1
|
Wang C, You Y, Huang W, Zhan J. The high-value and sustainable utilization of grape pomace: A review. Food Chem X 2024; 24:101845. [PMID: 39386151 PMCID: PMC11462180 DOI: 10.1016/j.fochx.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
A large portion of global grape production has been utilized for wine production, accompanied by tremendous pressure to dispose grape pomace. To achieve circular economy, the high-value recycling of grape pomace must be considered. The social level barriers to circular economy promotion are also important constraints, like the acceptability of upcycled products. The main components of grape pomace and their utilization are summarized, and critical reviews of green extraction methods analyzed the key points of grape pomace recycling process to achieve the goal of sustainability in the production process, culminating in discussions of the factors affecting the acceptability of upcycled products. Grape pomace bioactive substances have higher added value. To realize its green extraction, various emerging technologies need to be made a comprehensive choice. Nevertheless, the acceptability of upcycled products is influenced by personal, context and product factors, optimizing them is essential to remove the constraints of circular economy development.
Collapse
Affiliation(s)
- Changsen Wang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China. Tsinghua East Road 17, Haidian District, Beijing 100083, China
| |
Collapse
|
2
|
Yang Y, Kilmartin PA. Advancing anthocyanin extraction: Optimising solvent, preservation, and microwave techniques for enhanced recovery from merlot grape Marc. Food Chem 2024; 472:142648. [PMID: 39862609 DOI: 10.1016/j.foodchem.2024.142648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.66 g/kg of grape marc), followed by formic acid (0.59 g/kg) and citric acid (0.58 g/kg) treatments. The second stage assessed drying methods across eight temperatures combined with a single extraction cycle using 50 % EtOH HCl, identifying 70 °C as the optimal heat-drying condition (1.23 g/kg total anthocyanins, 0.4 g/kg monomeric anthocyanins). Freeze-drying at -105 °C (TN105) with a prewash step (SRT105) further enhanced anthocyanin yields (2.24 g/kg total anthocyanins, 0.69 g/kg monomeric anthocyanins). In the final stage, microwave-assisted extraction significantly increased recovery, with SRT105-MW in 50 % EtOH HCl yielding 8.07 g/100 g total phenolics, 5.76 g/100 g tannins, 3.7 g/kg total anthocyanins, and 2.8 g/kg monomeric anthocyanins. This optimised method preserved anthocyanin composition, including malvidin- and peonidin-3-glucosides (585 and 560 mg/kg, respectively), along with cyanidin-, delphinidin-, and petunidin-3-glucosides (463, 360, and 257 mg/kg, respectively), as well as 66-99 mg/kg of acylated and 37-60 mg/kg of coumaroylated anthocyanins. Citric acid (50 % EtOH CA) demonstrated potential as a sustainable alternative, achieving ∼90 % of the anthocyanin yield of HCl treatments. These findings offer a practical, scalable framework for industrial anthocyanin recovery, advancing sustainable utilisation of grape marc.
Collapse
Affiliation(s)
- Yi Yang
- Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Paul A Kilmartin
- Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
3
|
Reggi S, Frazzini S, Torresani MC, Guagliano M, Cristiani C, Pilu SR, Ghidoli M, Rossi L. Metabolomic Profiling and Functional Characterization of Biochar from Vine Pruning Residues for Applications in Animal Feed. Animals (Basel) 2024; 14:3440. [PMID: 39682405 DOI: 10.3390/ani14233440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Biochar has gained interest as a feed ingredient in livestock nutrition due to its functional properties, circularity, potential to reduce environmental impact, and alignment with sustainable agro-zootechnical practices. The in vivo effects of biochar are closely tied to its physical characteristics, which vary depending on the biomass used as feedstock and the production process. This variability can result in heterogeneity among biochar types used in animal nutrition, leading to inconsistent outcomes. The aim of this study was to characterize the metabolomic and functional properties of an aqueous biochar extract from vine pruning waste, in order to predict its potential in vivo effects as a functional feed ingredient. A metabolomic analysis of the biochar extracts was conducted using quadrupole time-f-light (QQTOF) high-performance liquid chromatography tandem mass spectrometry (HPLC MS/MS). Antimicrobial activity against E. coli F18+ and E. coli F4+ was assessed using standard growth inhibition assays, while quorum sensing in E. coli exposed to biochar extracts was evaluated using real-time PCR. Prebiotic activity was assessed by exposing selected Lactobacillus strains to the biochar extract, monitoring growth patterns to determine species-specific responses. The metabolomic profile revealed several distinct molecular classes, including multiple peaks for phenolic compounds. The extract significantly inhibited the growth of both E. coli pathotypes, reducing growth by 29% and 16% for the F4+ and F18+, respectively (p < 0.001). The relative expression of the genes involved in quorum sensing (MotA, FliA for biofilm formation, and FtsE, HflX for cell division) indicated that the observed inhibitory effects likely resulted from interference with flagellar synthesis, motility, and reduced cell division. The biochar extract also showed species-specific prebiotic potential. In conclusion, biochar derived from vine pruning waste represents a valuable feed ingredient with functional properties that may help to reduce antibiotic use in livestock production.
Collapse
Affiliation(s)
- Serena Reggi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milano, 26900 Lodi, Italy
| | - Sara Frazzini
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milano, 26900 Lodi, Italy
| | | | - Marianna Guagliano
- Department of Chemistry, Materials and Chemical Engineering-Giulio Natta, Politecnico of Milan, 20133 Milano, Italy
| | - Cinzia Cristiani
- Department of Chemistry, Materials and Chemical Engineering-Giulio Natta, Politecnico of Milan, 20133 Milano, Italy
| | - Salvatore Roberto Pilu
- Department of Agricultural and Environmental Sciences-Production Landscape and Agroenergy, University of Milano, 20133 Milano, Italy
| | - Martina Ghidoli
- Department of Agricultural and Environmental Sciences-Production Landscape and Agroenergy, University of Milano, 20133 Milano, Italy
| | - Luciana Rossi
- Department of Veterinary Medicine and Animal Sciences-DIVAS, University of Milano, 26900 Lodi, Italy
| |
Collapse
|
4
|
Vinha AF, Sousa C, Vilela A, Ferreira J, Medeiros R, Cerqueira F. Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities. APPLIED SCIENCES 2024; 14:6278. [DOI: 10.3390/app14146278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Vitis vinifera is the grape variety used in the production of wine and other products. In the wine production process, many of the vine’s by-products are wasted, namely seeds and stems. Given the proportion of wine production worldwide, the quantity of by-products is beginning to be an environmental problem, making it urgent to take measures for their use to obtain bioactive compounds with health benefits. The aim of this work was to study the antioxidant and antimicrobial activities of extracts from the seeds and stems of four Portuguese grape varieties: Touriga Franca, Touriga Nacional, Viosinho, and Tinta Roriz. Total phenolic (TPC) and total flavonoids (TFC) contents present in the different extracts were evaluated, as well as the antioxidant activity, by DPPH and FRAP methods. TPC and TFC values of the stem’s extracts are much higher than those of the seeds of the same grape variety in the same solvent. The antioxidant activity of aqueous and ethanolic stem extracts is higher than that obtained for the seeds, showing that antioxidant activity is related to the content of polyphenols. The antimicrobial activity of different stem and seed extracts was determined against yeasts and Gram-positive and Gram-negative bacteria, and the effect was determined based on the minimal inhibitory concentrations calculated (MIC). In general, the ethanol:water (1:1) extract of the seeds from the different varieties tested inhibited C. albicans ATCC10231 and C. krusei ATCC6258 growth even at 200 μg/mL, and the effect was fungicidal at 200 μg/mL. The same type of extract showed selective antimicrobial activity, inhibiting S. aureus ATCC29213 growth but having no effect against E. coli ATCC25922 even at 200 μg/mL. The effect against S. aureus was bactericidal (at 200 μg/mL) for Touriga Franca, Touriga Nacional, and Viosinho. Taking all these results into account, it can be concluded that the by-products of the grape varieties tested are important sources of bioactive products, particularly as antioxidants and antimicrobials.
Collapse
Affiliation(s)
- Ana F. Vinha
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Sousa
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Andreia Vilela
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Joana Ferreira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Rui Medeiros
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology GRP—IC, Portuguese Institute of Oncology of Porto (IPO Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Fátima Cerqueira
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
- FP-I3ID, FP-BHS, GIT-LoSa, University Fernando Pessoa, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology GRP—IC, Portuguese Institute of Oncology of Porto (IPO Porto), Rua António Bernardino de Almeida, 4200-072 Porto, Portugal
| |
Collapse
|
5
|
Dorosh O, Fernandes VC, Delerue-Matos C, Moreira MM. Blueberry Pruning Wastes: From an Undervalued Agricultural Residue to a Safe and Valuable Source of Antioxidant Compounds for the Food Industry. Foods 2024; 13:317. [PMID: 38275684 PMCID: PMC10815574 DOI: 10.3390/foods13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Blueberry fruits have been widely explored for their rich composition of bioactive compounds with recognized health benefits. In contrast, blueberry pruning waste (BPW), generated during the pruning stages of blueberries, has been typically overlooked, even though it can represent a potential source of natural antioxidants. This study aims to characterize the value-added compounds extracted from BPW using green techniques, namely microwave-assisted and subcritical water extraction. The total phenolic content ranged from 157 ± 5 to 335 ± 12 mg GAE/g dw, while the radical scavenging activity determined by a DPPH assay varied from 223 ± 21 to 453 ± 21 mg Trolox equivalents/g dw. Additionally, to ensure the safe application of BPW and its extracts, a screening of pesticides and several environmental contaminants was conducted. Chlorpyrifos-methyl was quantified at a concentration of 4.27 µg/kg in a Bluecrop variety collected in 2019; however, none of the studied compounds were found in the extracts. Despite the presence of a pesticide, this level was below the maximum residue limits for blueberry crops. The results of this study demonstrated the potential of this agro-industrial residue as a natural source of bioactive compounds with high antioxidant activity for food industry applications.
Collapse
|
6
|
Duarte H, Aliaño-González MJ, Cantos-Villar E, Faleiro L, Romano A, Medronho B. Sustainable extraction of polyphenols from vine shoots using deep eutectic solvents: Influence of the solvent, Vitis sp., and extraction technique. Talanta 2024; 267:125135. [PMID: 37678005 DOI: 10.1016/j.talanta.2023.125135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/07/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Vine shoots are the main by-products of grapevine pruning with no added value. In the present study, deep eutectic solvents (DESs) were used as alternatives to traditional chemical solvents, for the extraction of phytochemicals from grapevine shoots. Three levulinic acid-based DESs were tested for the first time, and their performance was compared to methanol (a standard chemical solvent) regarding the extraction of phenolic compounds from thirteen Vitis sp. shoots. Two extraction methods have been applied: ultrasound-assisted extraction and solid-liquid extraction. A total of eleven polyphenols which belongs to four families (proanthocyanins, stilbenes, hydroxycinnamic acids, and flavonols) have been identified and quantified in the extracts. The statistical analysis shows that the levulinic acid-based DES systems are novel and important alternatives to chemical solvents due to favourable eco-friendly properties and remarkable extraction performance of polyphenols. On the other hand, the ultrasound-assisted extraction technique has significantly increased the extraction rate in comparison to the solid-liquid extraction method with p-values lower than 0.05 for most compounds. The genetic factor has been shown to play an important role in the content of extracted polyphenols, being V. riparia pubescente the one that presented the highest concentrations of extracted polyphenols. Finally, the polyphenol-enriched extracts have proven important properties such as antioxidant activity and significant delay in bacteria growth against both gram-positive and gram-negative bacteria. It is important to note that, to the best of our knowledge, this is the first time that deep eutectic solvents have been used for the extraction of bioactive compounds from vine shoot residues.
Collapse
Affiliation(s)
- Hugo Duarte
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Ed. 8, 8005-139, Faro, Portugal
| | - María José Aliaño-González
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Ed. 8, 8005-139, Faro, Portugal; Departamento de Química Analítica, Facultad de Ciencias, Universidad de Cádiz, 11510, Cadiz, Spain.
| | - Emma Cantos-Villar
- IFAPA Rancho de la Merced, Ministry of Agriculture, Fisheries, Water and Rural Development, Junta de Andalucía, Cañada de la Loba, Jerez de la Frontera, Cádiz, 11471, Spain
| | - Leonor Faleiro
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139, Faro, Portugal; Algarve Biomedical Center, Research Institute, 8005-139, Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038, Lisbon, Portugal
| | - Anabela Romano
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Ed. 8, 8005-139, Faro, Portugal
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Campus de Gambelas, Universidade do Algarve, Ed. 8, 8005-139, Faro, Portugal; FSCN-Fibre Science and Communication Network Research Center, Surface and Colloid Engineering, Mid Sweden University, SE-851 70, Sundsvall, Sweden
| |
Collapse
|
7
|
Contreras MDM, Feriani A, Gómez-Cruz I, Hfaiedh N, Harrath AH, Romero I, Castro E, Tlili N. Grapevine Shoot Extract Rich in Trans-Resveratrol and Trans-ε-Viniferin: Evaluation of Their Potential Use for Cardiac Health. Foods 2023; 12:4351. [PMID: 38231829 DOI: 10.3390/foods12234351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
A grapevine shoot extract (GSE) was obtained using ultrasound-assisted extraction and characterized. The main phenolic constituents were identified as stilbenoids. Among them, trans-resveratrol and trans-ε-viniferin stood out. The GSE was administered to an isoproterenol-induced myocardial injury animal model. The extract alleviated the associated symptoms of the administration of the drug, i.e., the plasma lipid profile was improved, while the disturbed plasma ion concentration, the cardiac dysfunction markers, the DNA laddering, and the necrosis of myocardial tissue were diminished. This effect could be related to the anti-oxidative potential of GSE associated with its antioxidant properties, the increased levels of endogenous antioxidants (glutathione and enzymatic antioxidants), and the diminished lipid peroxidative markers in the heart. The results also revealed angiotensin-converting enzyme (ACE)-inhibitory activity, which indicated the potential of GSE to deal with cardiovascular disease events. This work suggests that not only trans-resveratrol has a protective role in heart function but also GSE containing this biomolecule and derivatives. Therefore, GSE has the potential to be utilized in the creation of innovative functional ingredients.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Irene Gómez-Cruz
- Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Najla Hfaiedh
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
- Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Campus Las Lagunillas, Universidad de Jaén, 23071 Jaén, Spain
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l'Environnement, Université de Carthage, Hammam Chat 2050, Tunis 1073, Tunisia
| |
Collapse
|
8
|
Ferreira C, Moreira MM, Delerue-Matos C, Sarraguça M. Subcritical Water Extraction to Valorize Grape Biomass-A Step Closer to Circular Economy. Molecules 2023; 28:7538. [PMID: 38005259 PMCID: PMC10673199 DOI: 10.3390/molecules28227538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
With the increase in the world population, the overexploitation of the planet's natural resources is becoming a worldwide concern. Changes in the way humankind thinks about production and consumption must be undertaken to protect our planet and our way of living. For this change to occur, sustainable development together with a circular economic approach and responsible consumption are key points. Agriculture activities are responsible for more than 10% of the greenhouse gas emissions; moreover, by 2050, it is expected that food production will increase by 60%. The valorization of food waste is therefore of high importance to decrease the environmental footprint of agricultural activities. Fruits and vegetables are wildly consumed worldwide, and grapes are one of the main producers of greenhouse gases. Grape biomass is rich in bioactive compounds that can be used for the food, pharmaceutical and cosmetic industries, and their extraction from this food residue has been the target of several studies. Among the extraction techniques used for the recovery of bioactive compounds from food waste, subcritical water extraction (SWE) has been the least explored. SWE has several advantages over other extraction techniques such as microwave and ultrasound extraction, allowing high yields with the use of only water as the solvent. Therefore, it can be considered a green extraction method following two of the principles of green chemistry: the use of less hazardous synthesis (principle number 3) and the use of safer solvents and auxiliaries (principle number 5). In addition, two of the green extraction principles for natural products are also followed: the use of alternative solvents or water (principle number 2) and the use of a reduced, robust, controlled and safe unit operation (principle number 5). This review is an overview of the extraction process using the SWE of grape biomass in a perspective of the circular economy through valorization of the bioactive compounds extracted. Future perspectives applied to the SWE are also discussed, as well as its ability to be a green extraction technique.
Collapse
Affiliation(s)
- Cátia Ferreira
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| | - Manuela M. Moreira
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.M.M.); (C.D.-M.)
| | - Cristina Delerue-Matos
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, R. Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.M.M.); (C.D.-M.)
| | - Mafalda Sarraguça
- LAQV/REQUIMTE, Laboratório de Química Aplicada, Faculdade de Farmácia da Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal;
| |
Collapse
|
9
|
Costa RD, Domínguez-Perles R, Abraão A, Gomes V, Gouvinhas I, Barros AN. Exploring the Antioxidant Potential of Phenolic Compounds from Winery By-Products by Hydroethanolic Extraction. Molecules 2023; 28:6660. [PMID: 37764436 PMCID: PMC10535758 DOI: 10.3390/molecules28186660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The residues generated in the wine industry (pomace, stems, seeds, wine lees, and grapevine shoots) are a potential source of bioactive compounds that can be used in other industries despite being sometimes underestimated. Different extraction methods using various solvents and extraction conditions are currently being investigated. Due to its natural occurrence in wines, safe behavior, and low toxicity when compared to other organic solvents, ethanol is used as an extracting agent. The aim of this study was to identify the winery by-product from the Região Demarcada do Douro and its corresponding extraction solvents that yields the most favorable results in (poly)phenols content and antioxidant capacity. To achieve this, five different ratios of ethanol: water, namely 0:100, 25:75, 50:50, 75:25, and 100:0 (v/v), for extracting the phenolic compounds were employed. Afterwards, the determination of total phenolic content (TPC), ortho-diphenols content (ODC), and flavonoid content (FC) as well as the antioxidant capacity of the obtained extracts using three different methods was performed. Since the best results of the spectrophotometric assays were obtained mostly with hydroethanolic extracts of stems (50:50, v/v), identification by HPLC-DAD has carried out. It was possible to conclude that the Tinta Roriz variety displayed the highest number of identified (poly)phenols.
Collapse
Affiliation(s)
- Rui Dias Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Raúl Domínguez-Perles
- Phytochemistry and Healthy Foods Lab (LabFAS), CEBAS-CSIC, Campus Universitario de Espinardo, Edif. 25, 30100 Murcia, Spain
| | - Ana Abraão
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Véronique Gomes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
10
|
Withouck H, Paelinck A, Foubert I, Fraeye I. Ultrasound-Assisted Extraction of Applewood Polyphenols at Lab and Pilot Scales. Foods 2023; 12:3142. [PMID: 37685082 PMCID: PMC10486881 DOI: 10.3390/foods12173142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
This study focused on the extraction of polyphenols from applewood using ultrasonic-assisted extraction (UAE). First, the influence of solvent composition and mass-volume (m:v) ratio on the extraction yield was studied at a lab scale (200 mL). Overall, a ratio of 1:33 (m:v) resulted in a higher yield of polyphenols. Furthermore, both a higher yield of polyphenols and higher antioxidant capacity were detected in the extracts produced in the presence of a 30 v/v % ethanol mixture compared to pure water; a further increase in ethanol did not improve the extraction yield. Second, under the optimal conditions (30 v/v % ethanol-water; 1:33 and 1:20 (m:v)), the UAE technique was applied at a pilot scale (100 L). At 1:33 (m:v), the polyphenol yield was lower at the pilot scale compared to the lab scale; by contrast, at 1:20 (m:v), production at the pilot scale resulted in a higher yield compared to the lab scale. To identify and quantify individual polyphenols, HPLC-PDA analyses were performed. Phloridzin appears to be the major identified compound. Finally, the UAE process was compared to a conventional solid-liquid extraction technique, showing that a significantly higher yield could be obtained with UAE.
Collapse
Affiliation(s)
- Hannes Withouck
- Biochemical Innovation Team Odisee (BIT-O), Department Chemistry, University College Odisee, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium;
- Meat Technology & Science of Protein-rich Foods (MTSP), Department M2S, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven—Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium;
| | - Axel Paelinck
- Biochemical Innovation Team Odisee (BIT-O), Department Chemistry, University College Odisee, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium;
| | - Imogen Foubert
- Research Unit Food & Lipids, KU Leuven Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium;
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Ilse Fraeye
- Meat Technology & Science of Protein-rich Foods (MTSP), Department M2S, Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven—Ghent, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium;
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Afraz MT, Xu X, Adil M, Manzoor MF, Zeng XA, Han Z, Aadil RM. Subcritical and Supercritical Fluids to Valorize Industrial Fruit and Vegetable Waste. Foods 2023; 12:2417. [PMID: 37372628 DOI: 10.3390/foods12122417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The valorization of industrial fruit and vegetable waste has gained significant attention due to the environmental concerns and economic opportunities associated with its effective utilization. This review article comprehensively discusses the application of subcritical and supercritical fluid technologies in the valorization process, highlighting the potential benefits of these advanced extraction techniques for the recovery of bioactive compounds and unconventional oils from waste materials. Novel pressurized fluid extraction techniques offer significant advantages over conventional methods, enabling effective and sustainable processes that contribute to greener production in the global manufacturing sector. Recovered bio-extract compounds can be used to uplift the nutritional profile of other food products and determine their application in the food, pharmaceutical, and nutraceutical industries. Valorization processes also play an important role in coping with the increasing demand for bioactive compounds and natural substitutes. Moreover, the integration of spent material in biorefinery and biorefining processes is also explored in terms of energy generation, such as biofuels or electricity, thus showcasing the potential for a circular economy approach in the management of waste streams. An economic evaluation is presented, detailing the cost analysis and potential barriers in the implementation of these valorization strategies. The article emphasizes the importance of fostering collaboration between academia, industry, and policymakers to enable the widespread adoption of these promising technologies. This, in turn, will contribute to a more sustainable and circular economy, maximizing the potential of fruit and vegetable waste as a source of valuable products.
Collapse
Affiliation(s)
- Muhammad Talha Afraz
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
| | - Xindong Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Muhammad Adil
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Muhammad Faisal Manzoor
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- School of Food Science and Engineering, Foshan University, Foshan 528225, China
| | - Xin-An Zeng
- Yangjiang Research Institute, South China University of Technology, Yangjiang 529500, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510641, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
12
|
Ferreyra S, Bottini R, Fontana A. Background and Perspectives on the Utilization of Canes' and Bunch Stems' Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267502 DOI: 10.1021/acs.jafc.3c01635] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Viticulture activity produces a significant amount of grapevine woody byproducts, such as bunch stems and canes, which constitute potential sources of a wide range of phenolic compounds (PCs) with purported applications. Recently, the study of these byproducts has been increased as a source of health-promoting phytochemicals. Antioxidant, antimicrobial, antifungal, and antiaging properties have been reported, with most of these effects being linked to the high content of PCs with antioxidant properties. This Review summarizes the data related to the qualitative and quantitative composition of PCs recovered from canes and bunch stems side streams of the wine industry, the influence that the different environmental and storage conditions have on the final concentration of PCs, and the current reported applications in specific technological fields. The objective is to give a complete valuation of the key factors to consider, starting from the field to the final extracts, to attain the most suitable and stable characterized product.
Collapse
Affiliation(s)
- Susana Ferreyra
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| | - Rubén Bottini
- Instituto de Veterinaria Ambiente y Salud, Universidad Juan A. Maza, Lateral Sur del Acceso Este 2245, 5519 Guaymallén, Argentina
| | - Ariel Fontana
- Grupo de Bioquímica Vegetal, Instituto de Biología Agrícola de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Cuyo, Almirante Brown 500, M5528AHB Chacras de Coria, Argentina
| |
Collapse
|
13
|
Dorosh O, Surra E, Eusebio M, Monteiro AL, Ribeiro JC, Branco NFM, Moreira MM, Peixoto AF, Santos LMBF, Delerue-Matos C. Vineyard Pruning Extracts as Natural Antioxidants for Biodiesel Stability: Experimental Tests and Preliminary Life Cycle Assessment. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8084-8095. [PMID: 37266353 PMCID: PMC10230498 DOI: 10.1021/acssuschemeng.3c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/02/2023] [Indexed: 06/03/2023]
Abstract
The control of the oxidative stability of biodiesel and blends of biodiesel with diesel is one of the major concerns of the biofuel industry. The oxidative degradation of biodiesel can be accelerated by several factors, and this is most critical in the so-called second generation biodiesel, which is produced from low-cost raw materials with lower environmental impacts. The addition of antioxidants is imperative to ensure the oxidative stability of biodiesel, and these are considered products of high commercial value. The antioxidants currently available on the market are from synthetic origin, so the existence/availability of alternative antioxidants of natural origin (less dependent on fossil sources) at a competitive price presents itself as a strong business opportunity. This work describes and characterizes a sustainable alternative to synthetic antioxidants used in the biodiesel market developed from extracts of vineyard pruning waste (VPW), which are naturally rich in phenolic compounds with antioxidant properties. A hydrothermal extraction process was applied as a more efficient and sustainable technology than the conventional one with the potential of the extracts as antioxidant additives in biodiesel evaluated in Rancitech equipment. The VPW extract showed comparable antioxidant activity as the commercial antioxidant butylated hydroxytoluene (BHT) typically used in biodiesel. The stability of the biodiesel is dependent from the amount of the extract added. Further, for the first time, the assessment of the environmental impacts of using natural extracts to control the oxidative stability of biodiesel in the production process is also discussed as a key factor of the process environmental sustainability.
Collapse
Affiliation(s)
- Olena Dorosh
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Elena Surra
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Mário Eusebio
- REQUIMTE/LAQV,
Departamento de Química, Faculdade
de Ciências e Tecnologia da Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Ana L. Monteiro
- Petrogal,
S.A., Refinaria de Matosinhos, Rua Belchior Robles, 4451-852 Leça da Palmeira, Portugal
| | - Jorge C. Ribeiro
- Petrogal,
S.A., Refinaria de Matosinhos, Rua Belchior Robles, 4451-852 Leça da Palmeira, Portugal
| | - Nuno F. M. Branco
- CIQUP,
Institute of Molecular Sciences (IMS) - Departamento de Química
e Bioquímica, Faculdade de Ciências
da Universidade do Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal
| | - Manuela M. Moreira
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Andreia F. Peixoto
- REQUIMTE/LAQV,
Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís M.
N. B. F. Santos
- CIQUP,
Institute of Molecular Sciences (IMS) - Departamento de Química
e Bioquímica, Faculdade de Ciências
da Universidade do Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV,
Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| |
Collapse
|
14
|
Zannella C, Chianese A, Annunziata G, Ambrosino A, De Filippis A, Tenore GC, Novellino E, Stornaiuolo M, Galdiero M. Antiherpetic Activity of Taurisolo ®, a Grape Pomace Polyphenolic Extract. Microorganisms 2023; 11:1346. [PMID: 37317320 DOI: 10.3390/microorganisms11051346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Herpes simplex virus (HSV) is widespread in the population, causing oral or genital ulcers and, rarely, severe complications such as encephalitis, keratitis, and neonatal herpes. Current available anti-HSV drugs are acyclovir and its derivatives, although long-term therapy with these agents can lead to drug resistance. Thus, the discovery of novel antiherpetic compounds merits additional studies. In recent decades, much scientific effort has been invested in the discovery of new synthetic or natural compounds with promising antiviral properties. In our study, we tested the antiviral potential of a novel polyphenol-based nutraceutical formulation (named Taurisolo®) consisting of a water polyphenol extract of grape pomace. The evaluation of the antiviral activity was carried out by using HSV-1 and HSV-2 in plaque assay experiments to understand the mechanism of action of the extract. Results were confirmed by real-time PCR, transmission electron microscope (TEM), and fluorescence microscope. Taurisolo® was able to block the viral infection by acting on cells when added together with the virus and also when the virus was pretreated with the extract, demonstrating an inhibitory activity directed to the early phases of HSV-1 and HSV-2 infection. Altogether, these data evidence for the first time the potential use of Taurisolo® as a topical formulation for both preventing and healing herpes lesions.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Annunziata
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
15
|
Miolla R, Ottomano Palmisano G, Roma R, Caponio F, Difonzo G, De Boni A. Functional Foods Acceptability: A Consumers' Survey on Bread Enriched with Oenological By-Products. Foods 2023; 12:foods12102014. [PMID: 37238832 DOI: 10.3390/foods12102014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, consumers have shown considerable attention to functional foods that can provide various benefits. At the same time, the awareness of the problem of waste generation from the agri-food supply chains has increased; thus, scholars and practitioners are devoting great attention to sustainable food waste management. Within the wine processing, the production phase generates by-products such as marc, grape seeds, stems, and wine lees. In most cases, these by-products are treated as waste rather than as a resource, creating environmental, economic, and social impacts related to their disposal. By contrast, the reuse of oenological by-products in food production can have several health benefits, since they are rich in functional molecules such as fibres, polyphenols, and vitamin E, and can also trigger a circular economy model. The aim of this research is to investigate the acceptance of consumers towards bread enriched with oenological by-products through the application of k-means clustering, providing insights on the characterisation of groups of consumers based on their specific features and declared attitudes. The results showed three different consumers' clusters, highlighting that the acceptance of this enriched bread is not influenced by the consumers' socio-economic features, but it is related to consumers' sensitivity. Therefore, target strategies should be put in place to inform consumers about the benefits associated with the consumption of bread enriched with oenological by-products.
Collapse
Affiliation(s)
- Roberta Miolla
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | | | - Rocco Roma
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annalisa De Boni
- Department of Soil, Plant and Food Sciences (DISSPA), University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
16
|
Pereira AR, Costa C, Mateus N, de Freitas V, Rodrigues A, Oliveira J. Exploring the Potential of Vine Shoots as a Source of Valuable Extracts and Stable Lignin Nanoparticles for Multiple Applications. Int J Mol Sci 2023; 24:ijms24065165. [PMID: 36982237 PMCID: PMC10049713 DOI: 10.3390/ijms24065165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Large amounts of vine shoots are generated every year during vine pruning. This residue still presents many of the compounds found in the original plant, including low molecular weight phenolic compounds and structural compounds such as cellulose, hemicellulose, and lignin. For wine-producing regions, the challenge is to develop alternatives that will increase the value of this residue. This work proposes the full valorization of vine shoots, focusing on the extraction of lignin by mild acidolysis for the preparation of nanoparticles. The effect of the pretreatment solvents (ethanol/toluene, E/T, and water/ethanol, W/E), on the chemical and structural features of lignin, was evaluated. The chemical analysis suggests similar composition and structure regardless of the pretreatment solvent, although lignin isolated after pretreatment of biomass with E/T showed a higher content of proanthocyanidins (11%) compared with W/E (5%). Lignin nanoparticles (LNPs) presented an average size ranging from 130-200 nm and showed good stability for 30 days. Lignin and LNPs showed excellent antioxidant properties (half maximal inhibitory concentration, IC50 0.016-0.031 mg/mL) when compared to commercial antioxidants. In addition, extracts resulting from biomass pretreatment showed antioxidant activity, with W/E presenting a lower IC50 (0.170 mg/mL) than E/T (0.270 mg/mL), correlated with the higher polyphenol content of W/E, with (+)-catechin and (-)-epicatechin being the main compounds detected. Overall, this work shows that the pre-treatment of vine shoots with green solvents can yield (i) the production of high-purity lignin samples with antioxidant properties and (ii) phenolic-rich extracts, promoting the integral reuse of this byproduct and contributing to sustainability.
Collapse
Affiliation(s)
- Ana Rita Pereira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Carina Costa
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Mateus
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Victor de Freitas
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Alírio Rodrigues
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana Oliveira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Current advances on the therapeutic potential of pinocembrin: An updated review. Biomed Pharmacother 2023; 157:114032. [PMID: 36481404 DOI: 10.1016/j.biopha.2022.114032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Pinocembrin (5,7-dihydroxyflavone) is a major flavonoid found in many plants, fungi and hive products, mainly honey and propolis. Several in vitro and preclinical studies revealed numerous pharmacological activities of pinocembrin including antioxidant, anti-inflammatory, antimicrobial, neuroprotective, cardioprotective and anticancer activities. Here, we comprehensively review and critically analyze the studies carried out on pinocembrin. We also discuss its potential mechanisms of action, bioavailability, toxicity, and clinical investigations. The wide therapeutic window of pinocembrin makes it a promising drug candidate for many clinical applications. We recommend some future perspectives to improve its pharmacokinetic and pharmacodynamic properties for better delivery that may also lead to new therapeutic advances.
Collapse
|
18
|
Serna-Loaiza S, Kornpointner C, Pazzaglia A, Jordan C, Halbwirth H, Friedl A. Biorefinery concept for the valorization of grapevine shoots: Study case for the Austrian variety Grüner Veltliner. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Chang Y, Shi X, He F, Wu T, Jiang L, Normakhamatov N, Sharipov A, Wang T, Wen M, Aisa HA. Valorization of Food Processing Waste to Produce Valuable Polyphenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8855-8870. [PMID: 35833703 DOI: 10.1021/acs.jafc.2c02655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional incineration and landfill of food processing waste (FPW) have polluted the environment and underutilized valuable bioactive compounds, including polyphenols in food waste. As one of the most widely occurring compounds in the FPW, polyphenols possess high utilization value in many fields such as human health, energy, and environmental protection. Extracting polyphenols directly from FPW can maximize the value of polyphenols and avoid waste of resources. However, traditional polyphenol extraction methods mostly use the Soxhlet extraction, infiltration, and impregnation method, consuming a large amount of organic solvent and suffering from long extraction time and low extraction efficiency. Emerging green extraction methods such as supercritical fluid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, and other methods can shorten the extraction time and improve the solvent extraction efficacy, resulting in the green and safe recovery of polyphenols from FPW. In this paper, the traditional treatment methods of FPW waste and the application of polyphenols in FPW are briefly reviewed, and the traditional extraction methods and emerging green extraction methods of polyphenols in FPW are compared to obtain insight into the start-of-the-art extraction approaches.
Collapse
Affiliation(s)
- Yuyin Chang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Xiaoyu Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Fei He
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Tao Wu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, P.R. China
| | - Nodirali Normakhamatov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Avez Sharipov
- Tashkent Pharmaceutical Institute, Ministry of the Health of Uzbekistan, Aybek Strasse 45, Tashkent 100015, Uzbekistan
| | - Tianfu Wang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 201306, P.R. China
| | - Mingzhang Wen
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P.R. China
| | - Haji Akber Aisa
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P.R. China
| |
Collapse
|
20
|
Dorosh O, Rodrigues F, Delerue-Matos C, Moreira MM. Increasing the added value of vine-canes as a sustainable source of phenolic compounds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154600. [PMID: 35337875 DOI: 10.1016/j.scitotenv.2022.154600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Grapes represent one of the most produced fruit crops around the world leading to the generation of large amounts of vine-canes as a side product, with no current economically profitable application. However, vine-canes have been demonstrated to be natural sources of phenolic compounds with numerous health benefits associated, with several potential applications. Therefore, new ambitious applications focused on their re-use are needed, targeting a sustainable process that simultaneous produces functional products and mitigates the waste generation. This review gives to the readers a complete summary about the state of the art regarding the vine-canes extracts research. Vine-canes phenolic composition is addressed and related to the health benefits exhibited. This review comprises studies from the past two decades reporting the extraction processes to recover vine-cane phenolic compounds, including conventional and environmentally friendly technologies and discussing their advantages and disadvantages. The conditions that favour the extraction process for vine-cane polyphenols for each technique were also deeply explored for the first time, enabling to the reader apply only the best parameters to achieve the highest yields without huge investment in optimizations procedures. Furthermore, a correlation between the bioactive properties of the vine-cane extracts and their applications in multiple fields is also critically presented.
Collapse
Affiliation(s)
- Olena Dorosh
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| |
Collapse
|
21
|
Zhang C, Zhang J, Xin X, Zhu S, Niu E, Wu Q, Li T, Liu D. Changes in Phytochemical Profiles and Biological Activity of Olive Leaves Treated by Two Drying Methods. Front Nutr 2022; 9:854680. [PMID: 35571891 PMCID: PMC9097227 DOI: 10.3389/fnut.2022.854680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Olive leaves, which are the most abundant byproducts of the olive industry, offer multiple health benefits. The investigation of the phytochemical profiles and relevant biological activities is an essential step toward transforming these low-value byproducts into value-added ones. This study systematically investigated the phytochemical profiles, antioxidant capacity, and inhibition rates of olive leaves from four cultivars on the α-glucosidase, α-amylase, and angiotensin-converting enzyme (ACE). The leaves were prepared using two common drying methods, namely, hot air-drying and freeze-drying. A total of 33 bioactive compounds were identified in the olive leaves, namely, 19 flavonoids, 2 phenylethanoids, 2 coumarins, 2 hydroxycinnamic acids, 2 iridoids, and 6 triterpenic acids. Quantification of the bioactive compounds revealed high amounts of polyphenols, especially flavonoids [2,027–8,055 mg/kg dry weight (DW)], iridoids (566–22,096 mg/kg DW), and triterpenic acids (13,824–19,056 mg/kg DW) in the olive leaves. The hot air-dried leaves showed significantly (P < 0.05) higher iridoid (oleuropein and secoxyloganin) content than the fresh leaves, while freeze-drying resulted in significantly (P < 0.05) higher flavonoid aglycone and hydroxytyrosol content. Additionally, freeze-drying led to samples with the highest radical scavenging, α-amylase, α-glucosidase, and ACE inhibition abilities. The flavonoid (e.g., quercetin, luteolin, eriodictyol, kaempferol-7-O-glucoside, and luteolin-7-O-glucoside), hydroxytyrosol, and oleanolic acid contents in the olive leaves were positively correlated (P < 0.05) with their bioactive potentials.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianming Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shenlong Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Erli Niu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qinghang Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ting Li
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
del Mar Contreras M, Romero-García JM, López-Linares JC, Romero I, Castro E. Residues from grapevine and wine production as feedstock for a biorefinery. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers (Basel) 2022; 14:polym14091640. [PMID: 35566809 PMCID: PMC9101343 DOI: 10.3390/polym14091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/16/2023] Open
Abstract
Europe is considered the largest producer of wine worldwide, showing a high market potential. Several wastes are generated at the different stages of the wine production process, namely, vine pruning, stalks, and grape marc. Typically, these residues are not used and are commonly discarded. Portugal generates annually approximately 178 thousand metric tons of wine production waste. In this context, the interest in redirecting the use of these residues has increased due to overproduction, great availability, and low costs. The utilization of these lignocellulosic biomasses derived from the wine industry would economically benefit the producers, while mitigating impacts on the environment. These by-products can be submitted to pre-treatments (physical, chemical, and biological) for the separation of different compounds with high industrial interest, reducing the waste of agro-industrial activities and increasing industrial profitability. Particularly, vine-pruning residue, besides being a source of sugar, has high nutritional value and may serve as a source of phenolic compounds. These compounds can be obtained by bioconversion, following a concept of biorefinery. In this framework, the current routes of the valorisation of the pruning residues will be addressed and put into a circular economy context.
Collapse
|
24
|
Costa C, Anselmo H, Ferro R, Matos AS, Casimiro T, Aguiar-Ricardo A. Dry Dosage Forms of Add-Value Bioactive Phenolic Compounds by Supercritical CO2-Assisted Spray-Drying. Molecules 2022; 27:molecules27062001. [PMID: 35335363 PMCID: PMC8950927 DOI: 10.3390/molecules27062001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Every year, grapevine pruning produces huge amounts of residue, 90% of which are from vine shoots. These are a rich source of natural antioxidants, mostly phenolic compounds, which, when properly extracted, can give rise to added-value products. However, their lack of solubility in aqueous media and high susceptibility to thermal and oxidative degradation highly limit their bioavailability. Encapsulation in suitable carriers may have a positive impact on their bioavailability and bioactivity. Previous data on vine-shoot extraction have identified gallic acid (GA) and resveratrol (RSV) as the main phenolic compounds. In this work, model dry powder formulations (DPFs) of GA and RSV using hydroxypropyl cellulose (HPC) as carriers were developed using Supercritical CO2-Assisted Spray Drying (SASD). A 32 full factorial Design of Experiments investigated the solid and ethanol contents to ascertain process yield, particle size, span, and encapsulation efficiency. Amorphous powder yields above 60%, and encapsulation efficiencies up to 100% were achieved, representing excellent performances. SASD has proven to be an efficient encapsulation technique for these phenolic compounds, preserving their antioxidation potential after three months in storage with average EC50 values of 30.6 µg/mL for GA–DPFs and 149.4 µg/mL for RSV–DPF as assessed by the scavenging capacity of the DPPH radical.
Collapse
Affiliation(s)
- Clarinda Costa
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Costa da Caparica, Portugal; (C.C.); (H.A.); (R.F.); (T.C.)
| | - Hugo Anselmo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Costa da Caparica, Portugal; (C.C.); (H.A.); (R.F.); (T.C.)
| | - Rita Ferro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Costa da Caparica, Portugal; (C.C.); (H.A.); (R.F.); (T.C.)
| | - Ana Sofia Matos
- Departamento de Engenharia Mecânica e Industrial, UNIDEMI, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Costa da Caparica, Portugal;
| | - Teresa Casimiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Costa da Caparica, Portugal; (C.C.); (H.A.); (R.F.); (T.C.)
| | - Ana Aguiar-Ricardo
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Costa da Caparica, Portugal; (C.C.); (H.A.); (R.F.); (T.C.)
- Correspondence:
| |
Collapse
|
25
|
Vine Shoots as a Source of Trans-Resveratrol and ε-Viniferin: A Study of 23 Italian Varieties. Foods 2022; 11:foods11040553. [PMID: 35206030 PMCID: PMC8871016 DOI: 10.3390/foods11040553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Stilbenes are a family of phenolic secondary metabolites that are known for their important roles in plant protection and human health. Numerous studies show that vine shoots, one of the most abundant winery wastes, could be used as a source of bioactive compounds such as stilbenes. The predominant stilbenoids in vine shoots are trans-resveratrol (Rsv) and ε-viniferin (Vf), whose content varies depending on numerous intrinsic and extrinsic factors. The present work investigates the influence of pre-treatment and variety on stilbene concentration in vine shoots. Vine shoots of the Primitivo and Negroamaro varieties were submitted to four different trials before stilbene extraction (untreated, dried at 50 °C for 24 h, dried at 70 °C for 15 min, and dried at 80 °C for 10 min). The results showed that the heat pre-treatments had a slight impact on the total phenol and stilbene content. In contrast, the variety variable had a stronger impact on stilbene concentration, ranging from 2700 to 6400 mg kg−1 DW for untreated vine shoots of 23 Italian varieties. In all vine shoots, the most abundant stilbene compound was Rsv and the highest content was found in vine shoots of the Nero di Troia (5298.1 mg kg−1 DW) and Negroamaro (5249.4 mg kg−1 DW) varieties.
Collapse
|
26
|
Cebrián-Tarancón C, Fernández-Roldán F, Alonso GL, Salinas RM. Classification of vine-shoots for use as enological additives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:724-731. [PMID: 34171125 DOI: 10.1002/jsfa.11403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Toasted vine shoots have recently been proposed as enological additives with the aim of improving the sensorial profile of wines. However, so far, there is no simple method for classifying vine shoots for this innovative enological practice. In this study, therefore, an enological aptitude classification for toasted vine shoots has been proposed for the first time. Moreover, given the need for quick techniques to be used in wineries to determine the main phenolic compounds of vine shoots, near-infrared (NIR) spectroscopy has been calibrated and validated. RESULTS By means of a detailed statistical analysis, an enological classification of toasted vine shoots has been proposed based on their total polyphenol index and (+)-catechin, (-)-epicatechin, ellagic acid, and trans-resveratrol. Moreover, the NIR methodology that was developed showed good validation statistics and acceptable accuracy. CONCLUSIONS This work proposes the first enological toasted vine-shoot classification and it provides a tool for rapid screening, mainly of phenolic compounds, in toasted vine shoots. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Cristina Cebrián-Tarancón
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Francisco Fernández-Roldán
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Rosario M Salinas
- Cátedra de Química Agrícola, E.T.S.I. Agrónomos y Montes, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
27
|
Study on Kinetics of Trans-Resveratrol, Total Phenolic Content, and Antioxidant Activity Increase in Vine Waste during Post-Pruning Storage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
There is increasing evidence surrounding the health benefits of E-resveratrol; this has triggered interest in stilbenoids in grapes, wine, and by-products. On the one hand, there is an enormous amount of underutilized vine waste, rich in bioactive substances during wine production. On the other hand, there is a growing demand for promising phytochemicals, for dietary and pharmaceutical purposes. Vine shoots are promising sources of stilbenoids; they have economic potential because they are sources of high-value phytochemicals. Recent studies have shown that, due to biosynthesis pathway genes, especially STS (forming trans-resveratrol), which is abundant during storage periods of vine shoots—trans-resveratrol accumulates up to 40-fold. The objective of this research was to determine the most economical part of vine waste to be exploited, and to study the kinetics of resveratrol increase in a 90-day period, to determine the optimal storage period to reach a maximum trans-resveratrol content. Total phenolic content (TPC) and antioxidant activity (AA) were studied to determine possible correlations. In Fetească Neagră vine shoot varieties stored at laboratory temperatures, trans-resveratrol content increased to a maximum (2712.86 mg/kg D.W.) at day 70, and then slightly decreased until day 90. TPC remained constant and there was a slight increase in AA. Vine shoots contained the largest amounts of trans-resveratrol (1658.22 mg/kg D.W.), followed by tendrils (169.92 mg/kg D.W.), and leaves (43.54 mg/kg D.W.).
Collapse
|
28
|
Kodeš Z, Vrublevskaya M, Kulišová M, Jaroš P, Paldrychová M, Pádrová K, Lokočová K, Palyzová A, Maťátková O, Kolouchová I. Composition and Biological Activity of Vitis vinifera Winter Cane Extract on Candida Biofilm. Microorganisms 2021; 9:microorganisms9112391. [PMID: 34835515 PMCID: PMC8622486 DOI: 10.3390/microorganisms9112391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 01/30/2023] Open
Abstract
Vitis vinifera canes are waste material of grapevine pruning and thus represent cheap source of high-value polyphenols. In view of the fact that resistance of many pathogenic microorganisms to antibiotics is a growing problem, the antimicrobial activity of plant polyphenols is studied as one of the possible approaches. We have investigated the total phenolic content, composition, antioxidant activity, and antifungal activity against Candida biofilm of an extract from winter canes and a commercially available extract from blue grapes. Light microscopy and confocal microscopy imaging as well as crystal violet staining were used to quantify and visualize the biofilm. We found a decrease in cell adhesion to the surface depending on the concentration of resveratrol in the cane extract. The biofilm formation was observed as metabolic activity of Candida albicans, Candida parapsilosis and Candida krusei biofilm cells and the minimum biofilm inhibitory concentrations were determined. The highest inhibition of metabolic activity was observed in Candida albicans biofilm after treatment with the cane extract (30 mg/L) and blue grape extract (50 mg/L). The composition of cane extract was analyzed and found to be comparatively different from blue grape extract. In addition, the content of total phenolic groups in cane extract was three-times higher (12.75 gGA/L). The results showed that cane extract was more effective in preventing biofilm formation than blue grape extract and winter canes have proven to be a potential source of polyphenols for antimicrobial and antibiofilm treatment.
Collapse
Affiliation(s)
- Zdeněk Kodeš
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Maria Vrublevskaya
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Markéta Kulišová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Petr Jaroš
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic;
| | - Martina Paldrychová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Karolína Pádrová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Kristýna Lokočová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
- Correspondence:
| | - Andrea Palyzová
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Olga Maťátková
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| | - Irena Kolouchová
- Department of Biotechnology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (Z.K.); (M.V.); (M.K.); (M.P.); (K.P.); (O.M.); (I.K.)
| |
Collapse
|
29
|
Dorosh O, Fernandes VC, Moreira MM, Delerue-Matos C. Occurrence of pesticides and environmental contaminants in vineyards: Case study of Portuguese grapevine canes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148395. [PMID: 34412412 DOI: 10.1016/j.scitotenv.2021.148395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/02/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Every year, after grape harvesting, high quantities of vine-canes are generated. Due to the high amount of bioactive compounds present in this woody material, several studies reported their potential to be used in different sustainable applications. However, before employing vine-canes in this kind of products, their safety needs to be assessed. A robust method for identification and quantification of 30 environmental contaminants (12 organochloride pesticides (OCPs), 6 organophosphorus pesticides (OPPs), 5 polychlorinated biphenyls (PCBs) and 7 brominated flame retardants (BFRs)) in vine-canes was developed. For that, the extraction and clean-up procedures were optimized, namely the vine-canes size, the QuEChERS (quick, easy, cheap, effective, rugged and safe) composition and the amount of carbon used in the dispersive-solid phase extraction (d-SPE). Suitable analytical parameters were obtained: linearity (r2) >0.99 for all the studied compounds and for the solvent and matrix-matched standards; relative standard deviation (RSD) below 14%; and mean recoveries for two spiking levels (10 and 20 μg/kg) between 75 and 103%, excepting for the PCBs that ranged between 59 and 105%. The limit of detection (LOD) and quantification (LOQ) ranged between 0.38 and 1.09 and 1.26 to 3.64 μg/kg, respectively. Regarding the analysis of 19 vine-cane samples, corresponding to four different varieties (Touriga Nacional, Tinta Roriz, Alvarinho, and Loureiro) collected in four different years in the North of Portugal, five contaminants (aldrin, 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), α-hexachlorocyclohexane (α-HCH), 2,4,4'-trichlorobiphenyl (PCB28), and 2,2',4,5,5'-pentachlorobiphenyl (PCB101)) were detected. However, only α-HCH (5.85 ± 0.32 to 5.99 ± 0.25 μg/kg) and aldrin (2.44 ± 0.15 μg/kg) were quantified above the LOQ. The screening of environmental contaminants in vine-canes is essential to waste valorization, especially if the goal is to apply them in products for human consumption.
Collapse
Affiliation(s)
- Olena Dorosh
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| | - Virgínia Cruz Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| | - Manuela M Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal.
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal
| |
Collapse
|
30
|
Phenolic Composition of Grape Stems from Different Spanish Varieties and Vintages. Biomolecules 2021; 11:biom11081221. [PMID: 34439886 PMCID: PMC8392641 DOI: 10.3390/biom11081221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Grape stems are a by-product from the wine industry that has been underused to date despite having great potential for the agro-food and cosmetic industries. The aim of the present work was to characterize grape stem extracts obtained from different grape varieties from two vintages (2016 and 2018). Both spectrophotometric and chromatographic methods were used for sample characterization. The results showed that there exist significant differences in antioxidant activity, total phenolic content (TPC) and total flavonoid content (TF) among grape stems from different varieties in each vintage and from different vintage for the same variety. Catechin was the most abundant phenolic compound in all extracts from both vintages. In general, Mazuelo presented higher concentration values of the different phenolic compounds than Garnacha and Tempranillo. It was observed than extreme temperatures and accumulated precipitations, which were higher in the 2016 vintage, had an impact on the polyphenol synthesis. Therefore, grape stems from the 2018 vintage presented higher TPC and TF values than their counterparts from the 2016 vintage. In addition, the statistical analysis revealed that the influence of environmental factor such as light, temperature and precipitations have different impact on the synthesis of polyphenols depending on the family of the specific compound.
Collapse
|
31
|
Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants (Basel) 2021; 10:antiox10071130. [PMID: 34356363 PMCID: PMC8301162 DOI: 10.3390/antiox10071130] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Grape canes, the main byproducts of the viticulture industry, contain high-value bioactive phenolic compounds, whose application is limited by their instability and poorly solubility in water. Encapsulation in cyclodextrins allows these drawbacks to be overcome. In this work, a grape cane pilot-plant extract (GCPPE) was encapsulated in hydroxypropyl beta-cyclodextrin (HP-β-CD) by a spray-drying technique and the formation of an inclusion complex was confirmed by microscopy and infrared spectroscopy. The phenolic profile of the complex was analyzed by LC-ESI-LTQ-Orbitrap-MS and the encapsulation efficiency of the phenolic compounds was determined. A total of 42 compounds were identified, including stilbenes, flavonoids, and phenolic acids, and a complex of (epi)catechin with β-CD was detected, confirming the interaction between polyphenols and cyclodextrin. The encapsulation efficiency for the total extract was 80.5 ± 1.1%, with restrytisol showing the highest value (97.0 ± 0.6%) and (E)-resveratrol (32.7 ± 2.8%) the lowest value. The antioxidant capacity of the inclusion complex, determined by ORAC-FL, was 5300 ± 472 µmol TE/g DW, which was similar to the value obtained for the unencapsulated extract. This formulation might be used to improve the stability, solubility, and bioavailability of phenolic compounds of the GCPPE for water-soluble food and pharmaceutical applications.
Collapse
|
32
|
Recovery of Polyphenols from Vineyard Pruning Wastes-Shoots and Cane of Hybrid Grapevine ( Vitis sp.) Cultivars. Antioxidants (Basel) 2021; 10:antiox10071059. [PMID: 34209008 PMCID: PMC8300631 DOI: 10.3390/antiox10071059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/24/2023] Open
Abstract
Grapevine shoots and canes represent a significant amount of biomass, considered as a waste in viticulture. In cooler climates, grapevines are pruned in the autumn (October) and spring (March) due to harsh winter conditions (e.g., snow, low temperatures), and large amounts of biomass are produced at these different pruning times. This work was undertaken in order to investigate the potential of vineyard pruning waste for recovery of polyphenolic compounds for biomass valorization. Qualitative and quantitative analyses of grapevine shoot and cane polyphenols, including flavonoids and stilbenoids were performed using UHPLC MS/MS method. The results revealed the flavonols (quercetin) to be the most abundant compounds in shoots among all the three cultivars screened (Zilga, Hasansky Sladky, Rondo). Stilbenoids (ε-viniferin) dominated in the canes, while increased level of flavonols with lower contents of stilbenoids was detected in the endo-dormant canes, and higher amounts of flavanols and stilbenoids were recorded in eco-dormant canes. In conclusion, the content of polyphenols in grapevine shoots and canes differed among the cultivars and dormancy phases. The results generated from the present study contribute to the sustainable and environmentally friendly viticulture practice via valorization of vineyard pruning wastes.
Collapse
|
33
|
Salicornia ramosissima Bioactive Composition and Safety: Eco-Friendly Extractions Approach (Microwave-Assisted Extraction vs. Conventional Maceration). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Salicornia ramosissima J.Woods is an edible halophyte, widely distributed in the Portuguese salt marsh that has been under valorized. The aim of this study is to expand the knowledge regarding S. ramosissima bioactive composition and safety, highlighting its potential use as nutraceutical ingredient. Therefore, extracts obtained by conventional (CE) and microwave-assisted extraction (MAE) were characterized regarding phenolic profile, antioxidant activity, radical scavenging capacity and intestinal cell effects. Moreover, organic pesticides were screened to guarantee the consumers safety. The highest phenolic and flavonoid contents were observed for the CE, as well as the scavenging capacity of O2•− (IC50 = 979.36 µg/mL) and HOCl (IC50 = 90.28 µg/mL). In contrast, the best antioxidant and antiradical activities were achieved by MAE (65.56 µmol FSE/g dw and 17.74 µg AAE/g dw for FRAP and ABTS assays, respectively). The phenolic composition was similar for both extracts, being characterized by the presence of phenolic acids, flavonols, flavanols, flavones and flavanones. The predominant compound for both extracts was myricetin. None of the extracts were cytotoxic in intestinal cell lines. Vestigial levels of β-endosulfan and p,p’-DDE were identified in MAE. These results support that S. ramosissima could be a source of bioactive compounds for nutraceutic industry.
Collapse
|
34
|
Squillaci G, Zannella C, Carbone V, Minasi P, Folliero V, Stelitano D, Cara FL, Galdiero M, Franci G, Morana A. Grape Canes from Typical Cultivars of Campania (Southern Italy) as a Source of High-Value Bioactive Compounds: Phenolic Profile, Antioxidant and Antimicrobial Activities. Molecules 2021; 26:2746. [PMID: 34067026 PMCID: PMC8125794 DOI: 10.3390/molecules26092746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
The purpose of the current study was to determine the phenolic composition, antioxidant, and antimicrobial activities in grape cane extracts from typical cultivars of Southern Italy. Aqueous extracts at different pHs (1-13) were prepared from "Aglianico", "Fiano", and "Greco" grape canes. The results demonstrated that an alkaline pH (13.00) produced the best polyphenol-rich extracts, as the total phenolic content was more than double when compared to the respective extracts prepared at pH 1.00. "Greco" grape canes gave the highest quantity of phenolic compounds at each pH, ranging from 42.7 ± 0.4 to 104.3 ± 3.0 mg Gallic Acid Equivalents (GAE)/g Dry Extract (DE) from pH 1.00 to 13.00. The Radical Scavenging Activity (RSA) and the Ferric Reducing Antioxidant Power (FRAP) were measured. The highest antioxidant activity was showed by "Greco" extract at pH 7.00. Seventy-five compounds were identified in the extracts by HPLC-MS with six of them described for the first time in grape canes. Procyanidins were highly abundant in extracts at pH 7.00, whereas stilbenoids were the most represented compounds at pH 13.00. Very strong antiviral activity against herpes simplex viruses was recorded for the extracts at pH 7.00 and 13.00 that were active in the early stages of infection by acting directly against the viral particles. The overall results suggest that grape canes, currently underutilized, can be usefully valorised by providing active extracts to use as antioxidant and antiviral agents.
Collapse
Affiliation(s)
- Giuseppe Squillaci
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (F.L.C.); (A.M.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy; (C.Z.); (V.F.); (D.S.); (M.G.)
| | - Virginia Carbone
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Sciences, National Research Council of Italy, Via Roma 64, 83100 Avellino, Italy; (V.C.); (P.M.)
| | - Paola Minasi
- Proteomic and Biomolecular Mass Spectrometry Center, Institute of Food Sciences, National Research Council of Italy, Via Roma 64, 83100 Avellino, Italy; (V.C.); (P.M.)
| | - Veronica Folliero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy; (C.Z.); (V.F.); (D.S.); (M.G.)
| | - Debora Stelitano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy; (C.Z.); (V.F.); (D.S.); (M.G.)
| | - Francesco La Cara
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (F.L.C.); (A.M.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy; (C.Z.); (V.F.); (D.S.); (M.G.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry Scuola Medica Salernitana, University of Salerno, 84081 Salerno, Italy
| | - Alessandra Morana
- Research Institute on Terrestrial Ecosystems, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy; (G.S.); (F.L.C.); (A.M.)
| |
Collapse
|
35
|
Escobar-Avello D, Mardones C, Saéz V, Riquelme S, von Baer D, Lamuela-Raventós RM, Vallverdú-Queralt A. Pilot-plant scale extraction of phenolic compounds from grape canes: Comprehensive characterization by LC-ESI-LTQ-Orbitrap-MS. Food Res Int 2021; 143:110265. [PMID: 33992366 DOI: 10.1016/j.foodres.2021.110265] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022]
Abstract
Grape canes, also named vine shoots, are well-known viticultural byproducts containing high levels of phenolic compounds, which are associated with a broad range of health benefits. In this work, grape canes (Vitis vinifera cv. Pinot noir) were extracted in a 750 L pilot-plant reactor under the following conditions: temperature 80 °C, time 100 min, solid/liquid ratio 1:10. The comprehensive characterization of grape cane phenolic compounds was performed by liquid chromatography coupled to high-resolution/accurate mass measurement LTQ-Orbitrap mass spectrometry. A total of 44 compounds were identified and, 26 of them also quantified, consisting of phenolic acids and aldehydes (17), flavonoids (12), and stilbenoids (15). The most abundant class of phenolics were stilbenoids, among which (E)-ε-viniferin predominated. The phenolic profile of grape canes obtained using pilot plant extraction differed significantly from the results of laboratory-scale studies obtained previously. Additionally, we observed a high antioxidant capacity of grape cane pilot-plant extract measured by the radical antioxidant scavenging potential (ABTS+) (2209 ± 125 µmol TE/g DW) and oxygen radical absorbance capacity using fluorescein (ORAC-FL) (4612 ± 155 µmol TE/g DW). Grape cane pilot-plant extract for their phenolic profile may be used as a by-product for the development of novel nutraceutical and pharmaceutical products, improving the value and the sustainability of these residues.
Collapse
Affiliation(s)
- Danilo Escobar-Avello
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; Unidad de Desarrollo Tecnológico, Universidad de Concepción, 4191996 Coronel, Chile
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile.
| | - Vania Saéz
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Sebastián Riquelme
- Unidad de Desarrollo Tecnológico, Universidad de Concepción, 4191996 Coronel, Chile; Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Dietrich von Baer
- Departamento de Análisis Instrumental, Facultad de Farmacia, Universidad de Concepción, Concepción, Casilla 237, Correo 3, Concepción, Chile
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
36
|
A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021; 26:molecules26051240. [PMID: 33669129 PMCID: PMC7956323 DOI: 10.3390/molecules26051240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Often blamed for bringing green aromas and astringency to wines, the use of stems is also empirically known to improve the aromatic complexity and freshness of some wines. Although applied in different wine-growing regions, stems use remains mainly experimental at a cellar level. Few studies have specifically focused on the compounds extracted from stems during fermentation and maceration and their potential impact on the must and wine matrices. We identified current knowledge on stem chemical composition and inventoried the compounds likely to be released during maceration to consider their theoretical impact. In addition, we investigated existing studies that examined the impact of either single stems or whole clusters on the wine quality. Many parameters influence stems' effect on the wine, especially grape variety, stem state, how stems are incorporated, when they are added, and contact duration. Other rarely considered factors may also have an impact, including vintage and ripening conditions, which could affect the lignification of the stem.
Collapse
|
37
|
Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods 2021; 10:foods10020342. [PMID: 33562826 PMCID: PMC7915647 DOI: 10.3390/foods10020342] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023] Open
Abstract
The winemaking sector is one of the most productive worldwide, and thus it also generates large amounts of by-products with high environmental impacts. Furthermore, global market trends and government regulations promote industrial alternatives based on sustainable production processes. As a result, several studies have focused their attention on the reuse of grape by-products in the agro-food chain. Vine shoots, grape stalks, and wine lees, although produced to a lesser extent than grape pomace, have increasingly been receiving attention for their applications in the food sector, since they are a good source of functional and bioactive compounds. In this framework, our review highlights the promising results obtained by exploiting the antioxidant and/or antimicrobial activity of vine shoots, grape stalks, and wine lees or their extracts to replace the most common oenological additives and to assay the activity against food pathogens. Further, innovative functional foods and sustainable food packaging have been formulated by taking advantage of polyphenols and fiber, as well as plant bio-stimulants, in order to obtain grapes and wines with high quality characteristics. Overall, these by-products showed the potential to be recycled into the food chain as functional additives for different products and applications, supporting the sustainability of the winemaking sector.
Collapse
|
38
|
Enzymatic preparation and antioxidative activity of hydrolysate from Rice bran protein. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00563-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Loupit G, Prigent S, Franc C, De Revel G, Richard T, Cookson SJ, Fonayet JV. Polyphenol Profiles of Just Pruned Grapevine Canes from Wild Vitis Accessions and Vitis vinifera Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13397-13407. [PMID: 32227944 DOI: 10.1021/acs.jafc.9b08099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Grapevine canes are an abundant byproduct of the wine industry. The stilbene contents of Vitis vinifera cultivars have been largely studied, but little is known about the stilbene contents of wild Vitis accessions. Moreover, there have only been few studies on the quantification of other phenolic compounds in just pruned grapevine canes. In our study, we investigated the polyphenol profile of 51 genotypes belonging to 15 Vitis spp. A total of 36 polyphenols (20 stilbenes, 6 flavanols, 7 flavonols, and 3 phenolic acids) were analyzed by high-performance liquid chromatography coupled with a triple quadrupole mass spectrometer. Our results suggest that some wild Vitis accessions could be of interest in terms of the concentration of bioactive polyphenols and that flavanols contribute significantly to the antioxidant activity of grapevine cane extracts. To the best of our knowledge, this is the most exhaustive study of the polyphenolic composition of grapevine canes of wild Vitis spp.
Collapse
Affiliation(s)
- Grégoire Loupit
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Sylvain Prigent
- UMR 1332 Biologie du Fruit et Pathologie, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre INRAE de Nouvelle Aquitaine-Bordeaux, Avenue Edouard Bourlaux, 33140 Villenave d'Ornon, France
- Plateforme Bordeaux Metabolome, INRAE, Université de Bordeaux, CNRS, MetaboHUB, PHENOME-EMPHASIS, 33140 Villenave d'Ornon, France
| | - Céline Franc
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
| | - Gilles De Revel
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
| | - Tristan Richard
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
- Plateforme Bordeaux Metabolome, Université de Bordeaux, INRAE, CNRS, MetaboHUB, 33140 Villenave d'Ornon, France
| | - Sarah Jane Cookson
- Ecophysiologie et Génomique Fonctionnelle de la Vigne (EGFV), Bordeaux Sciences Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), Université de Bordeaux, 33882 Villenave d'Ornon, France
| | - Josep Valls Fonayet
- Université de Bordeaux, Unité de Recherche Oenologie, EA 4577, USC 1366 Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut des Sciences de la Vigne et du Vin (ISVV), 33882 Villenave d'Ornon France
- Plateforme Bordeaux Metabolome, Université de Bordeaux, INRAE, CNRS, MetaboHUB, 33140 Villenave d'Ornon, France
| |
Collapse
|
40
|
Pressurized Liquid Extraction of Cannabinoids from Hemp Processing Residues: Evaluation of the Influencing Variables. Processes (Basel) 2020. [DOI: 10.3390/pr8111334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cannabinoids have gained significant interest as they may have pharmaceutical and nutritional applications to treat various diseases (sclerosis, glaucoma, and epilepsy, among others). Hemp (Cannabis sativa L.) has been studied recently as a source of cannabinoids, given the low concentration of tetrahydrocannabinol and comparatively high concentration of cannabidiol. Most of the plant’s fractions are used (blossoms, stem, and seeds), but the processing of the blossom leaves a residue, threshing residues, which could still be used to extract cannabinoids, aiming for an integral usage of the plant. Different technologies have been applied for cannabinoid extraction. Among these, pressurized liquid extraction (PLE) stands out due to the ease of application and efficiency. This work evaluates the influence of temperature, pressure, extraction time, and the number of cycles for the PLE of cannabinoids from hemp threshing residues using ethanol. Results show that low pressures, 100 °C, and 60 min are sufficient to achieve extraction yields of 19.8 mg of cannabidiol per g of dry hemp, which corresponds to an extraction efficiency of 99.3%. These results show this technology’s potential for cannabinoid extraction (mainly cannabidiol) and further open the perspective to valorize the residues and other parts of hemp plants.
Collapse
|
41
|
Valorisation of Exhausted Olive Pomace by an Eco-Friendly Solvent Extraction Process of Natural Antioxidants. Antioxidants (Basel) 2020; 9:antiox9101010. [PMID: 33080930 PMCID: PMC7603280 DOI: 10.3390/antiox9101010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
Exhausted olive pomace (EOP) is the waste generated from the drying and subsequent extraction of residual oil from the olive pomace. In this work, the effect of different aqueous solvents on the recovery of antioxidant compounds from this lignocellulosic biomass was assessed. Water extraction was selected as the best option for recovering bioactive compounds from EOP, and the influence of the main operational parameters involved in the extraction was evaluated by response surface methodology. Aqueous extraction of EOP under optimised conditions (10% solids, 85 °C, and 90 min) yielded an extract with concentrations (per g EOP) of phenolic compounds and flavonoids of 44.5 mg gallic acid equivalent and 114.9 mg rutin equivalent, respectively. Hydroxytyrosol was identified as the major phenolic compound in EOP aqueous extracts. Moreover, these extracts showed high antioxidant activity, as well as moderate bactericidal action against some food-borne pathogens. In general, these results indicate the great potential of EOP as a source of bioactive compounds, with potential uses in several industrial applications.
Collapse
|
42
|
Aliaño-González MJ, Richard T, Cantos-Villar E. Grapevine Cane Extracts: Raw Plant Material, Extraction Methods, Quantification, and Applications. Biomolecules 2020; 10:E1195. [PMID: 32824592 PMCID: PMC7464460 DOI: 10.3390/biom10081195] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Grapevine canes are viticulture waste that is usually discarded without any further use. However, recent studies have shown that they contain significant concentrations of health-promoting compounds, such as stilbenes, secondary metabolites of plants produced as a response to biotic and abiotic stress from fungal disease or dryness. Stilbenes have been associated with antioxidant, anti-inflammatory, and anti-microbial properties and they have been tested as potential treatments of cardiovascular and neurological diseases, and even cancer, with promising results. Stilbenes have been described in the different genus of the Vitaceae family, the Vitis genera being one of the most widely studied due to its important applications and economic impact around the world. This review presents an in-depth study of the composition and concentration of stilbenes in grapevine canes. The results show that the concentration of stilbenes in grapevine canes is highly influenced by the Vitis genus and cultivar aspects (growing conditions, ultraviolet radiation, fungal attack, etc.). Different methods for extracting stilbenes from grapevine canes have been reviewed, and the extraction conditions have also been studied, underlining the advantages and disadvantages of each technique. After the stilbenes were extracted, they were analyzed to determine the stilbene composition and concentration. Analytical techniques have been employed with this aim, in most cases using liquid chromatography, coupled with others such as mass spectrometry and/or nuclear magnetic resonance to achieve the individual quantification. Finally, stilbene extracts may be applied in multiple fields based on their properties. The five most relevant are preservative, antifungal, insecticide, and biostimulant applications. The current state-of-the-art of the above applications and their prospects are discussed.
Collapse
Affiliation(s)
- María José Aliaño-González
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Rancho de la Merced, Ctra. Cañada de la Loba, CA-3102 km 3.1, 11471 Jerez de la Frontera, Spain;
| | - Tristan Richard
- Université de Bordeaux, ISVV, EA 3675 Groupe d’Etude des Substances Végétales à Activité Biologique, 33882 Villenave d’Ornon, France;
| | - Emma Cantos-Villar
- Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, Rancho de la Merced, Ctra. Cañada de la Loba, CA-3102 km 3.1, 11471 Jerez de la Frontera, Spain;
| |
Collapse
|
43
|
Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes ( Vitis vinifera) Subcritical Water Extracts. Foods 2020; 9:foods9070872. [PMID: 32635200 PMCID: PMC7404767 DOI: 10.3390/foods9070872] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/21/2023] Open
Abstract
This work focused on evaluating the possibility of using vineyard pruning wastes from two Portuguese Vitis vinifera varieties; Touriga Nacional (TN) and Tinta Roriz (TR), as new potential ingredients for the nutraceutical industry. An environmentally friendly extraction technique; namely subcritical-water extraction (SWE), was employed. The overall results indicate that phenolic acids were the major class of compounds quantified; being gallic acid the principal one. The highest value for total phenolic content (TPC) was obtained for the TR extract at 250 °C (181 ± 12 mg GAE/g dw). In terms of antioxidant activity; the DPPH values for the extracts obtained at 250 °C were approximately 4-fold higher than the ones obtained at 125 °C; with TR extract presenting the highest value (203 ± 22 mg TE/g dw). Thus, the TR extract obtained through SWE at 250 °C was selected to evaluate the scavenging activity and the in vitro effects on cells due to the best results achieved in the previous assays. This extract presented the ability to scavenge reactive oxygen species (O2●-, HOCl and ROO●). No adverse effects were observed in HFF-1 viability after exposure to extract concentrations below 100 μg/mL. This work demonstrated that vine-canes extracts could be a potential ingredient to nutraceutical industry
Collapse
|
44
|
Moreira MM, Rodrigues F, Dorosh O, Pinto D, Costa PC, Švarc-Gajić J, Delerue-Matos C. Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules 2020; 25:molecules25132969. [PMID: 32605276 PMCID: PMC7412539 DOI: 10.3390/molecules25132969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/17/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022] Open
Abstract
The majority of works about vine-canes are focused on the evaluation of their chemical composition and antioxidant potential. To the best of our knowledge, the possible applications of produced extracts in cosmetic formulations have never been explored. The aim of the present study was to evaluate the antioxidant properties of vine-canes subcritical water extracts for use as active ingredients in the cosmetic industry. For that, the phenolic content and antioxidant activity of six vine-cane varieties, namely Alvarinho and Loureiro from the Minho region and Touriga Nacional and Tinta Roriz (TR) from both the Douro and Dão regions, were evaluated through spectrophotometric and chromatographic methods. All extracts presented similar antioxidant activity and the highest phenolic content was reported for TR variety from the Douro region (33.7 ± 1.9 mg GAE/g dw). The capacity of vine-cane extracts to capture reactive oxygen species superoxide (O2-) was also studied, with the highest IC50 value being obtained for Loureiro variety (56.68 ± 2.60 µg/mL). Furthermore, no adverse effects on HaCaT and HFF-1 dermal cell lines in concentrations below 100 and 1000 µg/mL, respectively, were determined. Finally, Loureiro vine-cane extract was incorporated into a topical formulation, and physical and microbiological properties were within expected values, demonstrating that vine-canes extracts can be successfully incorporated in cosmetic products.
Collapse
Affiliation(s)
- Manuela M. Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.R.); (O.D.); (D.P.); (C.D.-M.)
- Correspondence: ; Tel.: +351-228340500
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.R.); (O.D.); (D.P.); (C.D.-M.)
| | - Olena Dorosh
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.R.); (O.D.); (D.P.); (C.D.-M.)
| | - Diana Pinto
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.R.); (O.D.); (D.P.); (C.D.-M.)
| | - Paulo C. Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira nº. 228, 4050-313 Porto, Portugal;
| | - Jaroslava Švarc-Gajić
- Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.R.); (O.D.); (D.P.); (C.D.-M.)
| |
Collapse
|
45
|
Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants (Basel) 2020; 9:antiox9060502. [PMID: 32521718 PMCID: PMC7346141 DOI: 10.3390/antiox9060502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Oral health is considered an important factor of general health and it contributes to the quality of life. Despite the raising awareness of preventive measures, the prevalence of oral health conditions continues to increase. In this context, a growing interest in investigating natural resources like Vitis vinifera (V. vinifera) phenolic compounds (PhCs) as oral health promoters has emerged. This paper aims to review the evidence about the bioactivities of V. vinifera by-products in oral health. Up to date, a high number of studies have thoroughly reported the antimicrobial and antiplaque activity of V. vinifera extracts against S. mutans or in multi-species biofilms. Moreover, the bioactive compounds from V. vinifera by-products have been shown to modulate the periodontal inflammatory response and the underlying oxidative stress imbalance induced by the pathogenic bacteria. Considering these beneficial effects, the utility of V. vinifera by-products in the maintaining of oral health and the necessary steps towards the development of oral care products were emphasized. In conclusion, the high potential of V. vinifera by-products could be valorized in the development of oral hygiene products with multi-target actions in the prevention and progression of several oral conditions.
Collapse
|
46
|
Panzella L, Moccia F, Nasti R, Marzorati S, Verotta L, Napolitano A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front Nutr 2020; 7:60. [PMID: 32457916 PMCID: PMC7221145 DOI: 10.3389/fnut.2020.00060] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds are broadly represented in plant kingdom, and their occurrence in easily accessible low-cost sources like wastes from agri-food processing have led in the last decade to an increase of interest in their recovery and further exploitation. Indeed, most of these compounds are endowed with beneficial properties to human health (e.g., in the prevention of cancer and cardiovascular diseases), that may be largely ascribed to their potent antioxidant and scavenging activity against reactive oxygen species generated in settings of oxidative stress and responsible for the onset of several inflammatory and degenerative diseases. Apart from their use as food supplements or as additives in functional foods, natural phenolic compounds have become increasingly attractive also from a technological point of view, due to their possible exploitation in materials science. Several extraction methodologies have been reported for the recovery of phenolic compounds from agri-food wastes mostly based on the use of organic solvents such as methanol, ethanol, or acetone. However, there is an increasing need for green and sustainable approaches leading to phenolic-rich extracts with low environmental impact. This review addresses the most promising and innovative methodologies for the recovery of functional phenolic compounds from waste materials that have appeared in the recent literature. In particular, extraction procedures based on the use of green technologies (supercritical fluid, microwaves, ultrasounds) as well as of green solvents such as deep eutectic solvents (DES) are surveyed.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Federica Moccia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Rita Nasti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | - Luisella Verotta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
47
|
Dorosh O, Moreira MM, Rodrigues F, Peixoto AF, Freire C, Morais S, Delerue-Matos C. Vine-Canes Valorisation: Ultrasound-Assisted Extraction from Lab to Pilot Scale. Molecules 2020; 25:molecules25071739. [PMID: 32290053 PMCID: PMC7181219 DOI: 10.3390/molecules25071739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
Wine production generates large amounts of vine-canes, a devalued by-product that could be used for the recovery of bioactive compounds. In this work, two vine-canes varieties, namely Touriga Nacional (TN) and Tinta Roriz (TR), were submitted to different ultrasound-assisted extraction (UAE) conditions. The highest phenolic and flavonoid content was observed for TR extract obtained at lab-scale without an ice bath and pilot-scale after 60 min of extraction (32.6 ± 2.1 and 26.0 ± 1.5 mg gallic acid equivalent/g dry weight (dw) and 9.5 ± 0.6 and 8.3 ± 0.8 mg epicatechin equivalents/g dw, respectively). Further, all extracts demonstrated a high antioxidant activity to scavenge DPPH free radicals with the best value reached by TR at the lab-scale without an ice bath after 30 min and pilot-scale extraction after 60 min (34.2 ± 2.4 and 33.4 ± 2.1 mg trolox equivalents/g dw, respectively). Extracts phenolic composition were also evaluated by HPLC, demonstrating that resveratrol, myricetin and catechin were the main compounds. According to our knowledge, this is the first time that a pilot scale of UAE of phenolic compounds from vine-canes was performed. This paper represents an important step to the use of UAE as an industrial process to recover bioactive compounds.
Collapse
Affiliation(s)
- Olena Dorosh
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (O.D.); (F.R.); (S.M.); (C.D.-M.)
| | - Manuela M. Moreira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (O.D.); (F.R.); (S.M.); (C.D.-M.)
- Correspondence: ; Tel.: +351-228340500
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (O.D.); (F.R.); (S.M.); (C.D.-M.)
| | - Andreia F. Peixoto
- REQUIMTE/LAQV, Departamento. de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.F.P.); (C.F.)
| | - Cristina Freire
- REQUIMTE/LAQV, Departamento. de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; (A.F.P.); (C.F.)
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (O.D.); (F.R.); (S.M.); (C.D.-M.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (O.D.); (F.R.); (S.M.); (C.D.-M.)
| |
Collapse
|
48
|
Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Kovacs E, Scurtu DA, Senila L, Cadar O, Dumitras DE, Roman C. Green Protocols for the Isolation of Carbohydrates from Vineyard Vine-Shoot Waste. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1721001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Eniko Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | | | - Lacrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Diana Elena Dumitras
- Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cecilia Roman
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| |
Collapse
|
50
|
Zwingelstein M, Draye M, Besombes JL, Piot C, Chatel G. Viticultural wood waste as a source of polyphenols of interest: Opportunities and perspectives through conventional and emerging extraction methods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 102:782-794. [PMID: 31812093 DOI: 10.1016/j.wasman.2019.11.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/08/2019] [Accepted: 11/21/2019] [Indexed: 05/28/2023]
Abstract
Viticultural waste has been widely demonstrated to contain high-added value compounds named the stilbenes. Among them, trans-resveratrol (Rsv) and trans-ε-viniferin (Vf) are the most abundant in particular in grape canes. Various emerging methods such as ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE) or pressurized solvent extraction (PSE) have been studied to recover Rsv and Vf from grape canes in order to enhance their extraction. This paper gives a critical overview of the techniques used to this end, integrating conventional and non-conventional methods investigated in the literature as well as those used in industrial processes. It finally highlights that the unconventional technics are usually less time-consuming than conventional extraction ones but further investigations for the discussed compounds and biomass are needed to optimize and understand the influence of the individual parameters of each extraction process.
Collapse
Affiliation(s)
- Marion Zwingelstein
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France; Agence de l'Environnement et de Maîtrise de l'Energie (ADEME), F-49004 Angers, France
| | | | | | | | - Gregory Chatel
- Univ. Savoie Mont Blanc, LCME, F-73000 Chambéry, France.
| |
Collapse
|