1
|
Bouimouass H, Fourno A, Hamon Y, Chalikakis K. A global analysis of nearshore and submarine springs: spatial distribution, controlling factors, and probability of presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177004. [PMID: 39426550 DOI: 10.1016/j.scitotenv.2024.177004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Coastal springs act as bi-directionally preferential flow paths between coastal aquifers and oceans. While these springs can supply coastal ecosystems with nutrients, they also present vulnerabilities such as contamination and seawater intrusion. Despite their significance, substantial knowledge gaps exist regarding coastal springs due to their complex hydrogeological nature. This study provides a comprehensive global assessment of coastal springs, focusing on their distribution, controlling factors, and likelihood of occurrence. A global dataset of known coastal springs was compiled and analyzed, revealing 66 % of identified springs in the Mediterranean region, mainly linked to karst systems. In contrast, fewer springs were noted in Africa, South America, and South Asia. Key factors influencing spring occurrence were examined using geostatistical methods and integrated into a multi-criteria decision-making framework to develop a Coastal Spring Probability Index (CSPI) along coastline. High-potential areas for coastal springs were identified in regions characterized by significant carbonate and volcanic rock formations, wetter climates, and active tectonic margins, such as southern Europe, the Caribbean, tropical islands, and eastern Asia. Conversely, regions with dry climates and high water demand, such as North Africa and South America, exhibited a lower likelihood of spring presence. These findings will serve as a baseline for local-scale studies and aimed at improving coastal spring inventories and establishing monitoring networks. It will contribute to vulnerability assessment studies, thereby enhancing the management of coastal groundwater resources. The study emphasizes the importance of multidisciplinary approaches to understand coastal spring dynamics and advocates for a strategic planning in groundwater management and conservation. Ongoing efforts to inventory and monitor coastal springs, coupled with targeted conservation measures, are essential for ensuring the long-term sustainability of coastal water resources and ecosystems.
Collapse
Affiliation(s)
- Houssne Bouimouass
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France.
| | - André Fourno
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France.
| | - Youri Hamon
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
| | | |
Collapse
|
2
|
Zhang P, Tang X, Qin N, Shuai Y, Wang J, Wang H, Ouyang Z, Jia H. Advanced understanding of the natural forces accelerating aging and release of black microplastics (tire wear particles) based on mechanism and toxicity analysis. WATER RESEARCH 2024; 266:122409. [PMID: 39270502 DOI: 10.1016/j.watres.2024.122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Currently, tire wear particles (TWPs), a typical type of black microplastics (MPs), are frequently overlooked as the major source of MPs in aquatic environments. TWPs are widely distributed and exhibit complex environmental behaviors. However, how natural forces affect the aging and release behavior of TWPs at the nano(micro)scale remains inadequately explored. This study systematically investigated the aging behavior and mechanism of TWPs under the action of simulated natural light and high-temperature in both dry and wet environments, as well as the effect of aging treatment on the released leachate. The findings demonstrated that aging treatment significantly altered the physicochemical properties of TWPs, including chain scission and surface oxidation, and facilitated the release of heavy metals and organic additives in the meantime. In particular, the leaching concentration of Zn exhibited a positive linear relationship with exposure time. In the thermal-aging process, the oxidation of TWPs was primarily caused by superoxide anion (O2•-). During the photo-aging exposure, TWPs exhibited heightened electron-donating capacity, resulting in the formation of more O2•- and singlet oxygen (1O2) to attack TWPs. Moreover, the analysis of leachate produced under light and high-temperature conditions suggested that heavy metals exerted low ecological risks in water. Nonetheless, the photo-aging process enhanced the toxicity of released leachate to L929 cells, which could be attributed to highly toxic additive transformation products (such as HMMM-411 and 6PPD-Q) and more heavy metals. These findings shed light on the fate of TWPs and the ecological risks posed by aged TWPs in aquatic environments.
Collapse
Affiliation(s)
- Puxing Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiwang Tang
- Hebei Engineering Research Center for Ecological Restoration of Rivers and Coastal Areas, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Ning Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiping Shuai
- School of General Education, Hunan University of Information Technology, Changsha, 410148, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China
| | - Han Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Perera H, Jayawardana C, Chandrajith R. Freshwater salinisation: unravelling causes, adaptive mechanisms, ecological impacts, and management strategies. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1195. [PMID: 39538033 DOI: 10.1007/s10661-024-13388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Freshwater salinisation is a growing problem worldwide, affecting surface and groundwater resources. Compared with other global environmental issues, freshwater salinisation has been studied extensively in North America, Australia, and Europe but less so in South America, Asia, and Africa. Both the natural and anthropogenic sources can contribute for freshwater salinisation, through the concentration of dissolved salts in water rising above its normal levels. This review provides a comprehensive assessment of the causes of freshwater salinisation, the impacts on freshwater communities and ecosystem functions, the adaptive mechanisms for survival in an increasingly saline environment, and the management strategies available to control freshwater salinisation. Many human activities contribute to freshwater salinisation, including road salt use, agricultural practices, resource extraction, reservoir construction, and climate change. Aquatic organisms have evolved mechanisms to survive in increasingly saline environments, but excessive salinity can lead to mortality and non-lethal effects. Such effects can have cascading impacts on the structure and function of aquatic communities and ecosystem services. Therefore, monitoring programmes and chemical fingerprinting are needed to identify highly salinised areas, determine how various human activities contribute to freshwater salinisation, and implement management strategies. Furthermore, current research on freshwater salinisation has been limited to a few regions of the world. It is essential to expand the research further into exploring the impacts of salinisation on freshwater resources in unexplored geographic areas of the world that are mainly impacted by climate change scenarios.
Collapse
Affiliation(s)
- Heshani Perera
- Faculty of Graduate Studies, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - Chandramali Jayawardana
- Department of Natural Resources, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka.
| | | |
Collapse
|
4
|
Wang J, Feng W, Lu J, Wu J, Cao W, Zhang J, Zhang C, Hu B, Li W. Removal of Fe 2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11147. [PMID: 39479947 DOI: 10.1002/wer.11147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 10/05/2024] [Indexed: 11/02/2024]
Abstract
Excessive Fe2+ in coastal aquaculture source water will seriously affect the aquaculture development. This study used manganese sand to investigate the removal potential and mechanism of Fe2+ in coastal aquaculture source water by column experiments. The pseudo-first-order kinetic model could better describe Fe2+ removal process with R2 in the range of 0.9451-0.9911. More than 99.7% of Fe2+ could be removed within 120 min while the removal rate (k) was positively affected by low initial concentration of Fe2+, high temperature, and low pH. Logistic growth (S-shaped growth) model could better fit the concentration variation of Fe2+ in the effluent of the column (R2>0.99). The Fe2 breakthrough curve could be fitted by Bohart-Adams, Yoon-Nelson, and Thomas models (R2>0.95). Smooth slices with irregular shapes existed on the surface of manganese sand after the reaction while Fe content increased significantly on the surface of manganese sand after the column experiment. Moreover, FeO (OH) was mainly formed on the surface of manganese sand after the reaction. PRACTITIONER POINTS: Fe2+ in coastal aquaculture source water could be removed by manganese ores. The pseudo-first-order kinetic model better described the Fe2+ removal process. FeO (OH) was mainly formed on the surface of manganese sand after the reaction.
Collapse
Affiliation(s)
- Jianhua Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, China
| | - Wenchao Feng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, China
| | - Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, China
| | - Jun Wu
- Yantai Research Institute, Harbin Engineering University, Yantai, Shandong, China
| | - Wenxin Cao
- Yantai Municipal Drainage Service Center, Yantai, China
| | - Jianbai Zhang
- Yantai Marine Economic Research Institute, Yantai, China
| | - Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, China
| | - Bing Hu
- Fujian Tianma Science and Technology Group Co., Ltd., Fuqing, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co. Ltd., Yantai, China
| |
Collapse
|
5
|
Andreu V, Gimeno E, Pascual JA, Campo J. The Anthropocene fingerprint: Hazardous elements in waters of a coastal Mediterranean alluvial plain (Valencia, Spain). Heliyon 2024; 10:e36044. [PMID: 39296082 PMCID: PMC11409034 DOI: 10.1016/j.heliyon.2024.e36044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
This study focuses on the alluvial plain spanning between the Turia and Jucar rivers (486 km2) in Valencia, Spain - a highly productive agricultural area that also involves a Natural Park (La Albufera). Thirty-five points across different water sources and land uses were sampled to map the spatial distribution of 14 heavy metals (Al, As, B, Cd, Co, Cr, Cu, Fe, Li, Ni, Pb, Sr, Tl, and Zn), and to study the potential influence of water characteristics and environmental factors on them. Two pollution indexes were applied, Heavy Metal Evaluation Index (HEI) and Water Pollution Index (WPI), to assess the water quality state in the area. High levels were predominantly found in the southern region, particularly within rice farming areas. For B, Sr, and Tl, all samples exceeded WHO limits, EU legislation, or EPA benchmarks, with 61.76 % and 85.71 % of samples surpassing standards for Al and Li, respectively. Water salinization parameters greatly influenced the dynamics of Al, As, B, Li, Sr, and Tl. Analysis using both indexes (HEI and WPI) revealed poor water quality in the area, particularly in rice fields, posing potential toxic effects on ecosystems and human health. The findings of this work are valuable for understanding elements of concern in coastal wetlands under global change.
Collapse
Affiliation(s)
- Vicente Andreu
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Eugenia Gimeno
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Juan Antonio Pascual
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Julián Campo
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| |
Collapse
|
6
|
Imran M, Sun Z, Abo-Elyousr KAM, Ali H, Aldayel MF, Li C. One stone two birds: Endophytes alleviating trace elements accumulation and suppressing soilborne pathogen by stimulating plant growth, photosynthetic potential and defense related gene expression. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135084. [PMID: 38991649 DOI: 10.1016/j.jhazmat.2024.135084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
In the present investigation, we utilized zinc nanoparticles (Zn-NPs) and bacterial endophytes to address the dual challenge of heavy metal (HM) toxicity in soil and Rhizoctonia solani causing root rot disease of tomato. The biocontrol potential of Bacillus subtilis and Bacillus amyloliquefaciens was harnessed, resulting in profound inhibition of R. solani mycelial growth and efficient detoxification of HM through strong production of various hydrolytic enzymes and metabolites. Surprisingly, Zn-NPs exhibited notable efficacy in suppressing mycelial growth and enhancing the seed germination (%) while Gas chromatography-mass spectrometry (GC-MS) analysis unveiled key volatile compounds (VOCs) crucial for the inhibition of pathogen. Greenhouse trials underscored significant reduction in the disease severity (%) and augmented biomass in biocontrol-mediated plants by improving photosynthesis-related attributes. Interestingly, Zn-NPs and biocontrol treatments enhanced the antioxidant enzymes and mitigate oxidative stress indicator by increasing H2O2 concentration. Field experiments corroborated these findings, with biocontrol-treated plants, particularly those receiving consortia-mediated treatments, displayed significant reduction in disease severity (%) and enhanced the fruit yield under field conditions. Root analysis confirmed the effective detoxification of HM, highlighting the eco-friendly potential of these endophytes and Zn-NPs as fungicide alternative for sustainable production that foster soil structure, biodiversity and promote plant health.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Kamal A M Abo-Elyousr
- Department of Plant Pathology, Faculty of Agriculture, University of Assiut, Assiut 71526, Egypt; Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, 80208 Jeddah, Saudi Arabia.
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | - Munirah F Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, 31982 Al-Ahsa, Saudi Arabia.
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; College of Life Science, Henan Agriculture University, Zhengzhou, 450046, China.
| |
Collapse
|
7
|
Mu D, Meng J, Wang S, Xiao S, Wang H, Sun X, Wu P. Source apportionment, source-specific health risks, and control factors of heavy metals in water bodies of a typical karst basin in southwestern China. PLoS One 2024; 19:e0309142. [PMID: 39178302 PMCID: PMC11343453 DOI: 10.1371/journal.pone.0309142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Studying the apportionment of source-specific health risks and control factors for heavy metal pollution in karst regions is crucial for prevention and management. A typical karst basin was chosen in this study to investigate the pollution characteristics of heavy metals, source-specific health risks, and control factors. The results indicate that during the rainy season, As, Cd, and Pb, as well as As during the dry season, were the primary elements responsible for water pollution in the watershed. Comparative analyses showed that the absolute principal component-multiple linear regression (APCS-MLR) model better identifies and quantifies the sources of heavy metals in karst basin waters. The analysis of health risks revealed that during the dry season, heavy metals in the basin posed a moderate cancer risk to adults (10-4 < total cancer risk (TCR) < 10-3), whereas during the rainy season, these heavy metals posed a non-cancer risk (total hazard index (THI) > 1) and a moderate to high cancer risk (10-4 < TCR < 10-2). The APCS-MLR model combined with the health risk analysis showed that Industrial waste discharge sources are the main contributors to the health of basin residents (29.39%-52.57%), making dry season As a non-cancer risk for basin residents, as well as rainy season As and Cd a non-cancer risk and a high cancer risk for basin residents. Therefore, reasonable planning for upstream industrial production should be developed, and priority should be given to monitoring and treating As and Cd pollution in water. Analyses also showed that input pathways, dilution effects, and hydrochemical characteristics may influence the spatial and temporal variability of heavy metals in the basin. The results provide essential information and significant reference for prioritising and managing the health risks associated with heavy metal pollution in water bodies in karst areas.
Collapse
Affiliation(s)
- Dijin Mu
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
| | - Jianan Meng
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
| | - Sangju Wang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
| | - Shizhen Xiao
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Hao Wang
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
| | - Xiangxuan Sun
- School of Karst Science, Guizhou Normal University/State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Liu T, Wang M, Zhang C, Yang S, Zhang F, Jia L, Ma W, Sui S, Liu Q, Wang M. Quantitative Effects of Anthropogenic and Natural Factors on Heavy Metals Pollution and Spatial Distribution in Surface Drinking Water Sources in the Upper Huaihe River Basin in China. TOXICS 2024; 12:517. [PMID: 39058169 PMCID: PMC11280819 DOI: 10.3390/toxics12070517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
The water quality of sources in the Huaihe River Basin significantly affects the lives and health of approximately 16.7% of China's population. Identifying and quantifying pollution sources and risks is essential for effective water resource management. This study utilized Monte Carlo simulations and Geodetector to assess water quality and eutrophication, as well as to evaluate the sources of heavy metals and the associated health risks for both adults and children. The results showed that eutrophication of water sources in Huaihe River was severe, with an overall EI value of 37.92; 67.8% of the water sources were classified as mesotrophic and 32.2% classified as eutrophic. Water quality and eutrophication levels in the southern mountainous regions were better than those in the densely populated northern areas. Adults were found to have a higher carcinogenic risk than children, whereas children faced a higher noncarcinogenic risk than adults. Cr presented the highest carcinogenic risk, affecting more than 99.8% of both adults and children at levels above 1 × 10-6 but not exceeding 1 × 10-4. The noncarcinogenic risk from metals did not surpass a level of 1, except for Pb. As was primarily influenced by agricultural activities and transportation, whereas Cd, Cr, and Pb were mainly affected by industrial activities, particularly in local textile industries such as knitting and clothing manufacturing. The analysis demonstrated that the influence of anthropogenic factors on heavy metal distribution was significantly enhanced by indirect natural factors. For example, the explanatory power of Precipitation and Road Network Density on As was 0.362 and 0.189, respectively, whereas their interaction had an explanatory power as high as 0.673. This study indicates that the geodetector method is effective in elucidating the factors influencing heavy metal distribution in water, thereby providing valuable insights into pollution sources in global drinking water.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China; (T.L.); (M.W.); (W.M.); (Q.L.)
| |
Collapse
|
9
|
Wang L, Eziz M, Hu Y, Subi X. Health Risk Assessment of Heavy Metal(loid)s in the Overlying Water of Small Wetlands Based on Monte Carlo Simulation. TOXICS 2024; 12:488. [PMID: 39058140 PMCID: PMC11281025 DOI: 10.3390/toxics12070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Heavy metal(loid) (HM) contamination is a significant threat to wetland ecosystem. However, contamination risks of HMs in overlying water of small wetlands, which are easily ignored because of their minor occupancy in an overall area, are nearly unknown. A total of 36 water samples containing six HMs were collected from the urban and rural small wetlands of Urumqi in China, and the contamination levels and probabilistic health risks caused by HMs were assessed using the Nemerow pollution index (NPI) and the health risk assessment model introduced by the US EPA. The results revealed that the average concentration of Hg in the urban and rural small wetlands surpassed the Class II thresholds of the Environmental Quality Standards for Surface Water (GB 3838-2002) by factors of 3.2 and 5.0 times, respectively. The overall contamination levels of HMs in the small wetlands fall into the high contamination level. Results of a health risk assessment indicated that non-carcinogenic health risk of the investigated HMs are found to be lower than the acceptable range for adults, but higher than the acceptable range for children. Meanwhile, As falls into the low carcinogenic risk level, whereas Cd falls into the very low carcinogenic risk level. Overall, HMs in rural small wetlands showed relatively higher contamination levels and probabilistic health risks than that of urban small wetlands. In addition, As was identified as the dominant health risk factor in the overlying water of small wetlands in the study area. Findings of this study provide scientific support needed for the prevention of HM contamination of small wetlands in arid zones.
Collapse
Affiliation(s)
- Liling Wang
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (L.W.); (Y.H.); (X.S.)
- Laboratory of Arid Zone Lake Environment and Resources, Xinjiang Normal University, Urumqi 830054, China
| | - Mamattursun Eziz
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (L.W.); (Y.H.); (X.S.)
- Laboratory of Arid Zone Lake Environment and Resources, Xinjiang Normal University, Urumqi 830054, China
| | - Yonglong Hu
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (L.W.); (Y.H.); (X.S.)
| | - Xayida Subi
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (L.W.); (Y.H.); (X.S.)
| |
Collapse
|
10
|
Li D, Ding Y, Zhang Y, Zhang X, Feng L, Zhang Y. Heavy metals in a typical industrial area-groundwater system: Spatial distribution, microbial response and ecological risk. CHEMOSPHERE 2024; 360:142339. [PMID: 38754488 DOI: 10.1016/j.chemosphere.2024.142339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The environmental burden due to industrial activities has been quite observable in the last few years, with heavy metals (HMs) like lead, cadmium, and arsenic inducing serious perturbations to the microbial ecosystem of groundwater. Studies carried out in North China, a region known for interconnection of industrial and groundwater systems, sought to explore the natural mechanisms of adaptation of microbes to groundwater contamination. The results showed that heavy metals permeate from surface increased the diversity and abundance of microbial communities in groundwater, producing an average decrease of 40.84% and 34.62% in the relative abundance of Bacteroidetes and Proteobacteria in groundwater, respectively. Meanwhile, the key environmental factors driving the evolution of microbial communities shift from groundwater nutrients to heavy metals, which explained 50.80% of the change in the microbial community composition. Microbial indicators are more sensitive to HMs pollution and could accurately identify industrial area where HMs permeation occurred and other extraneous pollutants. The phylum Bacteroidetes could act as appropriate indicators for the identification. Significant genera that were identified, being Mesorhizobium, Clostridium, Bacillus and Mucilaginibacter, were found to play important roles in the microbial network in terms of the potential to assist in groundwater clean-up. Notably, pollution from heavy metals has diminished the effectiveness and resilience of microbial communities in groundwater, thereby heightening the susceptibility of these normally stable microbial ecosystems. These findings offer new perspectives on how to monitor and detect groundwater pollution, and provide scientific guidance for developing suitable remediation methods for groundwater contaminated with heavy metals. Future research is essential explore the application of metal-tolerant or resistant bacteria in bioremediation strategies to rehabilitate groundwater systems contaminated by HMs.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yang Ding
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Xinying Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Liuyuan Feng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - Yuling Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China; College of New Energy and Environment, Jilin University, Changchun, 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
11
|
Hu Y, Eziz M, Wang L, Subi X. Pollution and Health Risk Assessment of Potentially Toxic Elements in Groundwater in the Kǒnqi River Basin (NW China). TOXICS 2024; 12:474. [PMID: 39058126 PMCID: PMC11280737 DOI: 10.3390/toxics12070474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Potentially toxic elements (PTEs) pose a significant threat to the groundwater system and human health. Pollution and the potential risks of PTEs in groundwater in the Kǒnqi River Basin (KRB) of the northwest arid zones of China are still unknown. A total of 53 groundwater samples containing eight PTEs (Al, As, Cd, Cu, Mn, Pb, Se, and Zn) were collected from the KRB, and the pollution levels and probabilistic health risks caused by PTEs were assessed based on the Nemerow Index (NI) method and the health risk assessment model. The results revealed that the mean contents of Al, As, and Mn in the groundwater surpassed the Class III threshold of the Standard for Groundwater Quality of China. The overall pollution levels of the investigated PTEs in the groundwater fall into the moderate pollution level. The spatial distributions of contents and pollution levels of different PTEs in the groundwater were different. Health risk assessment indicated that all the investigated PTEs in groundwater in the KRB may pose a probabilistic non-carcinogenic health risk for both adults and children. Moreover, As may pose a non-carcinogenic health risk, whereas the non-carcinogenic health risk posed by the other seven PTEs in groundwater will not have the non-carcinogenic risks. Furthermore, As falls into the low carcinogenic risk level, whereas Cd falls into the very low carcinogenic risk level. Overall, As was confirmed as the dominant pollution factor and health risk factor of groundwater in the KRB. Results of this study provide the scientific basis needed for the prevention and control of PTE pollution in groundwater.
Collapse
Affiliation(s)
- Yonglong Hu
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (Y.H.); (L.W.); (X.S.)
- Laboratory of Arid Zone Lake Environment and Resources, Xinjiang Normal University, Urumqi 830054, China
| | - Mamattursun Eziz
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (Y.H.); (L.W.); (X.S.)
- Laboratory of Arid Zone Lake Environment and Resources, Xinjiang Normal University, Urumqi 830054, China
| | - Liling Wang
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (Y.H.); (L.W.); (X.S.)
| | - Xayida Subi
- College of Geographical Science and Tourism, Xinjiang Normal University, Urumqi 830054, China; (Y.H.); (L.W.); (X.S.)
| |
Collapse
|
12
|
Chen X, Fu X, Li G, Zhang J, Li H, Xie F. Source-specific probabilistic health risk assessment of heavy metals in surface water of the Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171923. [PMID: 38522523 DOI: 10.1016/j.scitotenv.2024.171923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The detrimental effects of heavy metal accumulation on both ecosystems and public health have raised widespread concern. Source-specific risk assessment is crucial for developing effective strategies to prevent and control heavy metal contamination in surface water. This study aims to investigate the contamination characteristics of heavy metals in the Yangtze River Basin, identifying the pollution sources, assessing the risk levels, and further evaluating the health risks to humans. The results indicated that the average concentrations of heavy metals were ranked as follows: zinc (Zn) > arsenic (As) > copper (Cu) > chromium (Cr) > cadmium (Cd) > nickel (Ni) > lead (Pb), with average concentrations of 38.02 μg/L, 4.34 μg/L, 2.53 μg/L, 2.10 μg/L, 1.17 μg/L, 0.84 μg/L, and 0.32 μg/L, respectively, all below the WHO 2017 standards for safe drinking water. The distribution trend indicates higher concentrations in the upper and lower reaches and lower concentrations in the mid-reaches of the river. By integrating the Absolute Principal Component Scores-Multiple Linear Regression (APCS-MLR) receptor model and Positive Matrix Factorization (PMF) model, the main sources of heavy metals were identified as industrial activities (APCS-MLR: 41.3 %; PMF: 42.1 %), agricultural activities (APCS-MLR: 30.1 %; PMF: 27.4 %), and unknown mix sources (APCS-MLR: 29.1 %; PMF: 30.4 %). The calculation of the hazard index (HI) for both children and adults was <1, indicating no non-carcinogenic or carcinogenic risks. Based on the source-specific risk assessment, agricultural activities contribute the most to non-carcinogenic risks, while industrial activities pose the greatest contribution to carcinogenic risks. This study offers a reference for monitoring heavy metals and controlling health risks to residents, and provides crucial evidence for the utilization and protection of surface water in the Yangtze River Basin.
Collapse
Affiliation(s)
- Xing Chen
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Xinyi Fu
- Anhui Province Engineering Laboratory for Mine Ecological Remediation, Anhui University, Hefei 230601, China
| | - Guolian Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Jiamei Zhang
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Haibin Li
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Fazhi Xie
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China.
| |
Collapse
|
13
|
Malik S, Muzaffar SB. Determination of potentially toxic elements bioaccumulated in the commercially important pelagic fish narrow-barred Spanish mackerel (Scomberomorus commerson). MARINE POLLUTION BULLETIN 2024; 201:116281. [PMID: 38520998 DOI: 10.1016/j.marpolbul.2024.116281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
Anthropogenic activities have increased the discharge of marine contaminants threatening marine life. Small gulfs, such as the Arabian Gulf, are vulnerable to accumulating potentially toxic elements in marine species due to slow water exchange. The concentration of 21 elements was determined in the tissues of Scomberomorus commerson from Umm Al Quwain (United Arab Emirates) and Bandar Abbas (Iran). Chromium, Copper, and Iron exceeded internationally established maximum permissible limits. Sites could not be distinguished based on Principle Component Analyses of elements. Elevated Cu and Cr in muscle are of concern to marine species as well as humans. Metal Pollution Index showed a significant difference between sites, with 20.34 % and 100 % of individuals suffering high metal toxicity and poor body conditions, respectively. The Arabian Gulf is experiencing an increase in discharge of industrial wastes. Implementation of strict policies to reduce discharge of toxic substances is required to protect marine organisms and humans.
Collapse
Affiliation(s)
- Shaima Malik
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sabir Bin Muzaffar
- Department of Biology, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
14
|
Sun L, Liu T, Duan L, Tong X, Zhang W, Cui H, Wang Z, Zheng G. Spatial and temporal distribution characteristics and risk assessment of heavy metals in groundwater of Pingshuo mining area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:141. [PMID: 38491301 DOI: 10.1007/s10653-024-01906-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024]
Abstract
Groundwater pollution in the Pingshuo mining area is strongly associated with mining activities, with heavy metals (HMs) representing predominant pollutants. To obtain accurate information about the pollution status and health risks of groundwater, 189 groups of samples were collected from four types of groundwater, during three periods of the year, and analyzed for HMs. The results showed that the concentration of HMs in groundwater was higher near the open pit, waste slag pile, riverfront area, and human settlements. Except for Ordovician groundwater, excessive HMs were found in all investigated groundwater of the mining area, as compared with the standard thresholds. Fe exceeded the threshold in 13-75% of the groundwater samples. Three sources of HMs were identified and quantified by Pearson's correlation analysis and the PMF model, including coal mining activities (68.22%), industrial, agricultural, and residential chemicals residue and leakage (16.91%), and natural sources (14.87%). The Nemerow pollution index revealed that 7.58% and 100% of Quaternary groundwater and mine water samples were polluted. The health risk index for HMs in groundwater showed that the non-carcinogenic health risk ranged from 0.18 to 0.42 for adults, indicating an acceptable level. Additionally, high carcinogenic risks were identified in Quaternary groundwater (95.45%), coal series groundwater (91.67%), and Ordovician groundwater (26.67%). Both carcinogenic and non-carcinogenic risks were greater for children than adults, highlighting their increased vulnerability to HMs in groundwater. This study provides a scientific foundation for managing groundwater quality and ensuring drinking water safety in mining areas.
Collapse
Affiliation(s)
- Long Sun
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Tingxi Liu
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
- Inner Mongolia Key Laboratory of Water Resource Protection and Utilization, Hohhot, 010018, China.
| | - Limin Duan
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Water Resource Protection and Utilization, Hohhot, 010018, China
| | - Xin Tong
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
- Inner Mongolia Key Laboratory of Water Resource Protection and Utilization, Hohhot, 010018, China
| | - Wenrui Zhang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - He Cui
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Zhiting Wang
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Guofeng Zheng
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| |
Collapse
|
15
|
Ayyamperumal R, Muthusamy B, Huang X, Chengjun Z, Nazir N, Li F. Spatial distribution and seasonal variation of trace hazardous elements contamination in the coastal environment. ENVIRONMENTAL RESEARCH 2024; 243:117780. [PMID: 38056613 DOI: 10.1016/j.envres.2023.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Groundwater is the second largest water source for daily consumption, only next to surface water resources. Groundwater has been extensively investigated for its pollution level in urban areas. The groundwater quality assessments in industrial areas associated with every urban landscape are still lacking. In order to examine the spatial distribution characteristics, pollution levels, and sources of trace metals in the densely populated Chennai coastal region of Tamilnadu, India, physicochemical parameters and trace element concentrations have been determined in groundwater. 55 groundwater samples from Tamil Nadu's coastal region were collected and analyzed for physicochemical parameters such as pH, (EC), (TDS), and (TH) during the pre-monsoon (June 2015) and post-monsoon (January 2016) seasons. We used trace elements and analyzed them in this study (Mg, Zn, Pb, Ni, Co, Cu, Cr, and Fe). Furthermore, anthropogenic input from industries and power plants exacerbates the pollution of Ni, Mg, Fe, and Mn. Due to evaporites and anthropogenic input, samples with excessive salinity, total hardness, and water quality are considered unsuitable for irrigation or drinking. The results demonstrated that seasonal, geogenic, and anthropogenic influences all have a significant impact on the heterogeneous chemistry of groundwater.
Collapse
Affiliation(s)
- Ramamoorthy Ayyamperumal
- MOE Key Laboratory of Mineral Resources in Western China, College of Earth Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, PR China; MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Balasubramanian Muthusamy
- Department of Applied Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai, Tamilnadu, 600 025, India
| | - Xiaozhong Huang
- MOE Key Laboratory of Western China's Environmental System, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhang Chengjun
- MOE Key Laboratory of Mineral Resources in Western China, College of Earth Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, PR China
| | - Nusrat Nazir
- MOE Key Laboratory of Mineral Resources in Western China, College of Earth Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, PR China
| | - Fengjie Li
- School of History and Culture, Lanzhou University, Lanzhou, 73000, PR China
| |
Collapse
|
16
|
Chi Z, Xie X, Wang Y. Understanding spatial heterogeneity of groundwater arsenic concentrations at a field scale: Taking the Datong Basin as an example to explore the significance of hydrogeological factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120112. [PMID: 38244408 DOI: 10.1016/j.jenvman.2024.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The spatial heterogeneity of arsenic (As) concentration exceeding the 10 μg/L WHO limit at the field scale poses significant challenges for groundwater utilization, but it remains poorly understood. To address this knowledge gap, the Daying site was selected as a representative case (As concentration ranged from 1.55 to 2237 μg/L within a 250 × 150 m field), and a total of 28 groundwater samples were collected and analyzed for hydrochemistry, As speciation, and stable hydrogen and oxygen isotope. Principal component analysis was employed to identify the primary factors controlling groundwater hydrochemistry. Results indicate that the spatial heterogeneity of groundwater As concentration is primarily attributed to vertical recharge and competitive adsorption. Low vertical recharge introduces reductive substances, such as dissolved organic matter, which enhances the reductive environment and facilitates microbial-induced reduction and mobilization of As. Conversely, areas with high vertical recharge introduce oxidizing agents like SO42- and DO, which act as preferred electron acceptors over Fe(III), thus inhibiting the reductive dissolution of Fe(III) oxides and the mobilization of As. PCA and hydrochemistry jointly indicate that spatial variability of P and its competitive adsorption with As are important factors leading to spatial heterogeneity of groundwater As concentration. However, the impacts of pH, Si, HCO3-, and F- on As adsorption are insignificant. Specifically, low vertical recharge can increase the proportion of As(III) and promote P release through organic matter mineralization. This process further leads to the desorption of As, indicating a synergistic effect between low vertical recharge and competitive adsorption. This field-scale spatial heterogeneity underscores the critical role of hydrogeological conditions. Sites with close hydraulic connections to surface water often exhibit low As concentrations in groundwater. Therefore, when establishing wells in areas with widespread high-As groundwater, selecting sites with open hydrogeological conditions can prove beneficial.
Collapse
Affiliation(s)
- Zeyong Chi
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
17
|
Krishna B, Achari VS. Groundwater for drinking and industrial purposes: A study of water stability and human health risk assessment from black sand mineral rich coastal region of Kerala, India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119783. [PMID: 38113784 DOI: 10.1016/j.jenvman.2023.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/11/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
Tempero-spatial analysis of groundwater to disseminate the level of drinking water quality and industrial suitability to meet the developmental requirement of a region is a significant area of research. Accordingly, groundwater quality and geochemical interactions prevailed in a black sand mineral rich coastal village is systematically presented in appraisal of drinking and industrial uses for economic engineering purposes. The study area focused is Alappad village, Kollam, Kerala, India has numerous ecological features in a sustainable perspective. The region is unique with placer deposits where an alluvial soil aquifer-saline water-freshwater interaction occurs. This dynamics decides the pertinent hydro geochemistry, potable and designated uses of ground water in season wise. Coastal area is hereby presented based on water quality parameters predicted with the health risk assessment model with a view on human health and cancer risk due to ions (Pb, Ni, Cu, Ba, Fe, Al, Mn, Zn) in groundwater.. To ascertain industrial usage, ground water is evaluated by Langelier saturation index (LSI), Ryznar stability index (RSI), Aggressive index (AI), Larson-Skold index (LS) and Puckorius scaling index (PSI) and inferences are complemented. Chemical weathering and evaporation processes are the natural factors controlling hydrochemistry of this aquifer. This complex coastal system has Nemerow pollution index (NPI) of moderate pollution for total dissolved ions of Fe and lesser for Cu, and Cr present in groundwater. LSI indicates, water is scale forming but non corrosive (46% in PRM, 20% in MON and 47% in POM). Water quality index (WQI) in POM (ranged 28.7-79.9) was excellent for drinking, followed by PRM (23.6-218.2) and MON (33.4-202.7) seasons. This groundwater bears temporary hardness with the dominance of Ca-Mg-HCO3 water type. Health risk assessment of non-carcinogenic risk index of trace metals (Fe, Zn, Mn, and Pb) revealed, children are at 'low risk' and 'medium' risk with Ni and Cu. The carcinogenic risk index indicated 93% of samples were high Ni induced cancer risk for children, and 87% for adults due to long term ingestion (drinking water intake) pathway. Studies specific on placer mineral deposited coastal region of India are not sufficiently reported with a focus on the above perspectives. Growing need of rare earths for material, device and energy applications, placer mineral explorations can destabilise the coastal hydrosphere. Interrelations of mineral soil - water chemistry prevailed and health hazard predicted would kindle a set of sustainable deliberations. This study summarises the drinking and industrial use of coastal groundwater for future development and human well-being on the basis of quality criteria, corrosion proneness, water stability and health risk factors.
Collapse
Affiliation(s)
- Balamurali Krishna
- Environmental Chemistry Laboratory, School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682 022, Kerala, India
| | - V Sivanandan Achari
- Environmental Chemistry Laboratory, School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682 022, Kerala, India.
| |
Collapse
|
18
|
Xue S, Wang Y, Jiang J, Tang L, Xie Y, Gao W, Tan X, Zeng J. Groundwater heavy metal(loid)s risk prediction based on topsoil contamination and aquifer vulnerability at a zinc smelting site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122939. [PMID: 37981182 DOI: 10.1016/j.envpol.2023.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Groundwater pollution is a recurrent problem in abandoned non-ferrous metal smelting sites, and its severity is influenced by topsoil contamination, hydrogeological characteristics, and hydrogeochemical conditions. In such unique areas, traditional methods for evaluating groundwater pollution risk are biased, as the long production history of these sites have led to highly polluted and heterogeneous soil and groundwater. Herein, based on a typical lead-zinc smelting site, As, Pb, Zn, Cd, Mn, and Ni were found to be the predominant heavy metal (loid)s in groundwater, with respective exceedance rates of 44.4%, 50.0%, 72.2%, 88.9%, 88.9%, and 61.1%. Combined with the groundwater pollution characteristics, the representative hydrogeochemical factors were screened out to optimize the following aquifer vulnerability evaluation using the AHP-DRASTICH method. A comprehensive evaluation model (DI-NCPI) for groundwater pollution risk was established by combining the DRASTICH index (DI) obtained after optimization and the Nemerow comprehensive contamination index (NCPI) of topsoil. The fit between DI-NCPI and groundwater heavy metal (loid) pollution index reached 0.956, which laterally confirms that the model has some reference value. In terms of distribution, the high-risk and very high-risk zones were mainly concentrated in the zinc smelting system, located in the southeastern and central-western parts of the site. These areas have relatively high levels of topsoil contamination and aquifer vulnerability and require focused attention in site remediation. This research highlights the importance of combining topsoil contamination and aquifer vulnerability to evaluate groundwater pollution risk in smelting areas. It provides a more targeted reference for groundwater remediation strategies in abandoned smelting sites, as well as severely polluted industrial areas.
Collapse
Affiliation(s)
- Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China.
| | - Yuanyuan Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, PR China
| | - Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yi Xie
- New World Environment Protection Group of Hunan, Changsha 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xingyao Tan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiaqing Zeng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
19
|
Zhang Q, Qian H, Ren W, Xu P, Li W, Yang Q, Shang J. Salinization of shallow groundwater in the Jiaokou Irrigation District and associated secondary environmental challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168445. [PMID: 37949127 DOI: 10.1016/j.scitotenv.2023.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Understanding groundwater salinization of irrigation areas and related secondary environmental challenges is important for ensuring sustainable development. However, the mechanism under which groundwater salinization forms under the influence of long-term anthropogenic activities remains unclear. Therefore, this study analyzed the spatiotemporal variation in groundwater salinization and the underlying mechanism, and discussed the secondary environmental challenges in an irrigation area. The Jiaokou Irrigation District, North China, was adopted as a case study. The results showed a slight downward trend in groundwater salinity over the past two decades at a rate of 0.0229 g/L/y. Higher groundwater salinity was observed in areas with shallow groundwater depth. This correlation was mainly attributed to evaporative concentration, with secondary processes including natural weathering, depth of water-table, and fertilizer leaching. Drainage ditches may reduce groundwater salinity. Groundwater was transformed from freshwater to salt water and then to brackish water during the runoff process. The former transformation is mainly related to evaporation and fertilization. The latter transformation could be related to the inverse relationship between the distance to the Wei River and sediment permeability, with sediment permeability positively related to groundwater flow and leading to the discharge of salt into the Wei River. The secondary environmental challenges related to groundwater salinization in irrigation areas, mainly manifested in deterioration of irrigation water quality, soil salinization, and increased fluorine concentration. This study can act as a theoretical and practical reference for the development and utilization of water resources, ecological protection, and soil salinization in typical irrigation districts.
Collapse
Affiliation(s)
- Qiying Zhang
- School of Architecture and Civil Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China.
| | - Hui Qian
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China.
| | - Wenhao Ren
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Panpan Xu
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Weiqing Li
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Qiaoyang Yang
- School of Water and Environment, Chang'an University, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, Xi'an 710054, Shaanxi, China
| | - Jiatao Shang
- Wugong County Water Conservancy Bureau, Xianyang City, Shaanxi Province, China
| |
Collapse
|
20
|
Rajan S, Nandimandalam JR. Environmental health risk assessment and source apportion of heavy metals using chemometrics and pollution indices in the upper Yamuna river basin, India. CHEMOSPHERE 2024; 346:140570. [PMID: 37918534 DOI: 10.1016/j.chemosphere.2023.140570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
River Yamuna is the largest tributary of the Ganges with great economic importance, and provides water for about 57 million people and accounts for more than 70% of Delhi's water supply. Various pollution indices and chemometric methods were used to investigate heavy metal pollution, associated risks, and probable sources in the upper Yamuna river water. A total of 56 river water samples, 28 each in pre and post-monsoon season were collected and analysed for 15 heavy metals. The findings reveal that Al (38.66 ± 21.14 μg/L), As (16.52 ± 15.81 μg/L), and Mn (41.06 ± 89.25 μg/L) in pre-monsoon and Al (45.77 ± 29.46 μg/L), As (10.30 ± 12.15 μg/L), Fe (48.03 ± 81.11 μg/L), and Mn (31.02 ± 70.13 μg/L) in post-monsoon exceeded the Bureau of Indian Standards (BIS) acceptable limits. The pollution indices (HPI, NPI, HEI, and Cd) indicate that most locations are low to moderately polluted, except for the lower catchment. Health indices, i.e., hazard Index (HI) and incremental lifetime cancer risk (ILCR), suggest that the prolonged consumption of river water may cause potential human health hazards. In contrast, the water is suitable for domestic and other uses as the dermal risk is less prominent. The ecological risk index (ERI) of pre (0.22-58.75) and post-monsoon (0.12-44.21) were in the low-risk category (<110), indicating no ecological risk associated with heavy metals. In pre and post-monsoon, four principal components (PCs) described 73.97% and 76.18% of the total variance respectively, suggesting the mixed impact of numerous geogenic and anthropogenic sources in the region's water chemistry. Cluster analysis demonstrates that the lower catchment samples (National Capital Region, Delhi) significantly vary from each other due to wastewater discharge, industrialisation, and rapid urbanization, while the upper and mid-catchment samples are less distinct. Hence, more than 90% of the Yamuna water is extracted from the upper region; present findings may aid in developing an effective catchment scale management strategy.
Collapse
Affiliation(s)
- Shijin Rajan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
21
|
Real MKH, Varol M, Rahman MS, Islam ARMT. Pollution status and ecological risks of metals in surface water of a coastal estuary and health risk assessment for recreational users. CHEMOSPHERE 2024; 348:140768. [PMID: 38000553 DOI: 10.1016/j.chemosphere.2023.140768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Since the areas close to the Sundarbans mangrove estuary, which is one of the most dynamic and productive ecosystems in the world, are very suitable for urban and industrial activities, the coastal areas of this ecosystem are constantly exposed to metal contamination. In this study, we analyzed the levels, spatial distributions, sources, pollution status, ecological risks, and health risks for recreational users of 16 metals in surface water collected from 18 sampling sites in the Sundarbans estuary. Considering the mean values of metals, Sr (2523 μg/L), Al (1731 μg/L), B (1692 μg/L) and Fe (1321 μg/L) were the most abundant metals in the coastal waters of the estuary, while Cd (0.977 μg/L), Ni (3.11 μg/L), Cu (5.98 μg/L) and Cr (9.77 μg/L) were the less abundant metals. All metals except Zr had the coefficient of variation (CV) values of over 35%, suggesting that other metals showed strong variation between sampling sites due to anthropogenic activities. Al, Fe and Pb levels of all sampling sites were above the limit values set for coastal and marine waters. Similarly, Pb levels of all sites exceeded the USEPA chronic criterion set for saltwater aquatic life. The results of pollution indices indicated that there was a serious metal pollution in almost all sampling sites. Low ecological risk (ER) at four sites, moderate ER at five sites and considerable ER at nine sites were recorded. Dual hierarchical clustering analysis grouped 16 metals into four clusters based on their potential sources and 18 sampling sites into three clusters based on their similar pollution characteristics. Health risk assessment results indicated that total hazard index (THI) values of all sites for recreational children were above the acceptable level of 1, indicating that water of all sites is not safe for health of children. However, THI values of all sites except ST8 (1.1) and ST11 (1.19) for recreational adults were below 1. Among the metals studied, Zr was found to be metal that contributes the most (75.89%) to total health risk in this coastal estuary. This finding reveals the necessity of monitoring of such less-studied metals such as Zr in the surface water of coastal estuaries. Carcinogenic risk values of As were within or below the acceptable range at all sites, indicating that carcinogenic risks would not be expected for recreational users.
Collapse
Affiliation(s)
- Md Khalid Hassan Real
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Memet Varol
- Malatya Turgut Özal University, Agriculture Faculty, Aquaculture Department, Malatya, Turkey.
| | - M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center Dhaka, Bangladesh Atomic Energy Commission, Dhaka, 1000, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
22
|
Nayak SK, Nandimandalam JR. Impacts of climate change and coastal salinization on the environmental risk of heavy metal contamination along the odisha coast, India. ENVIRONMENTAL RESEARCH 2023; 238:117175. [PMID: 37741567 DOI: 10.1016/j.envres.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Climate change-mediated rise in sea level and storm surges, along with indiscriminate exploitation of groundwater along populous coastal regions have led to seawater intrusion. Studies on groundwater salinization and heavy metal contamination trends are limited. Present study investigated the heavy metal contamination, associated risks and provided initial information on the impacts of groundwater salinization on heavy metals along the coastal plains of Odisha, India. Total 50 groundwater samples (25 each in post- and pre-monsoon) were collected and analysed. Concentrations of Fe (44%), Mn (44%), As (4%) and Al (4%) in post-monsoon and Fe (32%), Mn (32%), As (4%), B (8%) and Ni (16%) in pre-monsoon exceeded Bureau of Indian Standards (BIS) drinking water limits. High concentrations of heavy metals (Fe, Sr, Mn, B, Ba, Li, Ni and Co) and high EC (>3000 μS/cm) indicated that the groundwater-seawater mixing process has enhanced the leaching and ion exchange of metallic ions in central part of the study area. Multivariate statistical analysis suggested leaching process, seawater intrusion and agricultural practices as the main heavy metal sources in the groundwater. 4% of samples in post- and 16% in pre-monsoon represented high heavy metal pollution index (HPI). Pollution indices indicated the central and south-central regions are highly polluted due to saline water intrusion and high agricultural activities. Ecological risks in the groundwater systems found low (ERI <110) in both seasons. Children population found more susceptible to health risks than adults. Hazard index (HI > 1) has shown significant non-carcinogenic risks where Fe, Mn, As, B, Li and Co are the potential contributors. Incremental lifetime cancer risk (ILCR >1.0E-03) has suggested high carcinogenic risks, where As and Ni are the major contributors. The study concluded that groundwater salinization could increase the heavy metal content and associated risks. This would help policymakers to take appropriate measures for sustainable coastal groundwater management.
Collapse
Affiliation(s)
- Soumya Kanta Nayak
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
23
|
Krishna B, Achari VS. Groundwater chemistry and entropy weighted water quality index of tsunami affected and ecologically sensitive coastal region of India. Heliyon 2023; 9:e20431. [PMID: 37822639 PMCID: PMC10562766 DOI: 10.1016/j.heliyon.2023.e20431] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Quality groundwater is the most essential prerequisite for the better livelihood of the coastal villages and a vital resource for a safe living. Seawater interaction and coastal inundation modify hydro geochemical cycles leading to gross utility as a challenge. Poor quality water intake causes diseases and seriously affects human health. In this study, the suitability of shallow drinking water sources (10-15 m) has been studied with a focus on coastal village in south west of India (Alappad coast, Kollam, Kerala) which is a host of huge placer mineral reserve of the country. This coastal stretch has good deposition of Late Quaternary sediments of heavy mineral placers subjected to severe seawater interactions. Mineralogically, garnet and heavy minerals comprises the beaches and most coastal plains of the Alappad. A concerted geological process where moving water and waves causes erosion, leads to lowering of the earth's surface -is prominent in this fragmented land. This study critically evaluates the temporal-spatial impact of these interactions in an age of varying climatic conditions and hence for reference beyond. Water quality index analysis has been attempted using the entropy weighted water quality index (EWQI) method for a total of 45 samples (15 samples season-wise). It aims to ascertain better choices of groundwater sources for domestic uses for isolated settlers endowed with estuaries, and old coastal plains with barrier beaches. Irrigation suitability was evaluated using sodium adsorption ratio (SAR) and Na%. Observed EWQ Indices (38.2 ± 14.5) for post-monsoon (80% samples), (66.1 ± 77.7) for monsoon (66% samples), and (71.4 ± 71.3) for pre-monsoon (53% samples) fall in excellent category. Post-monsoon is most favoured for a better quality groundwater as evidenced by WQI of 80% among the samples tested. Ca-HCO3 is the dominant hydrochemical type observed. The mean value of iron (0.9 ± 1.3 mg/L) exceeded the permissible limit of 0.3 mg/L during monsoon season due to mineral-water interactions. In pre-monsoon season the parameters Na+ (95.9 ± 200.7 mg/L), Cl- (173.4 ± 510.2 mg/L), EC (1559.3 ± 2510.6 μS/cm), and TDS (492.5 ± 629.7 mg/L) were observed in higher ranges. Significant correlation (p < 0.05) prevailed between EWQI, and parameters-conductivity (0.75), TDS (0.75), Iron (0.59), Ca2+ (0.66), and Mg2+ (0.74). Principal component analysis (PCA) on chemical parameters accounted for the total variance of 84.2% in pre-monsoon, 89.9% in monsoon and 82.9% in post-monsoon. Groundwater quality is influenced by geochemical processes, salt intrusion, and human activities like fertiliser application and domestic sewage discharge. Hierarchical cluster analysis (HCA) grouped the samples into three clusters. Cluster 3 represents poor quality water (13%) in pre-monsoon (EWQI ranged 32.2-192.7), and monsoon (EWQI ranged 171.8-309.7). Cluster 3 in post-monsoon (20%) indicating good water quality (EWQI ranged 51.4-72.6). Ultimate finding is that post-monsoon groundwater is more suitable for drinking and domestic purposes for the selected coastal area.
Collapse
Affiliation(s)
- Balamurali Krishna
- Environmental Chemistry Laboratory, School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682 022, Kerala, India
| | - V. Sivanandan Achari
- Environmental Chemistry Laboratory, School of Environmental Studies, Cochin University of Science and Technology, Kochi, 682 022, Kerala, India
| |
Collapse
|
24
|
Alharbi T, Abdelrahman K, El-Sorogy AS, Ibrahim E. Contamination and health risk assessment of groundwater along the Red Sea coast, Northwest Saudi Arabia. MARINE POLLUTION BULLETIN 2023; 192:115080. [PMID: 37263025 DOI: 10.1016/j.marpolbul.2023.115080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Coastal groundwater is the major source of freshwater in coastal areas, due to shortage of the water resource in coastal zones. Groundwater samples were collected from 48 sites along the Saudi Red Sea coast between Rabigh and Yanbu to document the hydrogeochemical characteristics, water quality, and the health risks of nitrate, fluoride, nickel, copper, and zinc on adults and children. Groundwater chemistry indicated neutral to slightly alkaline nature, and the total dissolved salts (TDS) concentrations mainly increase towards the coastal plain. Major cations, major anions, and heavy metals (HMs) were in the order of Cl- > Na+ > SO42- > Ca2+ > HCO3- > NO3- > Mg2+ > K+, F- > Zn > Cu > Ni. Na-Cl, mixed Ca-Mg-Cl and Na-K-HCO3, CaCl, and Mg-HCO3 were the principal hydrochemical water types. Results of heavy metal pollution index (HPI), and water quality index (WQI) showed moderate to heavy pollution and unsuitable groundwater for human consumption mostly in the western side along the coastal plain, which might be influenced by the groundwater salinization. Principal component analysis (PCA) generated four components, which indicated the various sources of contamination. Hazard index (HI) of nitrate and fluoride were above the safety limit of 1, suggesting increase non-cancer health risk issues in both children and adults.
Collapse
Affiliation(s)
- Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Kamal Abdelrahman
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia.
| | - Elkhedr Ibrahim
- Geology and Geophysics Department, College of Science, King Saud University, Saudi Arabia
| |
Collapse
|
25
|
He M, Liu G, Li Y, Zhou L, Arif M, Liu Y. Spatial-temporal distribution, source identification, risk assessment and water quality assessment of trace elements in the surface water of typical tributary in Yangtze River delta, China. MARINE POLLUTION BULLETIN 2023; 192:115035. [PMID: 37209661 DOI: 10.1016/j.marpolbul.2023.115035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/22/2023]
Abstract
As China's first cross-province ecological compensation mechanism pilot area in the hinterland of the Yangtze River Delta, Xin'an River has been hotspot in the study of rational utilization of ecological resources, and the functional value of its ecosystem services has been widely concerned. As an important tributary of the upper reaches of Xin'an River, Fengle River may affect the whole basin. The spatial-temporal distributions, occurrence, water quality and risk assessment of trace elements were studied in Fengle River in three seasons. High element concentrations were found in the downstream. Traceability models results showed that the major sources of trace elements were related to different human activities. The water quality was worse downstream in the wet season, and was more suitable for irrigation in the dry season. Risk assessment results showed that Zn, Cu, Mn, Co, and As were able to pose the risk to the ecological environment and human.
Collapse
Affiliation(s)
- Miao He
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China.
| | - Yongli Li
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi 710075, China
| | - Yuan Liu
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, United States
| |
Collapse
|
26
|
Tokatlı C, Varol M, Ustaoğlu F. Ecological and health risk assessment and quantitative source apportionment of dissolved metals in ponds used for drinking and irrigation purposes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:52818-52829. [PMID: 36849683 DOI: 10.1007/s11356-023-26078-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, dissolved metal levels of 10 different ponds used as irrigation and drinking water sources in the north of Saros Bay (Türkiye) were evaluated using multivariate statistical methods, contamination and ecological risk indices, and absolute principal component score-multiple linear regression (APCS-MLR). The mean levels of metals in the ponds ranged from 0.045 µg/L (Cd) to 127 µg/L (Mn). Pond 7 used for drinking water source had the lowest total metal level. Only Mn levels in two ponds (P1 and P2) slightly exceeded the critical value set by EU Drinking Water Directive. However, the levels of all metals in all ponds were lower than the critical values set for irrigation water and aquatic life. According to the heavy metal pollution index (HPI), five ponds showed low metal pollution in terms of drinking water quality, four ponds showed moderate metal pollution, and one pond (P1) showed moderate to heavy pollution. According to the Nemerow pollution index (NPI) values (0.26-1.82), ponds P1 and P2 showed slight metal pollution, while other ponds showed insignificant metal pollution. Contamination degree (CD) values of ponds varied between 0.95 and 3.33, indicating that all ponds showed low pollution. In terms of irrigation water quality, all ponds showed low or insignificant metal pollution according to the HPI, NPI, and CD values. According to the ecological risk index (ERI) values, metals in all ponds posed low ecological risks for both drinking and irrigation purposes. Factor analysis identified two potential sources: mixed sources and natural sources. The APCS-MLR model results revealed that mixed sources and natural sources contributed 78.99% and 21.01% to dissolved metals in the ponds, respectively. Health risk assessment results indicated that both individual and combined metals in the ponds would not cause non-carcinogenic risks to both adults and children. Similarly, it was found that Cr and As would not cause carcinogenic risks to the residents of the region.
Collapse
Affiliation(s)
- Cem Tokatlı
- İpsala Laboratory Technology Department, Trakya University, Edirne, Turkey
| | - Memet Varol
- Department of Aquaculture, Doğanşehir V.K. Vocational School, Malatya Turgut Özal University, Malatya, Turkey.
| | - Fikret Ustaoğlu
- Biology Department, Faculty of Arts and Science, Giresun University, Giresun, Turkey
| |
Collapse
|
27
|
Alharbi T, El-Sorogy AS. Quality and groundwater contamination of Wadi Hanifa, central Saudi Arabia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:525. [PMID: 36995444 DOI: 10.1007/s10661-023-11093-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
In arid and semi-arid regions, freshwater is mainly acquired from groundwater. Over the years, human activities have reduced the latter's quality, making it a threat to health. Heavy metal pollution index (HPI), metal index (MI), groundwater quality index (GWQI), sodium absorption ratio (SAR), magnesium ratio (MR), Kelly's ratio (KR), and sodium percentage (Na%) were applied as pollution parameters and indices in assessing the groundwater's suitability for irrigation and drinking purposes in Wadi Hanifa in Saudi Arabia. Samples were collected from 26 sites, and a physicochemical analysis and heavy metal analysis were conducted. The results showed a concentration of SO42-, Cl-, Ca2+, HCO3-, Na+, Mg2+, and K+, which is higher than the WHO standards for drinking water. 96.15% of the water samples (n = 25) fell under the Ca-Cl groundwater dominant facies type, and one model fell under the mixed type. According to the GWQI classification, 16.66%, 50%, and 26.92% of the collected samples are categorized as very poor, poor, and generally unsuitable for human consumption, respectively. Parameters such as SAR, KR, and Na% are indicative of irrigation water. The study's primary factors affecting the groundwater chemistry included the natural processes of precipitation or dissolution of the silicates, carbonates, and evaporites alongside anthropogenic activities and soil leaching.
Collapse
Affiliation(s)
- Talal Alharbi
- Department of Geology and Geophysics, College of Science, King Saud University, Saudi Arabia, P.O Box: 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdelbaset S El-Sorogy
- Department of Geology and Geophysics, College of Science, King Saud University, Saudi Arabia, P.O Box: 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
28
|
Jia X, Pan Y, Zhu X. Salinization and heavy metal cadmium impair growth but have contrasting effects on defensive colony formation of Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160693. [PMID: 36481135 DOI: 10.1016/j.scitotenv.2022.160693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Driven by anthropogenic activities, freshwater salinization has become an emerging global environmental issue. Recent studies indicate that salinization increases the mobility of heavy metals in soil and causes higher flux into surface waterbodies. The present study assessed the combined effects of salinization (0, 3, 6 PSU) and the heavy metal Cd2+ (0, 0.2, 0.4 mg L-1) on the anti-grazing colony formation and population growth of Scenedesmus obliquus, a common freshwater alga. The results showed that the increase in salinity promoted colony formation of S. obliquus with or without the presence of grazing cues and, in contrast, Cd2+ contamination depressed the defensive colony formation of S. obliquus to Daphnia filtrate. The increase in both salinity and Cd2+ concentration depressed the population growth of S. obliquus, including impaired photosynthesis and a decreased population growth rate. Salinization moderated the negative effects of Cd2+ on defensive colony formation of S. obliquus, suggesting increased absorption of Cd2+ ions by a thicker outer layer of the algal cell wall under saltier conditions. As a result, larger defensive colonies of S. obliquus under freshwater salinization may cause higher bioaccumulation of heavy metals by algal cells and heavier influence on zooplankton. This study provides evidence that freshwater salinization could interfere with plankton interactions by affecting algal defense and growth, which may lead to bottom-up cascading effects on freshwater food webs.
Collapse
Affiliation(s)
- Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| | - Xuexia Zhu
- The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China; College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|
29
|
Mu J, Guo Z, Wang X, Wang X, Fu Y, Li X, Zhu F, Hu G, Ma X. Seaweed polysaccharide relieves hexavalent chromium-induced gut microbial homeostasis. Front Microbiol 2023; 13:1100988. [PMID: 36726569 PMCID: PMC9884827 DOI: 10.3389/fmicb.2022.1100988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
Heavy metals released in the environment pose a huge threat to soil and water quality, food safety and public health. Additionally, humans and other mammals may also be directly exposed to heavy metals or exposed to heavy metals through the food chain, which seriously threatens the health of animals and humans. Chromium, especially hexavalent chromium [Cr (VI)], as a common heavy metal, has been shown to cause serious environmental pollution as well as intestinal damage. Thus, increasing research is devoted to finding drugs to mitigate the negative health effects of hexavalent chromium exposure. Seaweed polysaccharides have been demonstrated to have many pharmacological effects, but whether it can alleviate gut microbial dysbiosis caused by hexavalent chromium exposure has not been well characterized. Here, we hypothesized that seaweed polysaccharides could alleviate hexavalent chromium exposure-induced poor health in mice. Mice in Cr and seaweed polysaccharide treatment group was compulsively receive K2Cr2O7. At the end of the experiment, all mice were euthanized, and colon contents were collected for DNA sequencing analysis. Results showed that seaweed polysaccharide administration can restore the gut microbial dysbiosis and the reduction of gut microbial diversity caused by hexavalent chromium exposure in mice. Hexavalent chromium exposure also caused significant changes in the gut microbial composition of mice, including an increase in some pathogenic bacteria and a decrease in beneficial bacteria. However, seaweed polysaccharides administration could ameliorate the composition of gut microbiota. In conclusion, this study showed that seaweed polysaccharides can restore the negative effects of hexavalent chromium exposure in mice, including gut microbial dysbiosis. Meanwhile, this research also lays the foundation for the application of seaweed polysaccharides.
Collapse
Affiliation(s)
- Jinghao Mu
- Department of Urology, Chinese PLA General Hospital, Beijing, China,Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhenhuan Guo
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,*Correspondence: Zhenhuan Guo, ✉
| | - Xiujun Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xuefei Wang
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Yunxing Fu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xianghui Li
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Fuli Zhu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Guangyuan Hu
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Xia Ma
- Zhengzhou Key Laboratory of Immunopharmacology of Traditional Chinese Veterinary Medicines, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China,Xia Ma, ✉
| |
Collapse
|
30
|
Guo X, Yang Z, Li C, Xiong H, Ma C. Combining the classic vulnerability index and affinity propagation clustering algorithm to assess the intrinsic aquifer vulnerability of coastal aquifers on an integrated scale. ENVIRONMENTAL RESEARCH 2023; 217:114877. [PMID: 36423670 DOI: 10.1016/j.envres.2022.114877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
In the northern plains of Laizhou City, groundwater quality suffers dual threats from anthropogenic activities: seawater intrusion caused by overextraction of fresh groundwater, and vertical infiltration of agricultural pollutants. Groundwater management requires a comprehensive analysis of both horizontal and vertical pollution in coastal aquifers. In this paper, Intrinsic Aquifer Vulnerability (IAV) was assessed on an integrated scale using two classic IAV models (DRASTIC and GALDIT) separately based on a GIS database. Hydrogeological parameters from two classic IAV models were clustered using affinity propagation (AP) clustering algorithm, and silhouette coefficients were used to determine the optimal classification result. In our application, the objects of the AP algorithm are 3320 units divided from the whole study area with 500 m*500 m precision. A comparison of all four outputs in AP-DRASTIC shows that the clustering results of the 4-classification yielded the best silhouette coefficient of 0.406 out of all four. Cluster 4, which comprises 21% of the area, had relatively low level of groundwater contamination, despite its high level of vulnerability as indicated by the classic DRASTIC index. In the second level of vulnerability Cluster 3, 53.8% of all water samples were found to be contaminated, indicating a greater level of nitrate contamination. With respect to AP-GALDIT, the silhouette coefficient for result 7-classification reaches the highest value of 0.343. There was a high level of vulnerability identified in Clusters 2, 4 and 5 (34.7% of the study area) relating to the classic GALDIT index. The concentration of chloride in all water samples obtained in these areas was extremely high. Groundwater management should be addressed by AP-DRASTIC results on anthropogenic activity/contamination control, and by AP-GALDIT results on groundwater extraction limitation. Overall, this method allows for the evaluation of IAV in other coastal areas on an integrated scale, facilitating the development of groundwater management strategies based on a better understanding of the aquifer's essential characteristics.
Collapse
Affiliation(s)
- Xu Guo
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhaoxian Yang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chao Li
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hanxiang Xiong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Chuanming Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
31
|
Sehlaoui H, Hassikou R, Dakak H, Zouahri A, El Hasini S, Iaaich H, Ghanimi A, Douaik A. Nitrate contamination and associated health risks of the Benslimane groundwater, Morocco. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4343-4358. [PMID: 35032290 DOI: 10.1007/s10653-021-01186-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Consumption of polluted water has harmful impacts on human health. This study examined the quality of groundwater in the Benslimane area for drinking purposes based on the Water quality index (WQI), Nitrate pollution index (NPI), and Total risk quotient (THQ) for different age groups. A total of 120 groundwater samples were collected for physicochemical analyses. The results showed WQI values ranging from 157.7 to 472.7 and an average of 279.4, with a total absence of water of excellent or good quality, and about 62.5% of the groundwater samples were of very poor quality for consumption. Nitrate concentrations ranged from 1 to 270 mg/L with an average of 64 mg/L, and 56.7% had values above the World Health Organization safety level of 50 mg/L. The NPI showed that 78.3% of the sampled sites showed very high pollution as a result of intense anthropogenic activities. High contamination is observed in the north and east of the region for arboriculture, grapes, maize, and vegetables as opposed to cereals. The health risk associated with nitrates, based on oral exposure, was much higher than dermal contact. The total risk quotient for both pathways was 0.02 to 6.58, 0.02 to 6.12, 0.06 to 17.06, and 0.05 to 13.35 for women, men, children, and infants, respectively. A total of 65, 63.3, 82.0, and 78.3% of groundwater samples presented a non-cancer health risk for women, men, children, and infants, respectively. Therefore, this study can help identify contaminated areas in order to track corrective safety measures to control groundwater quality in the region and improve sanitary conditions.
Collapse
Affiliation(s)
- Habiba Sehlaoui
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, 4 Avenue Ibn Battouta, P. O. Box 1014, Rabat, Morocco.
- National Institute of Agricultural Research, Regional Center of Rabat, Research Unit On the Environment and Conservation of Natural Resources, P. O. Box 6356 - Institutes, 10101, Rabat, Morocco.
| | - Rachida Hassikou
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University of Rabat, 4 Avenue Ibn Battouta, P. O. Box 1014, Rabat, Morocco
| | - Houria Dakak
- National Institute of Agricultural Research, Regional Center of Rabat, Research Unit On the Environment and Conservation of Natural Resources, P. O. Box 6356 - Institutes, 10101, Rabat, Morocco
| | - Abdelmjid Zouahri
- National Institute of Agricultural Research, Regional Center of Rabat, Research Unit On the Environment and Conservation of Natural Resources, P. O. Box 6356 - Institutes, 10101, Rabat, Morocco
| | - Soukaina El Hasini
- National Institute of Agricultural Research, Regional Center of Rabat, Research Unit On the Environment and Conservation of Natural Resources, P. O. Box 6356 - Institutes, 10101, Rabat, Morocco
- Department of Chemistry, Faculty of Sciences, Mohammed V University of Rabat, 4 Avenue Ibn Battouta, P. O. Box 1014, Rabat, Morocco
| | - Hamza Iaaich
- National Institute of Agricultural Research, Regional Center of Rabat, Research Unit On the Environment and Conservation of Natural Resources, P. O. Box 6356 - Institutes, 10101, Rabat, Morocco
| | - Ahmed Ghanimi
- Department of Chemistry, Faculty of Sciences, Mohammed V University of Rabat, 4 Avenue Ibn Battouta, P. O. Box 1014, Rabat, Morocco
| | - Ahmed Douaik
- National Institute of Agricultural Research, Regional Center of Rabat, Research Unit On the Environment and Conservation of Natural Resources, P. O. Box 6356 - Institutes, 10101, Rabat, Morocco
| |
Collapse
|
32
|
Yang Y, Sun F, Liu K, Chen J, Zheng T, Tang M. Influence of heavy metals on Saunders's Gull (Saundersilarus saundersi) reproduction in the Yellow River Estuary: risk assessment and bioaccumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82379-82389. [PMID: 35752667 DOI: 10.1007/s11356-022-21139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The heavy metal migration in the food chain exerted significant influence on the survival and reproduction of wetland birds and then disturbed and threatened the balance and health of the estuary ecosystem. In this study, the concentration of heavy metals (Cu, Cr, Fe, Mn, Cd, Ni, and Pb) in surface sediment of the Yellow River Estuary (YRE), the food sources of Saunders's Gull (Saundersilarus saundersi) nestlings, and the egg structure of birds were analyzed to determine the bioaccumulation and reproductive influence on wetland bird. The results indicated higher mean concentrations of sediment heavy metals than their corresponding background values in 2019, with the exception of Fe. Notably, the metal Cd exceeded geochemical background value by 1561.5% in 2018 and 1353.9% in 2019, resulting in severe contamination associated with Cd in the YRE (with geo-accumulation indexes of 3.44 and 3.23). Biomagnification factor (BMF) of heavy metals demonstrated that the concentrations of Cr, Ni, and Cu decreased with the trophic level rising while Cd, Mn, Pb, and Fe denoted bio-amplification in the food chain. The residual indexes showed that the food resources of Saunders's Gull were polluted by Cr, Pb, and Cu. Additionally, a higher enrichment of heavy metals was observed in the eggshell membrane. Metal concentrations had significant influences on the reproduction of Saunders's Gull, except for Cd, among which Ni, Pb, Cu, and Fe may have contributed to the reproductive success of birds, whereas the hatching failure of birds may be caused by Cr and Mn. It is of great importance to monitor the contamination of the wetland ecosystem and provide effective management and protection of the wildlife in the YRE.
Collapse
Affiliation(s)
- Yuewei Yang
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China.
| | - Fengfei Sun
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Kai Liu
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Tong Zheng
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| | - Meizhen Tang
- School of Life Science, Qufu Normal University, Qufu, 273165, People's Republic of China
| |
Collapse
|
33
|
Sheng D, Meng X, Wen X, Wu J, Yu H, Wu M. Contamination characteristics, source identification, and source-specific health risks of heavy metal(loid)s in groundwater of an arid oasis region in Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156733. [PMID: 35716754 DOI: 10.1016/j.scitotenv.2022.156733] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/28/2022] [Accepted: 06/12/2022] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s accumulation in groundwater has posed serious ecological and health concerns worldwide. Source-specific risk apportionment is crucial to prevent and control potential heavy metal(loid)s pollution in groundwater. However, there is very limited comprehensive information on the health risk apportionment for groundwater heavy metal(loid)s in arid regions. Thus, the Zhangye Basin, a typical arid oasis region in Northwest China, was selected to investigate the contamination characteristics, possible pollution sources, and source-specific health risks of groundwater heavy metal(loid)s. The heavy metal pollution index (HPI), the Nemerow index (NI), and the contamination degree (CD) were adopted to assess the pollution level of heavy metal(loid)s; then source-specific health risk was apportioned integrating the absolute principal component scores-multiple linear regression (APCS-MLR) with health risk assessment. Noticeable accumulation of Mn, Fe, and As was observed in this region with especially Fe/As in 12.68%/2.11% of the samples revealing significant enrichment. Approximately 3.5% of the groundwater samples caused moderate or higher pollution level based on the HPI. The APCS-MLR model was more physically applicable for the current research than the positive matrix factorization (PMF) model. Industrial-agricultural activity factor (12.56%) was the major source of non-cancer (infants: 59.15%, children: 64.87%, teens: 64.06%, adults: 64.02%) and cancer risks (infants: 77.36%, children: 77.35%, teens: 77.40%, adults: 77.41%). Industrial-agricultural activities should be given priority to control health risks of heavy metal(loid)s in groundwater. These findings provide fundamental and significant information for mitigating health risks caused by heavy metal(loid)s in groundwater of typical arid oasis regions by controlling priority sources.
Collapse
Affiliation(s)
- Danrui Sheng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xianhong Meng
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiaohu Wen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, People's Republic of China.
| | - Jun Wu
- Yantai Research Institute, Harbin Engineering University, Yantai, Shandong 264006, People's Republic of China.
| | - Haijiao Yu
- School of Resources and Environment, Linyi University, Linyi, Shandong 276005, People's Republic of China
| | - Min Wu
- College of Geomatics, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| |
Collapse
|
34
|
Huynh TMT, Ni CF, Su YS, Nguyen VCN, Lee IH, Lin CP, Nguyen HH. Predicting Heavy Metal Concentrations in Shallow Aquifer Systems Based on Low-Cost Physiochemical Parameters Using Machine Learning Techniques. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912180. [PMID: 36231480 PMCID: PMC9566676 DOI: 10.3390/ijerph191912180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/07/2023]
Abstract
Monitoring ex-situ water parameters, namely heavy metals, needs time and laboratory work for water sampling and analytical processes, which can retard the response to ongoing pollution events. Previous studies have successfully applied fast modeling techniques such as artificial intelligence algorithms to predict heavy metals. However, neither low-cost feature predictability nor explainability assessments have been considered in the modeling process. This study proposes a reliable and explainable framework to find an effective model and feature set to predict heavy metals in groundwater. The integrated assessment framework has four steps: model selection uncertainty, feature selection uncertainty, predictive uncertainty, and model interpretability. The results show that Random Forest is the most suitable model, and quick-measure parameters can be used as predictors for arsenic (As), iron (Fe), and manganese (Mn). Although the model performance is auspicious, it likely produces significant uncertainties. The findings also demonstrate that arsenic is related to nutrients and spatial distribution, while Fe and Mn are affected by spatial distribution and salinity. Some limitations and suggestions are also discussed to improve the prediction accuracy and interpretability.
Collapse
Affiliation(s)
- Thi-Minh-Trang Huynh
- Graduate Institute of Applied Geology, National Central University, Taoyuan 32001, Taiwan
| | - Chuen-Fa Ni
- Graduate Institute of Applied Geology, National Central University, Taoyuan 32001, Taiwan
- Center for Environmental Studies, National Central University, Taoyuan 32001, Taiwan
- Correspondence: (C.-F.N.); (Y.-S.S.)
| | - Yu-Sheng Su
- Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
- Correspondence: (C.-F.N.); (Y.-S.S.)
| | - Vo-Chau-Ngan Nguyen
- College of Environment and Natural Resources, Can Tho University, Can Tho 94000, Vietnam
| | - I-Hsien Lee
- Graduate Institute of Applied Geology, National Central University, Taoyuan 32001, Taiwan
- Center for Environmental Studies, National Central University, Taoyuan 32001, Taiwan
| | - Chi-Ping Lin
- Graduate Institute of Applied Geology, National Central University, Taoyuan 32001, Taiwan
- Center for Environmental Studies, National Central University, Taoyuan 32001, Taiwan
| | - Hoang-Hiep Nguyen
- Graduate Institute of Applied Geology, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
35
|
Xie Q, Ren B. Pollution and risk assessment of heavy metals in rivers in the antimony capital of Xikuangshan. Sci Rep 2022; 12:14393. [PMID: 35999241 PMCID: PMC9399248 DOI: 10.1038/s41598-022-18584-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Xikuangshan (XKS) is the world's largest antimony mining region, and its exploitation for hundreds of years has also resulted in serious soil erosion, fragile ecology, contaminated water, and shortage water. Through systematic and scientific collection samples from the rivers in XKS, the Nemerow index (NI), modified heavy metal pollution index (m-HPI), ecological risk index, and health risk indexeswere used to evaluate and analyze the water quality, pollution levels and risks of heavy metals (Sb, As, Mn, Pb, Zn, Hg, Cd) to ecology and humans in XKS. The results showed that the average concentrations of TN, TP, Sb, As and Hg in surface water were 0.48 mg/L (0–4.34 mg/L), 2.58 mg/L (0–4.34 mg/L), 1.05 mg/L (0.0009–5.33 mg/L), 1.06 mg/L (BDL–19.60 mg/L) and 0.00084 mg/L (LDBL–0.0036 mg/L), respectively, exceeding the limits of the Chinese surface water quality standards. Based on the m-HPI method, only 8.57% of the sampling points are classified as the worst water quality. However, according to the NI method, about 7.14% and 87.16% of the sampling points in the study area are moderately and severely polluted, respectively. The results of heavy metal pollution based on the NI evaluation is were more serious than that on the m-HPI method. The values of ecological risk assessment varied from 22.69 to 7351.20, revealed that heavy metals pose a very serious risk to the surface water ecosystem at more than 50% of the sampling sites, and Sb and As are the main pollutants, followed by Hg. The total non-carcinogenic risk index (TCR) for adults and children were 47.70 and 90.10 respectively, Sb and As is the main non-carcinogenic risk factor. For adults and children, the average carcinogenic risk (CR) of As was 6.49 × 10–3 and 1.05 × 10–2, respectively, and exceeded the threshold of 1 × 10–4, indicating a high carcinogenic risk.
Collapse
Affiliation(s)
- Qing Xie
- School of Resources, Environment and Safe Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Bozhi Ren
- School of Resources, Environment and Safe Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China.
| |
Collapse
|
36
|
Troudi N, Tzoraki O, Hamzaoui-Azaza F, Melki F, Zammouri M. Estimating adults and children's potential health risks to heavy metals in water through ingestion and dermal contact in a rural area, Northern Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:56792-56813. [PMID: 35347609 DOI: 10.1007/s11356-022-19667-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
High concentrations of heavy metals (HMs) in water (e.g., As, Cr, and Cd) are harmful to human health, especially to children. HMs' (As, Cd, Mn, Fe, Cu, Hg, Zn, Cr, and Se) values have been determined from the water of the Guenniche plain (Tunisia); then the carcinogenic risk (CR) and non-carcinogenic Risk (N-CR) were estimated through ingestion and dermal contact for adults and children. The analysis results show that the Hg, As, and Cd in 50% of the ephemeral streams (ESs) exceeded one of the WHO and NT guidelines for safe water, as is the case with Hg and Cd in 25% of the shallow groundwater wells (SGW). In all samples, the N-CR of all HMs, and the CR due to the dermal contact controlled by As, for both age brackets, are deemed to fall far short of the threshold set by USEPA. The CR due to the ingestion pathway caused by As, Cr, and Cd contamination indicates a "high" to "very high" risk on its users in roughly 50% of all the samples (ESs and SGW) for both age brackets by exceeding 10-5. Overall, the SGW samples close to the floodplain area of the ESs pose a real CR to both age groups, which is more serious for children. Therefore, the SGW are not recommended for drinking use, with an urgent call for a solution by the policy-makers to improve the water quality of the region.
Collapse
Affiliation(s)
- Nizar Troudi
- Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, LR18 ES07, 1060, Tunis, Tunisia.
| | - Ourania Tzoraki
- Department of Marine Sciences, University of the Aegean, 81100, Mytilene, Greece
| | - Fadoua Hamzaoui-Azaza
- Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, LR18 ES07, 1060, Tunis, Tunisia
| | - Fatheddine Melki
- Laboratory of Geodynamics, Geo-Digital and Geomaterials (GGSA) Lab3G, Faculty of Sciences of Tunis, University of Tunis El Manar, 1060, Tunis, Tunisia
| | - Mounira Zammouri
- Laboratory of Sedimentary Basins and Petroleum Geology (SBPG), Geology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, LR18 ES07, 1060, Tunis, Tunisia
| |
Collapse
|
37
|
Ganguli S, Hosen Rifat MA, Howlader S, Hasan MA, Islam S, Alam ME, Islam MN. Assessment of Bhatiari Lake water quality: Pollution indices, hydrochemical signatures and hydro-statistical analysis. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
A Study on Hydrochemical Characteristics and Evolution Processes of Groundwater in the Coastal Area of the Dagujia River Basin, China. SUSTAINABILITY 2022. [DOI: 10.3390/su14148358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Groundwater resource is vital for industrial, drinking and irrigation purposes in the Dagujia river basin, China. The objective of this work was to comprehensively assess the hydrochemical characteristics and evolution processes of the Quaternary aquifer (QA) and the bedrock aquifer (BA) of the basin using statistical methods and hydrochemical plots. In total, 56 groundwater samples were collected from the QA (34 samples) and BA (22 samples). In addition, statistical methods combined with the geographic information system were used to identify the hydrochemical parameters of groundwater, as well as its spatial distribution in the Dagujia river basin. The Piper diagram showed that Ca-Na-HCO3 was the dominant groundwater facies type, while nine QA samples collected near the coastal line showed the Na-Cl facies type. On the other hand, the Gibbs diagram showed that most samples fell in the rock dominance zone. The principal component analysis results showed that the water–rock interaction and anthropogenic activities are the controlling factors, which is consistent with the results obtained using other methods. The results of this study indicated that rock weathering controls the hydrochemical characteristics of groundwater, while anthropogenic contamination and sea water intrusion are becoming increasingly serious issues for both QA and BA in the Dagujia river basin. Therefore, both Quaternary and bedrock aquifers require more attention.
Collapse
|
39
|
Health Risk Assessment of Heavy Metals in Groundwater of Hainan Island Using the Monte Carlo Simulation Coupled with the APCS/MLR Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137827. [PMID: 35805486 PMCID: PMC9266011 DOI: 10.3390/ijerph19137827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Groundwater is a significant component of water resources, but drinking groundwater with excessive heavy metals (HMs) is harmful to human health. Currently, quantitative source apportionment and probabilistic health risk assessment of HMs in groundwater are relatively limited. In this study, 60 groundwater samples containing seven HMs were collected from Hainan Island and analyzed by the coupled absolute principal component scores/multiple linear regression (APCS/MLR), the health risk assessment (HRA) and the Monte Carlo simulation (MCS) to quantify the pollution sources of HMs and the health risks. The results show that the high-pollution-value areas of HMs are mainly located in the industry-oriented western region, but the pollution level by HMs in the groundwater in the study area is generally low. The main sources of HMs in the groundwater are found to be the mixed sources of agricultural activities and traffic emissions (39.16%), industrial activities (25.57%) and natural sources (35.27%). Although the non-carcinogenic risks for adults and children are negligible, the carcinogenic risks are at a high level. Through analyzing the relationship between HMs, pollution sources, and health risks, natural sources contribute the most to the health risks, and Cr is determined as the priority control HM. This study emphasizes the importance of quantitative evaluation of the HM pollution sources and probabilistic health risk assessment, which provides an essential basis for water pollution prevention and control in Hainan Island.
Collapse
|
40
|
Rajmohan N, Niyazi BAM, Masoud MHZ. Trace metals pollution, distribution and associated health risks in the arid coastal aquifer, Hada Al-Sham and its vicinities, Saudi Arabia. CHEMOSPHERE 2022; 297:134246. [PMID: 35259356 DOI: 10.1016/j.chemosphere.2022.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Trace metals pollution, distribution and associated health risk were evaluated in the arid coastal aquifer, Hada Al-Sham, Western Saudi Arabia using an integrated approach namely heavy metal pollution index (HPI), contamination index (Cd), health risk assessment (HRA) model and multivariate statistical analysis. Groundwater samples (n = 47) were analysed for EC, pH, TDS, Ag, Al, B, Ba, Co, Cd, Cr, Cu, Fe, Mo, Ni, Pb, V and Zn. Groundwater is mostly alkaline (72%) with high salinity (TDS >1500 mg/l, 77%). Average trace metals concentrations are in the dominance order of B > Cu > Al > Mo > Pb > V > Ba > Zn > Ni > Cr > Fe > Ag. Groundwater (100% wells) is unsafe for drinking based on V, Mo, Al concentrations followed by the Pb (96%), B (91%), Ni (72%), Cr (23%), Cu (17%) and Ag (6%), which exceeded the WHO and USEPA prescribed limits. Results of HPI and Cd also implied the high contamination and enhanced level of metals in the groundwater. Chronic daily intake (CDIoral), hazard quotient (HQ) and total hazard quotient (THQ) were employed for health risk assessment. HQ values reveal that 100% (Al, Mo), 85% (Cu), 21% (B), 13% (Cr) and 6% (Pb) of samples exceeded the recommended limit (>1), which can cause an adverse health risk to adult and children. Pearson correlation, principal components analyses, and Hierarchical cluster analysis justified that aluminium silicates weathering and Fe oxides/hydroxides dissolution (Pb, Cr, Ni, Fe, Ag, Al, Mo and V), evaporation, anthropogenic input (Cu and B) and dissolution of carbonate and sulphate minerals (Ba and Zn) controlled the water chemistry in this aquifer. This study recommends a proper treatment of the groundwater to be safe for various uses. The comprehensive approach, employed here, is applicable to any arid aquifers worldwide.
Collapse
Affiliation(s)
- Natarajan Rajmohan
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia.
| | - Burhan A M Niyazi
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia
| | - Milad H Z Masoud
- Water Research Center, King Abdulaziz University, P. O. Box 80200, Jeddah, 21598, Saudi Arabia; Hydrology Department, Desert Research Centre, 1 Mathaf Al-Mataria-Cairo, P. O. Box 11753, Cairo, Egypt
| |
Collapse
|
41
|
Dong L, Zhang J, Guo Z, Li M, Wu H. Distributions and interactions of dissolved organic matter and heavy metals in shallow groundwater in Guanzhong basin of China. ENVIRONMENTAL RESEARCH 2022; 207:112099. [PMID: 34662577 DOI: 10.1016/j.envres.2021.112099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 05/12/2023]
Abstract
Groundwater as the primary source of fresh water particularly in semi-arid regions is heavily threatened by various pollutants such as dissolved organic matter (DOM) and heavy metals due to anthropogenic activities. In this study, 113 shallow groundwater samples were collected from Guanzhong basin of China to explore spatial distributions and interactions of DOM and heavy metals (Fe, Mn and Cu). Fluorescence excitation-emission spectrophotometry with parallel factor analysis showed that DOM in groundwater mainly contained three humic-like and two protein-like substances with an average dissolved organic carbon (DOC) concentration of 12.85 mg L-1. Average Mn and Cu concentrations in groundwater were 19.92 μg L-1 and 7.05 μg L-1 with an increasing trend from west to east, whereas Fe concentration in central regions was much higher (34.23 μg L-1). Structural equation modeling analysis indicated that DOM in groundwater could be significantly affected by surface water, and heavy metals were influenced by urbanization. Moreover, DOM could strongly influence the bioavailability, migration, and transformation of Mn in groundwater. These findings would be beneficial for the effective utilization and protection of groundwater resources.
Collapse
Affiliation(s)
- Lu Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China; School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Ming Li
- College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
42
|
Karunanidhi D, Aravinthasamy P, Subramani T, Chandrajith R, Janardhana Raju N, Antunes IMHR. Provincial and seasonal influences on heavy metals in the Noyyal River of South India and their human health hazards. ENVIRONMENTAL RESEARCH 2022; 204:111998. [PMID: 34499896 DOI: 10.1016/j.envres.2021.111998] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to evaluate the heavy metals (Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Cadmium (Cd) and Zinc (Zn)) pollution in the Noyyal River of South India by collecting 130 river water samples (65 each in pre- and post-monsoon). The heavy metals were measured using Atomic Absorption Spectrophotometer (AAS). The data were used to calculate the associated health hazards for the inhabitants consume river water. Correlation analyses and average concentration of heavy metals denoted that post-monsoon metal concentrations were lesser compared to the pre-monsoon due to dilution effect. Modified Contamination Degree (MCD) indicated that 45% of pre-monsoon and 25% of post-monsoon samples were classified under extremely polluted category. Heavy metal pollution index (HPI) showed that all the regions fall under highly polluted category except 'Region I' where 20% of samples were under safe category during the pre-monsoon, whereas 9%,28%, 17% and 26% of samples in Regions I, II, III and IV were highly polluted during the post-monsoon season, respectively. Ecological Risk Index (ERI) revealed that high risks attained in Regions II (78%) and III (82%) during pre-monsoon, and reduced risks found in Regions II (28%) and III (45%) during post-monsoon season due to dilution by monsoon rainfall. Non-carcinogenic risks as inferred by the Hazard Index (HI) indicated that 78% and 52% of samples for infants, 75% and 49% of samples for teens and 71% and 45% of samples for adults exceeded the threshold limits of USEPA (HI > 1) and possessed risks during pre- and post-monsoon, respectively. The cancer risk assessment based on ingestion of heavy metals indicated that the order of risk is Ni > Cr > Cu. The HI for infants and teens was notably high to that of adults in both the seasons. This study will be useful to develop effective strategies for improving river water quality and to reduce human health hazards.
Collapse
Affiliation(s)
- D Karunanidhi
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India.
| | - P Aravinthasamy
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India
| | - T Subramani
- Department of Geology, CEG, Anna University, Chennai, 600025, India
| | - Rohana Chandrajith
- Department of Geology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - I M H R Antunes
- Institute of Earth Sciences, ICT, Pole of University of Minho, Campus de Gualtar, 4710- 057, Braga, Portugal
| |
Collapse
|
43
|
Khan K, Younas M, Sharif HMA, Wang C, Yaseen M, Cao X, Zhou Y, Ibrahim SM, Yvette B, Lu Y. Heavy metals contamination, potential pathways and risks along the Indus Drainage System of Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151994. [PMID: 34871688 DOI: 10.1016/j.scitotenv.2021.151994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Riverine water exposed to heavy metals (HMs) pollution is a major concern in the world because of its serious effects on ecosystem and human health. This study assessed the pollution status, sources, diffusion and potential risks of Mn, Co, Cu, Zn, Cr, Ni, Cd, Hg and Pb for the first time along the entire Indus Drainage System of Pakistan. The concentrations of nine HMs in the riverine water ranged from 5.05-101.59 μg/L with a mean value of 41.51 μg/L. The overall metals quantification along the drainage was significantly high (27% of the total) in River Chenab followed by River Indus (26%) > Soan (20%) > Ravi (19%) > Kabul (5%) > Swat (3%). The potential sources of contamination were identified to be the surrounding geogenic activities, industrial/municipal wastewater discharges, agricultural and surface runoffs by using multivariate statistics including metals correlation analysis, hierarchical cluster analysis and principal component analysis. The average mass flux of ∑HMs in the entire drainage was approximately 10.24 tons/year, to which the River Indus contributed 84% of the total, Chenab 11%, Ravi 3%, Kabul 1%, and Soan 1% with more prevalence of biological essential (Zn&Mn) and non-essential (Ni&Cr) metals. In terms of ecological risk, the riverine water metals contamination (1.59 to 57.06) was within the risk threshold (ERI < 110), while the risks of ∑carcinogenic metals for exposed children and adults along the basin were significantly influenced between acceptable to high cancer risk by Cd, Co, Ni, Cr and Pb.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan.
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19130, Pakistan
| | - Hafiz Muhammad Adeel Sharif
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chenchen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Xianghui Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sobhy M Ibrahim
- Department of Biochemistry, College of Science, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Baninla Yvette
- Graduate School of Humanities and Social Science, University of Hiroshima, Higashihiroshima, Hiroshima 739-8511, Japan; Department of Geology, Mining and Environmental Science, University of Bamenda, P. O Box 39, Bambili, North West Region, Cameroon
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian 361102, China.
| |
Collapse
|
44
|
Han D, Currell MJ. Review of drivers and threats to coastal groundwater quality in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150913. [PMID: 34653454 DOI: 10.1016/j.scitotenv.2021.150913] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/22/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
With rapid socio-economic development, China's coastal areas are among the fastest growing and most economically dynamic regions in the world. Under the influence of climate change and human activities, protecting the quality of coastal groundwater has emerged as one of the key environmental and resource management issues for these areas. This paper reviews (for the first time) groundwater quality data for the coastal basins of China, where over 600 million people live, focussing on key inorganic indicators/pollutants; groundwater salinity, nitrate, fluoride, and arsenic. These pollutants present major water quality issues and are also valuable as indicators of wider processes and influences impacting coastal groundwater quality - e.g. saltwater intrusion, agricultural pollution and release of geo-genic contaminants. We discuss the major drivers causing water quality problems in different regions and assess future trajectories and challenges for controlling changes in coastal groundwater quality in China. Multiple processes, including modern and palaeo seawater/brine migration, groundwater pumping for agricultural irrigation, pollution from agrochemical application, rapid development of aquaculture, urban growth, and water transfer projects, may all be responsible (to different degrees) for changes observed in coastal groundwater quality, and associated long-term health and ecological effects. We discuss implications for sustainable coastal aquifer management in China, arguing that groundwater monitoring and contamination control measures require urgent improvement. The evolution and treatment of coastal groundwater quality problems in China will serve as an important warning and example for other countries facing similar pressures, due to climate change, coastal development, and intensification of anthropogenic activity in coming decades.
Collapse
Affiliation(s)
- Dongmei Han
- Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | | |
Collapse
|
45
|
Yang F, Liu S, Jia C, Wang Y. Identification of groundwater microbial communities and their connection to the hydrochemical environment in southern Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14263-14278. [PMID: 34608579 DOI: 10.1007/s11356-021-16812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
The microbial community plays an important role in the biogeochemical cycle in coastal groundwater ecosystems. However, the composition and controlling factors of the microbial community in coastal closed groundwater systems (CCGSs) with high salinity have rarely been studied. Here, we investigated and analyzed the hydrochemical characteristics and microbial community composition of seven brine samples with high total dissolved solid (TDS) values ranging from 74.5 to 132.3 g/L within and across three coastal saltworks (Yangkou, Hanting, and Changyi) in southern Laizhou Bay (SLB). The bacterial diversity was independent of salinity. Compared with those of low-salinity groundwater, the diversity of the microbial community in brine was lower, but the richness was slightly higher. There was a significant correlation between the microbial community diversity and groundwater sources, which indicated that the microbial communities were affected by groundwater sources. A comparison of the microbial community compositions of the three saltworks showed that the Hanting and Changyi saltworks had similar microbial communities due to their similar sampling depths. In addition, the main force shaping the differences in the microbial communities in both coastal open groundwater systems (COGSs) and CCGSs was identified as the hydraulic connection with the seawater controlled by hydrogeological conditions formed throughout geological history. This study can help to elucidate the biogeochemical processes in coastal aquifers.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China
| | - Sen Liu
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Chao Jia
- Institute of Marine Science and Technology, Shandong University, Binhai Road No. 72, Qingdao, 266237, Shandong, China.
| | - Yujue Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
46
|
Motaghi H, Arabkhani P, Parvinnia M, Javadian H, Asfaram A. Synthesis of highly porous three-dimensional PVA/GO/ZIF-67 cryogel for the simultaneous treatment of waters contaminated with cadmium (II) and lead (II) heavy metal ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05418j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research, PVA/GO/ZIF-67 cryogel as a highly porous three-dimensional polymeric adsorbent was synthesized by freeze-drying method and applied for the simultaneous removal of Cd2+ and Pb2+ ions from contaminated...
Collapse
|
47
|
Wang Z, Su Q, Wang S, Gao Z, Liu J. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern China coastal zone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118016. [PMID: 34428698 DOI: 10.1016/j.envpol.2021.118016] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 05/12/2023]
Abstract
Environmental changes and human activities have deteriorated the quality of groundwater, which is an important source of freshwater in coastal areas. The Jiangsu Coastal Zone (JCZ), which is a typical area of the eastern China coastal zone (ECCZ), has a great demand for clean water resources due to its dense population. The groundwater in the JCZ is affected by both human activities and seawater intrusion. However, research on heavy metals in the groundwater of the JCZ is limited. This study investigated the spatial distribution characteristics and influencing factors of heavy metals in coastal groundwater of Jiangsu Province and conducted a health risk assessment (HRA). Relatively high concentrations of Cu, Cd, Pb, Co, Zn, and Ba existed in the northern JCZ, while As and B predominated in the central JCZ. The main heavy metal pollutants in the groundwater are B and As, with mean values at 0.61 mg/L and 0.02 mg/L, exceeding the standard rate reaching 48.28% and 18.07% respectively. The HRA results showed that B had the largest hazard quotient (HQ), accounting for 50.22% of the total HQs, and As was attributed to the pollutant with the largest cancer risk (CR), accounting for 99.74% of the total CRs. According to the results of the correlation analysis, heavy metals in the groundwater of JCZ mainly originated from industrial pollution, seawater intrusion, and mineral dissolution. Seawater intrusion increases the content of As and B in groundwater, leading to higher health risks. Therefore, the government should strengthen the supervision of seawater intrusion by implementing more effective water resource management policies, or adopting engineering measures such as installing subsurface physical barriers to prevent and control seawater intrusion.
Collapse
Affiliation(s)
- Zhenyan Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao, 266061, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China
| | - Qiao Su
- Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao, 266061, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China
| | - Shu Wang
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, Qingdao, 266061, China; Laboratory for Marine Geology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266061, China
| | - Zongjun Gao
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Jiutan Liu
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| |
Collapse
|
48
|
Lu J, Lin Y, Wu J, Zhang C. Continental-scale spatial distribution, sources, and health risks of heavy metals in seafood: challenge for the water-food-energy nexus sustainability in coastal regions? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63815-63828. [PMID: 33400129 DOI: 10.1007/s11356-020-11904-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Rare information on the seafood safety and the coastal water-food-energy nexus sustainability in terms of seafood safety is available. This study investigated the distribution of heavy metals in 3 kinds of seafood (bivalve molluscs, fish, and crustaceans) collected from coastal areas along the 18,000 km coastline of China. Risk assessment and source apportionment of heavy metals, and the coastal water-food-energy nexus sustainability in terms of heavy metal pollution were also performed. The results showed that total concentrations of 8 heavy metals (Cu, Pb, Zn, Cd, Cr, Hg, As, and Ni) in seafood varied with sampling sites and species by following the order of bivalve molluscs > crustaceans > fish. Estimated daily intake (EDI) analysis indicated that it was safe for humans to consume seafood in all sampling sites. Non-cancer risks posed by heavy metals were acceptable for 99.1% of adult and 97.7% of children. However, Cr and As in 72% of fish samples caused high cancer risks for children. The farmed fish posed relatively low risk in comparison with the wild fish suggested that it might be safer to consume farmed fish than wild fish. Source apportionment demonstrated that the fossil energy consumption (coal combustion and vehicle exhaust), seawater, and metallurgic dust might serve as the possible main sources of heavy metals in seafood. Based on the policy scenario analysis, the fossil-energy-controlling policy and clean coastal water action were beneficial to the seafood safety by reducing target heavy metals in seafood. These findings provided comprehensive information on seafood safety and the water-food-energy nexus sustainability in coastal regions at continental-scale in terms of heavy metal pollution.
Collapse
Affiliation(s)
- Jian Lu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
| | - Yichen Lin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jun Wu
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Cui Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, Shandong, People's Republic of China
| |
Collapse
|
49
|
Cao Q, Yang L, Wang Z, Liang C, Wang Y. Investigation and source analysis of bacterial contamination in groundwater in Liuzhou City, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:760. [PMID: 34719740 DOI: 10.1007/s10661-021-09540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Groundwater is an important water source to consider when ensuring the safety of urban water supply. Groundwater contaminated by bacteria poses a potential health risk to the drinking water supply. This study focuses on the water supply of Liuzhou City, a famous industrial city in China. Analyses of the concentrations, spatial distribution, and pollution sources of bacteria in the groundwater were conducted based on samples collected from 27 wells during the wet and dry seasons in 2018. The total colony counts and total coliform were high during both the wet and dry seasons, posing a severe threat to the emergency water supply security for more than one million people in the city. The groundwater in Liuzhou City is generally contaminated by bacteria, with higher pollution levels in the northern urban-rural fringe and central urban areas. Domestic pollution is the main sources of groundwater bacteria. In addition, bacterially contaminated rivers (Liujiang River) passing through the urban area likely transfer bacteria to the groundwater due to the circulation of the groundwater and surface river water. Controlling the bacterial pollution of groundwater in this region requires adherence to a long-term management plan.
Collapse
Affiliation(s)
- Qingyi Cao
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Liu Yang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China.
| | - Zhiying Wang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Chaoming Liang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Yuetian Wang
- College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| |
Collapse
|
50
|
Alharbi T, El-Sorogy AS, Qaysi S, Alshehri F. Evaluation of groundwater quality in central Saudi Arabia using hydrogeochemical characteristics and pollution indices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53819-53832. [PMID: 34041666 DOI: 10.1007/s11356-021-14575-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The groundwater quality and heavy metal (HM) contamination were evaluated in palm farms, central Saudi Arabia, using pollution indices, irrigation quality parameters, and multivariate statistical analyses. Thirty groundwater samples were collected in October 2020 for major anions, cations, and HMs analyses and interpretation. The results showed that the average concentrations of total dissolved solids (TDS), Ca+, Na+, K+, Cl-, SO42-, and F- were greater than the permissible limits of the WHO standards for drinking water. The groundwater facies types were Ca-Na-SO4-Cl (23 samples), Ca-Cl-SO4, (4 samples), and Ca-SO4-Cl type (3 samples). The groundwater quality index indicated that 15 groundwater samples were of good quality and 15 were of poor quality, whereas the metal index and heavy metal pollution index indicated that all samples were categorized as slightly affected and with low pollution, respectively. The variation is attributed to the increasing average concentrations of some ions and decreasing HMs. The dissolution/precipitation of silicates, gypsum, and carbonates and soil leaching were the natural factors affecting groundwater chemistry, whereas higher PO43-, NO3-, F-, Pb, and Zn values in some samples may be attributed to human activities from the extensive use of fertilizers and pesticides on the investigated farms.
Collapse
Affiliation(s)
- Talal Alharbi
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdelbaset S El-Sorogy
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia.
- Geology Department, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Saleh Qaysi
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Alshehri
- Geology and Geophysics Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|