. Harper
- School of Chemical, Biological and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| |
Collapse
|
32
|
El Agrebi N, Wilmart O, Urbain B, Danneels EL, de Graaf DC, Saegerman C. Belgian case study on flumethrin residues in beeswax: Possible impact on honeybee and prediction of the maximum daily intake for consumers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:712-719. [PMID: 31412474 DOI: 10.1016/j.scitotenv.2019.05.493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/08/2019] [Accepted: 05/31/2019] [Indexed: 05/11/2023]
Abstract
To assess the health risk posed by flumethrin residues in beeswax to honeybees and honey consumers, 124 wax samples randomly distributed in Belgium were analysed for flumethrin residues using liquid chromatography/tandem mass spectrometry. The risk posed by flumethrin residues in beeswax to honeybee health was assessed through the calculation of a non-pondered and a pondered Hazard Quotient by the prevalence rate of flumethrin considering an oral or topical exposure. No statistical difference was found when comparing both the average flumethrin residues concentrations and contact and oral pondered hazard quotients between apiaries with lower and equal or higher than 10% of colony loss. Flumethrin residues estimated daily intake by Belgian consumers through honey and wax ingestion was estimated via a deterministic (worst-case scenario) and a probabilistic approach. The probabilistic approach was not possible for beeswax consumption due to the lack of individual consumption data. The highest estimated exposure was <0.1% of the theoretical maximum daily intake for both approaches, meaning no risk for human health.
Collapse
Affiliation(s)
- Noëmie El Agrebi
- Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège, (Sart-Tilman), Belgium
| | - Olivier Wilmart
- Federal Agency for the Safety of the Food Chain (FASFC), Directorate Control Policy, Staff Direction for Risk Assessment, Boulevard du Jardin Botanique 55, 1000 Brussels, Belgium
| | - Bruno Urbain
- Federal Agency for Medicines and Health Products (FAMHP), Eurostation II, Place Victor Horta 40/40, 1060 Brussels, Belgium
| | - Ellen L Danneels
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium
| | - Dirk C de Graaf
- Faculty of Sciences, Honeybee Valley, Ghent University (UGent), Krijgslaan 281 S33, 9000 Ghent, Belgium; Faculty of Sciences, Laboratory of Molecular Entomology and Bee Pathology, Ghent University (UGent), Krijgslaan 281 S2, 9000 Ghent, Belgium
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk analysis applied to Veterinary sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A, B42, 4000 Liège, (Sart-Tilman), Belgium.
| |
Collapse
|
33
|
Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera. Sci Rep 2019; 9:3277. [PMID: 30824742 PMCID: PMC6397237 DOI: 10.1038/s41598-019-39383-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022] Open
Abstract
Among the factors that contribute to the reduction of honeybee populations are the pesticides. These chemical compounds reach the hive through forager bees, and once there, they can be ingested by the larvae. We evaluated the effects of repeated larval exposure to neonicotinoid insecticide, both in isolation and in combination with strobilurin fungicide, at environmentally relevant doses. The total consumption of the contaminated diet was 23.63 ng fungicide/larvae (pyraclostrobin) and 0.2364 ng insecticide/larvae (clothianidin). The effects on post-embryonic development were evaluated over time. Additionally, we assessed the survival pattern of worker bees after emergence, and the pesticides’ effects on the behavior of newly emerged workers and young workers. Young bees that were exposed to the fungicide and those subjected to co-exposure to both pesticides during larval phase showed behavioral changes. The insecticide, both in isolation and in combination with fungicide reduced the bees’ longevity; this effect of larval exposure to pesticides was stronger in bees that were exposed only to the insecticide. Although the larvae did not have sensitivity to exposure to pesticides, they showed later effects after emergence, which may compromise the dynamics of the colony, contributing to the reduction of the populations of bees in agroecosystems.
Collapse
|
34
|
Gómez-Ramos MM, Ucles S, Ferrer C, Fernández-Alba AR, Hernando MD. Exploration of environmental contaminants in honeybees using GC-TOF-MS and GC-Orbitrap-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:232-244. [PMID: 30081361 DOI: 10.1016/j.scitotenv.2018.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
This study reports an analytical approach by gas chromatography and high-resolution mass spectrometry (HRMS) intended to be used for investigation of non-targeted environmental contaminants in honeybees. The approach involves a generic extraction and analysis with two GC-HRMS systems: time-of-flight and Orbitrap analyzers, GC-TOF-MS, and GC-Orbitrap-MS operated in electron-impact ionization (EI) mode. The workflow for screening of non-targeted contaminants consisted of initial peak detection by deconvolution and matching the first-stage mass spectra EI-MS with a nominal mass spectral library. To gain further confidence in the structural characterization of the contaminants under investigation, molecular formula of representative ions (molecular and fragment ions) was provided for those with an accurate mass scoring (error < 5 ppm). This methology was applied for screening environmental contaminants in 75 samples of adult honeybee. This approach has provided the tentative identification of environmental contaminants belonging to different chemical groups, among them, PAHs, phthalates and synthetic musks. Residues of veterinary treatments used in apiculture were also detected in the honeybee samples.
Collapse
Affiliation(s)
- M M Gómez-Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - S Ucles
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - C Ferrer
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - A R Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - M D Hernando
- National Institute for Agricultural and Food Research and Technology - INIA, 28040 Madrid, Spain.
| |
Collapse
|
35
|
López-Uribe MM, Simone-Finstrom M. Special Issue: Honey Bee Research in the US: Current State and Solutions to Beekeeping Problems. INSECTS 2019; 10:E22. [PMID: 30634401 PMCID: PMC6358869 DOI: 10.3390/insects10010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/29/2022]
Abstract
The European honey bee (Apis mellifera) is the most important managed species for agricultural pollination across the world [...].
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, PA 16802, USA.
| | - Michael Simone-Finstrom
- USDA Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research, Baton Rouge, LA 70820, USA.
| |
Collapse
|
36
|
Michlig MP, Merke J, Pacini AC, Orellano EM, Beldoménico HR, Repetti MR. Determination of imidacloprid in beehive samples by UHPLC-MS/MS. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Calatayud-Vernich P, Calatayud F, Simó E, Picó Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:106-114. [PMID: 29803024 DOI: 10.1016/j.envpol.2018.05.062] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/18/2018] [Indexed: 05/07/2023]
Abstract
In order to study the distribution of pesticide residues in beekeeping matrices, samples of live in-hive worker honey bees (Apis mellifera), fresh stored pollen and beeswax were collected during 2016-2017 from 45 apiaries located in different landscape contexts in Spain. A total of 133 samples were screened for 63 pesticides or their degradation products to estimate the pesticide exposure to honey bee health through the calculation of the hazard quotient (HQ). The influence of the surrounding environment on the content of pesticides in pollen was assessed by comparing the concentrations of pesticide residues found in apiaries from intensive farming landscapes to those found in apiaries located in mountainous, grassland and urban contexts. Beeswax revealed high levels of miticides used in beekeeping such as coumaphos, chlorfenvinphos, fluvalinate and acrinathrin, which were detected in more than 75% of samples. Pollen was predominantly contaminated by miticides but also by insecticides used in agriculture such as chlorpyrifos and acetamiprid, which showed concentrations significantly higher in apiaries located in intensive farming contexts. Pesticides residues were less frequent and at lower concentrations in live honey bees. Beeswax showed the highest average hazard scores (HQ > 5000) to honey bees. Pollen samples contained the largest number of pesticide residues and relevant hazard (HQ > 50) to bees. Acrinathrin was the most important contributor to the hazard quotient scores in wax and pollen samples. The contributions of the pesticides dimethoate and chlorpyrifos to HQ were considered relevant in samples.
Collapse
Affiliation(s)
- Pau Calatayud-Vernich
- Environmental and Food Safety Research Group (SAMA-UV), Research Center on Desertification (CIDE, UV-CSIC-GV), Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain.
| | - Fernando Calatayud
- Agrupación de Defensa Sanitaria Apícola (apiADS), Ctra. Montroi-Turís, 46193 Montroi, Valencia, Spain
| | - Enrique Simó
- Agrupación de Defensa Sanitaria Apícola (apiADS), Ctra. Montroi-Turís, 46193 Montroi, Valencia, Spain
| | - Yolanda Picó
- Environmental and Food Safety Research Group (SAMA-UV), Research Center on Desertification (CIDE, UV-CSIC-GV), Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Av. Monforte de Lemos, 3-5. Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
38
|
O'Neal ST, Anderson TD, Wu-Smart JY. Interactions between pesticides and pathogen susceptibility in honey bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:57-62. [PMID: 29764661 DOI: 10.1016/j.cois.2018.01.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | - Judy Y Wu-Smart
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
39
|
Bargańska Ż, Lambropoulou D, Namieśnik J. Problems and Challenges to Determine Pesticide Residues in Bumblebees. Crit Rev Anal Chem 2018; 48:447-458. [DOI: 10.1080/10408347.2018.1445517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Żaneta Bargańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Dimitra Lambropoulou
- Department of Chemistry, Environmental Pollution Control Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
40
|
Chen J, Fine JD, Mullin CA. Are organosilicon surfactants safe for bees or humans? THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:415-421. [PMID: 28863372 DOI: 10.1016/j.scitotenv.2017.08.175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Organosilicon surfactants are the most potent adjuvants available for formulating and applying agricultural pesticides and fertilizers, household cleaning and personal care products, dental impressions and medicines. Risk assessment of pesticides, drugs or personal care products that takes into account only active ingredients without the other formulation ingredients and adjuvants commonly used in their application will miss important toxicity outcomes detrimental to non-target species including pollinators and humans. Over a billion pounds of organosilicon surfactants from all uses are produced globally per year, making this a major component of the chemical landscape to which bees and humans are exposed. These silicones, like most "inerts", are generally recognized as safe, have no mandated tolerances, and their residues are largely unmonitored. Lack of their public disclosure and adequate analytical methods constrains evaluation of their risk. Organosilicon surfactants, the most super-spreading and -penetrating adjuvants available, at relevant exposure levels impair honey bee learning, are acutely toxic, and in combination with bee viruses cause synergistic mortality. Organosilicon surfactants need to be regulated as a separate class of "inerts" from the more common silicones. In turn, impacts of organosilicon surfactant exposures on humans need to be evaluated. Silicones in their great diversity probably represent the single most ubiquitous environmental class of global synthetic pollutants. Do honey bees, a model environmental indicator organism, forewarn of hidden risks to humans of ubiquitous silicone exposures?
Collapse
Affiliation(s)
- Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Suzhou Institute of Shandong University, Suzhou, Jiangsu 215123, China.
| | - Julia D Fine
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1206 W Gregory Dr., Urbana, IL 61801, USA.
| | - Christopher A Mullin
- Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
41
|
Skiba E, Wolf WM. Commercial phenoxyacetic herbicides control heavy metal uptake by wheat in a divergent way than pure active substances alone. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:26. [PMID: 29034141 PMCID: PMC5617864 DOI: 10.1186/s12302-017-0124-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/12/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Impact of two widely used commercial herbicides, i.e. Aminopielik D 450 SL and Chwastox 300 SL, on the uptake and translocation of selected heavy metals in wheat plants Triticum aestivum L. cultivated in the laboratory pot experiments was investigated. Mineral-humus, loamy sand soil representative for the central part of Poland was applied. Bioavailable, exchangeable and total forms of Cd, Co, Cu, Zn, Pb, and Mn were determined. Transfer coefficients, translocation, and bioaccumulation factors illustrating metal migration in the plant were investigated. RESULTS Administration of commercial herbicides significantly altered heavy metals uptake by wheat in a way distinctively different than that observed for the parent chemically pure synthetic auxins, i.e. 2,4-D and MCPA. In particular, Aminopielik D 450 SL and Chwastox 300 SL prompted heavy metals accumulation in roots as indicated by their high transfer coefficients. Further transport to above ground part of the plant was limited and element dependent. CONCLUSIONS This work clearly shows that commercial herbicide formulations may act in a distinctively different way than pure active ingredients alone.
Collapse
Affiliation(s)
- Elżbieta Skiba
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland
| |
Collapse
|