1
|
da Silva AC, Alves de Oliveira LV, Amaral Alexandre L, Rocha Ribas M, Lemos Dal Pizzol J, Rocha G, Kasuko Palmeiro J, Perin M, Hoff R, Verruck S. Suspect screening and quantitative analysis of 165 contaminants of emerging concern in water, sediments, and biota using LC-MS/MS: Ecotoxicological and human health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178434. [PMID: 39826219 DOI: 10.1016/j.scitotenv.2025.178434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
This study aimed to implement a targeted multiple reaction monitoring (MRM) screening strategy using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for the initial detection of 165 compounds of emerging concern (CECs) in water, sediment, and fish samples. Following the screening, confirmatory and quantitative analyses were conducted using analytical standards for the detected compounds. Qualitative results were confirmed using high-resolution mass spectrometry (HRMS) for those CECs without available standards. Ecotoxicological and human health risk assessments were performed for the quantified CECs. The analysis identified 35 suspect CECs (12 quantified with analytical standards), including parent compounds and metabolites of anti-inflammatories, antibiotics, antidepressants, sedatives, stimulants, and illicit drugs. High concentrations of these CECs were particularly evident near a Wastewater Treatment Plant (WWTP), where notable levels of compounds such as caffeine (4.02-15.03 ng L-1), ciprofloxacin (6.05 ng L-1), clindamycin (6.04-7.01 ng L-1), and diclofenac (1.36-2.20 ng L-1) were detected. Sediment samples exhibited the highest incidence of CECs, with caffeine reaching the highest concentration (55.89 μg kg-1). Ciprofloxacin (2.94 to 4.18 μg kg-1) was the sole CEC detected in biota samples. The ecotoxicological risk assessment indicated that the concentrations of all detected compounds posed significant ecotoxicity risks to the aquatic environment. In particular, caffeine and diclofenac presented considerable acute and chronic toxic risks to aquatic organisms, including algae, crustaceans, and fish. The Hazard Index (HI) values (3.65-7 to 8.06-8) suggest that ingesting ciprofloxacin at the concentrations found in fish does not represent a significant risk to human health. However, due to the reported risks to estuarine biota, it is crucial to continuously monitor the accumulation of these compounds in food widely consumed by the local population to assess potential impacts on human health.
Collapse
Affiliation(s)
- Alice Cristina da Silva
- Federal University of Santa Catarina, Agricultural Sciences Center, Department of Food Science and Technology, Brazil
| | | | - Luan Amaral Alexandre
- Federal University of Santa Catarina, Agricultural Sciences Center, Department of Food Science and Technology, Brazil
| | - Mateus Rocha Ribas
- Federal University of Santa Catarina, Health Sciences Center, Department of Clinical Analysis, Brazil
| | - Juliana Lemos Dal Pizzol
- Federal University of Santa Catarina, Health Sciences Center, Department of Clinical Analysis, Brazil
| | - Gustavo Rocha
- Federal University of Santa Catarina, Health Sciences Center, Department of Clinical Analysis, Brazil
| | - Jussara Kasuko Palmeiro
- Federal University of Santa Catarina, Health Sciences Center, Department of Clinical Analysis, Brazil
| | - Maurício Perin
- Department of Analytical Chemistry, Nutrition and Food Science & Aquatic One Health Research Center (iARCUS), Universidade de Santiago de Compostela, c/Constantino Candeira, 15782 Santiago de Compostela, Spain
| | - Rodrigo Hoff
- Advanced Laboratory Section of Santa Catarina, Ministry of Agriculture and Livestock, Brazil.
| | - Silvani Verruck
- Federal University of Santa Catarina, Agricultural Sciences Center, Department of Food Science and Technology, Brazil.
| |
Collapse
|
2
|
Wu P, Foley C, Heiger-Bernays W, Chen C. Chemical mixtures of mercury, PCBs, PFAS, and pesticides in freshwater fish in the US and the risks they pose for fish consumption. ENVIRONMENTAL RESEARCH 2025; 266:120381. [PMID: 39577725 PMCID: PMC11753927 DOI: 10.1016/j.envres.2024.120381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Freshwater fish are important food sources that also pose risks to human and wildlife health because of the bioaccumulation of environmental chemicals in their tissues. Although most studies, fish consumption advisories, and regulations focus on individual contaminants, fish consumers are exposed to mixtures of chemicals, including legacy contaminants and contaminants of emerging concern, that can have combined effects. Chemicals of emerging concern represent one source of hazard, but legacy contaminants can still pose threats to fish consumers due to their persistence in the environment. OBJECTIVES We investigate the following questions: 1) Do different chemicals correlate with one another in fish tissue, and if so, how? 2) How do levels of different chemicals in fish tissue vary by time and location? and 3) How do observed chemical levels compare with risk-based screening levels? METHODS Using several national data sources established and maintained by the US Environmental Protection Agency (NRSA, NCCA-GL, GLENDA, and NLFTS), this study examines the co-occurrence of chemicals in freshwater fish in lakes, ponds, streams, and rivers in the US. RESULTS We determine that organic contaminants correlate with one another, but generally not with mercury; organic chemicals have declined over time, but mercury has not; and fish concentrations of legacy contaminants-even those banned for decades-continue to exceed risk-based screening levels. DISCUSSION Despite some successes in curtailing release of pollutants, some contaminants in fish tissue have not declined and legacy and emerging pollutants continue to pose risks to fish consumers in the US. Correlations between chemicals in fish tissue suggest that exposures to mixtures is prevalent in the US but that organic contaminants do not generally correlate with mercury-noteworthy particularly since fish consumption advisories in the US are frequently driven by the level of mercury, and do not account for exposure to multiple contaminants. While programs such as the National Aquatic Resource Surveys (NARS) Program seek to systematically monitor contaminants in fish tissue and other environmental indicators, continuous support from the US federal government is required to sustain this monitoring. Moreover, greater legislative and regulatory efforts are required at both the state and federal levels to reduce continuing sources and ongoing contamination.
Collapse
Affiliation(s)
- Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Caredwen Foley
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Wendy Heiger-Bernays
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
3
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
4
|
Souza-Leal BD, Martins MDF, Hernandes JC, Costa PG, Bianchini A. Tissue bioaccumulation and distribution of organic contaminants in Brazilian guitarfish Pseudobatos horkelii reveal a concerning impact of contraceptive hormones and fecal sterols. MARINE POLLUTION BULLETIN 2025; 212:117582. [PMID: 39855061 DOI: 10.1016/j.marpolbul.2025.117582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
The critically endangered Brazilian guitarfish faces significant threats from environmental contamination. Assessing the impacts of such stressor is paramount from a conservational perspective. This study investigated the concentrations, distribution and accumulation patterns of organic contaminants in pregnant Brazilian guitarfish Pseudobatos horkelii. Blood, gill, gonad, liver, and muscle concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated diphenyl ethers, fecal sterols, and synthetic hormones used as human contraceptives were assessed. Synthetic hormones, especially D-norgestrel, showed the highest concentrations, mainly in the liver. Together with the results of fecal sterols, this finding suggests that guitarfish are exposed to sewage discharge. OCPs, especially hexachlorobenzene, mirex, endosulfans, and drins, showed considerably high concentrations, indicating the relevance of agricultural inputs. PCBs presented significant concentrations in the muscle, indicating long-term exposure, in contrast with other analytes that were primarily concentrated in the liver. These results have conservational implications, since contaminants analyzed herein have endocrine disruptive effects.
Collapse
Affiliation(s)
- Brenda de Souza-Leal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | | | | | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
5
|
Wołowicz A, Munir HMS. Emerging organic micropollutants as serious environmental problem: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177948. [PMID: 39675281 DOI: 10.1016/j.scitotenv.2024.177948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The escalating problem of environmental pollution can be attributed to the accelerated pace of global development, which often prioritizes human needs over planetary health. Despite huge global attempts endeavours to mitigate legacy pollutants, the uninterrupted introduction of novel substances such as the emerging organic micropollutants (EOMs) represents a significant menace to the natural environment and all forms of life on the earth. The widespread occurrence of EOMs in water and wastewater is a consequence of both their growing consumption as well as the limitations of the conventional wastewater treatment methods containing such pollutants resulting in deterioration of water quality and its supplies as well as this is a significant challenge for researchers and the scientific community alike. EOMs possibility to bioaccumulate, their toxic properties, resistance to degradation, and the limitations of conventional wastewater treatment methods for quantitative removal of EOMs at low concentrations give a significant environmental risk. These compounds are not commonly monitored, which exacerbates further the problem. Therefore the wide knowledge concerning EOMs properties, their occurrence as well as awareness about their migration in the environment and harmful effects is also extremely important. Therefore the EOMs characterization of various types, their classification and sources, concentrations in the aquatic systems and wastewaters, existing regulatory guidelines and their impacts on the environment and human health are thoroughly vetted in this review. Although the full extent of EOMs' effects on aquatic ecosystems and human health is still in the process of investigations, there are evident indications of their potential acute and chronic impacts, which warrant urgent attention. In practical terms the results of the research presented in this paper will help to fill the knowledge gaps concerning EOMs as a serious problem and to raise public awareness of actions to move to sustainable pollution management practices to protect our planet for future generations are vital.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland.
| | - Hafiz Muhammad Shahzad Munir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan.
| |
Collapse
|
6
|
da Silveira FFCL, Porto VA, de Sousa BLC, de Souza EV, Lo Nostro FL, Rocha TL, de Jesus LWO. Bioaccumulation and ecotoxicity of parabens in aquatic organisms: Current status and trends. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125213. [PMID: 39477001 DOI: 10.1016/j.envpol.2024.125213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Parabens are preservatives widely used in personal care products, pharmaceuticals, and foodstuffs. However, they are still unregulated chemical compounds. Given their extensive use and presence in different environmental compartments, parabens can adversely affect animal health. Thus, the current study aimed to summarize and critically analyze the bioaccumulation and ecotoxicity of parabens in aquatic species. Studies have been mostly conducted in laboratory conditions (75%), using mainly fish and crustaceans. Field studies were carried out across 128 sampling sites in six countries. Paraben bioaccumulation was predominantly detected in fish muscle, liver, brain, gills, ovary, and testes. Among the parent parabens, methylparaben (MeP), ethylparaben (EtP), and propylparaben (PrP) have been detected frequently and more abundantly in tissues of marine and freshwater specimens, as well as the metabolite 4-hydroxybenzoic acid (4-HB). Parabens can induce lethal and sublethal effects on aquatic organisms, such as oxidative stress, endocrine disruption, neurotoxicity, behavioral changes, reproductive impairment, and developmental abnormalities. The toxicity of parabens varied according to species, taxonomic group, developmental stage, exposure time, and concentrations tested. This study highlights the potential bioaccumulation and ecotoxicological impacts of parabens and their metabolites on aquatic invertebrates and vertebrates. Additionally, future research recommendations are provided to evaluate the environmental risks posed by paraben contamination more effectively.
Collapse
Affiliation(s)
- Felipe Félix Costa Lima da Silveira
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Viviane Amaral Porto
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Institute of Pharmaceutical Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Bianca Leite Carnib de Sousa
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Emilly Valentim de Souza
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires & IBBEA, UBA-CONICET, Buenos Aires, Argentina
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Maceió, AL, Brazil; Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
7
|
Pereira AR, Gomes IB, Santos L, Simões M. Track of methylparaben in the bulk phase and on the extracellular matrix of dual-species biofilms: Biodegradation and bioaccumulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136222. [PMID: 39447230 DOI: 10.1016/j.jhazmat.2024.136222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/23/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Methylparaben (MP) is a preservative considered an environmental contaminant of emerging concern due to its persistence in water sources, including drinking water (DW). This study assesses the interaction between MP and dual-species biofilms of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. These biofilms were grown under realism-based conditions in a multiple-cylinder biofilm reactor on polypropylene (PPL) surfaces, for 7 days, and then exposed to MP at 0.5 mg/L for three consecutive days. S. maltophilia predominantly succeeds within these biofilms compared to A. calcoaceticus. Exposure to MP resulted in a 4-fold increase in the number of culturable cells and a 1.4-fold rise in polysaccharide content, suggesting that bacterial cells may utilize MP as a carbon source to enhance biofilm fitness. MP was found to adsorb to PPL with biofilms following a pseudo-second-order kinetic model. Circa 37 % of MP adsorbed to PPL after 3 days of exposure. Besides that, MP was biodegraded by biofilms following an apparent first-order kinetic model. Part (25 %) of the MP was biodegraded whereas only 0.02 % bioaccumulated on the biofilm matrix. Biodegradation was related to esterase and lipase activity. The results provide new insights into the interaction between MP with biofilms and materials used in DW industries.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Lúcia Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
8
|
Yang D, Zhao D, Chen H, Cai Y, Liu Y, Guo F, Li F, Zhang Y, Xu Z, Xue J, Kannan K. Distribution, bioaccumulation and human exposure risk of bisphenol analogues, bisphenol A diglycidyl ether and its derivatives in the Dongjiang River basin, south China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175969. [PMID: 39222812 DOI: 10.1016/j.scitotenv.2024.175969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Bisphenols, bisphenol A diglycidyl ether (BADGE), and bisphenol F diglycidyl ether (BFDGE) are commonly used as raw materials or additives in the production of several industrial and consumer products. However, information regarding the occurrence and distribution of these industrial chemicals in freshwater ecosystem is limited. In this study, four bisphenols, six BADGEs, and three BFDGEs were determined in abiotic and biotic samples collected from the Dongjiang River basin in southern China. Among the four bisphenols, BPA was widely present in all samples analyzed including surface water (median: 1.81 ng/L), sediment (3.1 ng/g dw), aquatic plants (3.69 ng/g dw), algae (7.57 ng/g dw), zooplankton (6.17 ng/g dw), and fish muscle (5.28 ng/g dw). Among the nine BADGEs and BFDGEs analyzed, BADGE, BADGE•H2O, BADGE·HCl·H2O and BADGE•2H2O was found in all sample types. Although the median concentration of BADGE•2H2O in surface water was below LOQ, this compound was found at median concentrations of 2.61, 3.59, 1.03, 1.69, and 49.8 ng/g dw in sediment, plants, algae, zooplankton, and fish muscle, respectively. Significant positive linear correlations were found among logarithmic transformed concentrations of BPA, BADGE, BADGE•H2O, BADGE•HCl•H2O, and BADGE•2H2O in sediment. The bioconcentration factor (logBCF) values of BADGE, BADGE•H2O, BADGE•HCl, BADGE•HCl•H2O, BADGE•2H2O, and BADGE•2HCl in fish, plants, algae, and zooplankton were > 3.3 L/kg (wet weight), indicating that these chemicals possess moderate bioaccumulation potential. The estimated daily total intake of bisphenols and BADGEs through fish consumption was 75.1 ng/kg bw/day for urban adult residents. The study provides baseline information on the occurrence of bisphenols, BADGEs, and BFDGEs in a freshwater ecosystem.
Collapse
Affiliation(s)
- Danlin Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoming Zhao
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Honglin Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Fen Guo
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Feilong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jingchuan Xue
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY 12237, United States; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, NY 12237, United States
| |
Collapse
|
9
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
10
|
Elles-Pérez C, Guzman-Tordecilla M, Ramos Y, Castillo-Ramírez M, Moreno-Ríos A, Garzón-Rodríguez C, Rojas-Solano J. Assessment of water quality and emerging pollutants in two fish species from the mallorquin swamp in the Colombian Caribbean. Heliyon 2024; 10:e39005. [PMID: 39640628 PMCID: PMC11620069 DOI: 10.1016/j.heliyon.2024.e39005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024] Open
Abstract
The Mallorquín Swamp, an important ecosystem in Atlántico, Colombian Caribbean, underwent environmental monitoring at eight points during rainy, transition, and dry seasons. This was to assess water quality, seasonal variation, and the bioaccumulation of metals, emerging pollutants, and organic compounds in the fish Ariopsis canteri and Mugil incilis. Water parameters were analyzed using descriptive statistics and multifactorial ANOVA with the Tukey HSD test for seasonal differences. Normality and variance of the fish results were verified, and differences between groups were evaluated using ANOVA or Kruskal-Walli's method when data transformation failed. Spearman correlation was used to relate the results. Water sampling revealed variations in temperature, dissolved oxygen, salinity, and nutrient levels. Significant differences in alkalinity and hardness were observed across seasons and sample points. The most probable number (MPN) levels of Total coliform and E. coli peaked near areas with domestic wastewater inputs, reaching 5.4x106 and 4.0x106 MPN, respectively, indicating potential microbiological contamination of water. Fish samples revealed high concentrations of persistent substances such as methylmercury, polycyclic aromatic hydrocarbons (PAHs), and emerging pollutants. Heavy metal analysis showed elevated iron levels (5.28 ± 0.657 mg/L), while emerging pollutants, including ibuprofen (218 μg/L) and naproxen (343.89 μg/L), exhibited high concentrations near human settlements. Ariopsis canteri showed higher bioconcentration tendencies for methylmercury (238.5 ± 100 μg/kg), and acenaphthene (7782 ± 4123.8 μg/kg), possibly influenced by its feeding habits and habitat preferences. In contrast, Mugil incilis exhibited higher bioaccumulation trends of PAH (2376.23 ± 599.63 μg/kg acenaphthene) and emerging pollutants like galaxolide (139.49 ± 34.98 μg/kg), possibly due to its mobility and exposure to various contaminants in their environment. These findings emphasize the need to monitor and manage aquatic ecosystems' health to mitigate anthropogenic influences on water quality and biodiversity. This research serves as a reference for global conservation efforts, emphasizing the need for comprehensive monitoring and regulatory frameworks to protect aquatic environments and ensure their sustainability for future generations.
Collapse
Affiliation(s)
- Cindy Elles-Pérez
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Maria Guzman-Tordecilla
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Yuliceth Ramos
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Margarita Castillo-Ramírez
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Andrea Moreno-Ríos
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Carolina Garzón-Rodríguez
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
| | - Jacqueline Rojas-Solano
- Servicio Nacional de Aprendizaje, SENA, Regional Atlántico, Grupo: CNCA, Carrera 43 No. 42 - 40, 080003, Barranquilla, Atlántico, Colombia
- Universidad del Norte, km 5 antigua vía a Puerto Colombia, 081007, Barranquilla, Atlántico, Colombia
| |
Collapse
|
11
|
Chen C, Luan J, Ji G, Lan F, Dong C, Lu Z. Construction of a durable, halogen-free, and phosphorus-free flame retardant cotton fabric system with hydrophobic properties by phase separation and interface polymerization. Int J Biol Macromol 2024; 278:135059. [PMID: 39182870 DOI: 10.1016/j.ijbiomac.2024.135059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Inspired by the synthesis of polyurethane, a multifunctional fabric with hydrophobic and long-lasting flame retardancy was prepared through the phase separation and interfacial reaction process between PEI (polyethyleneimine)/BX (borax) aqueous solution and isocyanate terminated polydimethylsiloxane (PDMS-NCO) in tetrahydrofuran solution. The limit oxygen index of the treated fabric increased from 18.0 % to 33.7 %, and the total heat release decreased by 34.2 %. The enhancement of flame retardant performance and thermal stability is attributed to the enhanced char-forming capacity. After 50 cycles of water washing, the cotton fabric can still pass the vertical flammability test because of the curing effect of PDMS-NCO on functional additives. Furthermore, SEM analysis revealed that the formation of nano-rough structures on the fibers was promoted by phase separation, thus leading an increased water contact angle of sample to 139°. The materials utilized in this modified process do not contain elements such as F, Cl, Br, and P, indicating its potential as an environmentally friendly methodology for fabric functionalization.
Collapse
Affiliation(s)
- Chen Chen
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Jiaxi Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Gongze Ji
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Fengying Lan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chaohong Dong
- College of Textile and Clothing, Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao 266071, China.
| | - Zhou Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
13
|
Neri I, Russo G, Grumetto L. Bisphenol A and its analogues: from their occurrence in foodstuffs marketed in Europe to improved monitoring strategies-a review of published literature from 2018 to 2023. Arch Toxicol 2024; 98:2441-2461. [PMID: 38864942 PMCID: PMC11272703 DOI: 10.1007/s00204-024-03793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
In this review article, the research works covering the analytical determination of bisphenol A (BPA) and its structural analogues published from 2018 to present (February 2024) were examined. The review offers an overview of the concentration levels of these xenoestrogens in food and beverages, and discusses concerns that these may possibly pose to the human health and scrutinises, from an analytical perspective, the main biomonitoring approaches that are applied. This comes as a natural evolution of a previous review that covered the same topic but in earlier years (up to 2017). As compared to the past, while the volume of published literature on this topic has not necessarily decreased, the research studies are now much more homogeneous in terms of their geographical origin, i.e., Southern Europe (mainly Italy and Spain). For this reason, an estimated daily intake of the European population could not be calculated at this time. In terms of the analytical approaches that were applied, 67% of the research groups exploited liquid chromatography (LC), with a detection that was prevalently (71%) afforded by mass spectrometry, with over one-fourth of the research teams using fluorescence (26%) and a minority (3%) detecting the analytes with diode array detection. One-third of the groups used gas chromatography (GC)-mass spectrometry achieving comparatively superior efficiency as compared to LC. Derivatisation was performed in 59% of the GC studies to afford more symmetrical signals and enhanced sensitivity. Although the contamination levels are well below the threshold set by governments, routinely biomonitoring is encouraged because of the possible accumulation of these contaminants in the human body and of their interplay with other xenoestrogens.
Collapse
Affiliation(s)
- Ilaria Neri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Giacomo Russo
- Centre of Biomedicine and Global Health, School of Applied Sciences, Sighthill Campus, Edinburgh Napier University, 9 Sighthill Ct, Edinburgh, EH11 4BN, UK.
| | - Lucia Grumetto
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano, 49, 80131, Naples, Italy
- Consorzio Interuniversitario INBB, Viale Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
14
|
Xu J, Bian J, Ge Y, Chen X, Lu B, Liao J, Xie Q, Zhang B, Sui Y, Yuan C, Lu S. Parabens and triclosan in red swamp crayfish (Procambarus clarkii) from China: Concentrations, tissue distribution and related human dietary intake risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173130. [PMID: 38734109 DOI: 10.1016/j.scitotenv.2024.173130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Parabens (PBs) and triclosan (TCS) are commonly found in pharmaceuticals and personal care products (PPCPs). As a result, they have been extensively found in the environment, particularly in aquaculture operations. Red swamp crayfish (Procambarus clarkii) consumption has significantly risen in China. Nevertheless, the levels of PBs and TCS in this species and the associated risk to human dietary intake remain undisclosed. This study assessed the amounts of five PBs, i.e., methyl-paraben (MeP), ethyl-paraben (EtP), propyl-paraben (PrP), butyl-paraben (BuP) and benzyl-paraben (BzP), as well as TCS in crayfish taken from five provinces of the middle-lower Yangtze River. MeP, PrP and TCS showed the highest detection rates (hepatopancreas: 46-86 %; muscle: 63-77 %) since they are commonly used in PPCPs. Significantly higher levels of ∑5PBs (median: 3.69 ng/g) and TCS (median: 7.27 ng/g) were significantly found in the hepatopancreas compared to the muscle (median: 0.39 ng/g for ∑5PBs and 0.16 ng/g for TCS) (p < 0.05), indicating bioaccumulation of these chemicals in the hepatopancreas. The estimated daily intake values of ∑5PBs and TCS calculated from the median concentrations of crayfish were 6.44-7.94 ng/kg bw/day and 11.4-14.0 ng/kg bw/day, respectively. Although no health risk was predicted from consuming crayfish (HQ <1), consumption of the hepatopancreas is not recommended.
Collapse
Affiliation(s)
- Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jianfang Liao
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Qingyuan Xie
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Beining Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Yaotong Sui
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Chenghan Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
15
|
Gonkowski S, Tzatzarakis M, Kadyralieva N, Vakonaki E, Lamprakis T. Exposure assessment of dairy cows to parabens using hair samples analysis. Sci Rep 2024; 14:14291. [PMID: 38906953 PMCID: PMC11192892 DOI: 10.1038/s41598-024-65347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024] Open
Abstract
Parabens (PBs) are used as preservatives in various products. They pollute the environment and penetrate living organisms, showing endocrine disrupting activity. Till now studies on long-term exposure of farm animals to PBs have not been performed. Among matrices using in PBs biomonitoring hair samples are becoming more and more important. During this study concentration levels of methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) butyl paraben (BuP) and benzyl paraben (BeP) were evaluated using liquid chromatography-mass spectrometry (LC-MS) in hair samples collected from dairy cows bred in the Kyrgyz Republic. MeP was noted in 93.8% of samples (with mean concentration levels 62.2 ± 61.8 pg/mg), PrP in 16.7% of samples (12.4 ± 6.5 pg/mg) and EtP in 8.3% of samples (21.4 ± 11.9 pg/mg). BuP was found only in one sample (2.1%) and BeP was not detected in any sample included in the study. Some differences in MeP concentration levels in the hair samples depending on district, where cows were bred were noted. This study has shown that among PBs, dairy cows are exposed mainly to MeP, and hair samples may be a suitable matrix for research on PBs levels in farm animals.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957, Olsztyn, Poland.
| | - Manolis Tzatzarakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Nariste Kadyralieva
- Department of Histology and Embryology, Veterinary Faculty, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Elena Vakonaki
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| | - Thomas Lamprakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Crete, Greece
| |
Collapse
|
16
|
Liao Z, Jian Y, Lu J, Liu Y, Li Q, Deng X, Xu Y, Wang Q, Yang Y, Luo Z. Distribution, migration patterns, and food chain human health risks of endocrine-disrupting chemicals in water, sediments, and fish in the Xiangjiang River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172484. [PMID: 38631636 DOI: 10.1016/j.scitotenv.2024.172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) in freshwater systems has garnered increasing attention. A comprehensive analysis of the migration patterns, bioaccumulation, and consumer health risk of EDCs along the Xiangjiang River due to fish consumption from the river ecosystem was provided. Twenty natural and synthetic target EDCs were detected and analyzed from the water, sediments, and fish samples collected along the Xiangjiang River. There were significant correlations between the EDC concentrations in fish and the sediments. This revealed that EDCs in sediments play a dominant role in the uptake of EDCs by fish. The bioaccumulation factor and biota-sediment accumulation factor were calculated, with the highest values observed for nonylphenol. Pearson's correlation analysis showed that bisphenol A is the most reliable biological indicator of EDC contamination in fish. Furthermore, based on the threshold of toxicological concerns and the health risk with dietary intake, crucian carp and catfish from the Xiangjiang River pose a certain risk for children and pregnant women compared to grass carp. The Monte Carlo simulation results indicated a certain risk of cumulative ∑EDC exposure for local residents due to fish consumption.
Collapse
Affiliation(s)
- Ze Liao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yu Jian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jing Lu
- Technology Center of Changsha Customs, Hunan Key Laboratory of Food Safety Science & Technology, Changsha 410004, PR China
| | - Yilin Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qinyao Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xunzhi Deng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yin Xu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qiuping Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Zhoufei Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
17
|
Turnipseed SB. Analysis of chemical contaminants in fish using high resolution mass spectrometry - A review. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2024; 42:e00227. [PMID: 38957876 PMCID: PMC11215702 DOI: 10.1016/j.teac.2024.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High resolution mass spectrometry (HRMS) has become an important tool in environmental and food safety analysis. This review highlights how HRMS has been used to analyze chemical contaminants in fish. Measuring and documenting chemical contaminants in fish serves not only as an indicator of environmental conditions but can also monitor the health of these animals and help protect an important source of human food. The incidence and significance of contaminants including veterinary drugs, human drugs and personal care products, pesticides, persistent organic pollutants, per- and poly fluorinated substances, and marine toxins will be reviewed. The advantage of HRMS over traditional MS is its ability to expand the number of compounds that can be detected and identified. This is true whether HRMS is used for targeted analytes, or more broadly for suspect screening and nontargeted analyses. The classes of compounds, types of fish or seafood, options for data acquisition and analysis, and reports of unexpected findings from recent HMRS methods for chemical contaminants in fish are summarized.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- US Food and Drug Administration, Animal Drugs Research Center, Denver, CO, USA
| |
Collapse
|
18
|
Wu M, Miao J, Zhang W, Wang Q, Sun C, Wang L, Pan L. Occurrence, distribution, and health risk assessment of pyrethroid and neonicotinoid insecticides in aquatic products of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170880. [PMID: 38364586 DOI: 10.1016/j.scitotenv.2024.170880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Synthetic pyrethroid insecticides (SPIs) and neonicotinoid insecticides (NEOs), now dominant in the insecticide market, are increasingly found in aquatic environments. This study focused on six SPIs and five NEOs in aquatic products from four Chinese provinces (Shandong, Hubei, Shanxi and Zhejiang) and the risk assessment of the safety for the residents was conducted. It revealed significantly higher residues of Σ6SPIs (6.27-117.19 μg/kg) compared to Σ5NEOs (0.30-14.05 μg/kg), with SPIs more prevalent in fish and NEOs in shellfish. Carnivorous fish showed higher pesticide levels. Residues of these two types of pesticides were higher in carnivorous fish than in fish with other feeding habits. In the four regions investigated, the hazard quotient and hazard index of SPIs and NEOs were all <1, indicating no immediate health risk to human from single and compound contamination of the two types of pesticides in aquatic products. The present study provides valuable information for aquaculture management, pollution control and safeguarding human health.
Collapse
Affiliation(s)
- Manni Wu
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingjing Miao
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China.
| | | | - Qiaoqiao Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Ce Sun
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Lu Wang
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- Key Laboratory of Maricultural, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
19
|
Pintado-Herrera MG, Aguirre-Martínez GV, Martin-Díaz LM, Blasco J, Lara-Martín PA, Sendra M. Personal care products: an emerging threat to the marine bivalve Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20461-20476. [PMID: 38376785 PMCID: PMC10927873 DOI: 10.1007/s11356-024-32391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
In the last few decades, there has been a growing interest in understanding the behavior of personal care products (PCPs) in the aquatic environment. In this regard, the aim of this study is to estimate the accumulation and effects of four PCPs within the clam Ruditapes philippinarum. The PCPs selected were triclosan, OTNE, benzophenone-3, and octocrylene. A progressive uptake was observed and maximum concentrations in tissues were reached at the end of the exposure phase, up to levels of 0.68 µg g-1, 24 µg g-1, 0.81 µg g-1, and 1.52 µg g-1 for OTNE, BP-3, OC, and TCS, respectively. After the PCP post-exposure period, the removal percentages were higher than 65%. The estimated logarithm bioconcentration factor ranged from 3.34 to 2.93, in concordance with the lipophobicity of each substance. No lethal effects were found although significant changes were observed for ethoxyresorufin O-demethylase activity, glutathione S-transferase activity, lipid peroxidation, and DNA damage.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain.
| | | | - Laura M Martin-Díaz
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos S/N, 09001, Burgos, Spain
| |
Collapse
|
20
|
Gobbato J, Becchi A, Bises C, Siena F, Lasagni M, Saliu F, Galli P, Montano S. Occurrence of phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) in key species of anthozoans in Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 200:116078. [PMID: 38290362 DOI: 10.1016/j.marpolbul.2024.116078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The Mediterranean Sea's biodiversity is declining due to climate change and human activities, with plastics and emerging contaminants (ECs) posing significant threats. This study assessed phthalic acid esters (PAEs) and active pharmaceutical ingredients (APIs) occurrence in four anthozoan species (Cladocora caespitosa, Eunicella cavolini, Madracis pharensis, Parazoanthus axinellae) using solid phase microextraction (SPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). All specimens were contaminated with at least one contaminant, reaching maximum values of 57.3 ng/g for the ∑PAEs and 64.2 ng/g (wet weight) for ∑APIs, with dibutyl phthalate and Ketoprofen being the most abundant. P. axinellae was the most contaminated species, indicating higher susceptibility to bioaccumulation, while the other three species showed two-fold lower concentrations. Moreover, the potential adverse effects of these contaminants on anthozoans have been discussed. Investigating the impact of PAEs and APIs on these species is crucial, given their key role in the Mediterranean benthic communities.
Collapse
Affiliation(s)
- J Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives.
| | - A Becchi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - C Bises
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - F Siena
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives
| | - M Lasagni
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - F Saliu
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy
| | - P Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; University of Dubai, P.O. Box 14143, Dubai Academic City, United Arab Emirates; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| | - S Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Piazza della Scienza, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, 12030 Faafu Atoll, Maldives; NBFC (National Biodiversity Future Center), 90133 Palermo, Italy
| |
Collapse
|
21
|
Kundu S, Biswas A, Ray A, Roy S, Das Gupta S, Ramteke MH, Kumar V, Das BK. Bisphenol A contamination in Hilsa shad and assessment of potential health hazard: A pioneering investigation in the national river Ganga, India. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132532. [PMID: 37748308 DOI: 10.1016/j.jhazmat.2023.132532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
The anadromous Hilsa, often known as the "Queen of Fishes" (Tenualosa ilisha), is the most valuable fishery in the Ganga-Hooghly delta estuary. Although BPA exposure has been shown to be harmful to aquatic organisms, no research has looked at the effects of BPA on the commercially valuable Hilsa shad of river Ganga. To close this information vacuum, we examined BPA levels in Hilsa fish from the Ganga estuary. Liver, muscle, kidney, and gonads were all positive for BPA among the Hilsa fish of all ages. Liver BPA levels were highest in adult males (272.16 ± 0.38 ng/g-dw), and lowest in juveniles (5.46 ± 0.06 ng/g-dw). BPA concentrations in the Hilsa shad muscle were highest in reproductively mature females (196.23 ± 0.41 ng/g-dw). The study also discovered a correlation between fish development and BPA exposure, with higher levels of BPA being identified in adult Hilsa species. This is the first study to look at the impact of BPA pollution on aquatic ecosystems and fisheries, and it showed that Hilsa shad is contaminated with BPA and poses health hazards to human beings. The results, which demonstrate BPA contamination, are useful for protecting Hilsa in the river Ganga.
Collapse
Affiliation(s)
- Sourav Kundu
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Ayan Biswas
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Archisman Ray
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Shreya Roy
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Subhadeep Das Gupta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Mitesh Hiradas Ramteke
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Vikas Kumar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, West Bengal, India.
| |
Collapse
|
22
|
Zhu RG, Pan CG, Peng FJ, Zhou CY, Hu JJ, Yu K. Parabens and their metabolite in a marine benthic-dominated food web from the Beibu gulf, South China Sea: Occurrence, trophic transfer and health risk assessment. WATER RESEARCH 2024; 248:120841. [PMID: 37952329 DOI: 10.1016/j.watres.2023.120841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
Parabens are of particular concern due to their ubiquity in aquatic environments and endocrine-disrupting effects. However, information on their bioaccumulation and trophic magnification is limited. In the present study, we performed a comprehensive survey to investigate the occurrence, bioaccumulation and trophic magnification of parabens and their metabolite 4-hydroxybenzoic acid (4-HB) in a marine food web from the Beibu Gulf, South China Sea. Results showed that methylparaben (MeP) and 4-HB were the predominant target pollutants in marine organisms, with their concentrations being in the range of 0.18-13.77 and 13.48-222.24 ng/g wet weight, respectively. The bioaccumulation factors (BAFs) for target analytes were all lower than 5000, suggesting negligible bioaccumulation. However, the biota-sediment accumulation factors (BSAFs) for MeP and 4-HB were 4.51 and 3.21, respectively, which indicates significant bioaccumulation from the sediment. Furthermore, the estimated trophic magnification factor (TMF) was 2.88 for MeP, suggesting its biomagnification along the food web. In contrast, a lower TMF of 0.45 was found for 4-HB, suggesting trophic dilution along the food web. The hazard quotients (HQs) for parabens were far less than 1 in all organisms, suggesting low risks for humans through consuming marine organisms from the Beibu Gulf. This study provides substantial data on the fate and trophic transfer of parabens in a subtropical marine ecosystem.
Collapse
Affiliation(s)
- Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
23
|
Creusot N, Huba K, Borel C, Ferrari BJD, Chèvre N, Hollender J. Identification of polar organic chemicals in the aquatic foodweb: Combining high-resolution mass spectrometry and trend analysis. ENVIRONMENT INTERNATIONAL 2024; 183:108403. [PMID: 38224651 DOI: 10.1016/j.envint.2023.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Environmental risk assessment of chemical contaminants requires prioritizing of substances taken up by biota as it is a starting point for potential adverse effects. Although knowledge about the occurrence of known chemical pollutants in aquatic organisms has significantly improved during the last decade, there is still a poor understanding for a broad range of more polar compounds. To tackle this issue, we proposed an approach that identifies bioaccumulative and biomagnifiable polar chemicals using liquid chromatography coupled with electrospray ionization to high resolution tandem mass spectrometry (LC-HRMS/MS) and combine it with trend analysis using hierarchical clustering. As a proof-of-concept, this approach was implemented on various organisms and compartments (sediment, litter leaves, periphytic biofilm, invertebrates and fish) collected from a small urban river. HRMS/MS data measured via data-independent acquisition mode were retrospectively analysed using two analytical strategies: (1) retrospective target and (2) suspect/non-target screening. In the retrospective target analysis, 56 of 361 substances spanning a broad range of contaminant classes were detected (i.e. 26 in fish, 18 in macroinvertebrates, 28 in leaves, 29 in periphyton and 32 in sediments, with only 7 common to all compartments), among which 49 could be quantified using reference standards. The suspect screening approach based on two suspect lists (in-house, Norman SusDat) led to the confirmation of 5 compounds with standards (three xenobiotics at level 1 and two lipids at level 2) and tentative identification of seven industrial or natural chemicals at level 2 and 3 through a mass spectra library match. Overall, this proof-of-concept study provided a more comprehensive picture of the exposure of biota to emerging contaminants (i.e., the internal chemical exposome) and potential bioaccumulation or biomagnification of polar compounds along the trophic chain.
Collapse
Affiliation(s)
- Nicolas Creusot
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; INRAE, EABX, Bordeaux Metabolome, MetaboHub, 50 avenue de Verdun, 33612 Gazinet-Cestas, France.
| | - Kristina Huba
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | | | - Benoit J D Ferrari
- Swiss Centre for Applied Ecotoxicology (Ecotox Centre), Lausanne/Dübendorf, Switzerland
| | | | - Juliane Hollender
- Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
24
|
Pastorino P, Squadrone S, Berti G, Esposito G, Bondavalli F, Renzi M, Pizzul E, Kazmi SSUH, Barceló D, Abete MC, Prearo M. Occurrence of rare earth elements in water, sediment, and freshwater fish of diverse trophic levels and feeding ecology: Insights from the Po river (northwest Italy). ENVIRONMENTAL RESEARCH 2024; 240:117455. [PMID: 37865325 DOI: 10.1016/j.envres.2023.117455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
To date, the occurrence of rare earth elements (REEs) in freshwater ecosystems has garnered limited attention in the scientific literature. Furthermore, a dearth of data exists regarding their potential bioaccumulation in freshwater fish. To fill this knowledge gap, we studied REEs concentrations in water, sediment, and fish specimens collected along the Po River (northwest Italy) and calculated biota-sediment accumulation (BSAF) and bioconcentration (BCF) factors, while taking into account fish feeding behavior and trophic level effects on the overall content of total REEs (ƩREEs). The fish communities were composed of native and non-native species. Remarkably low concentrations of REEs (<0.0003 mg/L) were detected in the water samples, indicating REEs insolubility. In contrast, sediment samples were found to be a good sink for REEs, with a higher mean ƩREEs recorded for the samples from the Moncalieri station (70.93 mg/kg). Notably, no significant differences in ƩREEs concentration were observed in the muscle tissue of fish samples from the three stations. The highest mean ƩREEs was recorded in the samples from the Murazzi station (0.027 mg/kg). The BSAF was very low, consistently below the unit, indicating an absence of bioaccumulation in fish muscle from sediment. In contrast, the BCF was high for several REEs, mainly for Sc and Y. While feeding ecology did not appear to affect REEs accumulation in muscle, there was a significant negative relationship between the trophic level and ΣREEs, indicating a trophic dilution of REEs from predator (Silurus glanis) to planktivorous (Alburnus arborella) fish. This study provides baseline concentrations, trophic transfers, and patterns of REEs in a river system. Further studies are needed to understand the transfer of REEs to other biotic components of lotic ecosystems.
Collapse
Affiliation(s)
- Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy.
| | - Stefania Squadrone
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Giovanna Berti
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Fabio Bondavalli
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Monia Renzi
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elisabetta Pizzul
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Syed Shabi Ul Hassan Kazmi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034, Barcelona, Spain
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, 10154, Torino, Italy
| |
Collapse
|
25
|
García-Pimentel MM, Fernández B, Campillo JA, Castaño-Ortiz JM, Gil-Solsona R, Fernández-González V, Muniategui-Lorenzo S, Rodríguez-Mozaz S, León VM. Floating plastics as integrative samplers of organic contaminants of legacy and emerging concern from Western Mediterranean coastal areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166828. [PMID: 37690766 DOI: 10.1016/j.scitotenv.2023.166828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the role of floating plastics as integrative samplers of organic contaminants. To this end, plastics items were collected in two Western Mediterranean coastal areas: the Mar Menor lagoon, and the last transect of Ebro river. Floating plastics were identified and characterized by attenuated total reflection Fourier-transform infrared spectrometry. Then, organic contaminants were extracted from plastic items by ultrasonic extraction with methanol, and the concentrations of 168 regulated and emerging contaminants were analysed. These compounds were analysed by stir bar sorptive extraction coupled to gas chromatography-mass spectrometry (GC-MS), except for bisphenol analogues, which were analysed with a ultraperformance liquid chromatography pump coupled to a triple quadrupole mass spectrometer (UHPLC-MS/MS), and pharmaceutical compounds, determined by UPLC coupled to hybrid triple quadrupole-linear ion trap mass spectrometer (UPLC-MS/MS). All the contaminants groups considered were detected in the samples, being particularly relevant the contribution of plastic additives. The most frequently detected contaminants were UV-filters, PAHs, pharmaceuticals and synthetic musks. Apart from plasticizers, the individual contaminants octocrylene, homosalate, galaxolide, salycilic acid and ketoprofen were frequently detected in plastics items. The results pointed out to urban and touristic activities as the main sources of pollution in the coastal areas investigated. The utility of floating plastics as integrative samplers for the detection of organic contaminants in aquatic ecosystems has been demonstrated.
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| | - B Fernández
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | - J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V Fernández-González
- Grupo de Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus A Coruña, E-15071 A Coruña, Spain
| | - S Muniategui-Lorenzo
- Grupo de Química Analítica Aplicada, Instituto Universitario de Medio Ambiente (IUMA), Departamento de Química Analítica, Facultade de Ciencias, Universidade da Coruña, Campus A Coruña, E-15071 A Coruña, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), 17003 Girona, Spain; University of Girona, Girona, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
26
|
Pereira AR, Simões M, Gomes IB. Parabens as environmental contaminants of aquatic systems affecting water quality and microbial dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167332. [PMID: 37758132 DOI: 10.1016/j.scitotenv.2023.167332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Among different pollutants of emerging concern, parabens have gained rising interest due to their widespread detection in water sources worldwide. This occurs because parabens are used in personal care products, pharmaceuticals, and food, in which residues are generated and released into aquatic environments. The regulation of the use of parabens varies across different geographic regions, resulting in diverse concentrations observed globally. Concentrations of parabens exceeding 100 μg/L have been found in wastewater treatment plants and surface waters while drinking water (DW) sources typically exhibit concentrations below 6 μg/L. Despite their low levels, the presence of parabens in DW is a potential exposure route for humans, raising concerns for both human health and environmental microbiota. Although a few studies have reported alterations in the functions and characteristics of microbial communities following exposure to emerging contaminants, the impact of the exposure to parabens by microbial communities, particularly biofilm colonizers, remains largely understudied. This review gathers the most recent information on the occurrence of parabens in water sources, as well as their effects on human health and aquatic organisms. The interactions of parabens with microbial communities are reviewed for the first time, filling the knowledge gaps on the effects of paraben exposure on microbial ecosystems and their impact on disinfection tolerance and antimicrobial resistance, with potential implications for public health.
Collapse
Affiliation(s)
- Ana Rita Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
27
|
Manjarrés-López DP, Vitale D, Callejas-Martos S, Usuriaga M, Picó Y, Pérez S, Montemurro N. An effective method for the simultaneous extraction of 173 contaminants of emerging concern in freshwater invasive species and its application. Anal Bioanal Chem 2023; 415:7085-7101. [PMID: 37776351 PMCID: PMC10684701 DOI: 10.1007/s00216-023-04974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
A robust and efficient extraction method was developed to detect a broad range of pollutants of emerging interest in three freshwater invasive species: American red crab (Prokambarus clarkii), Asian clam (Corbicula fluminea), and pumpkinseed fish (Lepomis gibbosus). One native species, "petxinot" clam (Anodonta cygnea), was also evaluated. Invasive species are often more resistant to contamination and could be used in biomonitoring studies to assess the effect of contaminants of emerging concern on aquatic ecosystems while preserving potentially threatened native species. So far, most extraction methods developed for this purpose have focused on analyzing fish and generally focus on a limited number of compounds, especially analyzing compounds from the same family. In this sense, we set out to optimize a method that would allow the simultaneous extraction of 87 PhACs, 11 flame retardants, 21 per- and poly-fluoroalkyl substances, and 54 pesticides. The optimized method is based on ultrasound-assisted solvent extraction. Two tests were performed during method development, one to choose the extraction solvent with the best recovery efficiencies and one to select the best clean-up. The analysis was performed by high-performance liquid chromatography coupled to high-resolution mass spectrometry. The method obtained recoveries between 40 and 120% and relative standard deviations of less than 25% for 85% of the analytes in the four validated matrices. Limits of quantification between 0.01 ng g-1 and 22 ng g-1 were obtained. Application of the method on real samples from the Albufera Natural Park of Valencia (Spain) confirmed the presence of contaminants of emerging concern in all samples, such as acetaminophen, hydrochlorothiazide, tramadol, PFOS, carbendazim, and fenthion. PFAS were the group of compounds with the highest mean concentrations. C. fluminea was the species with the highest detection frequency, and P. clarkii had the highest average concentrations, so its use is prioritized for biomonitoring studies.
Collapse
Affiliation(s)
- Diana P Manjarrés-López
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Dyana Vitale
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Callejas-Martos
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Martí Usuriaga
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Yolanda Picó
- Desertification Research Centre (CIDE) (CSIC-UV-GV), University of Valencia, Road CV-315 Km 10.7, Moncada, 46113, Valencia, Spain
| | - Sandra Pérez
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Nicola Montemurro
- Environmental and Water Chemistry for Human Health (ONHEALTH) Group, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
28
|
Jan S, Mishra AK, Bhat MA, Bhat MA, Jan AT. Pollutants in aquatic system: a frontier perspective of emerging threat and strategies to solve the crisis for safe drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113242-113279. [PMID: 37864686 DOI: 10.1007/s11356-023-30302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Water is an indispensable natural resource and is the most vital substance for the existence of life on earth. However, due to anthropogenic activities, it is being polluted at an alarming rate which has led to serious concern about water shortage across the world. Moreover, toxic contaminants released into water bodies from various industrial and domestic activities negatively affect aquatic and terrestrial organisms and cause serious diseases such as cancer, renal problems, gastroenteritis, diarrhea, and nausea in humans. Therefore, water treatments that can eliminate toxins are very crucial. Unfortunately, pollution treatment remains a difficulty when four broad considerations are taken into account: effectiveness, reusability, environmental friendliness, and affordability. In this situation, protecting water from contamination or creating affordable remedial techniques has become a serious issue. Although traditional wastewater treatment technologies have existed since antiquity, they are both expensive and inefficient. Nowadays, advanced sustainable technical approaches are being created to replace traditional wastewater treatment processes. The present study reviews the sources, toxicity, and possible remediation techniques of the water contaminants.
Collapse
Affiliation(s)
- Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | | | - Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, J&K, India.
| |
Collapse
|
29
|
Lin Y, Zhao Y, Liu Y, Lan Y, Zhu J, Cai Y, Guo F, Li F, Zhang Y, Xu Z, Xue J. Occurrence and bioaccumulation of parabens and their metabolites in the biota from a subtropical freshwater river ecosystem: Implications for human exposure. ENVIRONMENTAL RESEARCH 2023; 240:117530. [PMID: 39491101 DOI: 10.1016/j.envres.2023.117530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Widespread occurrence of parabens in the environment has been documented, whereas little information is available about the occurrence and bioaccumulation of parabens in the aquatic biota. In this study, plants (n = 14), plankton (n = 20), and fish muscle (n = 89) samples were collected from Dongjiang River Basin and analyzed for nine parabens and two of their metabolites using ultra-high performance liquid chromatogram-tandem mass spectrometry. All the samples contained notable concentrations of parabens and the metabolites, and the total concentrations of parabens (Σp-PBs; sum of nine parent compounds) ranged from 0.40 to 776 ng/g dry wt. MeP, EtP, and PrP were the predominant parent compounds in both plankton and fish, while in plants, MeP, BzP and EtP were the top three abundant chemicals. As the predominant metabolite, 4-HB was detected in 99% aquatic biota samples analyzed with the highest concentration (24800 ng/g, dry wt) detected in an alga. Significantly positively correlations among the concentrations of MeP, BzP, EtP and 4-HB in the fish muscle were found. Based on dry weight, bioaccumulation potentials of these chemical substances were estimated with bioaccumulation factor (BAF) values greater than 2000 L/kg, suggestive of bioaccumulative in aquatic biota. Based on the concentrations measured, the daily intake (EDI) of parabens through fish consumption was estimated with the mean EDIs as 4.20, 2.41, and 1.93 ng/kg bw/day for toddlers, children, and adults in urban, respectively. This study provides baseline information about the occurrence and fate of parabens in the aquatic environment.
Collapse
Affiliation(s)
- Yiling Lin
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuxian Liu
- Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yongyin Lan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiamin Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fen Guo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhihao Xu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingchuan Xue
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Neale PA, Melvin SD, Hancock M, Leusch FDL. ECHIDNA (Emerging CHemIcals Database for National Awareness): a framework to prioritise contaminants of emerging concern in water. JOURNAL OF WATER AND HEALTH 2023; 21:1357-1368. [PMID: 37756201 PMCID: wh_2023_190 DOI: 10.2166/wh.2023.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The widespread presence of contaminants of emerging concern (CEC) in surface waters, treated wastewater and drinking water is an ongoing issue for the water industry. The absence of regulatory guidance and limited occurrence, toxicity and removal data are defining criteria of CEC and make it difficult to prioritise which CEC pose the greatest risk. The online Emerging CHemIcals Database for National Awareness (ECHIDNA) aims to classify and prioritise CEC based on their potential risk, with the information presented in an easily accessible and intuitive manner. A candidate list of almost 1,800 potential CEC, including pesticides, pharmaceuticals and industrial compounds, was compiled using both Australian and international resources. These were ranked based on in silico assessment of their persistent, bioaccumulative and toxic (PBT) properties, as well as potential chronic toxicity hazard, yielding 247 CEC for further prioritisation. Risk Quotients (RQ) identified between 5 and 87 CEC posing a risk to human and ecosystem health, respectively, across drinking water, surface water, treated wastewater and raw wastewater. While the ability of the water industry to effectively prioritise CEC is limited by candidate identification and data availability, ECHIDNA can provide valuable information for better decision-making surrounding CEC management.
Collapse
Affiliation(s)
- Peta A Neale
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia E-mail:
| | - Steven D Melvin
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| | - Marty Hancock
- Water Research Australia Limited, Adelaide, SA 5000, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport, QLD 4222, Australia
| |
Collapse
|
31
|
Denora M, Candido V, Brunetti G, De Mastro F, Murgolo S, De Ceglie C, Salerno C, Gatta G, Giuliani MM, Mehmeti A, Bartholomeus RP, Perniola M. Uptake and accumulation of emerging contaminants in processing tomato irrigated with tertiary treated wastewater effluent: a pilot-scale study. FRONTIERS IN PLANT SCIENCE 2023; 14:1238163. [PMID: 37692419 PMCID: PMC10484752 DOI: 10.3389/fpls.2023.1238163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
The reuse of treated wastewater for crop irrigation is vital in water-scarce semi-arid regions. However, concerns arise regarding emerging contaminants (ECs) that persist in treated wastewater and may accumulate in irrigated crops, potentially entering the food chain and the environment. This pilot-scale study conducted in southern Italy focused on tomato plants (Solanum lycopersicum L. cv Taylor F1) irrigated with treated wastewater to investigate EC uptake, accumulation, and translocation processes. The experiment spanned from June to September 2021 and involved three irrigation strategies: conventional water (FW), treated wastewater spiked with 10 target contaminants at the European average dose (TWWx1), and tertiary WWTP effluent spiked with the target contaminants at a triple dose (TWWx3). The results showed distinct behavior and distribution of ECs between the TWWx1 and TWWx3 strategies. In the TWWx3 strategy, clarithromycin, carbamazepine, metoprolol, fluconazole, and climbazole exhibited interactions with the soil-plant system, with varying degradation rates, soil accumulation rates, and plant accumulation rates. In contrast, naproxen, ketoprofen, diclofenac, sulfamethoxazole, and trimethoprim showed degradation. These findings imply that some ECs may be actively taken up by plants, potentially introducing them into the food chain and raising concerns for humans and the environment.
Collapse
Affiliation(s)
- Michele Denora
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera, Matera, Italy
| | - Vincenzo Candido
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera, Matera, Italy
| | - Gennaro Brunetti
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Science, University of Bari, Bari, Italy
| | - Sapia Murgolo
- Water Research Institute (IRSA), National Research Council (CNR), Bari, Italy
| | - Cristina De Ceglie
- Water Research Institute (IRSA), National Research Council (CNR), Bari, Italy
| | - Carlo Salerno
- Water Research Institute (IRSA), National Research Council (CNR), Bari, Italy
| | - Giuseppe Gatta
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Marcella Michela Giuliani
- Department of Agricultural Sciences, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Andi Mehmeti
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera, Matera, Italy
- Mediterranean Agronomic Insitute of Bari (CIHEAM Bari), Valenzano, Italy
| | - Ruud P. Bartholomeus
- KWR Water Research Institute, Nieuwegein, Netherlands
- Soil Physics and Land Management, Wageningen University & Research, Wageningen, Netherlands
| | - Michele Perniola
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera, Matera, Italy
| |
Collapse
|
32
|
Mazuryk J, Klepacka K, Kutner W, Sharma PS. Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384557 DOI: 10.1021/acs.est.3c01269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- Bio & Soft Matter, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1 Place Louis Pasteur, 1348 Louvain-la-Neuve, Belgium
| | - Katarzyna Klepacka
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
- ENSEMBLE3 sp. z o. o., 01-919 Warsaw, Poland
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
| | - Włodzimierz Kutner
- Faculty of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938 Warsaw, Poland
- Modified Electrodes for Potential Application in Sensors and Cells Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Piyush Sindhu Sharma
- Functional Polymers Research Team, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
33
|
Carrizo JC, Munoz G, Vo Duy S, Liu M, Houde M, Amé MV, Liu J, Sauvé S. PFAS in fish from AFFF-impacted environments: Analytical method development and field application at a Canadian international civilian airport. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163103. [PMID: 36972881 DOI: 10.1016/j.scitotenv.2023.163103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/09/2023] [Accepted: 03/23/2023] [Indexed: 05/17/2023]
Abstract
Methods targeting anionic per- and polyfluoroalkyl substances (PFAS) in aquatic biota are well established, but commonly overlook many PFAS classes present in aqueous film-forming foams (AFFFs). Here, we developed an analytical method for the expanded analysis of negative and positive ion mode PFAS in fish tissues. Eight variations of extraction solvents and clean-up protocols were first tested to recover 70 AFFF-derived PFAS from the fish matrix. Anionic, zwitterionic, and cationic PFAS displayed the best responses with methanol-based ultrasonication methods. The response of long-chain PFAS was improved for extracts submitted to graphite filtration alone compared with those involving solid-phase extraction. The validation included an assessment of linearity, absolute recovery, matrix effects, accuracy, intraday/interday precision, and trueness. The method was applied to a set of freshwater fish samples collected in 2020 in the immediate vicinity (creek, n = 15) and downstream (river, n = 15) of an active fire-training area at an international civilian airport in Ontario, Canada. While zwitterionic fluorotelomer betaines were major components of the subsurface AFFF source zone, they were rarely detected in fish, suggesting limited bioaccumulation potential. PFOS largely dominated the PFAS profile, with record-high concentrations in brook sticklebacks (Culaea inconstans) from the creek (16000-110,000 ng/g wet weight whole-body). These levels exceeded the Canadian Federal Environmental Quality Guidelines (FEQG) for PFOS pertaining to the Federal Fish Tissue Guideline (FFTG) for fish protection and Federal Wildlife Diet Guidelines (FWiDG) for the protection of mammalian and avian consumers of aquatic biota. Perfluorohexane sulfonamide and 6:2 fluorotelomer sulfonate were among the precursors detected at the highest levels (maximum of ∼340 ng/g and ∼1100 ng/g, respectively), likely reflecting extensive degradation and/or biotransformation of C6 precursors originally present in AFFF formulations.
Collapse
Affiliation(s)
- Juan Cruz Carrizo
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada; CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| | - Min Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC, Canada
| | - María Valeria Amé
- CONICET, CIBICI and Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Dpto. Bioquímica Clínica, Córdoba, Argentina
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
34
|
Diao J, Chen Z, Su C, Wang J, Zheng Z, Sun Q, Wang L, Bi R, Wang T. Legacy and novel perfluoroalkyl substances in major economic species of invertebrates in South China Sea: Health implication from consumption. MARINE POLLUTION BULLETIN 2023; 192:115112. [PMID: 37276713 DOI: 10.1016/j.marpolbul.2023.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Continuously release of perfluoroalkyl substances (PFASs) would pose non-negligible impacts on environment, organisms, and human health. In present study, 18 PFASs in 7 typical economic invertebrates and their habitats were investigated from the South China Sea. The higher concentrations of PFASs in the nearshore water (6.61-15.54 ng/L) and sediment (0.82-8.84 ng/g) obviously due to frequent human activities. Long-chain PFASs have tendency to accumulate in sediment, however, short-chain PFASs dominated in biota. The acute reference dose (%ARfD) and hazard ratios (HR) of major PFASs in biota were all <100 %, and also below 1, respectively, which means that consumption of PFASs from seafood does not pose risk and threat to human health. However, it should be taken into account that the HR of PFHxA in Mimachlamys nobilis reached 0.82. Potential adverse effects toward human health induced by short-chain PFASs (such as <6 C) via invertebrate seafood consumption should be concerned.
Collapse
Affiliation(s)
- Jieyi Diao
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhenwei Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chuanghong Su
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Jianwen Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhixin Zheng
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Qiongping Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lin Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ran Bi
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Tieyu Wang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
35
|
Ivankovic K, Jambrosic K, Mikac I, Kapetanovic D, Ahel M, Terzic S. Multiclass determination of drug residues in water and fish for bioaccumulation potential assessment. Talanta 2023; 264:124762. [PMID: 37276678 DOI: 10.1016/j.talanta.2023.124762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
In this work, a wide-scope liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantitative determination of environmental levels of multiclass drugs and their metabolites in water and fish samples was developed. The method allowed the reliable determination of 44 drugs, covering a rather wide range of chemistries and physicochemical characteristics. In order to obtain a reliable and robust analytical protocol, different combinations of extraction and cleanup techniques were systematically examined. Aqueous samples were extracted using a simple Oasis HLB SPE enrichment protocol with pH-optimized sample percolation (pH 3). The extraction of cryo-homogenized biota samples was performed using double extraction with MeOH basified with 0.5% NH3, which allowed high extraction recoveries for all target analytes. The problem of the coextracted lipid matrix, which is known to be the key obstacle for reliable biota analysis, was systematically examined in a series of model cleanup experiments. A combination of cryo-precipitation, filtration, and HLB SPE cleanup was proposed as a protocol, which allowed reliable and robust analysis of all target compounds at low ng/g levels. At the final conditions, the method which was validated at three concentration levels showed high extraction recoveries (68-97%), acceptable matrix effects (12 to -32%), accuracies (81-129%), and reproducibilities (3-32%) for all analytes. The developed method was used to determine drug concentrations in river water and in feral freshwater fish, including whole fish and muscle tissue, from the Sava River (Croatia), in order to estimate their corresponding bioaccumulation potential. With respect to bioaccumulation potential in whole fish and fish muscle, the most relevant drugs were lisinopril, sertraline, terbinafine, torsemide, diazepam, desloratadine, and loratadine with estimated bioaccumulation factors ranging from 20 to 838 and from 1 to 431, respectively.
Collapse
Affiliation(s)
- Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Iva Mikac
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Damir Kapetanovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia
| | - Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
36
|
Marcu D, Keyser S, Petrik L, Fuhrimann S, Maree L. Contaminants of Emerging Concern (CECs) and Male Reproductive Health: Challenging the Future with a Double-Edged Sword. TOXICS 2023; 11:330. [PMID: 37112557 PMCID: PMC10141735 DOI: 10.3390/toxics11040330] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Approximately 9% of couples are infertile, with half of these cases relating to male factors. While many cases of male infertility are associated with genetic and lifestyle factors, approximately 30% of cases are still idiopathic. Contaminants of emerging concern (CECs) denote substances identified in the environment for the first time or detected at low concentrations during water quality analysis. Since CEC production and use have increased in recent decades, CECs are now ubiquitous in surface and groundwater. CECs are increasingly observed in human tissues, and parallel reports indicate that semen quality is continuously declining, supporting the notion that CECs may play a role in infertility. This narrative review focuses on several CECs (including pesticides and pharmaceuticals) detected in the nearshore marine environment of False Bay, Cape Town, South Africa, and deliberates their potential effects on male fertility and the offspring of exposed parents, as well as the use of spermatozoa in toxicological studies. Collective findings report that chronic in vivo exposure to pesticides, including atrazine, simazine, and chlorpyrifos, is likely to be detrimental to the reproduction of many organisms, as well as to sperm performance in vitro. Similarly, exposure to pharmaceuticals such as diclofenac and naproxen impairs sperm motility both in vivo and in vitro. These contaminants are also likely to play a key role in health and disease in offspring sired by parents exposed to CECs. On the other side of the double-edged sword, we propose that due to its sensitivity to environmental conditions, spermatozoa could be used as a bioindicator in eco- and repro-toxicology studies.
Collapse
Affiliation(s)
- Daniel Marcu
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Shannen Keyser
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Leslie Petrik
- Environmental and Nano Sciences Group, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Samuel Fuhrimann
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (Swiss TPH), 4123 Allschwil, Switzerland
| | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| |
Collapse
|
37
|
John S, Rathinavelu S, Mary SMS, Nambi IM, Babu SM, Thomas T, Singh S. Solar-driven hybrid photo-Fenton degradation of persistent antibiotic ciprofloxacin by zinc ferrite-titania heterostructures: degradation pathway, intermediates, and toxicity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39605-39617. [PMID: 36598720 DOI: 10.1007/s11356-022-24926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Present work puts forward an efficient strategy to degrade one of the persistent antibiotic contaminants, ciprofloxacin (CIP). Hybrid advanced oxidation process (HAOP) is tailored with a synergy effect between photocatalysis and photo-Fenton catalysis on zinc ferrite-titania heterostructured composite (ZFO-TiO2). The ZFO-TiO2 heterostructured composite enables heterogenous surfaces for enhanced charge separation where HAOP is implemented for CIP degradation with the aid of class AAA solar simulator. The results reveal an enhanced degradation rate of CIP (kobs = 0.255 min-1), noticeably higher than the conventional TiO2-based photocatalysis. The HAOP system strongly enhances the reaction rates showing five times higher performance as compared to TiO2-based photocatalysis. The substitution reactions for degradation of CIP into its intermediates were analyzed by LC-MS/MS, and the plausible degradation pathways have been graphically modeled identifying 3-phenyl-1-propanol and phenol molecules as less toxic end products. Toxicity of the photodegraded samples reveal 18.1 ± 1.24% inhibition of V. fischeri at the end of 60-min treatment indicating reduced toxicity of CIP contaminated samples. Antimicrobial inhibition studies on E. coli also corroborate an effective CIP removal (~ 100%) in less than 90 min. The study puts forward a novel ZFO-TiO2 composite HAOP system for efficient and rapid mineralization of an antibiotic pollutant, extendable towards wide range of pharmaceutical drug degradation studies.
Collapse
Affiliation(s)
- Sangeeth John
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, India, 600025
| | | | | | | | | | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Chennai, India, 600036
| | - Shubra Singh
- Crystal Growth Centre, A.C. Tech Campus, Anna University, Chennai, India, 600025.
- Centre for Energy Storage Technologies, Anna University, Chennai, 600025, India.
| |
Collapse
|
38
|
Lestido-Cardama A, Petrarca M, Monteiro C, Ferreira R, Marmelo I, Maulvault AL, Anacleto P, Marques A, Fernandes JO, Cunha SC. Seasonal occurrence and risk assessment of endocrine-disrupting compounds in Tagus estuary biota (NE Atlantic Ocean coast). JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130387. [PMID: 36403442 DOI: 10.1016/j.jhazmat.2022.130387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Estuaries are continually threatened by anthropogenic pressures, consequently, a large group of contaminants harmful to human health affects the aquatic biota; therefore, it is necessary to monitor their quality. This study deals with the determination of a large group of compounds representing different endocrine-disrupting compounds (EDCs) classes [21 pesticides, 4 polycyclic musk fragrances, 4 UV-filters, 7 bisphenols, 6 polybrominated diphenyl ethers (PBDEs) and 8 of their methoxylated (MeO-BDEs)] in several estuarine species (fish, bivalves, crustaceans, earthworm, and macroalgae) collected seasonally along one year in two distinct areas of Tagus River estuary ("contaminated" vs. "clean" areas). The most abundant compounds found were galaxolide (HHCB) (81% positive samples; 0.04-74 ng/g ww), isoamyl 4-methoxycinnamate (IMC) (64%; 1.13-251 ng/g ww), alachlor (44%; 0.08-16 ng/g ww), and BDE-47 (36%; 0.06-2.26 ng/g ww). Polycyclic musks were the most frequent contaminants in fish (seabass, barbus, mullet, and sole) and macroalgae samples, while UV-filters were predominant in bivalves and crustaceans, and bisphenols in earthworms. Seasonal variation was verified for Σpesticides and Σmusks, with significantly higher levels in summer and autumn, whereas ΣUV-filters highest levels were found in spring and summer, and for ΣPBDEs statistically higher levels were registered in cold seasons (autumn and winter). Σbisphenols were significantly lower in spring than in the other seasons. In general, considering all species analysed in both areas, no statistically significant differences (p > 0.05) were verified between the two collection areas. Based on the estimated daily intake data, consumption of fish from this estuary is unlikely to be a human health concern, since the levels of contamination were below the toxicological threshold values. Overall, the data obtained in this study will allow regulatory authorities to identify and prioritize contaminants monitoring programs in estuaries, such as the case of bisphenol A, which was found, for the first time, in earthworm and clam species.
Collapse
Affiliation(s)
- Antía Lestido-Cardama
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mateus Petrarca
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carolina Monteiro
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ricardo Ferreira
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Isa Marmelo
- IPMA, Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection (DivAV), Av. Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana Luísa Maulvault
- IPMA, Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection (DivAV), Av. Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; UCIBIO-REQUIMTE, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Patrícia Anacleto
- IPMA, Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection (DivAV), Av. Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal; MARE - Marine and Environmental Sciences Centre, Guia Marine Laboratory, Faculty of Sciences of the University of Lisbon (FCUL), Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- IPMA, Portuguese Institute for the Sea and Atmosphere, I.P., Division of Aquaculture, Upgrading and Bioprospection (DivAV), Av. Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
39
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
40
|
Cahova J, Blahova J, Mares J, Hodkovicova N, Sauer P, Kroupova HK, Svobodova Z. Octinoxate as a potential thyroid hormone disruptor - A combination of in vivo and in vitro data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159074. [PMID: 36181807 DOI: 10.1016/j.scitotenv.2022.159074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Ultraviolet filters are commonly used in various cosmetic products. Due to their huge consumption ultraviolet filters become a part of the environment. Octinoxate is a commonly used ultraviolet filter that is widely detected in the aquatic environment. In our study, we investigated whether this ultraviolet filter is able to disrupt thyroid hormone regulation after six weeks of exposure in rainbow trout (Oncorhynchus mykiss). Thyroid hormones play crucial role in development and regulation of the organism and its disruption could cause the whole-body imbalance. Our study includes a compilation of in vivo and in vitro tests. The results of the in vivo experiment revealed a significant increase in thyroxine hormone in plasma for the highest tested dose of octinoxate (i.e. 395.6 μg/kg). We examined selected tissues (liver and cranial kidney) to determine the mRNA expression of genes involved in thyroid hormones regulation. The analysis confirmed downregulation of deiodinase 2 mRNA expression for the highest tested dose (i.e. 395.6 μg/kg) and downregulation of paired box 8 mRNA for medium (96 μg/kg) and the highest octinoxate dose (395.6 μg/kg.) only in cranial kidney. In vitro analysis indicated that octinoxate does not elicit (anti-)thyroid activity via thrβ and does not behave as a transthyretin ligand. Based on our results, octinoxate has a potential to act as a thyroid hormone disruptor, but further research required to better understand the entire regulatory mechanism.
Collapse
Affiliation(s)
- Jana Cahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| | - Jana Blahova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic.
| | - Jan Mares
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
| | - Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Sauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Hana Kocour Kroupova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodňany, Czech Republic
| | - Zdenka Svobodova
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic
| |
Collapse
|
41
|
Gkotsis G, Nika MC, Nikolopoulou V, Alygizakis N, Bizani E, Aalizadeh R, Badry A, Chadwick E, Cincinelli A, Claßen D, Danielsson S, Dekker R, Duke G, Drost W, Glowacka N, Göckener B, Jansman HAH, Juergens M, Knopf B, Koschorreck J, Krone O, Martellini T, Movalli P, Persson S, Potter ED, Rohner S, Roos A, O' Rourke E, Siebert U, Treu G, van den Brink NW, Walker LA, Williams R, Slobodnik J, Thomaidis NS. Assessment of contaminants of emerging concern in European apex predators and their prey by LC-QToF MS wide-scope target analysis. ENVIRONMENT INTERNATIONAL 2022; 170:107623. [PMID: 36379200 DOI: 10.1016/j.envint.2022.107623] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Apex predators are good indicators of environmental pollution since they are relatively long-lived and their high trophic position and spatiotemporal exposure to chemicals provides insights into the persistent, bioaccumulative and toxic (PBT) properties of chemicals. Although monitoring data from apex predators can considerably support chemicals' management, there is a lack of pan-European studies, and longer-term monitoring of chemicals in organisms from higher trophic levels. The present study investigated the occurrence of contaminants of emerging concern (CECs) in 67 freshwater, marine and terrestrial apex predators and in freshwater and marine prey, gathered from four European countries. Generic sample preparation protocols for the extraction of CECs with a broad range of physicochemical properties and the purification of the extracts were used. The analysis was performed utilizing liquid (LC) chromatography coupled to high resolution mass spectrometry (HRMS), while the acquired chromatograms were screened for the presence of more than 2,200 CECs through wide-scope target analysis. In total, 145 CECs were determined in the apex predator and their prey samples belonging in different categories, such as pharmaceuticals, plant protection products, per- and polyfluoroalkyl substances, their metabolites and transformation products. Higher concentration levels were measured in predators compared to prey, suggesting that biomagnification of chemicals through the food chain occurs. The compounds were prioritized for further regulatory risk assessment based on their frequency of detection and their concentration levels. The majority of the prioritized CECs were lipophilic, although the presence of more polar contaminants should not be neglected. This indicates that holistic analytical approaches are required to fully characterize the chemical universe of biota samples. Therefore, the present survey is an attempt to systematically investigate the presence of thousands of chemicals at a European level, aiming to use these data for better chemicals management and contribute to EU Zero Pollution Ambition.
Collapse
Affiliation(s)
- Georgios Gkotsis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Maria-Christina Nika
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Varvara Nikolopoulou
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikiforos Alygizakis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Erasmia Bizani
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Alexander Badry
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Elizabeth Chadwick
- Cardiff University, Biomedical Science Building, Museum Avenue, Postal Code: CF10 3AX Cardiff, United Kingdom
| | - Alessandra Cincinelli
- University of Florence, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Daniela Claßen
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Sara Danielsson
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | - René Dekker
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Guy Duke
- Environmental Change Institute, University of Oxford, University of Oxford, 3 S Parks Rd, OX1 3QY Oxford, United Kingdom; UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, United Kingdom
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Natalia Glowacka
- Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Bernd Göckener
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Hugh A H Jansman
- Wageningen University & Research, Wageningen Environmental Research, Droevendaalsesteeg 3-3 A, 6708 PB Wageningen, the Netherlands
| | - Monika Juergens
- Center for Ecology and Hydrology, Library Ave, Bailrigg, LA1 4AP Lancaster, United Kingdom
| | - Burkhard Knopf
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Oliver Krone
- Leibniz Institute for Zoo and Wildlife Research, Department of Wildlife Diseases, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Tania Martellini
- University of Florence, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Paola Movalli
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Sara Persson
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Elaine D Potter
- Center for Ecology and Hydrology, Library Ave, Bailrigg, LA1 4AP Lancaster, United Kingdom
| | - Simon Rohner
- University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Anna Roos
- Swedish Museum of Natural History, Frescativägen 40, 114 18 Stockholm, Sweden
| | - Emily O' Rourke
- Cardiff University, Biomedical Science Building, Museum Avenue, Postal Code: CF10 3AX Cardiff, United Kingdom
| | - Ursula Siebert
- University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559 Hannover, Germany
| | - Gabriele Treu
- German Environment Agency (Umweltbundesamt), Wörlitzer Pl. 1, 06844 Dessau-Roßlau, Germany
| | - Nico W van den Brink
- Wageningen University & Research, Division of Toxicology, Stippeneng 4, 6700EA Wageningen, the Netherlands
| | - Lee A Walker
- Center for Ecology and Hydrology, Library Ave, Bailrigg, LA1 4AP Lancaster, United Kingdom
| | - Rosie Williams
- Zoological Society of London, Institute of Zoology, Regent's Park, NW1 4RY London, United Kingdom
| | - Jaroslav Slobodnik
- Environmental Institute, s.r.o., Okružná 784/42, 972 41 Koš, Slovak Republic
| | - Nikolaos S Thomaidis
- National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
42
|
Chaves MDJS, Kulzer J, Pujol de Lima PDR, Barbosa SC, Primel EG. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1982-2008. [PMID: 36124562 DOI: 10.1039/d2em00132b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has generated increasing public concern. In this review, data on the presence of PPCPs in environmental compartments from the past few years (2014-2022) are summarized by carrying out a critical survey of the partitioning among water, sediment, and aquatic organisms. From the available articles on PPCP occurrence in the environment, in Web of Science and Scopus databases, 185 articles were evaluated. Diclofenac, carbamazepine, caffeine, ibuprofen, ciprofloxacin, and sulfamethoxazole were reported to occur in 85% of the studies in at least one of the mentioned matrices. Risk assessment showed a moderate to high environmental risk for these compounds worldwide. Moreover, bioconcentration factors showed that sulfamethoxazole and trimethoprim can bioaccumulate in aquatic organisms, while ciprofloxacin and triclosan present bioaccumulation potential. Regarding spatial distribution, the Asian and European continents presented most studies on the occurrence and effects of PPCPs on the environment, while Africa and Asia are the most contaminated continents. In addition, the impact of COVID-19 on environmental contamination by PPCPs is discussed.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Jonatas Kulzer
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Paula da Rosa Pujol de Lima
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Sergiane Caldas Barbosa
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Ednei Gilberto Primel
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| |
Collapse
|
43
|
Lyu Y, Li G, He Y, Li Y, Tang Z. Occurrence and distribution of organic ultraviolet absorbents in soils and plants from a typical industrial area in South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157383. [PMID: 35843326 DOI: 10.1016/j.scitotenv.2022.157383] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Organic ultraviolet absorbents (UVAs) have attracted increasing concern due to their ubiquity, bioaccumulation, and potential toxicity. However, available information on their occurrence and transfer in terrestrial environment is still extremely insufficient. In this study, we investigated twelve UVAs in the soils and five terrestrial plant species from a typical industrial area in South China, and found their total concentrations were 5.87-76.1 (median 13.1) and 17.9-269 (median 82.9) ng/g dry weight, respectively. Homosalate was dominant in soils while benzophenone and octrizole were predominant in plants, likely due to their complex sources and bioaccumulation preferences. The bioaccumulation factors (BAFs) were further evaluated based on the ratios of UVA concentrations in plants and soils. The observed BAFs of UVAs were compound and species-specific, and most of them were much >1.0, indicating the chemicals could be transferred from soils to plants. To the best of our knowledge, this is the first report of organic UVAs in field soil-plant systems, providing information that may improve our understanding of the bioaccumulability of these chemicals in terrestrial environment and the associated risks. More studies are needed to investigate the transfer and bioaccumulation of such chemicals in soils and terrestrial biota.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Guanghui Li
- Chongqing Engineering Research Center for Soil Contamination Control and Remediation, Chongqing 400067, China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas, Minzu University of China, National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
44
|
García MG, Sánchez JIL, Bravo KAS, Cabal MDC, Pérez-Santín E. Review: Presence, distribution and current pesticides used in Spanish agricultural practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157291. [PMID: 35835192 DOI: 10.1016/j.scitotenv.2022.157291] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
To guarantee an adequate food supply for the world's growing population, intensive agriculture is necessary to ensure efficient food production. The use of pesticides helps maintain maximum productivity in intensive agriculture by minimizing crop losses due to pests. However, pesticide contamination of surface waters constitutes a major problem as they are resistant to degradation and soluble enough to be transported in water. In recent years, all groups of pesticides defined by the World Health Organization have increased their use and, therefore, their prevalence in the different environmental compartments that can have harmful effects. Despite this effort, there is no rigorous monitoring program that quantifies and controls the toxic effects of each pesticide. However, multiple scientific studies have been published by specialized research groups in which this information is disseminated. Therefore, any attempt to systematize this information is relevant. This review offers a current overview of the presence and distribution of the most widely-used pesticides (insecticides, herbicides, and fungicides) by crop type and an evaluation of the relationships between their uses and environmental implications in Spain. The data demonstrated that there are correlations between the presence of specific pesticides used in the main crops and their presence in the environmental compartments. We have found preliminary data pointing to existing associations between specific pesticides used in the main crops and their presence in environmental compartments within different geographical areas of Spain; this should be the subject of further investigation.
Collapse
Affiliation(s)
- Mariano González García
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, Av. de la Paz, 137, 26004 Logroño, Spain
| | - José Ignacio López Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, Av. de la Paz, 137, 26004 Logroño, Spain
| | - Kharla Andreina Segovia Bravo
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, Av. de la Paz, 137, 26004 Logroño, Spain
| | - María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, Av. de la Paz, 137, 26004 Logroño, Spain
| | - Efrén Pérez-Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT), Universidad Internacional de La Rioja, Av. de la Paz, 137, 26004 Logroño, Spain.
| |
Collapse
|
45
|
Ikem A, Garth J. Dietary exposure assessment of selected trace elements in eleven commercial fish species from the Missouri market. Heliyon 2022; 8:e10458. [PMID: 36091945 PMCID: PMC9459673 DOI: 10.1016/j.heliyon.2022.e10458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/17/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
Fish is an important source of proteins, vitamins, minerals, and polyunsaturated fatty acids for nutrition adequacy. However, fish is a major link to dietary metal exposure in humans. This study describes the content of eight trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn, and Hg) in eleven commercial fish species from the Missouri market and evaluated the health risks of fish muscle consumption in the adult population. Total mercury (THg) in muscle was quantified by AAS and ICP-OES was used for other elements. The recovery rates of elements from DOLT-5 reference material ranged from 83% to 106%. Of all the 239 fish samples analyzed, trace element concentrations (mg/kg wet weight) in muscle were in the following ranges: As < LOD-17.5; Cd: 0.016-0.27; Cr: 0.023-0.63; Cu: 0.034-1.06; Ni:
Collapse
Affiliation(s)
- Abua Ikem
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO 65101, United States
- Cooperative Research Programs, Lincoln University, Jefferson City, MO 65101, United States
| | - Jimmie Garth
- Cooperative Research Programs, Lincoln University, Jefferson City, MO 65101, United States
| |
Collapse
|
46
|
Ball AL, Solan ME, Franco ME, Lavado R. Comparative cytotoxicity induced by parabens and their halogenated byproducts in human and fish cell lines. Drug Chem Toxicol 2022:1-9. [PMID: 35854652 DOI: 10.1080/01480545.2022.2100900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parabens are a group of para-hydroxybenzoic acid (p-HBA) esters widely used in pharmaceutical industries. Their safety is well documented in mammalian models, but little is known about their toxicity in non-mammal species. In addition, chlorinated and brominated parabens resulting from wastewater treatment have been identified in effluents. In the present study, we explored the cytotoxic effects (EC50) of five parabens: methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BuP), and benzylparaben (BeP); the primary metabolite, 4-hydroxybenzoic acid (4-HBA), and three of the wastewater chlorinated/brominated byproducts on fish and human cell lines. In general, higher cytotoxicity was observed with increased paraben chain length. The tested compounds induced toxicity in the order of 4-HBA < MP < EP < PP < BuP < BeP. The halogenated byproducts led to higher toxicity with the addition of second chlorine. The longer chain-parabens (BuP and BeP) caused a concentration-dependent decrease in cell viability in fish cell lines. Intriguingly, the main paraben metabolite, 4-HBA, proved to be more toxic to fish hepatocytes than human hepatocytes by 100-fold. Our study demonstrated that the cytotoxicity of some of these compounds appears to be tissue-dependent. These observations provide valuable information for early cellular responses in human and non-mammalian models upon exposure to paraben congeners.
Collapse
Affiliation(s)
- Ashley L Ball
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Megan E Solan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marco E Franco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
47
|
Fu Q, Meyer C, Patrick M, Kosfeld V, Rüdel H, Koschorreck J, Hollender J. Comprehensive screening of polar emerging organic contaminants including PFASs and evaluation of the trophic transfer behavior in a freshwater food web. WATER RESEARCH 2022; 218:118514. [PMID: 35545009 DOI: 10.1016/j.watres.2022.118514] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Bioaccumulation and trophic transfer of persistent legacy contaminants have been intensively characterized, but little is known on the contaminants of emerging concern (CECs) in freshwater food webs. Herein, we comprehensively screened CECs with a focus on polar substances and further evaluated their trophic transfer behavior in selected items from the food web of Lake Templin, Germany. Weselected one plankton, two mussel, and nine fish samples covering three trophic levels. With an effective multi-residue sample preparation method and high-resolution mass spectrometry-based target, suspect, and non-target screening, we characterized 477 targets and further screened unknown features in complex biota matrices. Of the 477 targets, 145 were detected and quantified in at least one species (0.02-3640 ng/g, dry weight). Additionally, the suspect and non-target analysis with experimental mass spectra libraries and in silico techniques (MetFrag and SIRIUS4/CSI:FingerID) enabled further identification of 27 unknown compounds with 19 confirmed by reference standards. Overall, the detected compounds belong to a diverse group of chemicals, including 71 pharmaceuticals, 27 metabolites, 26 pesticides, 16 per- and polyfluoroalkyl substances (PFASs), 4 plasticizers, 3 flame retardants, 11 other industrial chemicals and 14 others. Moreover, we determined the trophic magnification factor (TMF) of 34 polar CECs with >80% detection frequency, among which 6 PFASs including perfluorooctane sulfonic acid (PFOS), perfluorodecanoic acid (PFDA), perfluorohexane sulfonic acid (PFHxS), perfluorotridecanoic acid (PFTrA), perfluorotetradecanoic acid (PFTeA), and perfluoroundecanoic acid (PFUnA), exhibited biomagnification potential (TMF =1.8 - 4.2, p < 0.05), whereas 5 pharmaceuticals (phenazone, progesterone, venlafaxine, levamisole, and lidocaine) and 1 personal care product metabolite (galaxolidone) showed biodilution potential (TMF = 0.4 - 0.6, p < 0.05).
Collapse
Affiliation(s)
- Qiuguo Fu
- Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Duebendorf 8600, Switzerland.
| | - Corina Meyer
- Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Duebendorf 8600, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollution Dynamics, Zurich 8092, Switzerland
| | - Michael Patrick
- Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Duebendorf 8600, Switzerland
| | - Verena Kosfeld
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg 57392, Germany; Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen 52074, Germany
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Schmallenberg 57392, Germany
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Dessau-Rosslau 06844, Germany
| | - Juliane Hollender
- Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Duebendorf 8600, Switzerland; ETH Zurich, Institute of Biogeochemistry and Pollution Dynamics, Zurich 8092, Switzerland.
| |
Collapse
|
48
|
Enhanced Toxicity of Bisphenols Together with UV Filters in Water: Identification of Synergy and Antagonism in Three-Component Mixtures. Molecules 2022; 27:molecules27103260. [PMID: 35630736 PMCID: PMC9143986 DOI: 10.3390/molecules27103260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contaminants of emerging concern (CEC) localize in the biome in variable combinations of complex mixtures that are often environmentally persistent, bioaccumulate and biomagnify, prompting a need for extensive monitoring. Many cosmetics include UV filters that are listed as CECs, such as benzophenone derivatives (oxybenzone, OXYB), cinnamates (2-ethylhexyl 4-methoxycinnamate, EMC) and camphor derivatives (4-methylbenzylidene-camphor, 4MBC). Furthermore, in numerous water sources, these UV filters have been detected together with Bisphenols (BPs), which are commonly used in plastics and can be physiologically detrimental. We utilized bioluminescent bacteria (Microtox assay) to monitor these CEC mixtures at environmentally relevant doses, and performed the first systematic study involving three sunscreen components (OXYB, 4MBC and EMC) and three BPs (BPA, BPS or BPF). Moreover, a breast cell line and cell viability assay were employed to determine the possible effect of these mixtures on human cells. Toxicity modeling, with concentration addition (CA) and independent action (IA) approaches, was performed, followed by data interpretation using Model Deviation Ratio (MDR) evaluation. The results show that UV filter sunscreen constituents and BPs interact at environmentally relevant concentrations. Of notable interest, mixtures containing any pair of three BPs (e.g., BPA + BPS, BPA + BPF and BPS + BPF), together with one sunscreen component (OXYB, 4MBC or EMC), showed strong synergy or overadditive effects. On the other hand, mixtures containing two UV filters (any pair of OXYB, 4MBC and EMC) and one BP (BPA, BPS or BPF) had a strong propensity towards concentration dependent underestimation. The three-component mixtures of UV filters (4MBC, EMC and OXYB) acted in an antagonistic manner toward each other, which was confirmed using a human cell line model. This study is one of the most comprehensive involving sunscreen constituents and BPs in complex mixtures, and provides new insights into potentially important interactions between these compounds.
Collapse
|
49
|
Xie W, Zhao J, Zhu X, Chen S, Yang X. Pyrethroid bioaccumulation in wild fish linked to geographic distribution and feeding habit. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128470. [PMID: 35180516 DOI: 10.1016/j.jhazmat.2022.128470] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of pyrethroid insecticides in aquatic food webs has attracted increased research attention. Fish are key species in aquatic food webs, directly connecting invertebrates and human consumption. However, little is known about the bioaccumulation of pyrethroids in wild fish species. In this study, 19 species of wild fish were collected from 11 sites in the Pearl River, China, and the levels of seven pyrethroids in the fish were determined. Linear mixed-effects models were applied to estimate the means of pyrethroid concentrations, in which sample site and fish species were set as random effects. The concentrations of Σ7 pyrethroids in fish ranged from 4.99 to 50.82 ng/g. Permethrin and bifenthrin were present at the highest concentration (8.89 ± 1.47 ng/g) and frequency (100%) in fish muscle, respectively. The composition patterns of pyrethroids varied in fish organs. Fish species contributed a higher proportion of the variance than geographic distribution (28.6% vs. 26.4%). The pyrethroids in carnivorous fish (23.5 ± 2.9 ng/g) were significantly higher than in omnivorous (14.6 ± 1.9 ng/g) and phytophagous fish (16.0 ± 4.7 ng/g). To our knowledge, this is the first report examining the effect of feeding habits on pyrethroid bioaccumulation in wild fish. The results can provide evidence for the risk of pyrethroid pollution in aquatic ecosystems.
Collapse
Affiliation(s)
- Wenping Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Laboratory of Seafood Quality and Security Evaluation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jiangang Zhao
- Research Center of Hydrobiology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation of Ministry of Agriculture, Laboratory of Seafood Quality and Security Evaluation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xunan Yang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
50
|
Cetinić KA, Grgić I, Previšić A, Rožman M. The curious case of methylparaben: Anthropogenic contaminant or natural origin? CHEMOSPHERE 2022; 294:133781. [PMID: 35104549 DOI: 10.1016/j.chemosphere.2022.133781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/28/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of methylparaben as a preservative has caused increased exposure to natural aquatic systems in recent decades. However, current studies have suggested that exposure to this compound can result in endocrine disrupting effects, raising much concern regarding its environmental impact. In contast, methylparaben has also been found to be part of the metabolome of some organisms, prompting the question as to whether this compound may be more natural than previously assumed. Through a combination of field studies investigating the natural presence of methylparaben across different taxa, and a 54-day microcosm experiment examining the bioaccumulation and movement of methylparaben across different life stages of aquatic insects (order Trichoptera), our results offer evidence suggesting the natural origin of methylparaben in aquatic and terrestrial biota. This study improves our understanding of the role and impact this compound has on biota and challenges the current paradigm that methylparaben is exclusively a harmful anthropogenic contaminant. Our findings highlight the need for further research on this topic to fully understand the origin and role of parabens in the environment which will allow for a comprehensive understanding of the extent of environmental contamination and result in a representative assessment of the environmental risk that may pose.
Collapse
Affiliation(s)
| | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|