1
|
Xia Q, Qiu Q, Cheng J, Huang W, Yi X, Yang F, Huang W. Microbially mediated iron redox processes for carbon and nitrogen removal from wastewater: Recent advances. BIORESOURCE TECHNOLOGY 2025; 419:132041. [PMID: 39765277 DOI: 10.1016/j.biortech.2025.132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Iron is the most abundant redox-active metal on Earth. The microbially mediated iron redox processes, including dissimilatory iron reduction (DIR), ammonium oxidation coupled with Fe(III) reduction (Feammox), Fe(III) dependent anaerobic oxidation of methane (Fe(III)-AOM), nitrate-reducing Fe(II) oxidation (NDFO), and Fe(II) dependent dissimilatory nitrate reduction to ammonium (Fe(II)-DNRA), play important parts in carbon and nitrogen biogeochemical cycling globally. In this review, the reaction mechanisms, electron transfer pathways, functional microorganisms, and characteristics of these processes are summarized; the prospective applications for carbon and nitrogen removal from wastewater are reviewed and discussed; and the research gaps and future directions of these processes for the treatment of wastewater are also underlined. This review is expected to give new insights into the development of economic and environmentally friendly iron-based wastewater treatment procedures.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qingzhen Qiu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
2
|
Thompson RM, George D, del Carmen Montero‐Calasanz M. Actinorhizal plants and Frankiaceae: The overlooked future of phytoremediation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70033. [PMID: 39496278 PMCID: PMC11534348 DOI: 10.1111/1758-2229.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024]
Abstract
Bioremediation of degraded soils is increasingly necessary due to rising food demand, reductions in agricultural productivity, and limitations in total available arable area. Several bioremediation strategies could be utilized to combat soil degradation, with phytoremediation emerging as a standout option due to its in situ approach and low implementation and maintenance costs compared to other methods. Phytoremediation is also a sustainable solution, which is increasingly desirable to blunt the progression of global warming. Actinorhizal plants display several desirable traits for application in phytoremediation, including the ability to revegetate saline soil and sequester heavy metals with low foliar translocation. Additionally, when grown in association with Frankiaceae endophytes, these abilities are improved and expanded to include the degradation of anthropogenic pollutants and the restoration of soil fertility. However, despite this significant potential to remediate marginalized land, the actinorhizal-Frankiaceae symbiosis remains heavily understudied and underutilized. This review aims to collate the scattered studies that demonstrate these bioremediation abilities and explain the mechanics behind such abilities to provide the necessary insight. Finally, this review will conclude with proposed future directions for utilizing this symbiosis and how it can be optimized further to facilitate improved bioremediation outcomes.
Collapse
Affiliation(s)
- Ryan Michael Thompson
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
| | - David George
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
| | - Maria del Carmen Montero‐Calasanz
- School of Natural and Environmental Sciences, Newcastle UniversityNewcastle upon TyneUK
- IFAPA Las Torres‐Andalusian Institute of Agricultural and Fisheries Research and Training, Junta de AndalucíaSevilleSpain
| |
Collapse
|
3
|
Liu H, Liu T, Chen S, Liu X, Li N, Huang T, Ma B, Liu X, Pan S, Zhang H. Biogeochemical cycles of iron: Processes, mechanisms, and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175722. [PMID: 39187081 DOI: 10.1016/j.scitotenv.2024.175722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
The iron (Fe) biogeochemical cycle is critical for abiotic and biological environmental processes that overlap spatially and may compete with each other. The development of modern molecular biology technologies promoted the understanding of the electron transport mechanisms of Fe-cycling-related microorganisms. Recent studies have revealed a novel pathway for microaerophilic ferrous iron (Fe(II))-oxidizers in extracellular Fe(II) oxidation. In addition, OmcS, OmcZ, and OmcE nanowires on the cell surface have been shown to promote electron transfer between microorganisms and their environment. These processes affect the fate of pollutants in directly or indirectly ways, such as greenhouse gas emissions. In this review, these advances and the environmental implications of the Fe cycle process were discussed, with a particular focus on the mechanisms of intracellular or extracellular electron transport in microorganisms.
Collapse
Affiliation(s)
- Huan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaoyan Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Nan Li
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Sixuan Pan
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Provincial Field Scientific Observation and Research Station of Water Quality in Qinling Mountains, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
4
|
Bian Q, Cheng K, Chen L, Jiang Y, Li D, Xie Z, Wang X, Sun B. Organic amendments increased Chinese milk vetch symbiotic nitrogen fixation by enriching Mesorhizobium in rhizosphere. ENVIRONMENTAL RESEARCH 2024; 252:118923. [PMID: 38636641 DOI: 10.1016/j.envres.2024.118923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Symbiotic nitrogen fixation of Chinese milk vetch (Astragalus sinicus L.) can fix nitrogen from the atmosphere and serve as an organic nitrogen source in agricultural ecosystems. Exogenous organic material application is a common practice of affecting symbiotic nitrogen fixation; however, the results of the regulation activities remain under discussion. Studies on the impact of organic amendments on symbiotic nitrogen fixation have focused on dissolved organic carbon content changes, whereas the impact on dissolved organic carbon composition and the underlying mechanism remain unclear. In situ pot experiments were carried out using soils from a 40-year-old field experiment platform to investigate symbiotic nitrogen fixation rate trends, dissolved organic carbon concentration and component, and diazotroph community structure in roots and in rhizosphere soils following long-term application of different exogenous organic substrates, i.e., green manure, green manure and pig manure, and green manure and rice straw. Remarkable increases in rate were observed in and when compared with that in green manure treatment, with the greatest enhancement observed in the treatment. Moreover, organic amendments, particularly pig manure application, altered diazotroph community composition in rhizosphere soils, therefore increasing the abundance of the host-specific genus Mesorhizobium. Furthermore, organic amendments influence the diazotroph communities through two primary mechanisms. Firstly, the components of dissolved organic carbon promote an increase in available iron, facilitated by the presence of humus substrates. Secondly, the elevated content of dissolved organic carbon and available iron expands the niche breadth of Mesorhizobium within the rhizosphere. Consequently, these alterations result in a modified diazotroph community within the rhizosphere, which in turn influences Mesorhizobium nodulation in the root and symbiotic nitrogen fixation rate. The results of the present study enhance our understanding of the impact of organic amendments on symbiotic nitrogen fixation and the underlying mechanism, highlighting the key role of dissolved organic carbon composition on diazotroph community composition in the rhizosphere.
Collapse
Affiliation(s)
- Qing Bian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kun Cheng
- Institute of Red Soil and Germplasm Resources, Jinxian, 331717, China
| | - Ling Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Daming Li
- Institute of Red Soil and Germplasm Resources, Jinxian, 331717, China.
| | - Zubin Xie
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
5
|
Chan CS, Dykes GE, Hoover RL, Limmer MA, Seyfferth AL. Gallionellaceae in rice root plaque: metabolic roles in iron oxidation, nutrient cycling, and plant interactions. Appl Environ Microbiol 2023; 89:e0057023. [PMID: 38009924 PMCID: PMC10734482 DOI: 10.1128/aem.00570-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE In waterlogged soils, iron plaque forms a reactive barrier between the root and soil, collecting phosphate and metals such as arsenic and cadmium. It is well established that iron-reducing bacteria solubilize iron, releasing these associated elements. In contrast, microbial roles in plaque formation have not been clear. Here, we show that there is a substantial population of iron oxidizers in plaque, and furthermore, that these organisms (Sideroxydans and Gallionella) are distinguished by genes for plant colonization and nutrient fixation. Our results suggest that iron-oxidizing and iron-reducing bacteria form and remodel iron plaque, making it a dynamic system that represents both a temporary sink for elements (P, As, Cd, C, etc.) as well as a source. In contrast to abiotic iron oxidation, microbial iron oxidation results in coupled Fe-C-N cycling, as well as microbe-microbe and microbe-plant ecological interactions that need to be considered in soil biogeochemistry, ecosystem dynamics, and crop management.
Collapse
Affiliation(s)
- Clara S. Chan
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- School of Marine Science and Policy, University of Delaware, Newark, Delaware, USA
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Gretchen E. Dykes
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Rene L. Hoover
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Microbiology Graduate Program, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Matt A. Limmer
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| | - Angelia L. Seyfferth
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Dyksma S, Pester M. Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium. Nat Commun 2023; 14:6337. [PMID: 37816749 PMCID: PMC10564751 DOI: 10.1038/s41467-023-42074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Sulfate-reducing microorganisms represent a globally important link between the sulfur and carbon cycles. Recent metagenomic surveys expanded the diversity of microorganisms putatively involved in sulfate reduction underscoring our incomplete understanding of this functional guild. Here, we use genome-centric metatranscriptomics to study the energy metabolism of Acidobacteriota that carry genes for dissimilation of sulfur compounds in a long-term continuous culture running under alternating anoxic and oxic conditions. Differential gene expression analysis reveals the unique metabolic flexibility of a pectin-degrading acidobacterium to switch from sulfate to oxygen reduction when shifting from anoxic to oxic conditions. The combination of facultative anaerobiosis and polysaccharide degradation expands the metabolic versatility among sulfate-reducing microorganisms. Our results highlight that sulfate reduction and aerobic respiration are not mutually exclusive in the same organism, sulfate reducers can mineralize organic polymers, and anaerobic mineralization of complex organic matter is not necessarily a multi-step process involving different microbial guilds but can be bypassed by a single microbial species.
Collapse
Affiliation(s)
- Stefan Dyksma
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microorganisms, Braunschweig, Germany.
| | - Michael Pester
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Department of Microorganisms, Braunschweig, Germany.
- Technical University of Braunschweig, Institute of Microbiology, Braunschweig, Germany.
| |
Collapse
|
7
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
8
|
Cooper RE, Finck J, Chan C, Küsel K. Mixotrophy broadens the ecological niche range of the iron oxidizer Sideroxydans sp. CL21 isolated from an iron-rich peatland. FEMS Microbiol Ecol 2023; 99:6979798. [PMID: 36623865 PMCID: PMC9925335 DOI: 10.1093/femsec/fiac156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Sideroxydans sp. CL21 is a microaerobic, acid-tolerant Fe(II)-oxidizer, isolated from the Schlöppnerbrunnen fen. Since the genome size of Sideroxydans sp. CL21 is 21% larger than that of the neutrophilic Sideroxydans lithotrophicus ES-1, we hypothesized that strain CL21 contains additional metabolic traits to thrive in the fen. The common genomic content of both strains contains homologs of the putative Fe(II) oxidation genes, mtoAB and cyc2. A large part of the accessory genome in strain CL21 contains genes linked to utilization of alternative electron donors, including NiFe uptake hydrogenases, and genes encoding lactate uptake and utilization proteins, motility and biofilm formation, transposable elements, and pH homeostasis mechanisms. Next, we incubated the strain in different combinations of electron donors and characterized the fen microbial communities. Sideroxydans spp. comprised 3.33% and 3.94% of the total relative abundance in the peatland soil and peatland water, respectively. Incubation results indicate Sideroxydans sp. CL21 uses H2 and thiosulfate, while lactate only enhances growth when combined with Fe, H2, or thiosulfate. Rates of H2 utilization were highest in combination with other substrates. Thus, Sideroxydans sp. CL21 is a mixotroph, growing best by simultaneously using substrate combinations, which helps to thrive in dynamic and complex habitats.
Collapse
Affiliation(s)
- Rebecca E Cooper
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jessica Finck
- Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Clara Chan
- School of Marine Science and Policy, University of Delaware, Newark, DE 19716, United States,Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, United States,Department of Earth Sciences, University of Delaware, Newark, DE 19716, United States
| | - Kirsten Küsel
- Corresponding author. Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany. Tel: +49 3641 949461; Fax: +49 3641 949462; E-mail:
| |
Collapse
|
9
|
Li J, Dong C, Sen B, Lai Q, Gong L, Wang G, Shao Z. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158714. [PMID: 36113801 DOI: 10.1016/j.scitotenv.2022.158714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
A large amount of terrigenous organic matter (TOM) is constantly transported to the deep sea. However, relatively little is known about the microbial mineralization of TOM therein. Our recent in situ enrichment experiments revealed that Vibrio is especially enriched as one of the predominant taxa in the cultures amended with natural plant materials in the deep sea. Yet their role in the mineralization of plant-derived TOM in the deep sea remains largely unknown. Here we isolated Vibrio strains representing dominant members of the enrichments and verified their potential to degrade lignin and xylan. The isolated strains were closely related to Vibrio harveyi, V. alginolyticus, V. diabolicus, and V. parahaemolyticus. Extracellular enzyme assays, and genome and transcriptome analyses revealed diverse peroxidases, including lignin peroxidase (LiP), catalase-peroxidase (KatG), and decolorizing peroxidase (DyP), which played an important role in the depolymerization and oxidation of lignin. Superoxide dismutase was found to likely promote lignin oxidation by supplying H2O2 to LiP, DyP, and KatG. Interestingly, these deep-sea Vibrio strains could oxidize lignin and hydrolyze xylan not only through aerobic pathway, but also through anaerobic pathway. Genome analysis revealed multiple anaerobic respiratory mechanisms, including the reductions of nitrate, arsenate, tetrathionate, and dimethyl sulfoxide. The strains showed the potential to anaerobically reduce sulfite and metal oxides of iron and manganese, in contrast the non-deep-sea Vibrio strains were not retrieved of genes involved in reduction of metal oxides. This is the first report about the lignin oxidation mechanisms in Vibrio and their role in TOM mineralization in anoxic and oxic environments of the marginal sea.
Collapse
Affiliation(s)
- Jianyang Li
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300387, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of PR China, Xiamen 361005, PR China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, PR China.
| |
Collapse
|
10
|
Rathgeb A, Causon T, Krachler R, Hann S. Combining iron affinity-based fractionation with non-targeted LC-ESI-TOFMS for the study of iron-binding molecules in dissolved organic matter. Metallomics 2022; 14:6754752. [PMID: 36214420 PMCID: PMC9584149 DOI: 10.1093/mtomcs/mfac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
The low solubility of inorganic iron(III) in seawater leads to very limited availability of this important micronutrient for marine organisms. Estuarine or oceanic iron is almost entirely bound to organic ligands of mainly unknown chemical structure. In this context, riverine input of iron rich, land-derived dissolved organic matter (DOM) can play an important role in coastal areas and investigation of potential Fe-ligands in DOM is of high interest. Previous studies have suggested that iron is predominantly bound to the high molecular weight fraction of DOM, but distributed over the entire size range. Logically, structural elucidation needs to start from the smallest building blocks. A model study targeting low molecular weight iron-binding constituents in Suwannee River natural organic matter (NOM) using Fe-loaded Chelex or silica for immobilized-metal affinity (IMAC)-based fractionation was undertaken. The binding strengths of different compounds could be qualitatively assessed using a differential analysis workflow. IMAC-fractionated samples were acidified and analyzed via liquid chromatography high resolution mass spectrometry (LC-HRMS) and molecular formulas were assigned using state of the art software. A total of 144 Fe-binding constituents in Suwannee River NOM were found to be of interest with the largest number observed to interact with Chelex at pH 4 (55%), and the smallest with silica at neutral pH (24%). Most binding constituents were found in the lignin- and tannin-type region of the van Krevelen plot. Results from this study support the hypothesis that very low molecular weight constituents (below 300 Da) can play a role in the iron binding mechanism of DOM and demonstrate that the employed analytical workflow is suitable for their detection.
Collapse
Affiliation(s)
- Anna Rathgeb
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Tim Causon
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Regina Krachler
- Institute of Inorganic Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephan Hann
- Department of Chemistry, Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
11
|
Grigg ARC, ThomasArrigo LK, Schulz K, Rothwell KA, Kaegi R, Kretzschmar R. Ferrihydrite transformations in flooded paddy soils: rates, pathways, and product spatial distributions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1867-1882. [PMID: 36131682 PMCID: PMC9580987 DOI: 10.1039/d2em00290f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Complex interactions between redox-driven element cycles in soils influence iron mineral transformation processes. The rates and pathways of iron mineral transformation processes have been studied intensely in model systems such as mixed suspensions, but transformation in complex heterogeneous porous media is not well understood. Here, mesh bags containing 0.5 g of ferrihydrite were incubated in five water-saturated paddy soils with contrasting microbial iron-reduction potential for up to twelve weeks. Using X-ray diffraction analysis, we show near-complete transformation of the ferrihydrite to lepidocrocite and goethite within six weeks in the soil with the highest iron(II) release, and slower transformation with higher ratios of goethite to lepidocrocite in soils with lower iron(II) release. In the least reduced soil, no mineral transformations were observed. In soils where ferrihydrite transformation occurred, the transformation rate was one to three orders of magnitude slower than transformation in comparable mixed-suspension studies. To interpret the spatial distribution of ferrihydrite and its transformation products, we developed a novel application of confocal micro-Raman spectroscopy in which we identified and mapped minerals on selected cross sections of mesh bag contents. After two weeks of flooded incubation, ferrihydrite was still abundant in the core of some mesh bags, and as a rim at the mineral-soil interface. The reacted outer core contained unevenly mixed ferrihydrite, goethite and lepidocrocite on the micrometre scale. The slower rate of transformation and uneven distribution of product minerals highlight the influence of biogeochemically complex matrices and diffusion processes on the transformation of minerals, and the importance of studying iron mineral transformation in environmental media.
Collapse
Affiliation(s)
- Andrew R C Grigg
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Laurel K ThomasArrigo
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Katrin Schulz
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Katherine A Rothwell
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| | - Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
| |
Collapse
|
12
|
Lin H, Qin K, Dong Y, Li B. A newly-constructed bifunctional bacterial consortium for removing butyl xanthate and cadmium simultaneously from mineral processing wastewater: Experimental evaluation, degradation and biomineralization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115304. [PMID: 35588671 DOI: 10.1016/j.jenvman.2022.115304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Due to the technological limitations associated with beneficiation technology, large amounts of flotation reagents and heavy metals remain in mineral processing wastewater. Unfortunately, however, no treatment methods are available to mitigate the resulting pollution by them. In this study, a bacterial consortium SDMC (simultaneously degrade butyl xanthate and biomineralize cadmium) was constructed in an effort to simultaneously degrade butyl xanthate (BX) and biomineralize cadmium (Cd) by screening and domesticating two different bacterial species including Hypomicrobium and Sporosarcina. SDMC is efficient in removing the combined pollution due to BX and Cd with a 100% degradation rate for BX and 99% biomineralization rate for Cd within 4 h. Besides, SDMC can tolerate high concentrations of Fe(III) (0-40 mg/L). It has an excellent ability to utilize Fe(III) for enhanced removal of the combined pollutants. SDMC can effectively remove pollutants with a pH range of 6-9. Further, we discussed pathways for potential degradation and biomineralization: Cd(BX)2-Cd2+, BX-; BX--CS2, butyl perxanthate (BPX); Cd2+-(Ca0.67,Cd0.33)CO3. The removal of the combined pollutants primarily entails decomposition, degradation, and biomineralization, C-O bond cleavage, and microbially induced carbonate precipitation (MICP). SDMC is a simple, efficient, and eco-friendly bifunctional bacterial consortium for effective treatment of BX-Cd combined pollution in mineral processing wastewater.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Kangjia Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
13
|
Mohr JF, Gama S, Roy S, Bellenger JP, Plass W, Wichard T. Hydroxypyridinones in nitrogen-fixing bacterial cultures: A metal buffer for molybdenum and simulation of natural conditions. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6650223. [PMID: 35881466 DOI: 10.1093/mtomcs/mfac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022]
Abstract
Organic matter regulates the availability of important trace elements in aquatic and terrestrial ecosystems by acting as a source and container for microbes. To overcome the limitation of trace elements, nitrogen-fixing bacteria, for example, release low-molecular-weight chelators (metallophores), which scavenge the essential cofactors of the nitrogenase, iron and molybdenum, via complexation and subsequent uptake. The formation of metallophores is triggered by limiting conditions, which must be replicated in the laboratory in order to study metallophores as a mediator in metal cycling. While EDTA-based buffer systems for metal cations are well established, there is limited knowledge regarding the buffering of oxoanions such as molybdate in a bacterial growth medium. To mimic the availability of molybdenum in nature under laboratory conditions, this study created a Mo-buffer system for bacterial growth media of the model organisms Azotobacter vinelandii and Frankia sp. CH37. We investigated selected hydroxypyridinones (HPs) as potential molybdenum-chelating agents, determining the amount required for efficient molybdenum complexation by calculating speciation plots of the various candidate complexes in artificial growth media at various pH values. The Mo-maltol system was identified as an ideal, non-toxic molybdenum-buffer system. In the presence of the Mo-maltol system, the growth of Frankia sp. was limited under diazotrophic conditions, whereas A. vinelandii could acquire molybdenum through the release of protochelin and subsequent molybdenum uptake. The study paves the way for unravelling molybdenum recruitment and homeostasis under limiting conditions in bacteria.
Collapse
Affiliation(s)
- Jan Frieder Mohr
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Sofia Gama
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Department of Analytical Chemistry, Faculty of Chemistry, University of Białystok, Białystok, Poland
| | - Sébastien Roy
- Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Philippe Bellenger
- Centre SÈVE, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Winfried Plass
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Wichard
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
14
|
Zhang Y, Liu C, Li Y, Song L, Yang J, Zuo R, Li J, Teng Y, Wang J. Spectroscopic Characteristics and Speciation Distribution of Fe(III) Binding to Molecular Weight-Dependent Standard Pahokee Peat Fulvic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137838. [PMID: 35805509 PMCID: PMC9266197 DOI: 10.3390/ijerph19137838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022]
Abstract
Peat-derived organic matter, as powerful chelators, is of great significance for the transport of Fe to the ocean and the enhancement of dissolved Fe. However, the iron binding capacity of molecular weight (MW)-fractionated dissolved organic matter is variable, due to its structure and composition heterogeneity. In this work, we used the standard Pahokee Peat fulvic acid (PPFA) as an example, and investigated the spectroscopy properties and Fe(III) binding ability of PPFA and different molecular weight fractions by UV−Vis absorbance and fluorescence spectroscopy and the Donnan Membrane Technique (DMT). The results showed binding sites for Fe(III) at the 263 nm and >320 nm regions in differential absorbance spectra. Upon increasing the iron concentration to 18.00 μmol·L−1, the critical binding capacity was exceeded, which resulted in a decrease in absorbance. Fe(III) was found to prefer to bind to humic-like components, and ultraviolet humic-like fluorophores displayed stronger binding strength. High molecular weight PPFA fractions (>10 kDa) possessed more aromatic and hydrophobic components, displayed a higher degree of humification, and exhibited higher metal binding potential. Furthermore, the speciation analysis and stability constant (cK) were calculated using Donnan membrane equilibrium. The correlation between cK values and PPFA spectral properties demonstrated that aromaticity, hydrophobicity, molecular weight and humification degree were crucial indices of PPFA−Fe(III) affinity. Significantly, the humification degree, represented by HIX, showed the strongest correlation (r = 0.929, p = 0.003), which could be used to estimate the binding strength. This study provides further understanding of the complexation mechanism of iron and DOM in the peat environment and identifies the considerable effect of molecular weight.
Collapse
Affiliation(s)
- Yaqin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| | - Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| | - Yuxia Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| | - Liuting Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
- Correspondence: (L.S.); (J.Y.)
| | - Jie Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
- Correspondence: (L.S.); (J.Y.)
| | - Rui Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| | - Jian Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| | - Jinsheng Wang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; (Y.Z.); (C.L.); (Y.L.); (R.Z.); (J.L.); (Y.T.); (J.W.)
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing 100875, China
| |
Collapse
|
15
|
Meier AB, Oppermann S, Drake HL, Schmidt O. Organic carbon from graminoid roots as a driver of fermentation in a fen. FEMS Microbiol Ecol 2021; 97:6412523. [PMID: 34718537 DOI: 10.1093/femsec/fiab143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Fen Schlöppnerbrunnen is a moderately acidic methane-emitting peatland overgrown by Molinia caerulea and other wetland graminoids (e.g. Carex rostrata). Recently, the accumulation of H2, an indicator for fermentation, was observed with anoxically incubated C. rostrata roots but not with root-free fen soil. Based on this finding, we hypothesized that root-derived organic carbon has a higher capacity to promote fermentation processes than peat organic carbon from root-free fen soil. To address this hypothesis, C. rostrata and M. caerulea roots were anoxically incubated with or without fen soil and the product profiles of root treatments were compared with those of root-free soil treatments. Ethanol, acetate, propionate, butyrate, H2 and CO2 accumulated in root treatments and collective amounts of carbon in accumulating products were 20-200 times higher than those in root-free soil treatments, in which mainly CO2 accumulated. Analyses of 16S rRNA and 16S rRNA gene sequences revealed that Clostridium, Propionispira and Rahnella, representatives of butyrate, propionate and mixed acid fermenters, respectively, were relatively enriched in root treatments. In contrast, differences of the microbial community before and after incubation were marginal in root-free soil treatments. Collectively, these findings supported the assumed stimulatory effect of root-derived organic carbon on fen fermenters.
Collapse
Affiliation(s)
- Anja B Meier
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Sindy Oppermann
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Harold L Drake
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| | - Oliver Schmidt
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth 95440, Germany
| |
Collapse
|
16
|
Huang Y, Zhao S, Liu H, Chen R, Zhao L, Liu S. Co-existing siderite alleviates the Fe(II) oxidation-induced inactivation of Fe(III)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146489. [PMID: 33798884 DOI: 10.1016/j.scitotenv.2021.146489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Abiotic Fe (II) oxidation widely occurs in the natural subsurface environment and engineered dynamic processes, which possibly impacts the growth of indigenous microbes. As previously discovered, the oxidation of aqueous Fe2+ at neutral pH effectively inactivates iron-reducing bacteria Shewanella oneidensis strain MR-1 (MR-1). Herein, the impacts of co-existing iron mineral on the oxidation of aqueous Fe2+ and the subsequent disinfection activity on MR-1 were investigated with siderite selected as a representative iron mineral in the subsurface environment. The oxidation rate of aqueous Fe2+ and the amount of generated OH radical increased as the content of siderite increased, while the MR-1 inactivation was alleviated. An initial concentration of 2.0 × 106 CFU/mL MR-1 was inactivated by about 2.7 orders of magnitude during oxidation of 0.2 mM FeSO4 alone for 30 min, which was reduced to only about 0.6 orders of magnitude in the presence of 4.3 mM co-existing siderite. ROS scavenging results confirmed that the OH radical generated in the bulk solution was not the leading role for the inactivation of MR-1. Morphological changes of the cells observed by SEM demonstrated that the disruption of the cell membrane was alleviated by siderite, which was further supported by the XRD and FTIR spectra. The underlying mechanism was proposed to be the reduced contact time of Fe2+ and MR-1 cells due to the accelerated oxidation. This work provides new insights into the disinfection behavior of heterogeneous Fe (II) oxidation on iron cycling bacterial in the natural environment.
Collapse
Affiliation(s)
- Yao Huang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shufeng Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Hui Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Rong Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Zhao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shan Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
17
|
Zhou N, Luther GW, Chan CS. Ligand Effects on Biotic and Abiotic Fe(II) Oxidation by the Microaerophile Sideroxydans lithotrophicus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9362-9371. [PMID: 34110796 DOI: 10.1021/acs.est.1c00497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic ligands are widely distributed and can affect microbially driven Fe biogeochemical cycles, but effects on microbial iron oxidation have not been well quantified. Our work used a model microaerophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1 to quantify biotic Fe(II) oxidation rates in the presence of organic ligands at 0.02 atm O2 and pH 6.0. We used two common Fe chelators with different binding strengths: citrate (log KFe(II)-citrate = 3.20) and nitrilotriacetic acid (NTA) (log KFe(II)-NTA = 8.09) and two standard humic substances, Pahokee peat humic acid (PPHA) and Suwannee River fulvic acid (SRFA). Our results provide rate constants for biotic and abiotic Fe(II) oxidation over different ligand concentrations and furthermore demonstrate that various models and natural iron-binding ligands each have distinct effects on abiotic versus biotic Fe(II) oxidation rates. We show that NTA accelerates abiotic oxidation and citrate has negligible effects, making it a better laboratory chelator. The humic substances only affect biotic Fe(II) oxidation, via a combination of chelation and electron transfer. PPHA accelerates biotic Fe(II) oxidation, while SRFA decelerates or accelerates the rate depending on concentration. The specific nature of organic-Fe microbe interactions may play key roles in environmental Fe(II) oxidation, which have cascading influences on cycling of nutrients and contaminants that associate with Fe oxide minerals.
Collapse
Affiliation(s)
- Nanqing Zhou
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - Clara S Chan
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
- Department of Earth Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
18
|
Yang L, Jiang M, Zou Y, Qin L, Chen Y. Geographical Distribution of Iron Redox Cycling Bacterial Community in Peatlands: Distinct Assemble Mechanism Across Environmental Gradient. Front Microbiol 2021; 12:674411. [PMID: 34113332 PMCID: PMC8185058 DOI: 10.3389/fmicb.2021.674411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial-mediated iron (Fe) oxidation and reduction greatly contribute to the biogeochemistry and mineralogy of ecosystems. However, knowledge regarding the composition and distribution patterns of iron redox cycling bacteria in peatlands remains limited. Here, using high-throughput sequencing, we compared biogeographic patterns and assemblies of the iron redox cycling bacterial community between soil and water samples obtained from different types of peatland across four regions in Northeast China. A total of 48 phylotypes were identified as potential iron redox bacteria, which had greater than 97% similarity with Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB). Among them, Rhodoferax, Clostridium, Geothrix, Sideroxydans, Geobacter, Desulfovibrio, and Leptothrix could be used as bioindicators in peatlands for characterizing different hydrological conditions and nutrient demands. Across all samples, bacterial communities associated with iron redox cycling were mainly affected by pH, dissolved organic carbon (DOC), and Fe2+. Distance-decay relationship (DDR) analysis indicated that iron redox cycling bacterial communities in soil, but not in water, were highly correlated with geographic distance. Additionally, null model analysis revealed that stochastic processes substituted deterministic processes from minerotrophic fens to ombrotrophic bogs in soils, whereas deterministic processes were dominant in water. Overall, these observations suggest that bacteria involved in iron redox cycling are widespread in diverse habitats and exhibit distinct patterns of distribution and community assembly mechanisms between soil and water in peatlands.
Collapse
Affiliation(s)
- Liang Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China.,Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Changchun, China
| | - Ming Jiang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Changchun, China
| | - Yuanchun Zou
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Changchun, China
| | - Lei Qin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Changchun, China
| | - Yingyi Chen
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,University of Chinese Academy of Sciences, Beijing, China.,Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Changchun, China
| |
Collapse
|
19
|
Mohr JF, Baldeweg F, Deicke M, Morales-Reyes CF, Hoffmeister D, Wichard T. Frankobactin Metallophores Produced by Nitrogen-Fixing Frankia Actinobacteria Function in Toxic Metal Sequestration. JOURNAL OF NATURAL PRODUCTS 2021; 84:1216-1225. [PMID: 33789052 DOI: 10.1021/acs.jnatprod.0c01291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of new metallophores, referred to as frankobactins, were extracted from cultures of the symbiotic and nitrogen-fixing actinobacterium Frankia sp. CH37. Structure elucidation revealed a 2-hydroxyphenyl-substituted oxazoline core and a chain composed of five proteinogenic and nonproteinogenic amino acids, suggesting nonribosomal peptide synthesis as the biosynthetic origin. By whole-genome sequencing, bioinformatic analysis, and comparison with other Frankia strains, the genetic locus responsible for the biosynthesis was detected. Spectrophotometric titration of frankobactin with Fe(III) and Cu(II) and mass spectrometry established the 1:1 (metal:frankobactin) coordination. Uptake experiments suggested that frankobactin A1 (1) did not serve to recruit iron, but to detoxify Cu(II). As frankobactin A1 prevents the cellular entry of Cu(II), it could play a crucial role in the symbiosis of Frankia sp. and its host in the reclamation of copper-contaminated soil.
Collapse
Affiliation(s)
- Jan Frieder Mohr
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena, Winzerlaer Straße 2, 07745 Jena, Germany
| | - Michael Deicke
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Cristina F Morales-Reyes
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans-Knöll-Institute, Friedrich-Schiller-University Jena, Winzerlaer Straße 2, 07745 Jena, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Lessingstraße 8, 07743 Jena, Germany
| |
Collapse
|
20
|
Abinandan S, Perera IA, Subashchandrabose SR, Venkateswarlu K, Cole N, Megharaj M. Acid-adapted microalgae exhibit phenotypic changes for their survival in acid mine drainage samples. FEMS Microbiol Ecol 2021; 96:5851742. [PMID: 32501474 DOI: 10.1093/femsec/fiaa113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023] Open
Abstract
Phenotypic plasticity or genetic adaptation in an organism provides phenotypic changes when exposed to the extreme environmental conditions. The resultant physiological and metabolic changes greatly enhance the organism's potential for its survival in such harsh environments. In the present novel approach, we tested the hypothesis whether acid-adapted microalgae, initially isolated from non-acidophilic environments, can survive and grow in acid-mine-drainage (AMD) samples. Two acid-adapted microalgal strains, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, were tested individually or in combination (co-culture) for phenotypic changes during their growth in samples collected from AMD. The acid-adapted microalgae in AMD exhibited a two-fold increase in growth when compared with those grown at pH 3.5 in BBM up to 48 h and then declined. Furthermore, oxidative stress triggered several alterations such as increased cell size, granularity, and enhanced lipid accumulation in AMD-grown microalgae. Especially, the apparent limitation of phosphate in AMD inhibited the uptake of copper and iron in the cultures. Interestingly, growth of the acid-adapted microalgae in AMD downregulated amino acid metabolic pathways as a survival mechanism. This study demonstrates for the first time that acid-adapted microalgae can survive under extreme environmental conditions as exist in AMD by effecting significant phenotypic changes.
Collapse
Affiliation(s)
- Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, ATC Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), Faculty of Science, ATC Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, ATC Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308 Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Nicole Cole
- Analytical and Biomolecular Research Facility (ABRF), University of Newcastle, University Drive, Callaghan, NSW 2308 Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, ATC Building, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle, ATC Building, University Drive, Callaghan, NSW 2308 Australia
| |
Collapse
|
21
|
Wu SC, Wang CW, Hsu LH, Liang C. Assessment of green tea reductive degradation of halogenated solvents. CHEMOSPHERE 2021; 267:129196. [PMID: 33340881 DOI: 10.1016/j.chemosphere.2020.129196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Green tea (GT) leaves can be brewed into a solution rich in polyphenols that serve as effective reducing agents, and the complexes formed by combining green tea with ferrous ion (GT/Fe(II)) can provide an elevated reduction potential. The dissociated GT polyphenols at alkaline pH can dramatically increase the formation of GT/Fe(II) complexes. This experimental work evaluated the reductive reactivity of alkaline GT solution and GT/Fe(II) complexes (at pH 10) on 14 halogenated volatile organic compounds (VOCs). Carbon tetrachloride (CT), with a highest carbon oxidation state (COS) of IV, was observed to be degradable by the alkaline GT solution, while all others proved ineffective. The GT/Fe(II) complexes are very reactive and capable of degrading halogenated methanes, ethanes, and ethenes, in which chemical structures exhibit zero or positive COS values, and the chlorine or bromine atom is bonded at the saturated carbon atom, such as CT, chloroform, bromoform, dibromomethane, 1,1,1-trichloroethane, and 1,1,1,2-tetrachloroethane. The linear free energy relationship (LFER) approach was used to determine the overall reduction potentials (EH0) of the alkaline GT solution and GT/Fe(II) complexes, which were found to be -0.131 V and -0.368 V, respectively. These findings demonstrated that GT/Fe(II) complexes exhibit the potential to remediate halogenated contaminants and the EH0 information obtained in this study may serve as a reference in determining probable reactivity that contributes to degradation of environmental contaminants.
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-kuang Road, Taichung, 402, Taiwan
| | - Chi-Wei Wang
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-kuang Road, Taichung, 402, Taiwan
| | - Li-Hsin Hsu
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-kuang Road, Taichung, 402, Taiwan
| | - Chenju Liang
- Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-kuang Road, Taichung, 402, Taiwan.
| |
Collapse
|
22
|
Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM, Swanner ED. An evolving view on biogeochemical cycling of iron. Nat Rev Microbiol 2021; 19:360-374. [PMID: 33526911 DOI: 10.1038/s41579-020-00502-7] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
Abstract
Biogeochemical cycling of iron is crucial to many environmental processes, such as ocean productivity, carbon storage, greenhouse gas emissions and the fate of nutrients, toxic metals and metalloids. Knowledge of the underlying processes involved in iron cycling has accelerated in recent years along with appreciation of the complex network of biotic and abiotic reactions dictating the speciation, mobility and reactivity of iron in the environment. Recent studies have provided insights into novel processes in the biogeochemical iron cycle such as microbial ammonium oxidation and methane oxidation coupled to Fe(III) reduction. They have also revealed that processes in the biogeochemical iron cycle spatially overlap and may compete with each other, and that oxidation and reduction of iron occur cyclically or simultaneously in many environments. This Review discusses these advances with particular focus on their environmental consequences, including the formation of greenhouse gases and the fate of nutrients and contaminants.
Collapse
Affiliation(s)
- Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany.
| | - Casey Bryce
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Ulf Lueder
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - James M Byrne
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Elizabeth D Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, USA
| |
Collapse
|
23
|
Mleczek M, Siwulski M, Budka A, Mleczek P, Budzyńska S, Szostek M, Kuczyńska-Kippen N, Kalač P, Niedzielski P, Gąsecka M, Goliński P, Magdziak Z, Rzymski P. Toxicological risks and nutritional value of wild edible mushroom species -a half-century monitoring study. CHEMOSPHERE 2021; 263:128095. [PMID: 33297091 DOI: 10.1016/j.chemosphere.2020.128095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
The content of major- and trace elements in wild-growing mushrooms has been subject to numerous studies, but the data on long-term trends in this regard are scarce. The aim of research was to determine the content of 34 elements in four edible mushroom species Boletus edulis, Imleria badia, Leccinum scabrum and Macrolepiota procera, and associated soil collected from Polish forests between 1974 and 2019. As initially hypothesized, the element concentration in the studied soil revealed an increasing trend and was positively correlated with their levels found in fruit bodies. Bioconcentrafion Factor values exceeding 1 were documented for all mushroom species for K, P, Ag, Cd, Cu, Hg, and Zn. When compared to the Adequate Intakes, all the mushroom species were found to be a good dietary source of K, P, and Zn (range of 6260-8690, 6260-8690 and 97-135 mg kg-1 dry weight (dw), respectively), and B. edulis and I. badia a moderate source of Fe (mean 71.5 and 76.5 mg kg-1 dw, respectively), B. edulis of Mn and Mo (mean 20.0 and 0.42 mg kg-1 dw, respectively), while L. scabrum and M. procera a source of Cu. Consumption of the studied mushrooms would not lead to significant exposure to Al, As, Cr, or Ni. Considering that wild mushrooms will continue to be collected in Poland, one should bear in mind that they are a limited source of minerals in the human diet while their frequent, regular consumption, associated with exposure to selected toxic elements, should not be recommended.
Collapse
Affiliation(s)
- Mirosław Mleczek
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland.
| | - Marek Siwulski
- Poznań University of Life Sciences, Department of Vegetable Crops, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Anna Budka
- Poznań University of Life Sciences, Department of Mathematical and Statistical Methods, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Patrycja Mleczek
- Poznań University of Life Sciences, Department of Ecology and Environmental Protection, Piątkowska 94c, 60-649, Poznań, Poland
| | - Sylwia Budzyńska
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Małgorzata Szostek
- University of Rzeszów, Department of Soil Science, Environmental Chemistry and Hydrology, Zelwerowicza 8b, 35-601, Rzeszów, Poland
| | - Natalia Kuczyńska-Kippen
- Adam Mickiewicz University, Faculty of Biology, Department of Water Protection, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Pavel Kalač
- University of South Bohemia, Faculty of Agriculture, Department of Applied Chemistry, 370 04, České Budějovice, Czechia Republic
| | - Przemysław Niedzielski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Monika Gąsecka
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Piotr Goliński
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Zuzanna Magdziak
- Poznań University of Life Sciences, Department of Chemistry, Wojska Polskiego 75, 60-625, Poznań, Poland
| | - Piotr Rzymski
- Poznań University of Medical Sciences, Department of Environmental Medicine, Rokietnicka 8, 60-806, Poznań, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Rokietnicka 8, 60-806, Poznań, Poland
| |
Collapse
|
24
|
Hu Z, Deng S, Li D, Guan D, Xie B, Zhang C, Li P, Yao H. Application of iron [Fe(0)]-rich substrate as a novel capping material for efficient simultaneous remediation of contaminated sediments and the overlying water body. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141596. [PMID: 32818887 DOI: 10.1016/j.scitotenv.2020.141596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 05/24/2023]
Abstract
Release of contaminants from sediments has been one of the main pollution sources causing eutrophication and malodorous black of ponds. In this study, an iron-rich substrate (IRS) was developed based on iron‑carbon micro-electrolysis and applied for simultaneous sediments and overlying water remediation. IRS obtained high ammonia and phosphate adsorption capacities (Langmuir isotherm) of 13.02 and 18.12 mg·kg-1, respectively. In the 90-day long-term remediation, IRS reduced NH4+-N, PO43--P, organic-N, organic-P, TN and TP in overlying water by 48.6%, 97.9%, 34.2%, 67.1%, 53.2% and 90.4%, respectively. In sediments, IRS reduced NO3--N, NH4+-N and organic-N by 98.5%, 26.5% and 6.3%, respectively. The unstable P-compounds (i.e., organic-P, Ca-bounded-P and labile-P) were effectively transferred (20.1%, 54.3% and 98.2%, respectively) into inert P-compounds (i.e., Fe-bounded-P and residual-P). Meanwhile, flux rates of nitrogen and phosphorus from sediments to overlying water were reduced from 7.02 to 4.92 mg·m-2·d-1 (by 29.9%) and from 7.42 to 2.21 mg·m-2·d-1 (by 70.2%), respectively. Due to micro-electrolysis, Fe2+/Fe3+/[H] were in-situ generated from IRS and NO3--N was effectively reduced. Additionally, the generation of O2· was promoted by Fe2+/[H] and strengthened the NH4+-N, organic-N/P oxidation. Fe3+ enhanced the immobilization of PO43- (e.g., as FePO4·H2O and FenPO4(OH)3n-3). The released Fe2+/Fe3+ from IRS were finally stabilized as poorly reactive sheet silicate (PRS)-Fe and magnetite-Fe in the sediments and hardly showed side effect to sediments and water body. The developed IRS obtained advantages of high efficiency, ecologically safe and cost-effective in contaminated sediments and overlying water remediation.
Collapse
Affiliation(s)
- Zhifeng Hu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Shihai Deng
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Desheng Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Detian Guan
- Beijing Management Division of North Grand Canal, 101100 Beijing, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Chao Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Pengyang Li
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
25
|
Sha NQ, Wang GH, Li YH, Bai SY. Removal of abamectin and conventional pollutants in vertical flow constructed wetlands with Fe-modified biochar. RSC Adv 2020; 10:44171-44182. [PMID: 35517164 PMCID: PMC9058508 DOI: 10.1039/d0ra08265a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 01/15/2023] Open
Abstract
To improve the ability of constructed wetlands to remove abamectin (ABM) and nutrients, the influence of four different substrates on constructed wetlands was studied. Four vertical up-flow constructed wetlands (UVCWs) were established to treat simulated agricultural wastewater: CW1 (quartz sand + pebbles), CW2 (pebbles + coke), CW3 (Fe-modified biochar + pebbles + coke), and CW4 (unmodified biochar + pebbles + coke). Under different combinations of hydraulic loading and organic loading, CW3 was extremely effective at removing nitrogen compared with CW1, CW2 and CW4. We found that CW3 was the most effective at treating ABM and conventional pollutants. The highest efficiency of removal of abamectin (99%), COD (98%), NH4 +-N (65%), and TP (80%) was obtained in CW3. These results were directly verified by microbiological tests and microbial community analysis. The microbial diversity of CW3 and CW4 was significantly higher than those of CW1 and CW2. Fe-modified biochar provides a feasible and effective amendment for constructed wetlands to improve the nitrogen removal for C/N (2.5 : 1-5 : 1) wastewater by the ability of microbes to remove nitrogen. Fe-modified bamboo charcoal can be used in engineering as a new type of green environmental protection constructed wetland filler in the future.
Collapse
Affiliation(s)
- Nai-Qing Sha
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Guo-Hao Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China
| | - Yan-Hong Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China .,Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology Guilin 541004 China
| | - Shao-Yuan Bai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology Guilin 541004 China .,Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology Guilin 541004 China
| |
Collapse
|
26
|
Kügler S, Cooper RE, Boessneck J, Küsel K, Wichard T. Rhizobactin B is the preferred siderophore by a novel Pseudomonas isolate to obtain iron from dissolved organic matter in peatlands. Biometals 2020; 33:415-433. [PMID: 33026607 PMCID: PMC7676072 DOI: 10.1007/s10534-020-00258-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/30/2020] [Indexed: 01/12/2023]
Abstract
Bacteria often release diverse iron-chelating compounds called siderophores to scavenge iron from the environment for many essential biological processes. In peatlands, where the biogeochemical cycle of iron and dissolved organic matter (DOM) are coupled, bacterial iron acquisition can be challenging even at high total iron concentrations. We found that the bacterium Pseudomonas sp. FEN, isolated from an Fe-rich peatland in the Northern Bavarian Fichtelgebirge (Germany), released an unprecedented siderophore for its genus. High-resolution mass spectrometry (HR-MS) using metal isotope-coded profiling (MICP), MS/MS experiments, and nuclear magnetic resonance spectroscopy (NMR) identified the amino polycarboxylic acid rhizobactin and a novel derivative at even higher amounts, which was named rhizobactin B. Interestingly, pyoverdine-like siderophores, typical for this genus, were not detected. With peat water extract (PWE), studies revealed that rhizobactin B could acquire Fe complexed by DOM, potentially through a TonB-dependent transporter, implying a higher Fe binding constant of rhizobactin B than DOM. The further uptake of Fe-rhizobactin B by Pseudomonas sp. FEN suggested its role as a siderophore. Rhizobactin B can complex several other metals, including Al, Cu, Mo, and Zn. The study demonstrates that the utilization of rhizobactin B can increase the Fe availability for Pseudomonas sp. FEN through ligand exchange with Fe-DOM, which has implications for the biogeochemical cycling of Fe in this peatland.
Collapse
Affiliation(s)
- Stefan Kügler
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Rebecca E Cooper
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Johanna Boessneck
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743, Jena, Germany
- The German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry (IAAC), Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
27
|
Akob DM, Hallenbeck M, Beulig F, Fabisch M, Küsel K, Keffer JL, Woyke T, Shapiro N, Lapidus A, Klenk HP, Chan CS. Mixotrophic Iron-Oxidizing Thiomonas Isolates from an Acid Mine Drainage-Affected Creek. Appl Environ Microbiol 2020; 86:e01424-20. [PMID: 33008825 PMCID: PMC7688216 DOI: 10.1128/aem.01424-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.
Collapse
Affiliation(s)
| | - Michelle Hallenbeck
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Felix Beulig
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Maria Fabisch
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| | - Tanja Woyke
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
| | - Nicole Shapiro
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
| | - Alla Lapidus
- Joint Genome Institute, U.S. Department of Energy, Berkeley, California, USA
- Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Clara S Chan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Department of Earth Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, Newark, Delaware, USA
| |
Collapse
|
28
|
Development and comparison of formula assignment algorithms for ultrahigh-resolution mass spectra of natural organic matter. Anal Chim Acta 2020; 1125:247-257. [DOI: 10.1016/j.aca.2020.05.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022]
|
29
|
Hädrich A, Taillefert M, Akob DM, Cooper RE, Litzba U, Wagner FE, Nietzsche S, Ciobota V, Rösch P, Popp J, Küsel K. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schlöppnerbrunnen fen-derived humic acids. FEMS Microbiol Ecol 2020; 95:5381554. [PMID: 30874727 DOI: 10.1093/femsec/fiz034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 11/14/2022] Open
Abstract
Controlled laboratory experiments were combined with field measurements to better understand the interactions between dissolved organic matter (DOM) and reduced iron in organic-rich peatlands. Addition of peat-derived humic acid extract (HA) to Sideroxydans lithotrophicus ES-1 liquid cultures led to higher cell numbers and up to 1.4 times higher Fe(II) oxidation rates compared to chemical controls. This effect was positively correlated with increasing HA concentrations. Similar Fe(III) (oxyhydr)oxide mineralogies were formed both abiotically and biotically irrespective of HA amendment, but minerals formed in the presence of ES-1 and HA were smaller. ES-1 growth with HA promoted aggregation of Fe(III) products in agarose-stabilized gradient tubes as shown by voltammetric profiling. In situ voltammetry in an acidic, iron-rich peatland revealed a gap between oxygen penetration and iron reduction that may reflect active Fe(II)-oxidizing microorganisms. The highest abundance of Fe(II) oxidizers Sideroxydans (4.9 × 107 gene copies gww-1) and Gallionella (1.5 × 107 gene copies gww-1) in the upper peat layer coincided with small-sized minerals resembling nanoparticulate ferrihydrite or goethite. Our results suggest that microbially mediated Fe(II) oxidation dominates in the presence of DOM leading to the formation of nano-sized biogenic Fe(III) (oxyhydr)oxides that might be readily bioavailable and likely important to iron and carbon cycling.
Collapse
Affiliation(s)
- Anke Hädrich
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
| | - Martial Taillefert
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA
| | - Denise M Akob
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany.,Water Resource Mission Area, U.S. Geological Survey, 12201 Sunrise Valley Dr., MS 430, Reston, VA 20192, USA
| | - Rebecca E Cooper
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
| | - Ulrike Litzba
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
| | - Friedrich E Wagner
- Department of Physics, Technical University Munich, James Frank Strasse, D-85748 Garching, Germany
| | - Sandor Nietzsche
- Centre of Electron Microscopy, University Hospital Jena, Friedrich Schiller University Jena, Ziegelmühlenweg 1, D-07743 Jena, Germany
| | - Valerian Ciobota
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany.,Rigaku Analytical Devices, Inc., 30 Upton Drive, Wilmington, MA 01887, USA
| | - Petra Rösch
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, D-07743 Jena, Germany
| | - Jürgen Popp
- Institute of Photonic Technology, Friedrich Schiller University Jena, Albert-Einstein-Straße 9, D-07745 Jena, Germany
| | - Kirsten Küsel
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
30
|
Carrasco J, Preston GM. Growing edible mushrooms: a conversation between bacteria and fungi. Environ Microbiol 2019; 22:858-872. [DOI: 10.1111/1462-2920.14765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jaime Carrasco
- Department of Plant SciencesUniversity of Oxford, S Parks Rd Oxford OX1 3RB UK
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH) Autol Spain
| | - Gail M. Preston
- Department of Plant SciencesUniversity of Oxford, S Parks Rd Oxford OX1 3RB UK
| |
Collapse
|