1
|
Zhang A, Luo X, Liu J, Yang Y, Qiao Y. Comparative evaluation of phosphorus recovery from sewage sludge thermal products via magnesium ammonium phosphate and hydroxyapatite methods. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 196:51-59. [PMID: 39978038 DOI: 10.1016/j.wasman.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Shortage of phosphorus resource has become a global concern. Due to the high phosphorus content in sewage sludge, phosphorus recovery can be realized from thermal products of sewage sludge. Phosphorus recovery performance of smoldering ash (SA), incineration ash (IA) and pyrolysis char (PC) was investigated. The precipitate rate of phosphorus in acid and alkali leaching solutions is over 94 % by magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) methods. For MAP method, the recovered P contents in the precipitations of SA, IA and PC are 23.25 ± 0.35, 31.71 ± 0.79 and 23.76 ± 0.24 mg/g, respectively. For HAP recovery, the phosphorus contents per unit mass of precipitated products are lower than that by MAP, ranging from 13.67 ± 0.10 to 22.89 ± 0.34 mg/g. The purity of the recovered products was evaluated based on the contents of major elements and heavy metals in recovered products. Most of major elements and heavy metals can coprecipitate with phosphorus in the recovery products by acid leaching-MAP method. Due to the low impurity content in the alkali leaching solution and insolubility of most heavy metals in it, the products recovered by alkali leaching-HAP shows higher purity than that by acid leaching-MAP method. The phosphorus recovery performance, reagent consumption and purity of recovered products of the two methods were compared. Acid leaching-MAP recovery is optimal for IA due to its highest P recovery and purity, with lower reagent consumption compared to alkali leaching-HAP. For SA and PC, alkali leaching-HAP recovery is preferable due to its higher P recovery purity and market price of hydroxyapatite products.
Collapse
Affiliation(s)
- Aijia Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| | - Xinyi Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China.
| | - Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| | - Yu Qiao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 China
| |
Collapse
|
2
|
Karasa J, Ozola-Davidāne R, Gruškeviča K, Ozoliņa KA, Mikosa LI, Kostjukovs J. Phosphorus removal from municipal wastewater using calcium/iron oxide composites: Adsorption efficiency and impact on plant growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177227. [PMID: 39490397 DOI: 10.1016/j.scitotenv.2024.177227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/03/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Phosphate minerals are crucial for the production of fertilizers, but limited availability does not meet the growing agricultural demand. At the same time, the discharge of phosphorus by municipal wastewater treatment plants leads to eutrophication. Removal and recovery of phosphorus from wastewater can both provide nutrients to agriculture and decrease eutrophication. This research aims to evaluate phosphorus removal from municipal wastewater in Latvia by mineral-based calcium/iron composites and examine spent oxides' phytotoxic effect on plant growth. Two CaFeOxides from Latvian earth pigments (iron oxide pigments) deposits were synthesized and characterised by X-ray powder diffraction, differential scanning calorimetry/thermogravimetry, scanning electron microscopy-energy dispersive X-ray analysis and specific surface area analysis. Adsorption properties of obtained oxides were evaluated with a standard phosphate solution, and real municipal wastewater. The phytotoxic effect of P-loaded composites was evaluated in a hydroponic system with common wheat (Triticum aestivum). The results indicated that calcium/iron oxide composites have higher P adsorption efficiency than the commercial Polonite material. The maximum sorption capacity of CaFeOxides was 63.29 and 83.33 mg P/g, and 53.19 mg/g for Polonite. Furthermore, the P-loaded CaFeOxides demonstrated no phytotoxic effect on the growth of Triticum aestivum, and at higher CaFeOxides concentrations, morphological and physiological parameters of wheat increased, showing great potential for reuse in agriculture.
Collapse
Affiliation(s)
- Jūlija Karasa
- University of Latvia, Faculty of Science and Technology, Department of Environmental Protection, Jelgavas Street 1, Riga, LV-1004, Latvia
| | - Rūta Ozola-Davidāne
- University of Latvia, Faculty of Science and Technology, Department of Environmental Protection, Jelgavas Street 1, Riga, LV-1004, Latvia; Latvia University of Life Sciences and Technologies, Faculty of Forest and Environmental Sciences, Akademijas Street 11, Jelgava, LV-3001, Latvia.
| | - Kamila Gruškeviča
- Riga Technical University, Water Systems and Biotechnology Institute, Kipsalas 6a-263, Riga, LV-1048, Latvia
| | - Katrīna Anna Ozoliņa
- University of Latvia, Faculty of Science and Technology, Department of Environmental Protection, Jelgavas Street 1, Riga, LV-1004, Latvia
| | - Līga Irbe Mikosa
- Riga Technical University, Water Systems and Biotechnology Institute, Kipsalas 6a-263, Riga, LV-1048, Latvia
| | - Juris Kostjukovs
- University of Latvia, Faculty of Science and Technology, Department of Environmental Protection, Jelgavas Street 1, Riga, LV-1004, Latvia
| |
Collapse
|
3
|
Song B, Wang R, Li W, Zhan Z, Luo J, Lei Y. Fate of micropollutants in struvite production from swine wastewater with sacrificial magnesium anode. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135505. [PMID: 39146587 DOI: 10.1016/j.jhazmat.2024.135505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Struvite recovery shows significant potential for simultaneously recovering nitrogen (N) and phosphorus (P) from swine wastewater but is challenged by the occurrence and transformation of antibiotic residuals. Electrochemically mediated struvite precipitation with sacrificial magnesium anode (EMSP-Mg) is promising due to its automation and chemical-free merits. However, the fate of antibiotics remains underexplored. We investigated the behavior of sulfadiazine (SD), an antibiotic frequently detected but less studied than others within the EMSP-Mg system. Significantly less SD (≤ 5%) was co-precipitated with recovered struvite in EMSP-Mg than conventional chemical struvite precipitation (CSP) processes (15.0 to 50.0%). The reduced SD accumulation in struvite recovered via EMSP was associated with increased pH and electric potential differences, which likely enhanced the electrostatic repulsion between SD and struvite. In contrast, the typical strategies used in enhancing P removal in the EMSP-Mg system, including increasing the Mg/P ratio or the Mg-release rates, have shown negligible effects on SD adsorption. Furthermore, typical coexisting ions (Ca2+, Cl-, and HCO3-) inhibited SD adsorption onto recovered products. These results provide new insights into the interactions between antibiotics and struvite within the EMSP-Mg system, enhancing our understanding of antibiotic migration pathways and aiding the development of novel EMSP processes for cleaner struvite recovery.
Collapse
Affiliation(s)
- Bingnan Song
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Runhua Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiquan Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiayu Luo
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
4
|
Mittal Y, Srivastava P, Kumar N, Tripathy BC, Martinez F, Yadav AK. Nutrient removal in floating and vertical flow constructed wetlands using aluminium dross: An innovative approach to mitigate eutrophication. BIORESOURCE TECHNOLOGY 2024; 410:131205. [PMID: 39097238 DOI: 10.1016/j.biortech.2024.131205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
On global scale, eutrophication is one of the most prevalent environmental threats to water quality, primarily caused by elevated concentration of nutrients in wastewater. This study utilizes aluminum dross (AD), an industrial waste, to create a value-added material by improving its operational feasibility and application for removing phosphate and ammonium from water. The operational challenges of AD such as its powdered nature and effective operation under only extreme pH conditions were addressed by immobilizing in calcium alginate to form calcium alginate aluminium dross (Ca-Alg-Al dross) beads. These Ca-Alg-Al dross beads were further tested for phosphate and ammonium removal from natural wastewater in two different aqueous environment systems: (i) vertical flow constructed wetlands (VF-CWs) followed by Ca-Alg-Al dross beads fixed bed system and (ii) Ca-Alg-Al dross beads mounted floating constructed wetlands (FCW) for remediating polluted lentic ecosystems. Our results show maximum phosphate and ammonium removal of 85 ± 0.41 % and 93.44 %, respectively, in VF-CWs followed by Ca-Alg-Al dross beads fixed bed system. The Ca-Alg-Al dross beads mounted FCW system achieved maximum phosphate removal of 79.18 ± 8.56 % and ammonium removal of 65.45 ± 21.04 %. Furthermore, the treated water from the FCW system was assessed for its potential to inhibit algal growth by artificially inoculating treated water with natural algae to simulate eutrophic conditions. Interestingly, treated water from the FCW system was found capable of arresting the algal growth. Besides, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) spectroscopy confirmed the functional groups and surface properties and probable participation of multiple mechanisms including ion exchange, electrostatic attraction, and ligand complexation for phosphate and ammonium removal. Overall, these results offer a promising way to utilize AD for high-end applications in wastewater treatment.
Collapse
Affiliation(s)
- Yamini Mittal
- Ingenieurgesellschaft Janisch & Schulz mbH, Münzenberg 35516, Germany; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Pratiksha Srivastava
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Naresh Kumar
- Soil Chemistry, Wageningen University and Research, 6708 PB Wageningen, The Netherland
| | - Bankim Chandra Tripathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Fernando Martinez
- Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain; Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain.
| |
Collapse
|
5
|
Zhao L, Liu L, Liu X, Shu A, Zou W, Wang Z, Zhou Y, Huang C, Zhai Y, He H. Efficient phosphorus recovery from waste activated sludge: Pretreatment with natural deep eutectic solvent and recovery as vivianite. WATER RESEARCH 2024; 263:122161. [PMID: 39084092 DOI: 10.1016/j.watres.2024.122161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Recycling phosphorus from waste activated sludge (WAS) is an effective method to address the nonrenewable nature of phosphorus and mitigate environmental pollution. To overcome the challenge of low phosphorus recovery from WAS due to insufficient disintegration, a method using a citric acid-based natural deep eutectic solvent (CA-NADES) assisted with low-temperature pretreatment was proposed to efficiently release and recover phosphorus. The results of 31P nuclear magnetic resonance (NMR) confirmed that low-temperature pretreatment promoted the conversion of organic phosphorus (OP) to inorganic phosphorus (IP) and enhanced the effect of CA-NADES. Changes in the three-dimensional excitation-emission matrix (3D-EEM) and flow cytometry (FCM) indicated that the method of CA-NADES with low-temperature thermal simultaneously release IP and OP by disintegrating sludge flocs, dissolving extracellular polymeric substances (EPS) structure, and cracking cells. When 5 % (v/v) of CA-NADES was added and thermally treated at 60 °C for 30 min, 43 % of total phosphorus (TP) was released from the sludge. The concentrations of proteins and polysaccharides reached 826 and 331 mg/L, respectively, which were 6.30 and 14.43 times higher than those of raw sludge. The dewatering and settling of the sludge were also improved. Metals were either enriched in the solid phase or released into the liquid phase in small quantities (most efficiencies of less than 10 %) for subsequent clean recovery. The released phosphorus was successfully recovered as vivianite with a rate of 90 %. This study develops an efficient, green, and sustainable method for phosphorus recovery from sludge using NADES and provides new insights into the high-value conversion of sludge.
Collapse
Affiliation(s)
- Luna Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Liming Liu
- Department of Civil and Earth Resources Engineering, Kyoto University, Kyoto 612-8236, Japan
| | - Xiaoping Liu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Aoqiang Shu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wei Zou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhexian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Cheng Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Hongkui He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China; Anhui Risewell Technology Limited Company, Bozhou 236800, China.
| |
Collapse
|
6
|
Singh NK, Mathuriya AS, Mehrotra S, Pandit S, Singh A, Jadhav D. Advances in bioelectrochemical systems for bio-products recovery. ENVIRONMENTAL TECHNOLOGY 2024; 45:3853-3876. [PMID: 37491760 DOI: 10.1080/09593330.2023.2234676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2023] [Indexed: 07/27/2023]
Abstract
Bioelectrochemical systems (BES) have emerged as a sustainable and highly promising technology that has garnered significant attention from researchers worldwide. These systems provide an efficient platform for the removal and recovery of valuable products from wastewater, with minimal or no net energy loss. Among the various types of BES, microbial fuel cells (MFCs) are a notable example, utilizing microbial biocatalytic activities to generate electrical energy through the degradation of organic matter. Other BES variants include microbial desalination cells (MDCs), microbial electrolysis cells (MECs), microbial electrosynthesis cells (MXCs), microbial solar cells (MSCs), and more. BESs have demonstrated remarkable potential in the recovery of diverse products such as hydrogen, methane, volatile fatty acids, precious nutrients, and metals. Recent advancements in scaling up BESs have facilitated a more realistic assessment of their net energy recovery and resource yield in real-world applications. This comprehensive review focuses on the practical applications of BESs, from laboratory-scale developments to their potential for industrial commercialization. Specifically, it highlights successful examples of value-added product recovery achieved through various BES configurations. Additionally, this review critically evaluates the limitations of BESs and provides suggestions to enhance their performance at a larger scale, enabling effective implementation in real-world scenarios. By providing a thorough analysis of the current state of BES technology, this review aims to emphasize the tremendous potential of these systems for sustainable wastewater treatment and resource recovery. It underscores the significance of bridging the gap between laboratory-scale achievements and industrial implementation, paving the way for a more sustainable and resource-efficient future.
Collapse
Affiliation(s)
- Neeraj Kumar Singh
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Abhilasha Singh Mathuriya
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
- Ministry of Environment, Forest and Climate Change, New Delhi, India
| | - Smriti Mehrotra
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Soumya Pandit
- Bio-POSITIVE, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Government of India, New Delhi, India
| | - Deepak Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology Aurangabad, Maharashtra, India
| |
Collapse
|
7
|
Gou L, Dai L, Wang Y. Coupling of struvite crystallization and aqueous phase recirculation for hydrochar upgrading and nitrogen recovery during hydrothermal carbonization of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172682. [PMID: 38663600 DOI: 10.1016/j.scitotenv.2024.172682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/29/2024]
Abstract
Recycling of aqueous phase (AP) as a by-product after hydrothermal carbonization (HTC) of sewage sludge (SS) has been of interest. The combination of magnesium ammonium phosphate (MAP) or the so-called struvite crystallization and aqueous phase (AP) recirculation has great potential for resource recovery and hydrochar enhancement. In this study, both the aqueous phase of HTC after MAP recovery of NH4+-N (AP-MAP) and the untreated aqueous phase of HTC (AP-HTC) were reused for HTC of fresh SS, and both aqueous phases were recycled four times. The effects of the two AP cycles on the properties of AP and hydrochar at 200, 230, and 260 °C were studied, and the effect of temperature on the two AP cycles was similar. The hydrochar produced by the AP-MAP cycle had lower nitrogen content than that of the AP-HTC cycle due to the low ammonia nitrogen (NH4+-N) content, and the combustion performance was improved. MAP recovery reduces the accumulation of NH4+-N in the AP cycle and MAP is also a high-quality fertilizer. Therefore, the combination of MAP recovery and AP recycling provides a feasible technical approach for resource utilization, eutrophic AP treatment, and production of high-quality hydrochar in the HTC process of SS.
Collapse
Affiliation(s)
- Le Gou
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China
| | - Liyi Dai
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| | - Yuanyuan Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University, No. 500 Dongchuan Road, Shanghai 200241, PR China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
8
|
Jourdain A, Taviot-Gueho C, Nielsen UG, Prévot V, Forano C. In-depth characterization of phosphate intercalated Mg Al Layered double hydroxides and study of the PO 4 release properties. Dalton Trans 2024; 53:9568-9577. [PMID: 38771566 DOI: 10.1039/d4dt00601a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Slow-release fertilizers (SRFs) form the core of innovative strategies in sustainable agriculture. Layered Double Hydroxides (LDH), known for their high capacity to sequester plant nutrients, especially phosphate, are emerging as promising candidates for SRF synthesis. The phosphate release properties of MgAl LDH (with a targeted Mg/Al ratio of 2.0) intercalated with HPO42- anions were assessed in various aqueous environments. A comprehensive analysis, including in-depth chemical and structural characterizations (ICP-OES, XRD, PDF, 27Al NMR, 31P NMR, FTIR, SEM) of the as-prepared phase unveiled a more intricate composition than anticipated for a pure or ideal Mg2Al-HPO4 LDH, encompassing an excess of intercalated phosphate in conjunction with K+. Beyond the intercalated phosphate, solid state 31P NMR speciation identified multiple HxPO4(-3+x) environments, indicating a portion of the phosphate reacting with intralayer Mg2+ to form K-struvite. Additionally, some phosphates were adsorbed onto the surface of amorphous aluminum hydroxide, a side phase formed during MgAl coprecipitation. The phosphate release demonstrated rapid kinetics, occurring within 6 days. Moreover, the released phosphate increased significantly when reducing the Solid/Liquid (S/L) ratio (58%) and further increasing in the presence of carbonate ions (90%). The released phosphate varied from 12% to 90% under different release conditions, transitioning from water to a 3.33 mM NaHCO3 aqueous solution at a low S/L ratio (from 20 mg LDH per mL to 0.02 mg LDH per mL). The simultaneous release of K+, Mg2+, Al3+ indicated the complete dissolution of the K-struvite and partial dissolution of phosphate intercalated MgAl LDH. These results enhanced our understanding of the mechanism governing phosphate release from MgAl LDH, paving the way for potential phosphate recovery by LDH or for the development of LDH-based SRFs.
Collapse
Affiliation(s)
- Alexandra Jourdain
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Christine Taviot-Gueho
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Vanessa Prévot
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| | - Claude Forano
- Université Clermont Auvergne, CNRS, INP Clermont, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
9
|
Li Y, Chi D, Sun Y, Wang X, Tan M, Guan Y, Wu Q, Zhou H. Synthesis of struvite-enriched slow-release fertilizer using magnesium-modified biochar: Desorption and leaching mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172172. [PMID: 38575019 DOI: 10.1016/j.scitotenv.2024.172172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
To improve the retention and slow-release abilities of nitrogen (N) and phosphorus (P), an 82 %-purity struvite fertilizer (MAP-BC) was synthesized using magnesium-modified biochar and a solution with a 2:1 concentration ratio of NH4+ to PO43- at a pH of 8. Batch microscopic characterizations and soil column leaching experiments were conducted to study the retention and slow-release mechanisms and desorption kinetics of MAP-BC. The slow-release mechanism revealed that the dissolution rate of high-purity struvite was the dominant factor of NP slow release. The re-adsorption of NH4+ and PO43- by biochar and unconsumed MgO prolonged slow release. Mg2+ ionized by MgO could react with PO43- released from struvite to form Mg3(PO4)2. The internal biochar exhibited electrostatic attraction and pore restriction towards NH4+, while magnesium modification and nutrient loading formed a physical antioxidant barrier that ensured long-term release. The water diffusion experiment showed a higher cumulative release rate for PO43- compared to NH4+, whereas in soil column leaching, the trend was reversed, suggesting that soil's competitive adsorption facilitated the desorption of NH4+ from MAP-BC. During soil leaching, cumulative release rates of NH4+ and PO43- from chemical fertilizers were 3.55-3.62 times faster than those from MAP-BC. The dynamic test data for NH4+ and PO43- in MAP-BC fitted the Ritger-Peppas model best, predicting release periods of 163 days and 166 days, respectively. The leaching performances showed that MAP-BC reduced leaching solution volume by 5.58 % and significantly increased soil large aggregates content larger than 0.25 mm by 24.25 %. The soil nutrients retention and pH regulation by MAP-BC reduced leaching concentrations of NP. Furthermore, MAP-BC significantly enhanced plant growth, and it is more suitable as a NP source for long-term crops. Therefore, MAP-BC is expected to function as a long-term and slow-release fertilizer with the potential to minimize NP nutrient loss and replace part of quick-acting fertilizer.
Collapse
Affiliation(s)
- Yanqi Li
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Daocai Chi
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Yidi Sun
- China College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xuanming Wang
- College of Agriculture, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Meitao Tan
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Yu Guan
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China
| | - Qi Wu
- College of Water Resource, Shenyang Agricultural University, Shenyang, Liaoning 110866, PR China.
| | - Hanmi Zhou
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan 471023, PR China.
| |
Collapse
|
10
|
Zhou T, Xu N, Chen G, Zhang M, Ji T, Feng X, Wang C. Magnesium source with function of slowly releasing Mg and pH control for impurity-resistance synthesis ultra-large struvite from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171636. [PMID: 38485021 DOI: 10.1016/j.scitotenv.2024.171636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/17/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Struvite (MgNH4PO4·6H2O, Magnesium ammonium phosphate, MAP), recovered from wastewater, has potential application as a slow-release fertilizer. However, crystal size distribution (CSD) of recovered MAP typically lied in the range of 50-300 μm, due to fast nucleation rate and notably narrow metastable zone width (MSZW) of MAP, with purity levels 40-90 %. In order to control the rate of nucleation, a novel magnesium source with the form of MgHPO4·3H2O wrapped with Mg(OH)2 was prepared, referred to as P-3. This compound gradually released Mg2+ and PO43-, regulating solution concentration kept in MSZW to promote crystal growth. The inherent Mg(OH)2 within P-3 also acted as a pH regulator in wastewater, eliminating the necessity for additional acid or alkali adjustments during crystallization process. The MAP precipitated by P-3 exhibited an impressive CSD of 5000-7000 μm, with a maximum size reaching 10,000 μm. This represented the largest CSD reported in literature for recovered MAP from wastewater. The significance of the ultra-large MAP precipitated by P-3 lied in its enhanced resistance to impurity adsorption, resulting in MAP with a remarkable purity 97 %, under conditions of low heavy metal ion concentration approximately 5 mg/L. Furthermore, the removal efficiency of ammonia nitrogen (NH4+) can reach 92 %. In comparison, two other magnesium sources, soluble salts (MgCl2 and Na2HPO4, P-1) and a combination of insoluble salts (Mg(OH)2 and MgHPO4, P-2) were evaluated alongside P-3. The CSD of MAP precipitated from P-1, P-2 was both <100 μm, with purity levels of 90 and 92 % and NH4+ removal efficiency of 92 and 90 %, respectively. Importantly, the strategy of obtaining ultra-large size MAP from wastewater in this study provided novel insights into the crystallization of other insoluble salts with large sizes.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Naiguang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangyuan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tuo Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Changsong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
11
|
Wei Z, Qin Y, Li X, Gao P. Resource recovery of high value-added products from wastewater: Current status and prospects. BIORESOURCE TECHNOLOGY 2024; 398:130521. [PMID: 38432547 DOI: 10.1016/j.biortech.2024.130521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Wastewater resource recovery not only allows the extraction of value-added products and offsets the operational costs of wastewater treatment, but it is also conducive to alleviating adverse environmental issues due to energy and chemical inputs and associated emissions. A number of attractive compounds such as alginate-like polymers, struvite, polyhydroxyalkanoates, and sulfated polysaccharides, were found and successfully obtained from wastewater and have a wide range of application prospects. The aim of this work is to provide a comprehensive review of recent advances in recovery of these popular products from wastewater, and their physicochemical properties, main sources, and current recovery status are summarized. Various factors influencing the recovery performance of these materials are thoroughly discussed. Moreover, the research needs and future directions towards wastewater resource recovery are highlighted. This study can provide valuable insights for future research endeavors aiming to improve wastewater resource recovery through the retrieval of high value-added products.
Collapse
Affiliation(s)
- Zihan Wei
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yan Qin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiang Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
12
|
Awhangbo L, Severac M, Charnier C, Latrille E, Steyer JP. Rapid characterization of sulfur and phosphorus in organic waste by near infrared spectroscopy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:11-19. [PMID: 38246073 DOI: 10.1016/j.wasman.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024]
Abstract
Near-infrared spectroscopy (NIRS) has recently emerged as a valuable tool for monitoring organic waste utilized in anaerobic digestion processes. Over the past decade, NIRS has significantly improved the characterization of organic waste by enabling the prediction of several crucial parameters such as biochemical methane potential, carbohydrate, lipid and nitrogen contents, Chemical Oxygen Demand, and kinetic parameters. This study investigates the application of NIRS for predicting the levels of Sulfur (S) and Phosphorus (P) within organic waste materials. The results for sulfur prediction exhibited a high level of accuracy, yielding an error of 1.21 g/Kg[TS] in an independently validated dataset, coupled with an R-squared value of 0.84. Conversely, the prediction of phosphorus proved to be slightly less successful, showing an error of 1.49 g/Kg[TS] with an R-squared value of 0.70. Furthermore, the disparities in performance seem to stem from the inherent correlation between the spectral data and the sulfur or phosphorus contents. Significantly, a variable selection technique known as CovSel was employed, shedding light on the differing approaches used for sulfur and phosphorus predictions. In the case of sulfur, the prediction was achieved through a direct correlation with wavelengths associated with sulfur-related functional groups (such as R - S(=O)2 - OH, -SH, and R-S-S-R) present in the NIR spectra. In contrast, phosphorus prediction relied on an indirect correlation with absorption bands related to organic matter (including CH, CH2, CH3, -CHO, R-OH, C = O, -CO2H, and CONH).
Collapse
Affiliation(s)
- L Awhangbo
- INRAE, Univ Montpellier, LBE, F-11100, Narbonne, France; ChemHouse Research Group, F-34000, Montpellier, France.
| | - M Severac
- SUEZ, Centre International de Recherche Sur l'Eau et l'Environnement (CIRSEE), 78230, Le Pecq, France
| | - C Charnier
- Bioentech, 13 Avenue Albert Einstein F-69000, France
| | - E Latrille
- INRAE, Univ Montpellier, LBE, F-11100, Narbonne, France; ChemHouse Research Group, F-34000, Montpellier, France
| | - J P Steyer
- INRAE, Univ Montpellier, LBE, F-11100, Narbonne, France
| |
Collapse
|
13
|
Wang R, Zhan Z, Song B, Saakes M, van der Weijden RD, Buisman CJN, Lei Y. Electrochemical route outperforms chemical struvite precipitation in mitigating heavy metal contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133418. [PMID: 38183941 DOI: 10.1016/j.jhazmat.2023.133418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Electrochemically mediated struvite precipitation (EMSP) offers a robust, chemical-free process towards phosphate and ammonium reclamation from nutrients-rich wastewater, i.e., swine wastewater. However, given the coexistence of heavy metal, struvite recovered from wastewater may suffer from heavy metal contamination. Here, we systematically investigated the fate of Cu2+, as a representative heavy metal, in the EMSP process and compared it with the chemical struvite precipitation (CSP) system. The results showed that Cu2+ was 100% transferred from solution to solid phase as a mixture of copper and struvite under pHi 9.5 with 2-20 mg/L Cu2+ in the CSP system, and varying pH would affect struvite production. In the EMSP system, the formation of struvite was not affected by bulk pH, and struvite was much less polluted by co-removed Cu2+ (24.4%) at pHi 7.5, which means we recovered a cleaner and safer product. Specifically, struvite mainly accumulates on the front side of the cathode. In contrast, the fascinating thing is that Cu2+ is ultimately deposited primarily to the back side of the cathode in the form of copper (hydro)oxides due to the distinct thickness of the local high pH layer on the two sides of the cathode. In turn, struvite and Cu (hydro)oxides can be harvested separately from the front and back sides of the cathode, respectively, facilitating the subsequent recycling of heavy metals and struvite. The contrasting fate of Cu2+ in the two systems highlights the merits of EMSP over conventional CSP in mitigating heavy metal pollution on recovered products, promoting the development of EMSP technology towards a cleaner recovery of struvite from waste streams.
Collapse
Affiliation(s)
- Runhua Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhengshuo Zhan
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bingnan Song
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Michel Saakes
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, the Netherlands
| | - Renata D van der Weijden
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, the Netherlands; Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Wetsus, Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900CC Leeuwarden, the Netherlands; Department of Environmental Technology, Wageningen University and Research, P.O. Box 17, 6700AA Wageningen, the Netherlands
| | - Yang Lei
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
14
|
Yang Y, Cheng X, Rene ER, Qiu B, Hu Q. Effect of iron sources on methane production and phosphorous transformation in an anaerobic digestion system of waste activated sludge. BIORESOURCE TECHNOLOGY 2024; 395:130315. [PMID: 38215887 DOI: 10.1016/j.biortech.2024.130315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
The iron materials are commonly employed to enhance resource recovery from waste activated sludge through anaerobic digestion (AD). The influence of different iron sources, such as Fe2O3, Fe3O4, and FeCl3 on methane production and phosphorus transformation in AD systems with thermal hydrolyzed sludge as the substrate was assessed in this study. The results indicated that iron oxides effectively promote methane yield and methane production rate in AD systems, resulting in a maximum increase in methane production by 1.6 times. Soluble FeCl3 facilitated the removal of 92.3% of phosphorus from the supernatant through the formation of recoverable precipitates in the sludge. The introduction of iron led to an increase in the abundance of bacteria responsible for hydrolysis and hydrogenotrophic methanogenesis. However, the enrichment of microbial communities varied depending on the specific irons used. This study provides support for AD systems that recover phosphorus and produce methane efficiently from waste sludge.
Collapse
Affiliation(s)
- Yunfei Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China
| | - Xiang Cheng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX Delft, The Netherlands
| | - Bin Qiu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083 China.
| | - Qian Hu
- Engineering Research Center for Water Pollution Source Control & Eco-remediation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Chopade G, Devatha CP. Experimental investigation on sludge conditioning and dewatering using an agricultural biomass coupled with resource recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120098. [PMID: 38266529 DOI: 10.1016/j.jenvman.2024.120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
In this study, the effect of modified areca husk fibre biochar (MAFB-AlCl3) on dairy sludge conditioning and dewatering along with raw and modified coconut shell biochar (MCSB-FeCl3) was investigated. Further, MgO impregnated biochars of areca husk fibre and coconut shells was carried out to evaluate the performance on phosphate recovery from the diary sludge. The enhancement in sludge dewatering with MAFB-AlCl3 were evaluated experimentally and significant reduction of capillary suction time (CST) (51.6 %), moisture content (18%), zeta potential (1.3 mV) and increased settleability (32.7%) were observed. The sludge conditioning parameters namely dosage (% of dry solids (DS)), rapid mixing time (RMT), slow mixing time (SMT) were optimized by response surface methodology for the modified biochars. Optimum CST (31.51 s) was obtained at dosage (50 % of DS), RMT (9.89 min) and SMT (17.23 min). Results of batch study for phosphate recovery by MgO impregnated biochars (MgB) was found to be 96.6 % and 100 % by MgB of areca husk fibre (MgAFB) and coconut shells (MgCSB) respectively. The morphological characteristics and elemental distribution using field emission scanning electron microscopy (FE-SEM) & energy dispersive X-ray spectroscopy (EDS) reveals the structural change in the sludge particles for the modified biochars as well as for sludge. Hence MAFB-AlCl3, MgAFB and MgCSB is proved to be suitable and an effective candidate for sludge conditioning and dewatering coupled with phosphate recovery in handling the diary sludge.
Collapse
Affiliation(s)
- Gaurao Chopade
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| | - C P Devatha
- Department of Civil Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, 575025, Karnataka, India.
| |
Collapse
|
16
|
Mousavi SE, Goyette B, Zhao X, Couture C, Talbot G, Rajagopal R. Struvite-Driven Integration for Enhanced Nutrient Recovery from Chicken Manure Digestate. Bioengineering (Basel) 2024; 11:145. [PMID: 38391631 PMCID: PMC10886100 DOI: 10.3390/bioengineering11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
This study investigated the synergistic integration of clean technologies, specifically anaerobic digestion (AD) and struvite precipitation, to enhance nutrient recovery from chicken manure (CM). The batch experiments were conducted using (i) anaerobically digested CM digestate, referred to as raw sample (RS), (ii) filtered digestate sample (FS), and (iii) a synthetically prepared control sample (CS). The research findings demonstrated that the initial ammonia concentration variations did not significantly impact the struvite precipitation yield in the RS and FS, showcasing the materials inertness process's robustness to changing ammonia concentrations. Notably, the study revealed that the highest nitrogen (N) recovery, associated with 86% and 88% ammonia removal in the CS and FS, was achieved at pH 11, underscoring the efficiency of nutrient recovery. The RS achieved the highest nitrogen recovery efficiency at pH 10, at 86.3%. In addition, the research highlighted the positive impact of reducing heavy metal levels (Zn, Cu, Pb, Ni, Cd, Cr and Fe) and improving the composition of the microbial community in the digestate. These findings offer valuable insights into sustainable manure and nutrient management practices, emphasizing the potential benefits for the agricultural sector and the broader circular economy. Future research directions include economic viability assessments, regulatory compliance evaluations, and knowledge dissemination to promote the widespread adoption of these clean technologies on a larger scale. The study marks a significant step toward addressing the environmental concerns associated with poultry farming and underscores the potential of integrating clean technologies for a more sustainable agricultural future.
Collapse
Affiliation(s)
- Seyyed Ebrahim Mousavi
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
- Department of Animal Science, McGill University, 21111 Lakeshore Road, Saint Anne De Bellevue, QC H9X 3V9, Canada
| | - Bernard Goyette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, 21111 Lakeshore Road, Saint Anne De Bellevue, QC H9X 3V9, Canada
| | - Cassandra Couture
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
- Department of Biology, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| | - Rajinikanth Rajagopal
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, 2000 College Street, Sherbrooke, QC J1M 0C8, Canada
| |
Collapse
|
17
|
Lai LL, Wan SZ, Qaisar M, Yang YF, Wang R, Yuan LJ. Electrochemically mediated phosphorus and energy recovery from digested effluent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119511. [PMID: 37956517 DOI: 10.1016/j.jenvman.2023.119511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
The growing global concern over the high phosphorus concentration in discharged wastewaters has driven the demand for exploring the means to recover it from wastewater. We previously demonstrated the possibility of phosphorus recovery by iron-air fuel cells from digested effluent. The present study focused on further optimizing the performance of the fuel cell by adjusting the wastewater properties (initial pH) and device parameters (anode/cathode area ratio, electrode spacing). Under neutral or slightly alkaline conditions, the HCO3- ions accelerated the formation of iron anode passivation layer, resulting in a decreased phosphate removal efficiency and vivianite yield. Additionally, the occurrence of oxygen crossover with small electrode spacing and anode/cathode area ratio significantly influenced the efficiency of fuel cells in terms of phosphate removal, vivianite production, and electricity generation. The results showed that an acidic pH (5.78), an adequate anode/cathode area ratio (1.3), and an appropriate electrode spacing (5 cm) were prone to increase vivianite yield. Furthermore, the fuel cell achieved the highest electric energy output with an initial pH of 5.78, an anode/cathode area ratio of 0.4, and an electrode spacing of 7.5 cm. As far as operational cost was concerned, the iron-air fuel cell system exhibited a potential cost-saving advantage of about 65.6% compared to the traditional electrochemical crystallization system.
Collapse
Affiliation(s)
- Ling-Ling Lai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Si-Zhuo Wan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Mahmood Qaisar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan.
| | - Yi-Fan Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Ru Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Lin-Jiang Yuan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
18
|
Lu X, Li J, Xu W, Qi Z, Wang F. Co-precipitation of Cd with struvite during phosphorus recovery. CHEMOSPHERE 2024; 346:140610. [PMID: 37925027 DOI: 10.1016/j.chemosphere.2023.140610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
During the struvite recovery process, Cd, a hazardous metal commonly found in waste streams, can be sequestered by struvite. This study investigated the influence of Cd2+ on the precipitation of struvite. Quantitative X-ray diffraction (QXRD) results showed that the purity of struvite decreased from 99.1% to 73.6% as Cd concentration increased from 1 to 500 μM. Scanning electron microscopy (SEM) revealed a roughened surface of struvite, and X-ray photoelectron spectroscopy (XPS) analysis indicated that the peak area ratio of Cd-OH increased from 19.4% to 51.3%, while the area ratio of Cd-PO4 decreased from 86.6% to 48.7% as Cd concentrations increased from 10 to 500 μM. The findings suggested that Cd2+ disrupted the crystal growth of struvite, and mainly combined with -OH and -PO4 to form amorphous Cd-bearing compounds co-precipitated with struvite. Additionally, Mg-containing amorphous phases were formed by incorporating Mg2+ with -OH and -PO4 during struvite formation.
Collapse
Affiliation(s)
- Xingwen Lu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiating Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Zenghua Qi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
19
|
Robinson Junior NA, Wu SX, Zhu J, Zhan Y. Optimization of a dual-chamber electrolytic reactor with a magnesium anode and characterization of struvite produced from synthetic wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:3911-3925. [PMID: 35545934 DOI: 10.1080/09593330.2022.2077131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Diminishing phosphorus resources worldwide requires developing new technologies to recover phosphorus (P) from wastewaters. A lab-scale electrolytic reactor with a magnesium anode was investigated to remove NH4+ and PO43- from synthetic wastewater by producing struvite. The effects of mixing speed, pH, and applied current on struvite yield, NH4+, and PO43- removal efficiencies were first evaluated using a factorial design. Then, the two most significant parameters were further optimized using Central Composite Design (CCD) coupled with Response Surface Methodology (RSM). The struvite was characterized by SEM, XRD, and FT-IR. A 5.7-fold increase in struvite yield was achieved by increasing the applied current from 0.1 to 0.5 A. The three regression equations generated by the CCD/RSM design with applied current and mixing speed as the two independent parameters were highly correlated with the response variables (struvite yield, NH4+ and PO43- removal efficiencies). The desirability analysis showed the best operating condition: current, 0.5 A and mixing speed, 414 rpm, for the reactor system, under which the optimal struvite yield and NH4+ and PO43- removal efficiencies were 4.75 g/L, 93.0%, and 58.4%, respectively. The SEM, XRD, and FT-IR analyses confirmed the high purity and quality of the struvite produced by the electrolytic reactor system.
Collapse
Affiliation(s)
| | - Sarah Xiao Wu
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, USA
| | - Jun Zhu
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, USA
| | - Yuanhang Zhan
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, USA
| |
Collapse
|
20
|
Selvam A, Aggarwal T, Mukherjee M, Verma YK. Humans and robots: Friends of the future? A bird's eye view of biomanufacturing industry 5.0. Biotechnol Adv 2023; 68:108237. [PMID: 37604228 DOI: 10.1016/j.biotechadv.2023.108237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
The evolution of industries have introduced versatile technologies, motivating limitless possibilities of tackling pivotal global predicaments in the arenas of medicine, environment, defence, and national security. In this direction, ardently emerges the new era of Industry 5.0 through the eyes of biomanufacturing, which integrates the most advanced systems 21st century has to offer by means of integrating artificial systems to mimic and nativize the natural milieu to substitute the deficits of nature, thence leading to a new meta world. Albeit, it questions the natural order of the living world, which necessitates certain paramount stipulations to be addressed for a successful expansion of biomanufacturing Industry 5.0. Can humans live in synergism with artificial beings? How can humans establish dominance of hierarchy with artificial counterparts? This perspective provides a bird's eye view on the plausible direction of a new meta world inquisitively. For this purpose, we propose the influence of internet of things (IoT) via new generation interfacial systems, such as, human-machine interface (HMI) and brain-computer interface (BCI) in the domain of tissue engineering and regenerative medicine, which can be extended to target modern warfare and smart healthcare.
Collapse
Affiliation(s)
- Abhyavartin Selvam
- Amity Institute of Nanotechnology, Amity University Noida, Uttar Pradesh 201303, India
| | - Tanishka Aggarwal
- Department of Biotechnology, School of Chemical and Life Sciences (SCLS) Jamia Hamdard, New Delhi 110062, India
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry Research and Studies, Amity University Noida, Uttar Pradesh 201303, India
| | - Yogesh Kumar Verma
- Stem Cell & Tissue Engineering Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, New Delhi 110054, India.
| |
Collapse
|
21
|
Guan Q, Li Y, Zhong Y, Liu W, Zhang J, Yu X, Ou R, Zeng G. A review of struvite crystallization for nutrient source recovery from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118383. [PMID: 37348306 DOI: 10.1016/j.jenvman.2023.118383] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/31/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.
Collapse
Affiliation(s)
- Qian Guan
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Yingpeng Li
- Haixi (Fujian) Institute, China Academy of Machinery Science and Technology Group, Sanming, 365500, PR China
| | - Yun Zhong
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
| | - Wei Liu
- School of Space and Environment, Beihang University, Beijing, 100191, PR China
| | - Jiajie Zhang
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
| | - Ranwen Ou
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
| | - Guisheng Zeng
- School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
22
|
Zhao Q, Ying H, Liu Y, Wang H, Xu J, Wang W, Ren J, Meng S, Wang N, Mu R, Wang S, Li J. Towards low energy-carbon footprint: Current versus potential P recovery paths in domestic wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118653. [PMID: 37478716 DOI: 10.1016/j.jenvman.2023.118653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
With the unprecedented exhaustion of natural phosphorus (P) resource and the high eutrophication potential of the associated-P discharge, P recovery from the domestic wastewater is a promising way and has been putting on agenda of wastewater industry. To address the concern of P resource recovery in an environmentally sustainable way is indispensable especially in the carbon neutrality-oriented wastewater treatment plants (WWTPs). Therefore, this review aims to offer a critical view and a holistic analysis of different P removal/recovery process in current WWTPs and more P reclaim options with the focus on the energy consumption and greenhouse gas (GHG) emission. Unlike P mostly flowing out in the planned/semi-planned P removal/recovery process in current WWTPs, P could be maximumly sequestered via the A-2B- centered process, direct reuse of P-bearing permeate from anaerobic membrane bioreactor, nano-adsorption combined with anaerobic membrane and electrochemical P recovery process. The A-2B- centered process, in which the anaerobic fixed bed reactor was designated for COD capture for energy efficiency while P was enriched and recovered with further P crystallization treating, exhibited the lowest specific energy consumption and GHG emission on the basis of P mass recovered. P resource management in WWTPs tends to incorporate issues related to environmental protection, energy efficiency, GHG emission and socio-economic benefits. This review offers a holistic view with regard to the paradigm shift from "simple P removal" to "P reuse/recovery" and offers in-depth insights into the possible directions towards the P-recovery in the "water-energy-resource-GHG nexus" plant.
Collapse
Affiliation(s)
- Qian Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Hao Ying
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Hongbo Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China.
| | - Jingtao Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Wei Wang
- Shandong Institute of Geological Sciences, Jinan, 250013, Shandong, China; Key Laboratory of Gold Mineralization Processes and Resources Utilization and Key Laboratory of Metallogenic-Geologic Processes and Comprehensive Utilization of Minerals Resources in Shandong Province, Jinan, 250013, China
| | - Juan Ren
- Jinan Urban Planning and Design Institute, Jinan, 250001, China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Ning Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| | - Ruimin Mu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China
| | - Shasha Wang
- Shandong Survey and Design Institute of Water Conservancy Co. LTD, Jinan, 250013, China
| | - Jingjing Li
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, 1000 Fengming Road, Jinan, 250101, China; Research Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China; Research Center for Urban Sewage Treatment and Resource Engineering Technology of Shandong Province, Jinan, 250101, China
| |
Collapse
|
23
|
Miller DM, Abels K, Guo J, Williams KS, Liu MJ, Tarpeh WA. Electrochemical Wastewater Refining: A Vision for Circular Chemical Manufacturing. J Am Chem Soc 2023; 145:19422-19439. [PMID: 37642501 DOI: 10.1021/jacs.3c01142] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wastewater is an underleveraged resource; it contains pollutants that can be transformed into valuable high-purity products. Innovations in chemistry and chemical engineering will play critical roles in valorizing wastewater to remediate environmental pollution, provide equitable access to chemical resources and services, and secure critical materials from diminishing feedstock availability. This perspective envisions electrochemical wastewater refining─the use of electrochemical processes to tune and recover specific products from wastewaters─as the necessary framework to accelerate wastewater-based electrochemistry to widespread practice. We define and prescribe a use-informed approach that simultaneously serves specific wastewater-pollutant-product triads and uncovers a mechanistic understanding generalizable to broad use cases. We use this approach to evaluate research needs in specific case studies of electrocatalysis, stoichiometric electrochemical conversions, and electrochemical separations. Finally, we provide rationale and guidance for intentionally expanding the electrochemical wastewater refining product portfolio. Wastewater refining will require a coordinated effort from multiple expertise areas to meet the urgent need of extracting maximal value from complex, variable, diverse, and abundant wastewater resources.
Collapse
Affiliation(s)
- Dean M Miller
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kristen Abels
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jinyu Guo
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kindle S Williams
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Matthew J Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Warmadewanthi IDAA, Ikhlas N, Damayanti F. Effect of recirculation and hydraulic loading rate on ammonium and phosphate recovery from fertilizer industry wastewater. Heliyon 2023; 9:e20255. [PMID: 37809529 PMCID: PMC10560018 DOI: 10.1016/j.heliyon.2023.e20255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023] Open
Abstract
This study aimed to determine the optimum recirculation ratio and hydraulic loading rate for the recovery process of ammonium and phosphate, and study the formation, morphology, and structure of struvite crystals. This study provides a crystallization method to treat fertilizer wastewater using a continuous system and recirculation, including a fluidized bed reactor (FBR). Ammonium and phosphate were recovered from fertilizer industry wastewater using a continuous FBR under different recirculation ratios (3, 6, and 9) and loading rates (0.39 L/min, 0.59 L/min, and 0.79 L/min). MgCl2 was used as the precipitant with a 1.5:1 molarity ratio [Mg2+]:[PO43-]. The results showed that 55.71% phosphate and 49.69% ammonium could be recovered at recirculation ratio and hydraulic loading rate were 9 and 0.39 L/min, respectively. Scanning electron microscopy-energy diffraction X-ray analysis showed that the formed crystals comprised 80% struvite. Further, a high recirculation ratio and low loading rate resulted in higher ammonium and phosphate recovery efficiencies. These results indicated that a long detention time of treated wastewater can increase the nutrient recovery.
Collapse
Affiliation(s)
- I Dewa Ayu Agung Warmadewanthi
- Department of Environmental Engineering, Faculty of Civil, Environmental, And Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| | - Nurani Ikhlas
- Environmental Sustainability Research Group (ENSI-RG), Department of Environmental Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50275, Indonesia
| | - Febrianda Damayanti
- Department of Environmental Engineering, Faculty of Civil, Environmental, And Geo-Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
| |
Collapse
|
25
|
Biswas B, Rahman T, Sakhakarmy M, Jahromi H, Eisa M, Baltrusaitis J, Lamba J, Torbert A, Adhikari S. Phosphorus adsorption using chemical and metal chloride activated biochars: Isotherms, kinetics and mechanism study. Heliyon 2023; 9:e19830. [PMID: 37810020 PMCID: PMC10559209 DOI: 10.1016/j.heliyon.2023.e19830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 10/10/2023] Open
Abstract
Efficient treatment of nutrient-rich wastewater is of paramount importance for protecting the ecosystem. In this work, an efficient, abundant, and eco-friendly adsorbent was derived from biochar and employed for phosphorus (P) adsorption. The key factors influencing the P removal efficiency of the activated biochar, including P concentration, pH, dosage, temperature, adsorption time, and influence of co-existing ion type, were investigated. Maximum P adsorption percentage (100%) was obtained with 10 mg/L and zinc chloride activated biochar (BC-Zn) compared to the other activated biochars. Results show that by increasing the P concentration from 5 to 200 mg/L, the phosphorus adsorption capacity increases from 0.13 to 10.4 mg/g biochar. Isotherms and kinetic studies further show that the P adsorption follows the Langmuir and quasi-second-order kinetic models. The mechanistic investigation demonstrated that P adsorption occurred by precipitation reaction. Furthermore, P desorption has been studied at different time intervals to understand the P release rate after adsorption.
Collapse
Affiliation(s)
- Bijoy Biswas
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
- Center for Bioenergy and Bioproducts, 519 Devall Drive, Auburn University, Auburn, AL 36849, USA
| | - Tawsif Rahman
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Manish Sakhakarmy
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Hossein Jahromi
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
- Center for Bioenergy and Bioproducts, 519 Devall Drive, Auburn University, Auburn, AL 36849, USA
| | - Mohamed Eisa
- Department of Chemical and Biomolecular Engineering, Lehigh University, USA
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, USA
| | - Jasmeet Lamba
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
| | - Allen Torbert
- National Soil Dynamics Laboratory, United States Department of Agriculture-Agriculture Research Service, Auburn, AL 36832, USA
| | - Sushil Adhikari
- Biosystems Engineering Department, 200 Corley Building, Auburn University, Auburn, AL 36849, USA
- Center for Bioenergy and Bioproducts, 519 Devall Drive, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
26
|
Deng L, Dhar BR. Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. CHEMOSPHERE 2023; 330:138685. [PMID: 37060960 DOI: 10.1016/j.chemosphere.2023.138685] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/14/2023]
Abstract
Phosphorus (P) is one of the important elements for human, animal, and plant life. Due to the development of the circular economy in recent years, the recovery of P from wastewater has received more attention. Recovery of P from domestic, industrial, and agricultural wastewater in the form of calcium phosphate (CaP) by precipitation/crystallization process presents a low-cost and effective method. Recovered CaP could be used as P fertilizer and for other industrial applications. This review summarizes the effects of supersaturation, pH, seed materials, calcium (Ca) source, and wastewater composition, on the precipitation/crystallization process. The recovery efficiency and value proposition of recovered CaP were assessed. This in-depth analysis of the literature reports identified the process parameters that are worth further optimization. The review also provides perspectives on future research needs on expanding the application field of recovered CaP and finding other more economical and environmentally friendly Ca sources.
Collapse
Affiliation(s)
- Linyu Deng
- Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
27
|
Marzi M, Kazemian H, Bradshaw C. Study on phosphate removal from aqueous solutions using magnesium-ammonium- and zirconium-modified zeolites: equilibrium, kinetic, and fixed-bed column study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:826. [PMID: 37294457 DOI: 10.1007/s10661-023-11423-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
Eutrophication is an environmental issue which occurs when the environment becomes enriched with nutrients. Phosphorus (P) is a key nutrient limiting the phytoplankton and algal growth in many aquatic environments. Therefore, P removal could be a promising technique to control the eutrophication. Herein, a natural zeolite (NZ) was modified by two practical techniques, including zirconium (ZrMZ) and magnesium-ammonium modification (MNZ), and employed for phosphate removal. Batch, equilibrium, and column experiments were conducted to determine various adsorption parameters. Equilibrium data were fitted to two different isotherms and Freundlich isotherm provided the best fit which confirms multi-layer adsorption of phosphate ions on the adsorbents. The kinetic experiments demonstrated that the adsorption process is fast with more than 80% of phosphate adsorbed in the first 4 h, and a subsequent equilibrium was established after 16 h. The kinetic data were well described by pseudo-second-order model, suggesting that chemisorption is the mechanism of sorption. Intraparticle diffusion showed a rate-limiting step for phosphate adsorption on all the adsorbents, especially MNZ and ZrMZ. The fixed-bed column study showed that the phosphate concentration in the outlet (C) of ZrMZ column did not reach the initial concentration (C0) after passing 250 bed volume (BV), while it reached C0 after 100 BV when the MNZ was employed. Given the considerable improvement were seen, the results of this study suggest that surface of zeolite can be modified with zirconium (and in a less extent magnesium-ammonium) to enhance adsorption of phosphate from many eutrophic lakes.
Collapse
Affiliation(s)
- Mostafa Marzi
- Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | - Hossein Kazemian
- Chemistry Department, Faculty of Science and Engineering, University of Northern British Columbia, Prince George, BC, Canada.
- Northern Analytical Laboratory Services (NALS), Northern BC's Environment and Climate Solutions Innovation Hub, University of Northern British Columbia (UNBC), Prince George, BC, Canada.
| | - Charles Bradshaw
- Northern Analytical Laboratory Services (NALS), Northern BC's Environment and Climate Solutions Innovation Hub, University of Northern British Columbia (UNBC), Prince George, BC, Canada
| |
Collapse
|
28
|
Zhou Z, Li D, Huang W, Wang R, Zhong J, Zhang Y, Meng J, Li C. Phosphate Adsorption on Cerium/Terephthalic Acid Metal-Organic Frameworks (Ce-MOF) Driven by Effective Electrostatic Attraction and Ligand Exchange in a Wide pH Range. Chem Asian J 2023:e202300202. [PMID: 37129348 DOI: 10.1002/asia.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Eutrophication has posed a threat to aquatic ecosystems, so it's urgent to remove excessive phosphate from water. In this study, we developed an adsorbent material, cerium/terephthalic-acid metal-organic-frameworks (Ce-MOF), to remove phosphate from different water systems. The optimal Ce-MOF presented a maximum phosphate adsorption capacity of 377.2 mg/g, approximately 3.7 times higher than that of the commercial phosphate adsorbent (Phoslock: 101.6 mg/g). Experimental and computational analysis suggested that pH dominated the adsorption process. The main forces driving the adsorption process changed from the synergistic effect of electrostatic attraction and ligand exchange at lower pH to only ligand exchange at the increased pH values. Hence, the Ce-MOF is applicable for phosphate adsorption in a wide pH range. Impressively, the adsorbent remained an excellent phosphate adsorption performance in the real water containing various interfering ions and organic matters, indicating the potential of Ce-MOF for the practical use to solve the water eutrophication issue.
Collapse
Affiliation(s)
- Zhenyu Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dexuan Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Weiming Huang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Rongyue Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiapeng Zhong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yangyang Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiazhou Meng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chuanhao Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
29
|
Zong E, Shen Y, Yang J, Liu X, Song P. Preparation and Characterization of an Invasive Plant-Derived Biochar-Supported Nano-Sized Lanthanum Composite and Its Application in Phosphate Capture from Aqueous Media. ACS OMEGA 2023; 8:14177-14189. [PMID: 37091370 PMCID: PMC10116626 DOI: 10.1021/acsomega.3c00992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Invasive plants pose a great threat to natural ecosystems owing to their rapid propagation and spreading ability in nature. Herein, a typical invasive plant, Solidago canadensis, was chosen as a novel feedstock for the preparation of nano-sized lanthanum-loaded S. canadensis-derived biochar (SCBC-La), and its adsorption performance for phosphate removal was evaluated by batch adsorption experiment. The composite was characterized by multiple techniques. Effects of parameters, such as the initial concentration of phosphate, time, pH, coexisting ions, and ionic strength, were studied on the phosphate removal. Adsorption kinetics and isotherms showed that SCBC-La shows a faster adsorption rate at a low concentration and SCBC-La exhibits good La utilization efficiency than some of the reported La-modified adsorbents. Phosphate can be effectively removed over a relatively wide pH of 3-9 because of the high pH pzc of SCBC-La. Furthermore, the SCBC-La shows a strong anti-interference capability in terms of pH value, coexisting ions, and ionic strength, exhibiting a highly selective capacity for phosphate removal. Additionally, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) measurements reveal that hydroxyl groups on the surface of SCBC-La were replaced by phosphate and manifest the reversible transformation between La(OH)3 and LaPO4. Considering its high adsorption capacity and excellent selectivity, SCBC-La is a promising material for preventing eutrophication. This work gives a new method of pollution control with waste treatment since the invasive plant (S. canadensis) is converted into biochar-based nanocomposite for effective removal of phosphate to mitigate eutrophication.
Collapse
Affiliation(s)
- Enmin Zong
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
- School
of Earth Sciences and Engineering, Nanjing
University, Nanjing 210093, P. R. China
| | - Yuanyuan Shen
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
| | - Jiayao Yang
- School
of Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
| | - Xiaohuan Liu
- College
of Life Science, Zhejiang Provincial Key Laboratory of Plant Evolutionary
Ecology and Conservation, Taizhou University, Taizhou 318000, P. R. China
- School
of Engineering, Zhejiang A&F University, Hangzhou 311300, P. R. China
- ,
| | - Pingan Song
- Centre
for Future Materials, University of Southern
Queensland, Springfield 4350, Australia
| |
Collapse
|
30
|
Bhoi GP, Singh KS, Connor DA. Optimization of phosphorus recovery using electrochemical struvite precipitation and comparison with iron electrocoagulation system. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10847. [PMID: 36789466 DOI: 10.1002/wer.10847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
A batch monopolar reactor was developed for total phosphorus (TP) recovery using electrochemical struvite precipitation. This study involves the optimization of factors using response surface methodology to maximize the TP recovery. The optimal parameters for this study were found to be a pH of 8.40, a retention time of 35 min, a current density of 300 A/m2 , and an interelectrode distance of 0.5 cm, resulting in 97.3% of TP recovery and energy consumption of 2.35 kWh/m3 . A kinetic study for TP removal revealed that at optimum operating conditions, TP removal follows second-order kinetics (removal rate constant(K) = 0.0117 mg/(m2 ·min)). The system performance was compared to the performance of an iron electrocoagulation system. The composition of the precipitate obtained during the optimal runs were analyzed using X-ray diffraction and EDS analysis. X-ray diffraction analysis of the magnesium precipitate revealed the presence of struvite as the only crystalline compound. PRACTITIONER POINTS: Electrochemical struvite precipitation has the potential to recover total phosphorus from anaerobic bioreactor effluent. Optimum conditions for phosphorus recovery was found at a pH of 8.4, retention time of 35 min, current density of 300 A/m2, and interelectrode distance of 0.5 cm. The quadratic model predicted complete (100 %) TP recovery under optimized conditions, whereas 97.3 % recovery was observed under experimental conditions. TP removal under optimum conditions followed second-order rate equation (removal rate constant(K) = 0.0117 mg/(m2 ·min)). XRD analysis of the precipitate revealed struvite as the only crystalline compound.
Collapse
Affiliation(s)
- Gyana P Bhoi
- Department of Civil Engineering, University of New Brunswick, Fredericton, Canada
| | - Kripa S Singh
- Departments of Civil Engineering and Chemical Engineering, University of New Brunswick, Fredericton, Canada
| | - Dennis A Connor
- Department of Civil Engineering, University of New Brunswick, Fredericton, Canada
| |
Collapse
|
31
|
de Almeida R, Porto RF, Quintaes BR, Bila DM, Lavagnolo MC, Campos JC. A review on membrane concentrate management from landfill leachate treatment plants: The relevance of resource recovery to close the leachate treatment loop. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:264-284. [PMID: 35924944 PMCID: PMC9972246 DOI: 10.1177/0734242x221116212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/25/2022] [Indexed: 05/19/2023]
Abstract
Membrane filtration processes have been used to treat landfill leachate. On the other hand, closing the leachate treatment loop and finding a final destination for landfill leachate membrane concentrate (LLMC) - residual stream of membrane systems - is challenging for landfill operators. The re-introduction of LLMC into the landfill is typical; however, this approach is critical as concentrate pollutants may accumulate in the leachate treatment facility. From that, leachate concentrate management based on resource recovery rather than conventional treatment and disposal is recommended. This work comprehensively reviews the state-of-the-art of current research on LLMC management from leachate treatment plants towards a resource recovery approach. A general recovery train based on the main LLMC characteristics for implementing the best recovery scheme is presented in this context. LLMCs could be handled by producing clean water and add-value materials. This paper offers critical insights into LLMC management and highlights future research trends.
Collapse
Affiliation(s)
- Ronei de Almeida
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
- Ronei de Almeida, School of Chemistry,
Inorganic Processes Department, Universidade Federal do Rio de Janeiro, 149
Athos da Silveira Ramos Avenue, laboratory I-124, Rio de Janeiro, RJ 21941-909,
Brazil.
| | - Raphael Ferreira Porto
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | | | - Daniele Maia Bila
- Department of Sanitary and Environment
Engineering, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Lavagnolo
- Department of Civil, Environmental and
Architectural Engineering, University of Padova, Padova, Italy
| | - Juacyara Carbonelli Campos
- School of Chemistry, Inorganic
Processes Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| |
Collapse
|
32
|
Lu Y, Jin X, Li X, Liu M, Liu B, Zeng X, Chen J, Liu Z, Yu S, Xu Y. Controllable Preparation of Superparamagnetic Fe 3O 4@La(OH) 3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers (Basel) 2023; 15:polym15010248. [PMID: 36616595 PMCID: PMC9824844 DOI: 10.3390/polym15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Superparamagnetic Fe3O4 particles have been synthesized by solvothermal method, and a layer of dense silica sol polymer is coated on the surface prepared by sol-gel technique; then La(OH)3 covered the surface of silica sol polymer in an irregular shape by controlled in situ growth technology. These magnetic materials are characterized by TEM, FT-IR, XRD, SEM, EDS and VSM; the results show that La(OH)3 nanoparticles have successfully modified on Fe3O4 surface. The prepared Fe3O4@La(OH)3 inorganic polymer has been used as adsorbent to remove phosphate efficiently. The effects of solution pH, adsorbent dosage and co-existing ions on phosphate removal are investigated. Moreover, the adsorption kinetic equation and isothermal model are used to describe the adsorption performance of Fe3O4@La(OH)3. It was observed that Fe3O4@La(OH)3 exhibits a fast equilibrium time of 20 min, high phosphate removal rate (>95.7%), high sorption capacity of 63.72 mgP/g, excellent selectivity for phosphate in the presence of competing ions, under the conditions of phosphate concentration 30 mgP/L, pH = 7, adsorbent dose 0.6 g/L and room temperature. The phosphate adsorption process by Fe3O4@La(OH)3 is best described by the pseudo-second-order equation and Langmuir isotherm model. Furthermore, the real samples and reusability experiment indicate that Fe3O4@La(OH)3 could be regenerated after desorption, and 92.78% phosphate removing remained after five cycles. Therefore, La(OH)3 nanoparticles deposited on the surface of monodisperse Fe3O4 microspheres have been synthesized for the first time by a controlled in-situ growth method. Experiments have proved that Fe3O4@La(OH)3 particles with fast separability, large adsorption capacity and easy reusability can be used as a promising material in the treatment of phosphate wastewater or organic pollutants containing phosphoric acid functional group.
Collapse
Affiliation(s)
- Yao Lu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xuna Jin
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Xiang Li
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Minpeng Liu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
| | - Baolei Liu
- Jilin Institute of Chemical Technology, School of Petrochemical Technology, Jilin 132022, China
| | - Xiaodan Zeng
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Jie Chen
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
| | - Zhigang Liu
- Jilin Institute of Chemical Technology, Centre of Analysis and Measurement, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Shihua Yu
- Jilin Institute of Chemical Technology, College of Chemical & Pharmaceutical Engineering, Jilin 132022, China
- Correspondence: (Z.L.); (S.Y.)
| | - Yucheng Xu
- Railway Transportation Department, Jilin Petrochemical Company, Jilin 132021, China
| |
Collapse
|
33
|
Optimisation of phosphorus recovery process from biogas slurry using straw-derived biochar coupled with Mg/La oxide as an adsorbent. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
34
|
Freitas AM, Nair VD, Harris WG, Mosquera-Losada MR, Ferreiro-Domínguez N. Pyrolysis-induced phosphorus transformations for biosolids from diverse sources. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:13-25. [PMID: 36353947 DOI: 10.1002/jeq2.20433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Biosolids have been long used as a soil amendment to promote nutrient recovery. The readily releasable forms of nutrients present in this biowaste, such as phosphorus (P), along with their over application, can be detrimental to the environment, causing eutrophication. Pyrolysis, the thermal decomposition of organic materials at elevated temperature and low oxygen, seems to be a promising strategy to lower P release from biowastes such as biosolids. We pyrolyzed biosolids from various treatments and locations (Florida and Illinois; Galicia, Spain; and São Paulo, Brazil) to convert to biochar. Our objectives were (a) to use solid-state assessments, such as X-ray diffraction and scanning electron microscopy, and chemical assessments, such as water-soluble P (WSP), pH, Mehlich 3-extractable P (M3-P), total P (TP), and total Kjeldahl nitrogen, to evaluate changes caused by the conversion and (b) to compare P leaching potentials of biosolids and their corresponding biochars on two soils with varying P retention capacities. Pairwise comparisons indicated that biochar conversion significantly increased TP in the final material, but the absolute WSP decreased. However, M3-P remained the same after conversion to biochar. Cumulative P leached as a fraction of TP was greater for biosolids than their corresponding biochars. Two soils with contrasting P retention capacities predictably differed in P leaching behaviors as amended with biosolids and biochars. Differences suggest that future research could evaluate the efficacy of using mixtures of biosolids and biochar for a given soil to maintain soil fertility while reducing environmental P loss risk.
Collapse
Affiliation(s)
- Andressa Morato Freitas
- Soil, Water, and Ecosystem Sciences Dep., Institute of Food and Agricultural Sciences, Univ. of Florida, Gainesville, FL, USA
| | - Vimala D Nair
- Soil, Water, and Ecosystem Sciences Dep., Institute of Food and Agricultural Sciences, Univ. of Florida, Gainesville, FL, USA
| | - Willie G Harris
- Soil, Water, and Ecosystem Sciences Dep., Institute of Food and Agricultural Sciences, Univ. of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
35
|
Li Y, Xu D, Lin H, Wang W, Yang H. Nutrient released characteristics of struvite-biochar fertilizer produced from concentrated sludge supernatant by fluidized bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116548. [PMID: 36308786 DOI: 10.1016/j.jenvman.2022.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
With the exacerbating water eutrophication globally, it is important to recover nitrogen (N) and phosphorus (P) from sewage for recycle. In this study, coconut shell biochar and ethylene diamine tetraacetic acid (EDTA) were added into the designed fluidized bed reactor (FBR) to create struvite-biochar. N and P released from struvite-biochar and the recovery efficiency of N and P from concentrated sludge supernatant were analyzed. Results showed that the optimal operation condition for hydraulic retention time (HRT), pH, Mg/P molar ration, and addition amount EDTA were 90 min, 9.5, 1.2, and 0.2 g/L, respectively. The recovery efficiency of NH4+-N and PO43--P, and purity struvite for FBR were 34.41%-38.05%, 64.95-68.40%, and 84.15%, respectively. The recovery efficiency of NH4+-N and PO43--P were respectively increased by 7.23% and 5.36% when FBR with addition of 0.33 g/L coconut shell biochar, but purity struvite from struvite-biochar decreased by 45.70%. Contents of As, Cd, Pb, and Cr in struvite and struvite-biochar were all lower than Chinese Standard Limits of Fertilizer. Compared to commercial chemical fertilizer, such as superphosphate and urea, struvite-biochar and struvite have slowly released N and P. The amounts of released P, NO3--N and NH4+-N from struvite-biochar were higher than struvite during the five leaching times. Compared with struvite, the total amounts of released P, NO3--N and NH4+-N from struvite-biochar increased by 4.9%, 3.5% and 8.3%, respectively. Therefore, it is valuable to add biochar into FBR to recovery N and P from concentrated sludge supernatant and make struvite-biochar as a slow-release fertilizer.
Collapse
Affiliation(s)
- Yingxue Li
- School of Applied Meteorology, Nanjing University of Information Science &Technology, Nanjing, 210044, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing, 210044, China
| | - Defu Xu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing, 210044, China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Haizhi Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing, 210044, China
| | - Wenhua Wang
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550008, China.
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK.
| |
Collapse
|
36
|
Wu X, Cai W, Fu Y, Liu Y, Ye X, Qian Q, Van der Bruggen B. Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System. MEMBRANES 2022; 12:1116. [PMID: 36363671 PMCID: PMC9695792 DOI: 10.3390/membranes12111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Struvite crystallization is a successful technique for simultaneously recovering PO43- and NH4+ from wastewater. However, recovering PO43- and NH4+ from low-concentration solutions is challenging. In this study, PO43-, NH4+, and NO3- were separated and concentrated from wastewater using bipolar membrane electrodialysis, PO43- and NH4+ can then be recovered as struvite. The separation and concentration of PO43- and NH4+ are clearly impacted by current density, according to experimental findings. The extent of separation and migration rate increased with increasing current density. The chemical oxygen demand of the feedwater has no discernible impact on the separation and recovery of ions. The migration of PO43-, NH4+, and NO3- fits zero-order migration kinetics. The concentrated concentration of NH4+ and PO43- reached 805 mg/L and 339 mg/L, respectively, which demonstrates that BMED is capable of effectively concentrating and separating PO43- and NH4+. Therefore, BMED can be considered as a pretreatment method for recovering PO43- and NH4+ in the form of struvite from wastewater.
Collapse
Affiliation(s)
- Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Wanling Cai
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yuying Fu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fuzhou 350007, China
| | - Yaoxing Liu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Xin Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingrong Qian
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS—Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
37
|
Luo W, Fang Y, Song L, Niu Q. Production of struvite by magnesium anode constant voltage electrolytic crystallisation from anaerobically digested chicken manure slurry. ENVIRONMENTAL RESEARCH 2022; 214:113991. [PMID: 35961546 DOI: 10.1016/j.envres.2022.113991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen and phosphorus levels in livestock manure and digestive fluid are high, posing a threat to soil and water quality and necessitating nutrient removal and recovery. Phosphorus recovery has the potential to alleviate the global phosphorus resource crisis. This study proposed a magnesium anode constant voltage electrolysis method to crystallise struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O) from anaerobically digested chicken manure slurry using reaction kinetics at variable constant voltages ranging from 2 V to 12 V. The recovery of nitrogen and phosphorus was shown to be effective over a wide initial pH range (3.00 ± 0.03-7.90 ± 0.10) using synthetic digestion fluids. Moreover, the pH gradually increased during the reaction without any external chemical adjustments. The phosphorus recovery rates conformed to the first-order kinetic model, with a maximum rate constant of 2.13 h-1. When the best voltage of 2 V was used at 25 ± 1 °C, the recovery rate reached 5.24 mg P h-1cm-2 in the synthetic digestion fluids during 90 min and 4.60 mg P h-1cm-2 in the anaerobically digested chicken manure slurry. The crystalline products recovered were identified as high-purity struvite by XRD and XPS. The purity of recovered struvite with an initial pH of 3.00 and 7.90 was 96.5% and 98.9%, respectively. These results demonstrated that the magnesium electrode could rapidly react with nitrogen and phosphorus to generate high-purity struvite.
Collapse
Affiliation(s)
- Wendan Luo
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Liuying Song
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China
| | - Qigui Niu
- School of Environmental Science and Engineering, Shandong University, 72#Jimo Binhai Road, Qingdao, Shandong Province, 266237, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
38
|
Mondal M, Kumar V, Bhatnagar A, Vithanage M, Selvasembian R, Ambade B, Meers E, Chaudhuri P, Biswas JK. Bioremediation of metal(loid) cocktail, struvite biosynthesis and plant growth promotion by a versatile bacterial strain Serratia sp. KUJM3: Exploiting environmental co-benefits. ENVIRONMENTAL RESEARCH 2022; 214:113937. [PMID: 35931193 DOI: 10.1016/j.envres.2022.113937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In this study the multiple metal(loid) (As, Cd, Cu and Ni) resistant bacterium Serratia sp. KUJM3 was able to grow in both single and multiple metal(loid) contaminated wastewater and removed them by 34.93-48.80% and 22.93-32%, respectively. It reduced As(v) to As(III) by 68.44-85.06% in a concentration dependent manner. The strain's IAA production potential increased significantly under both metal(loid)s regime. The lentil (Lens culinaris) seed germination and seed production were enhanced with the exogenous bacterial inoculation by 20.39 and 16.43%, respectively. Under both multi-metal(loid) regimes the bacterial inoculation promoted shoot length (22.65-51.34%), shoot dry weight (33.89-66.11%) and seed production (13.46-35%). Under bacterial manipulation the metal(loid)s immobilization increased with concomitant curtailment of translocation in lentil plant by 61.89-75.14% and 59.19-71.14% in shoot and seed, respectively. The strain biomineralized struvite (MgNH4 PO4 ·6H2O) from human urine @ 403 ± 6.24 mg L-1. The fertilizer potential of struvite was confirmed with the promotion of cowpea (Vigna unguiculata) growth traits e.g. leaf number (37.04%), pod number (234%), plant wet weight (65.47%) and seed number (134.52%). Thus Serratia sp. KUJM3 offers multiple benefits of metal(loid)s bioremediation, As(V) reduction, plant growth promotion, and struvite biomineralization garnering a suite of appealing environmental applications.
Collapse
Affiliation(s)
- Monojit Mondal
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India
| | - Vineet Kumar
- Department of Basic and Applied Sciences, School of Engineering and Sciences, G D Goenka University, Sohna Road, Gurugram, Haryana, 122103, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Rangabhashiyam Selvasembian
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Balram Ambade
- Department of Chemistry, National Institute of Technology, Jamshedpur, 831014, Jharkhand, India
| | - Erik Meers
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Punarbasu Chaudhuri
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Calcutta, 700019, India
| | - Jayanta Kumar Biswas
- Enviromicrobiology, Ecotoxicology and Ecotechnology Research Laboratory (3E-MicroToxTech Lab), Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
39
|
Persson T, Rueda-Ayala V. Phosphorus retention and agronomic efficiency of refined manure-based digestate—A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.993043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Digestate, a by-product from anaerobic digestion of organic materials such as animal manure, is considered a suitable plant fertilizer. However, due to its bulkiness and low economic value, it is costly to transport over long distances and store for long periods. Refinement processes to valorize digestate and facilitate its handling as a fertilizer include precipitation of phosphorus-rich mineral compounds, such as struvite and calcium phosphates, membrane filtration methods that concentrate plant nutrients in organic products, and carbonization processes. However, phosphorus retention efficiency in output products from these processes can vary considerably depending on technological settings and characteristics of the digestate feedstock. The effects of phosphorus in plant fertilizers (including those analogous or comparable to refined digestate products) on agronomic productivity have been evaluated in multiple experiments. In this review, we synthesized knowledge about different refinement methods for manure-based digestate as a means to produce phosphorus fertilizers, thereby providing the potential to increase phosphorus retention in the food production chain, by combining information about phosphorus flows in digestate refinement studies and agronomic fertilizer studies. It was also sought to identify the range, uncertainty, and potential retention efficiency by agricultural crops of the original phosphorus amount in manure-based digestate. Refinement chains with solid/wet phase separation followed by struvite or calcium phosphate precipitation or membrane filtration of the wet phase and carbonization treatments of the solid phase were included. Several methods with high potential to extract phosphorus from manure-based wet phase digestate in such a way that it could be used as an efficient plant fertilizer were identified, with struvite precipitation being the most promising method. Synthesis of results from digestate refinement studies and agronomic fertilizer experiments did not support the hypothesis that solid/wet separation followed by struvite precipitation, or any other refinement combination, results in higher phosphorus retention than found for unrefined digestate. Further studies are needed on the use of the phosphorus in the solid phase digestate, primarily on phosphorus-rich soils representative of animal-dense regions, to increase understanding of the role of digestate refinement (particularly struvite precipitation) in phosphorus recycling in agricultural systems.
Collapse
|
40
|
Adel A. Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas. JOURNAL OF CLOUD COMPUTING 2022; 11:40. [PMID: 36101900 PMCID: PMC9454409 DOI: 10.1186/s13677-022-00314-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/24/2022] [Indexed: 11/10/2022]
Abstract
AbstractIndustry 4.0 has been provided for the last 10 years to benefit the industry and the shortcomings; finally, the time for industry 5.0 has arrived. Smart factories are increasing the business productivity; therefore, industry 4.0 has limitations. In this paper, there is a discussion of the industry 5.0 opportunities as well as limitations and the future research prospects. Industry 5.0 is changing paradigm and brings the resolution since it will decrease emphasis on the technology and assume that the potential for progress is based on collaboration among the humans and machines. The industrial revolution is improving customer satisfaction by utilizing personalized products. In modern business with the paid technological developments, industry 5.0 is required for gaining competitive advantages as well as economic growth for the factory. The paper is aimed to analyze the potential applications of industry 5.0. At first, there is a discussion of the definitions of industry 5.0 and advanced technologies required in this industry revolution. There is also discussion of the applications enabled in industry 5.0 like healthcare, supply chain, production in manufacturing, cloud manufacturing, etc. The technologies discussed in this paper are big data analytics, Internet of Things, collaborative robots, Blockchain, digital twins and future 6G systems. The study also included difficulties and issues examined in this paper head to comprehend the issues caused by organizations among the robots and people in the assembly line.
Collapse
|
41
|
Vassileva M, Mendes GDO, Deriu MA, Benedetto GD, Flor-Peregrin E, Mocali S, Martos V, Vassilev N. Fungi, P-Solubilization, and Plant Nutrition. Microorganisms 2022; 10:1716. [PMID: 36144318 PMCID: PMC9503713 DOI: 10.3390/microorganisms10091716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The application of plant beneficial microorganisms is widely accepted as an efficient alternative to chemical fertilizers and pesticides. It was shown that annually, mycorrhizal fungi and nitrogen-fixing bacteria are responsible for 5 to 80% of all nitrogen, and up to 75% of P plant acquisition. However, while bacteria are the most studied soil microorganisms and most frequently reported in the scientific literature, the role of fungi is relatively understudied, although they are the primary organic matter decomposers and govern soil carbon and other elements, including P-cycling. Many fungi can solubilize insoluble phosphates or facilitate P-acquisition by plants and, therefore, form an important part of the commercial microbial products, with Aspergillus, Penicillium and Trichoderma being the most efficient. In this paper, the role of fungi in P-solubilization and plant nutrition will be presented with a special emphasis on their production and application. Although this topic has been repeatedly reviewed, some recent views questioned the efficacy of the microbial P-solubilizers in soil. Here, we will try to summarize the proven facts but also discuss further lines of research that may clarify our doubts in this field or open new perspectives on using the microbial and particularly fungal P-solubilizing potential in accordance with the principles of the sustainability and circular economy.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e Fitopatologia, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo 38500-000, Brazil
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | | | - Elena Flor-Peregrin
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Stefano Mocali
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 50125 Firenze, Italy
| | - Vanessa Martos
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
42
|
Impact of Magnesium Sources for Phosphate Recovery and/or Removal from Waste. ENERGIES 2022. [DOI: 10.3390/en15134585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As the population continues to rise, the demand for resources and environmentally friendly management of produced wastes has shown a significant increase in concern. To decrease the impact of these wastes on the environment, it is important to utilize the wastes in producing and/or recovering usable products to provide for the sustainable management of resources. One non-renewable and rapidly diminishing resource is phosphorus, which is used in several products, the most important being its use in manufacturing chemical fertilizer. With the increase in demand but reduction in availability of naturally occurring mineral phosphorus, it is important to investigate other sources of phosphorus. Phosphorus is most commonly recovered through struvite (magnesium ammonium phosphate) precipitation. The recovery of phosphorus from various wastewater has been well established and documented with recovery rates mostly above 90%. However, one of the major drawbacks of the recovery is the high cost of chemicals needed to precipitate the phosphorus. Since the external magnesium needed to achieve struvite precipitation accounts for around 75% of the total chemical cost, applicability of low-cost magnesium sources, such as bittern or seawater, can help reduce the operational cost significantly. This paper investigates the different magnesium sources that have been used for the recovery of phosphorus, highlighting the different approaches and operating conditions investigated, and their corresponding phosphorus recovery rates. An investigation of the economic aspects of the magnesium sources used for removal/recovery show that costs are dependent on the raw waste treated, the source of magnesium and the location of treatment. A review of published articles on the economics of phosphorus removal/recovery also indicates that there is a lack of studies on the economics of the treatment processes, and there is a need for a comprehensive study on life cycle assessment of such processes that go beyond the technical and economical aspects of treatment processes.
Collapse
|
43
|
Xu H, Guo L, Gao M, Zhao Y, Jin C, Ji J, She Z. Comparison on anaerobic phosphorus release and recovery from waste activated sludge by different chemical pretreatment methods: Focus on struvite quality and benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154110. [PMID: 35218825 DOI: 10.1016/j.scitotenv.2022.154110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus recovery from waste activated sludge (WAS) is expected to alleviate the shortage of phosphate rock and reduce eutrophication. In this study, acid, alkali and sodium polyacrylate (PAAS) were compared to enhance phosphorus release and recovery from WAS. During anaerobic fermentation (AF) stage, the optimal pretreated conditions for ortho-phosphate release were the pH of 4 (AF 12 h), 13 (AF 12 h) and 22.4 g PAAS/L (AF 24 h) with the phosphorus release efficiencies of 40.9%, 62.6% and 31.7%, respectively. Acid, alkali and PAAS addition were beneficial for apatite phosphorus (AP), non-apatite inorganic phosphorus (NAIP) and organic phosphorus (OP) release from WAS, respectively. Strong acidic (pH = 4) and alkaline (pH = 12 and 13) conditions inhibited the release of soluble ammonia, while PAAS would not have a negative impact on the release of soluble ammonia. By means of precipitation crystallization, the ortho-phosphate could be almost recovered after acid/alkali pretreatment compared with PAAS (88.9%) at optimal Mg/P molar ratio of 1.5:1. The XRD, FT-IR and SEM-EDX analyses confirmed the main component in the product was struvite. The purity of the struvite in the product recovered from acid (named PreAC, 78.9%) and alkali (named PreAL, 89.6%) pretreated sludge were higher than that of the PAAS (named PrePA, 72.3%) by elemental analysis. The mercury and chromium content existed in PreAC were above the Control Standards of Pollutants in Sludge for Agricultural Use, whereas detected heavy metal elements level of the PreAL and PrePA were below the standard. By means of cost analysis, acid/alkali pretreatment could obtain economic benefits compared with PAAS. Thus, those discoveries would broaden the phosphorus recovery way to serve in practice.
Collapse
Affiliation(s)
- Haiqing Xu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Liang Guo
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Junyuan Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zonglian She
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
44
|
Ammonium and Phosphate Recovery from Biogas Slurry: Multivariate Statistical Analysis Approach. SUSTAINABILITY 2022. [DOI: 10.3390/su14095617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Livestock biogas slurry is an effluent containing nutrients such as ammonium and phosphate that are released by the industries. Therefore, recovery and reuse of ammonium and phosphorus is highly necessary. In recent years, many studies have been devoted to the use of different multivariate statistical analyses to investigate the interrelationship of one factor to another factor. The overall objective of this research study was to understand the significance of phosphate and ammonium recovery from biogas slurry using the multivariate statistical approach. This study was conducted using a range of salts that are commonly found in biogas slurry (ZnCl2, FeCl3, FeCl2, CuCl2, Na2CO3, and NaHCO3). Experiments with a biogas digester and aqueous solution were conducted at pH 9, with integration with NH4+, Mg2+, and PO43− molar ratios of 1.0, 1.2, and 1.8, respectively. The removal efficiency of ammonium and phosphate increased from 15.0% to 71.0% and 18.0% to 99.0%, respectively, by increasing the dose of respective ions K+, Zn2+, Fe3+, Fe2+, Cu2+, and CO32−. The elements were increased from 58.0 to 71.0 for HCO3−, with the concentration increasing from 30 mg L−1 to 240 mg L−1. Principal component, regression, path analysis, and Pearson correlation analyses were used to investigate the relationships of phosphate and ammonium recovery under different biochar, pyrolysis temperature, element concentration and removal efficiencies. Multivariate statistical analysis was also used to comprehensively evaluate the biochar and struvite effects on recovery of ammonium and phosphate from biogas slurry. The results showed that combined study of multivariate statistics suggested that all the indicators positively or negatively affected each other. Pearson correlation was insignificant in many ionic concentrations, as all were more than the significant 0.05. The study concluded that temperature, biochar type, and varying levels of components, such as K+, Zn2+, Fe3+, Fe2+, Cu2+, CO32−, and HCO3−, all had a substantial impact on P and NH4+ recovery. Temperature and varying amounts of metal salts enhanced the efficacy of ammonium and phosphate recovery. This research elucidated the methods by which biochar effectively reuses nitrogen and phosphate from biogas slurry, presenting a long-term agricultural solution.
Collapse
|
45
|
Boniardi G, Turolla A, Fiameni L, Gelmi E, Bontempi E, Canziani R. Phosphorus recovery from a pilot-scale grate furnace: influencing factors beyond wet chemical leaching conditions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2525-2538. [PMID: 35576251 DOI: 10.2166/wst.2022.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphorus is a non-renewable resource going to be exhausted in the future. Sewage sludge ash is a promising secondary raw material due to its high phosphorus content. In this work, the distribution of 19 elements in bottom and cyclone ashes from pilot-scale grate furnace have been monitored to determine the suitability for the phosphorus acid extraction. Moreover, the influence of some parameters beyond wet chemical leaching conditions were investigated. Experimental results showed that bottom ash presented lower contamination in comparison to cyclone ash and low co-dissolution of heavy metals (especially Cr, Pb and Ni), while high phosphorus extraction efficiencies (76-86%) were achieved. High Al content in the bottom ash (9.4%) negatively affected the phosphorus extraction efficiency as well as loss on ignition, while the particle size reduction was necessary for ensuring a suitable contact surface. The typology of precipitating agents did not strongly affect the phosphorus precipitation, while pH was the key parameter. At pH 3.5-5, phosphorus precipitation efficiencies higher than 90% were achieved, with a mean phosphorus content in the recovered material equal to 16-17%, comparable to commercial fertilizers. Instead, the co-precipitation of Fe and Al had a detrimental effect on the recovered material, indicating the need for additional treatments.
Collapse
Affiliation(s)
- G Boniardi
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| | - A Turolla
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| | - L Fiameni
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - E Gelmi
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| | - E Bontempi
- INSTM and University of Brescia, Via Branze 38, 25123, Brescia, Italy
| | - R Canziani
- Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 21, 20133, Milano, Italy E-mail:
| |
Collapse
|
46
|
Lucero-Sorbazo D, Beltrán-Villavicencio M, González-Aragón A, Vázquez-Morillas A. Recycling of nutrients from landfill leachate: A case study. Heliyon 2022; 8:e09540. [PMID: 35663733 PMCID: PMC9156885 DOI: 10.1016/j.heliyon.2022.e09540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/05/2022] [Accepted: 05/19/2022] [Indexed: 11/25/2022] Open
Abstract
The continuous increase in the consumption of natural resources requires different solutions directed to the recovery and recycling of different materials and products, including the nutrients used as fertilizers for food production. In this context, this research assessed the feasibility of using landfill leachate as a source of nutrients for the growth of maize. Leachate was treated to precipitate struvite, a rich magnesium, phosphate, and ammonium mineral that can be applied directly as fertilizer. It was used for the growth of maize, which was sowed in three different parcels. A commercial DAP + urea mixture was used to compare, and non-fertilized parcels were used as controls. Struvite was successfully obtained and applied in the fields. A marginal higher maize yield was achieved in two sites when using struvite (6.36% and 2.16%) compared to the commercial fertilizer, even if it was applied in a lower dose to weather conditions. An increase in N and Mg in soil could be observed, which allowed for the assimilation of nutrients in the plants. Concerning safety, the use of struvite did not produce the transfer of heavy metals or pathogens to the soil or plants. This research shows a promising way of dealing with leachate, which could be attractive in countries where organic waste is buried in landfills. Landfill leachate can be used as a source of nutrients for the grow of maize by precipitation of struvite. A field trial in real scale was performed. A marginal higher maize yield was achieved in two of the sites (6.36% and 2.16%) when compared to the commercial fertilizer. Struvite did not cause presence of pathogens or heavy metals in the crops. It offers an alternative to conventional leachate treatment options, aligned with the principles of the circular economy.
Collapse
|
47
|
Wu X, Xie R, Ding J, Dai L, Ke X, Liu Y, Chen R, Qian Q, Ding R, Liu J, Van der Bruggen B. Recovery of phosphate and ammonium nitrogen as struvite from aqueous solutions using a magnesium-air cell system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152006. [PMID: 34856253 DOI: 10.1016/j.scitotenv.2021.152006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The addition of alkaline and magnesium sources during the recovery of NH4+ and PO43- in the form of struvite using the traditional struvite precipitation method increases the production cost. To solve this problem, a magnesium-air cell (MAC) system was used herein to recover NH4+ and PO43- as struvite from wastewater using a magnesium strip (Mg2+) and the oxygen adsorbed on the surface of a titanium plate (OH-) as the anode and cathode, respectively. Experimental parameters (i.e. initial solution pH, temperature, NH4+/PO43- molar ratio, NH4+ and PO43- initial concentrations and stirring intensity) were found to affect the removal rate of NH4+ and PO43-. The presence of Ca2+ decreased the struvite purity. At Ca2+/PO43- ratios of 0:1 and 0.5:1, the purity of the obtained struvite after 6 h was 93.8% and 58.9%, respectively. Struvite with a purity of 95.7%, electricity with an average output power of 2.53 mW, and an energy density of 1.05 W/m2 were obtained when the proposed system was used to recover NH4+ and PO43- from an actual supernatant of domestic sludge anaerobic digestion. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy and thermogravimetric analyses showed that the obtained struvite exhibited almost the same physicochemical properties as commercial struvite. Thus, the MAC system can be regarded as an effective method for recovering NH4+ and PO43- in the form of struvite from wastewater.
Collapse
Affiliation(s)
- Xiaoyun Wu
- School of Safety and Environment, Fujian Chuanzheng Communications College, Fujian Province, Fuzhou 350007, China
| | - Rongrong Xie
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Jianguo Ding
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Liping Dai
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Xiong Ke
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Yaoxing Liu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China; Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Riyao Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China.
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Rui Ding
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Jianxi Liu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fujian Province, Fuzhou 350007, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, ProcESS-Process Engineering for Sustainable System, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium; Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
48
|
Lu X, Xu W, Zeng Q, Liu W, Wang F. Quantitative, morphological, and structural analysis of Ni incorporated with struvite during precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152976. [PMID: 35026242 DOI: 10.1016/j.scitotenv.2022.152976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Struvite precipitation is a promising strategy for the simultaneous recovery of nitrogen and phosphorus from waste streams. However, waste streams typically contain high amounts of metal contaminants, including Ni, which can be easily sequestered by struvite, but the behavior of Ni during struvite precipitation remains unclear. Thus, this study investigates the influence of Ni concentrations on struvite precipitation. The quantitative X-ray diffraction (QXRD) results revealed that the purity of struvite decreased from 96.6 to 41.1% with the Ni concentrations increased from 0.1-100 mg·L-1. At lower Ni concentrations of 0.1-1 mg·L-1, scanning electron microscopy (SEM) showed a roughened surface of struvite crystal, and this was combined with X-ray absorption near edge structure (XANES) data that indicated a stack of Ni-OH and Ni-PO4 on struvite surface. At Ni concentrations of 10-25 mg·L-1, Ni primarily crystalized as Ni-struvite (NiNH4PO4·6H2O), as detected by QXRD. At higher Ni concentrations of 25-100 mg·L-1, the co-precipitation of amorphous Ni phosphate(s) (e.g., Ni3(PO4)2) and Ni hydroxide (e.g., Ni(OH)2) was identified by XANES. Specifically, the X-ray photoelectron spectroscopy (XPS) analysis detected the formation of amorphous Mg hydroxide(s) and phosphate(s) at Ni of 25-100 mg·L-1. The overall results revealed that Ni formed Ni-OH and Ni-PO4 on struvite surface at 0.1-1 mg·L-1, whereas Ni precipitated as separated phases (e.g. Ni-struvite, Ni hydroxide and phosphate) at 10-100 mg·L-1. The existence of Ni disturbed the crystal growth of struvite and promoted the formation of Ni-struvite, amorphous products during struvite formation.
Collapse
Affiliation(s)
- Xingwen Lu
- School of Environmental Science and Engineering, and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen 518049, China
| | - Qinghuai Zeng
- Shenzhen Environmental Monitoring Center, Shenzhen 518049, China
| | - Weizhen Liu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
49
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
50
|
Zhu Y, Zhai Y, Li S, Liu X, Wang B, Liu X, Fan Y, Shi H, Li C, Zhu Y. Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. CHEMOSPHERE 2022; 291:133053. [PMID: 34861255 DOI: 10.1016/j.chemosphere.2021.133053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus is a nutrient that is essential to nature and human life and has attracted attention because of its very limited reserves. Dwindling phosphorus reserves and soaring prices have made the recovery of phosphorus from waste biosolids even more urgent. Waste activated sludge, as the final destination of most of the phosphorus in human domestic and industrial water, has been considered as a reliable source of phosphorus recovery. The thermal treatment method of sewage sludge is currently a relatively environmentally friendly disposal method, which mainly includes incineration, pyrolysis and hydrothermal carbonization. This paper reviews the methods for the recovery of different forms of phosphorus (wet chemical, thermochemical and electrodialysis) from solid products obtained from different sludge thermal treatment methods (incinerated sewage sludge ash, pyrolysis of sewage sludge char and hydrochar) and the bioavailability of the recovered phosphorus products. Incineration of sewage sludge is currently the most established and effective method for recovering phosphorus from the thermal treatment products of sewage sludge. One of the wet chemical methods has been applied on a commercial scale and is expected to be further developed for future industrial applications. Pyrolysis and hydrothermal carbonation still have many research gaps in this field. Based on their principles and laboratory performance, both of them have the potential to recover phosphorus and should be further explored.
Collapse
Affiliation(s)
- Ya Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiangmin Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xiaoping Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yuwei Fan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Haoran Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yun Zhu
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|