1
|
Ma Z, Du X, Sun Y, Jia Y, Liang X, Gao Y. Attenuation of PM2.5-Induced Lung Injury by 4-Phenylbutyric Acid: Maintenance of [Ca 2+]i Stability between Endoplasmic Reticulum and Mitochondria. Biomolecules 2024; 14:1135. [PMID: 39334901 PMCID: PMC11430257 DOI: 10.3390/biom14091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fine particulate matter (PM2.5) is a significant cause of respiratory diseases and associated cellular damage. The mechanisms behind this damage have not been fully explained. This study investigated two types of cellular damage (inflammation and pyroptosis) induced by PM2.5, focusing on their relationship with two organelles (the endoplasmic reticulum and mitochondria). Animal models have demonstrated that PM2.5 induces excessive endoplasmic reticulum stress (ER stress), which is a significant cause of lung damage in rats. This was confirmed by pretreatment with an ER stress inhibitor (4-Phenylbutyric acid, 4-PBA). We found that, in vitro, the intracellular Ca2+ ([Ca2+]i) dysregulation induced by PM2.5 in rat alveolar macrophages was associated with ER stress. Changes in mitochondria-associated membranes (MAMs) result in abnormal mitochondrial function. This further induced the massive expression of NLRP3 and GSDMD-N, which was detrimental to cell survival. In conclusion, our findings provide valuable insights into the relationship between [Ca2+]i dysregulation, mitochondrial damage, inflammation and pyroptosis under PM2.5-induced ER stress conditions. Their interactions ultimately have an impact on respiratory health.
Collapse
Affiliation(s)
- Zhenhua Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiaohui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yize Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yunna Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xiaojun Liang
- Institute of Animal Science, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
An Z, Liu G, Shen L, Qi Y, Hu Q, Song J, Li J, Du J, Bai Y, Wu W. Mitochondrial dysfunction induced by ambient fine particulate matter and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 262:119930. [PMID: 39237017 DOI: 10.1016/j.envres.2024.119930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Air pollution is one of the major environmental threats contributing to the global burden of disease. Among diverse air pollutants, fine particulate matter (PM2.5) poses a significant adverse health impact and causes multi-system damage. As a highly dynamic organelle, mitochondria are essential for cellular energy metabolism and vital for cellular homeostasis and body fitness. Moreover, mitochondria are vulnerable to external insults and common targets for PM2.5-induced cellular damage. The resultant impairment of mitochondrial structure and function initiates the pathogenesis of diverse human diseases. This review mainly summarizes the in vivo and in vitro findings of PM2.5-induced mitochondrial dysfunction and its implication in PM2.5-induced health effects. Furthermore, recent advances toward the underlying mechanisms of PM2.5 and its components-induced mitochondrial dysfunction are also discussed, with an attempt to provide insights into the toxicity of PM2.5 and basic information for devising appropriate intervention strategies.
Collapse
Affiliation(s)
- Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Guangyong Liu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Lingling Shen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qinan Hu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jinge Du
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yichun Bai
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Chang-Chien J, Huang JL, Tsai HJ, Wang SL, Kuo ML, Yao TC. Vitamin D ameliorates particulate matter induced mitochondrial damages and calcium dyshomeostasis in BEAS-2B human bronchial epithelial cells. Respir Res 2024; 25:321. [PMID: 39174953 PMCID: PMC11342659 DOI: 10.1186/s12931-024-02951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Mitochondria is prone to oxidative damage by endogenous and exogenous sources of free radicals, including particulate matter (PM). Given the role of mitochondria in inflammatory disorders, such as asthma and chronic obstructive pulmonary disease, we hypothesized that supplementation of vitamin D may play a protective role in PM-induced mitochondrial oxidative damages of human bronchial epithelial BEAS-2B cells. METHODS BEAS-2B cells were pretreated with 1,25(OH)2D3, an active form of vitamin D, for 1 h prior to 24-hour exposure to PM (SRM-1648a). Oxidative stress was measured by flow cytometry. Mitochondrial functions including mitochondrial membrane potential, ATP levels, and mitochondrial DNA copy number were analyzed. Additionally, mitochondrial ultrastructure was examined using transmission electron microscopy. Intracellular and mitochondrial calcium concentration changes were assessed using flow cytometry based on the expression of Fluo-4 AM and Rhod-2 AM, respectively. Pro-inflammatory cytokines, including IL-6 and MCP-1, were quantified using ELISA. The expression levels of antioxidants, including SOD1, SOD2, CAT, GSH, and NADPH, were determined. RESULTS Our findings first showed that 24-hour exposure to PM led to the overproduction of reactive oxygen species (ROS) derived from mitochondria. PM-induced mitochondrial oxidation resulted in intracellular calcium accumulation, particularly within mitochondria, and alterations in mitochondrial morphology and functions. These changes included loss of mitochondrial membrane integrity, disarrayed cristae, mitochondrial membrane depolarization, reduced ATP production, and increased mitochondrial DNA copy number. Consequently, PM-induced mitochondrial damage triggered the release of certain inflammatory cytokines, such as IL-6 and MCP-1. Similar to the actions of mitochondrial ROS inhibitor MitoTEMPO, 1,25(OH)2D3 conferred protective effects on mtDNA alterations, mitochondrial damages, calcium dyshomeostasis, thereby decreasing the release of certain inflammatory cytokines. We found that greater cellular level of 1,25(OH)2D3 upregulated the expression of enzymatic (SOD1, SOD2, and CAT) and non-enzymatic (GSH and NADPH) antioxidants to modulate cellular redox homeostasis. CONCLUSION Our study provides new evidence that 1,25(OH)2D3 acts as an antioxidant, enhancing BEAS-2B antioxidant responses to regulate mitochondrial ROS homeostasis and mitochondrial function, thereby enhancing epithelial defense against air pollution exposure.
Collapse
Affiliation(s)
- Ju Chang-Chien
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Jing-Long Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Hui-Ju Tsai
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- College of Life Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Shih-Ling Wang
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan
| | - Ming-Ling Kuo
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan.
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan.
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan, 33302, Taiwan.
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Hsin Street, Kweishan, Taoyuan, 33305, Taiwan.
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan.
- Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.
| |
Collapse
|
4
|
Chandel J, Naura AS. Dynamics of Inflammatory and Pathological Changes Induced by Single Exposure of Particulate Matter (PM 2.5) in Mice: Potential Implications in COPD. Cell Biochem Biophys 2024:10.1007/s12013-024-01433-3. [PMID: 39031246 DOI: 10.1007/s12013-024-01433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive disorder of lungs marked by chronic bronchitis and emphysema. Particulate matter (PM2.5), a major component of air pollution has been correlated with COPD incidence. The present work aimed to understand dynamics of cellular/molecular players behind PM2.5-mediated COPD pathogenesis in mice by conducting dose and time-course studies. Single intratracheal exposure of PM2.5 at a dose of either 100 or 200 μg induced inflammatory response in lungs at 4 days. Time course studies showed that inflammation once triggered by PM2.5 is progressive in nature as reflected by data on BALF inflammatory cells at 7/14 days. Similarly, various cytokines/chemokines (KC/IL-6/TNF-α/IL-1β/G-CSF/MCP-1) peak at either 7 or 14 days. However, inflammation declined sharply at 21 days. Data on LPO/GSH and activities of SOD/Catalase show induction of continuous oxidative stress in lung tissue. Next, enhanced mtROS in the CD11b+ inflammatory cells confirms the redox imbalance in neutrophils/macrophages. A continuous decline in lung function was observed till 28 days. Further, histological analysis of lung tissues at 28 days confirmed the presence of emphysematous lesions, validating the potency of PM2.5 to cause irreversible damage to lungs through complex interplay of various cellular/molecular players which may be exploited as potential preventive/therapeutic targets.
Collapse
Affiliation(s)
- Jitender Chandel
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
5
|
Chen S, Zhang Y, Chen H, Zheng W, Hu X, Mao L, Guo X, Lian H. Surface property and in vitro toxicity effect of insoluble particles given by protein corona: Implication for PM cytotoxicity assessment. ECO-ENVIRONMENT & HEALTH 2024; 3:137-144. [PMID: 38638169 PMCID: PMC11021833 DOI: 10.1016/j.eehl.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
In vitro toxicological assessment helps explore key fractions of particulate matter (PM) in association with the toxic mechanism. Previous studies mainly discussed the toxicity effects of the water-soluble and organic-soluble fractions of PM. However, the toxicity of insoluble fractions is relatively poorly understood, and the adsorption of proteins is rarely considered. In this work, the formation of protein corona on the surface of insoluble particles during incubation in a culture medium was investigated. It was found that highly abundant proteins in fetal bovine serum were the main components of the protein corona. The adsorbed proteins increased the dispersion stability of insoluble particles. Meanwhile, the leaching concentrations of some metal elements (e.g., Cu, Zn, and Pb) from PM increased in the presence of proteins. The toxicity effects and potential mechanisms of the PM insoluble particle-protein corona complex on macrophage cells RAW264.7 were discussed. The results revealed that the PM insoluble particle-protein corona complex could influence the phagosome pathway in RAW264.7 cells. Thus, it promoted the intracellular reactive oxygen species generation and induced a greater degree of cell differentiation, significantly altering cell morphology. Consequently, this work sheds new light on the combination of insoluble particles and protein corona in terms of PM cytotoxicity assessment.
Collapse
Affiliation(s)
- Sisi Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Yexuan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hongjuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Weijuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210023, China
| | - Xin Hu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Li Mao
- Ministry of Education (MOE) Key Laboratory of Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xuewen Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| | - Hongzhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Sheng S, Han N, Wei Y, Wang J, Han W, Xing B, Xing M, Zhang W. Liver Injury Induced by Exposure to Polystyrene Microplastics Alone or in Combination with Cadmium in Mice Is Mediated by Oxidative Stress and Apoptosis. Biol Trace Elem Res 2024; 202:2170-2183. [PMID: 37736782 DOI: 10.1007/s12011-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Microplastics (MPs) have been considered an emerging environmental pollutant which, when combined with toxic metals, enter the circulatory system of mammals and eventually cause damage. Therefore, it is important to study the toxicity of the mixture of MPs and heavy metals for evaluating risk assessment of mammals. In the present study, the toxicological effects of different concentrations of polystyrene (PS)-MPs alone or in combination with cadmium chloride (CdCl2) during chronic exposure (8 weeks) were evaluated using intragastric administration in mice. Using comparative analysis, it was revealed that PS-MPs alone or in combination with Cd could destroy the normal structural morphology of liver tissue and increase the levels of two biochemical indicators of liver damage, thereby inducing changes in antioxidant and hyperoxide capacities. In addition, PS-MPs and/or Cd activated the antioxidant signaling pathway Nrf2-Keap1 and affected the endogenous apoptosis signaling pathway p53-Bcl-2/Bax, thus promoting apoptosis. These findings suggested that exposure to MPs alone or in combination with Cd led to adverse effects on the liver. Furthermore, it was revealed that co-exposure to MPs and Cd reduced Cd toxicity, thereby highlighting the possibility MPs may act as carriers of other toxic substances and coordinate with them. Therefore, evaluating the synergistic or anti-agonistic effects of MPs on the toxicity and bioavailability of xenobiotics is in the future critical in environmental toxicological studies.
Collapse
Affiliation(s)
- Shuai Sheng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ningxin Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yufeng Wei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinghan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Boyu Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Wen Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
7
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
8
|
Wang S, Ma L, Chen L, Sokolova IM, Huang W, Li D, Hu M, Khan FU, Shang Y, Wang Y. The combined effects of phenanthrene and micro-/nanoplastics mixtures on the cellular stress responses of the thick-shell mussel Mytilus coruscus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122999. [PMID: 37995954 DOI: 10.1016/j.envpol.2023.122999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Pollution with complex mixtures of contaminants including micro- and nano-plastics (MNPs) and organic pollutants like polycyclic aromatic hydrocarbons (PAH) poses a major threat to coastal marine ecosystems. Toxic mechanisms of contaminant mixtures are not well understood in marine organisms. We studied the effects of single and combined exposures to polycyclic aromatic hydrocarbon phenanthrene (Phe) and MNPs mixture with sizes of 70 nm, 5 μm and 100 μm on the immune health and oxidative stress parameters in the thick-shell mussel Mytilus coruscus. Immune cells (hemocytes) were more sensitive to the pollutant-induced oxidative stress than the gills. In hemocytes of co-exposed mussels, elevated mortality, lower lysosomal content, high production of reactive oxygen species (ROS) and decrease mitochondrial were found. Disparate responses of antioxidant enzymes in the hemolymph (e.g. increased superoxide dismutase (SOD) activity without a corresponding increase in catalase (CAT) in Phe exposures and an increase in CAT without a change in SOD in MNPs exposures) suggests misbalance of the antioxidant defense in the pollutant-exposed mussels. Gill lacked pronounced oxidative stress response showing a decline in ROS and antioxidant levels. Tissue-specific single and combined effects of Phe and MNPs suggest variation in bioavailability and/or different sensitivity to these pollutants in the studied tissues. Notably, the combined effects of MNPs and Phe were additive or antagonistic, showing that MNPs do not enhance and occasionally mitigate the toxic effects of Phe on the hemocytes and the gills of the mussels. Overall, our study sheds light on the impact of long-term exposure to MNPs and Phe mixtures on mussels, showing high sensitivity of the immune system and modulation of the Phe toxicity by MNPs co-exposure. These findings that may have implications for understanding the impacts of combined PAH and MNPs pollution on the health of mussel populations from polluted coastal habitats.
Collapse
Affiliation(s)
- Shixiu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Lukuo Ma
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
9
|
Pu S, Li Q, Tao Z, Wang S, Meng X, Wang S, Wang Z. Associations between Urinary Concentrations of Polycyclic Aromatic Hydrocarbons and Overactive Bladder in US Adults: Data from the National Health and Nutrition Examination Survey 2005-2016. Urol Int 2024; 108:137-145. [PMID: 38219726 PMCID: PMC10994579 DOI: 10.1159/000536253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Polycyclic aromatic hydrocarbons (PAHs) are a group of chemicals that can induce oxidative stress and related cytotoxicity. Whether urinary concentrations of PAHs have effects on overactive bladder (OAB) in the general population is still unclear. This study investigated the associations between urinary PAHs and OAB. METHODS 7,146 adults aged over 20 who participated in the US National Health and Nutrition Examination Survey 2005-2016 were studied. The impact of the six PAHs on OAB was evaluated by multivariate logistic regression, and percent changes related to different quartiles of those six PAH levels were calculated. Confounders including age, logarithmic urinary creatinine, gender, race, body mass index, educational level, marriage, poverty income ratio, diabetes, hypertension, and metabolic syndrome were controlled. RESULTS There is a significant positive correlation between urinary concentrations of the six PAHs we include in the study and the occurrence of OAB. Furthermore, individuals with higher PAH levels also reported a more severe OAB symptom score (OABSS). CONCLUSIONS Our findings revealed that adult men in the USA with higher urinary PAHs had a higher risk of OAB incidence. These findings suggest the importance of strong environmental regulation of PAHs to protect population health. However, the underlying mechanisms still need further exploration.
Collapse
Affiliation(s)
- Shihang Pu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Li
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijun Tao
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songbo Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangyu Meng
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Ha JH, Lee BW, Yi DH, Lee SJ, Kim WI, Pak SW, Kim HY, Kim SH, Shin IS, Kim JC, Lee IC. Particulate matter-mediated oxidative stress induces airway inflammation and pulmonary dysfunction through TXNIP/NF-κB and modulation of the SIRT1-mediated p53 and TGF-β/Smad3 pathways in mice. Food Chem Toxicol 2024; 183:114201. [PMID: 38013002 DOI: 10.1016/j.fct.2023.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023]
Abstract
Exposure to particulate matter is currently recognized as a serious aggravating factor of respiratory diseases. In this study, we investigated the effects of particulate matter (PM) on the respiratory system in BALB/c mice and NCI-H292 cells. PM (0, 2.5, 5 and 20 mg/kg) was administered to mice by intra-tracheal instillation for 7 days. After a 7 day-repeated treatment of PM, we evaluated inflammatory cytokines/cell counts in bronchoalveolar lavage fluid (BALF) and conducted pulmonary histology and functional test. We also investigated the role of TXNIP/NF-κB and SIRT1-mediated p53 and TGF-β/Smad3 pathways in PM-induced airway inflammation and pulmonary dysfunction. PM caused a significant increase in pro-inflammatory cytokines, inflammatory cell counts in bronchoalveolar lavage fluid. PM-mediated oxidative stress down-regulated thioredoxin-1 and up-regulated thioredoxin-interacting protein and activation of nuclear factor-kappa B in the lung tissue and PM-treated NCI-H292 cells. PM suppressed sirtuin1 protein levels and increased p53 acetylation in PM-exposed mice and PM-treated NCI-H292 cells. In addition, PM caused inflammatory cell infiltration and the thickening of alveolar walls by exacerbating the inflammatory response in the lung tissue. PM increased levels of transforming growth factor-β, phosphorylation of Smad3 and activation of α-smooth muscle actin, and collagen type1A2 in PM-exposed mice and PM-treated NCI-H292 cells. In pulmonary function tests, PM exposure impaired pulmonary function resembling pulmonary fibrosis, characterized by increased resistance and elastance of the respiratory system, and resistance, elastance, and damping of lung tissues, whereas decreased compliance of the respiratory system, forced expired volume and forced vital capacity. Overall, PM-mediated oxidative stress caused airway inflammation and pulmonary dysfunction with pulmonary fibrosis via TXNIP pathway/NF-κB activation and modulation of the SIRT1-mediated TGF-β/Smad3 pathways. The results of this study can provide fundamental data on the potential adverse effects and underlying mechanism of pulmonary fibrosis caused by PM exposure as a public health concern. Due to the potential toxicity of PM, people with respiratory disease must be careful with PM exposure.
Collapse
Affiliation(s)
- Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chungnam National University, Daejeon, Republic of Korea
| | - Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea; College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Da-Hye Yi
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeon-Young Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea.
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea.
| |
Collapse
|
11
|
Silva TD, Alves C, Oliveira H, Duarte IF. Biological Impact of Organic Extracts from Urban-Air Particulate Matter: An In Vitro Study of Cytotoxic and Metabolic Effects in Lung Cells. Int J Mol Sci 2023; 24:16896. [PMID: 38069233 PMCID: PMC10706705 DOI: 10.3390/ijms242316896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Atmospheric particulate matter (PM) with diameters below 10 µm (PM10) may enter the lungs through inhalation and are linked to various negative health consequences. Emergent evidence emphasizes the significance of cell metabolism as a sensitive target of PM exposure. However, the current understanding of the relationship between PM composition, conventional toxicity measures, and the rewiring of intracellular metabolic processes remains limited. In this work, PM10 sampled at a residential area (urban background, UB) and a traffic-impacted location (roadside, RS) of a Portuguese city was comprehensively characterized in terms of polycyclic aromatic hydrocarbons and plasticizers. Epithelial lung cells (A549) were then exposed for 72 h to PM10 organic extracts and different biological outcomes were assessed. UB and RS PM10 extracts dose-dependently decreased cell viability, induced reactive oxygen species (ROS), decreased mitochondrial membrane potential, caused cell cycle arrest at the G0/G1 phase, and modulated the intracellular metabolic profile. Interestingly, the RS sample, richer in particularly toxic PAHs and plasticizers, had a greater metabolic impact than the UB extract. Changes comprised significant increases in glutathione, reflecting activation of antioxidant defences to counterbalance ROS production, together with increases in lactate, NAD+, and ATP, which suggest stimulation of glycolytic energy production, possibly to compensate for reduced mitochondrial activity. Furthermore, a number of other metabolic variations hinted at changes in membrane turnover and TCA cycle dynamics, which represent novel clues on potential PM10 biological effects.
Collapse
Affiliation(s)
- Tatiana D. Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Célia Alves
- Department of Environment and Planning, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
12
|
Tian J, Wang X, Shi H, Wu H, Wang C, Liu N, Guan L, Zhang Z. Sestrin2/Keap1/Nrf2 pathway regulates mucus hypersecretion in pulmonary epithelium induced by traffic-related PM 2.5 and water-soluble extracts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115455. [PMID: 37708689 DOI: 10.1016/j.ecoenv.2023.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The involvement of fine particulate matter (PM2.5) exposure in the progression of asthma has been extensively discussed in epidemiological and experimental evidence, which aroused widespread attention. Asthma is characterized by mucus hypersecretion. This study investigates the underlying toxic mechanism of traffic-related PM2.5 (TRPM2.5) and water-soluble extracts (WSE) on mucus hypersecretion in the lungs of rats with asthma and 16HBE cells. The ovalbumin-induced rats were administrated by instillation of TRPM2.5 and WSE in the trachea once three days for eight times. The results showed that TRPM2.5 and WSE had an adverse impact on mucus secretion. Specifically, conspicuous mucus stains and increased goblet cells in the bronchial epithelium by PAS staining were found in lung tissues of rats with asthma; MUC5AC gene and protein expression levels in lung tissues of rats with asthma and 16HBE cells were elevated. In addition, TRPM2.5 and WSE triggered oxidative damage via upregulation of malondialdehyde and myeloperoxidase as well as activation of the Sestrin2/Keap1/Nrf2 signaling pathway. Conversely, the knockdown of Sestrin2 effectively inhibited TRPM2.5 and WSE-induced mucus hypersecretion, oxidative stress, and Keap1/Nrf2 signaling pathway and its downstream target gene NQO1. Collectively, it was demonstrated that TRPM2.5 and WSE induced mucus hypersecretion mediated by the Sestrin2/Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiayu Tian
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Xin Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Yantai Center for Disease Control and Prevention, 264003 Yantai, Shandong, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hao Shi
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Hongyan Wu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Nannan Liu
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Linlin Guan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China
| | - Zhihong Zhang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, 56 Xinjian South Road, 030001 Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, China.
| |
Collapse
|
13
|
Song HJ, Shin DU, Eom JE, Lim KM, Lim EY, Kim YI, Kim HJ, Song JH, Shim M, Choe H, Kim GD, Lee SY, Shin HS. Artemisia gmelinii Extract Attenuates Particulate Matter-Induced Neutrophilic Inflammation in a Mouse Model of Lung Injury. Antioxidants (Basel) 2023; 12:1591. [PMID: 37627586 PMCID: PMC10451698 DOI: 10.3390/antiox12081591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Particulate matter (PM) induces and augments oxidative stress and inflammation, leading to respiratory diseases. Although Artemisia gmelinii Weber ex Stechm has antioxidant and anti-inflammatory effects, there are no reports on whether Artemisia gmelinii extract (AGE) regulates lung inflammation in a PM-induced model. Thus, we investigated the protective effects of AGE using a PM-induced mouse lung inflammation model. AGE significantly decreased the expression of inflammatory chemokines, neutrophil extracellular trap formation, and the total number of inflammatory cells in the bronchoalveolar lavage fluid (BALF). Furthermore, AGE attenuated lung inflammation through the suppression of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway, while promoting the nuclear factor erythroid-2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway in lung tissues. Concordant with these observations, AGE suppressed inflammatory cytokines, chemokines, reactive oxygen species, NETosis, myeloperoxidase, and neutrophil elastase by decreasing the mRNA expression of High mobility group box 1, Runt-related transcription factor 1, and Kruppel-like factor 6 in differentiated HL-60 cells. In summary, our data demonstrated that AGE suppresses PM-induced neutrophil infiltration, lung damage, and pulmonary inflammation by suppressing NF-κB/MAPK signaling pathways and enhancing the NRF2/HO-1 signaling pathway. These findings suggest that AGE administration is an effective approach for preventing and treating PM-induced respiratory inflammation.
Collapse
Affiliation(s)
- Hyeon-Ji Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Uk Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Ji-Eun Eom
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Kyung Min Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Eun Yeong Lim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Young In Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - Ha-Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ju Hye Song
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - MyeongKuk Shim
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - HyeonJeong Choe
- BL Healthcare Corp., Yongin 16827, Republic of Korea; (M.S.); (H.C.)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
| | - So-Young Lee
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Soon Shin
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea; (H.-J.S.); (D.-U.S.); (J.-E.E.); (K.M.L.); (E.Y.L.); (Y.I.K.); (H.-J.K.); (J.H.S.); (G.-D.K.)
- Department of Food Biotechnology, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
14
|
Sabeti Z, Ansarin A, Ansarin K, Zafari V, Seyedrezazadeh E, Shakerkhatibi M, Asghari-Jafarabadi M, Dastgiri S, Zoroufchi Benis K, Sepehri M, Khamnian Z. Sex-specific association of exposure to air pollutants and Nrf2 gene expression and inflammatory biomarkers in exhaled breath of healthy adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 326:121463. [PMID: 36958658 DOI: 10.1016/j.envpol.2023.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Studies investigating the nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels in the respiratory system of healthy subjects are scarce. Moreover, separate studies on the health-related outcomes of air pollution for each sex are limited. The current panel study investigated sex-specific Nrf2 expression levels and related oxidative stress and inflammatory responses among healthy adolescents exposed to PM2.5, PM10, O3, and PM2.5-bounded metals in a high traffic region. Forty-nine healthy nonsmoking subjects participated in the study for five consecutive months (Nov. 2019 to Feb. 2020). Each subject was asked to provide 1 mL of exhaled breath condensate (EBC). Data were analyzed using linear mixed-effects models. The results showed that PM10, PM2.5, O3, and PM2.5-bounded metals were negatively linked to Nrf2 expression level in EBC of females with -58.3% (95% CI: 79.5, -15.4), -32.1% (95% CI: -50.3, -7.1), -76.2% (95% CI: -92.6, -23.9), and -1.9 (95% CI: -3.4, -0.4), respectively. While our results presented no significant association between the studied pollutants and Nrf2 gene expression in males, significant associations were observed between the pollutants and total nitric oxide (NOx), interleukins 6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in the EBC of females. In the case of males, only EBC cytokines showed a significant association with air pollutants. Overall, this study suggests that exposure to ambient air pollutants may affect the respiratory system with biologically different mechanisms in males and females. PM2.5 concentration had a positive correlation with exhaled TNF-α and IL6 values in females while positive correlation with TNF-α and negative correlation with IL6 values in males. O3 had a negative correlation with TNF-α in males.
Collapse
Affiliation(s)
- Zahra Sabeti
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Venus Zafari
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shakerkhatibi
- Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Asghari-Jafarabadi
- Cabrini Research, Cabrini Health, Malvern, VIC, 3144, Australia; School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, 3004, Australia; Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Dastgiri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Zoroufchi Benis
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maryam Sepehri
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhila Khamnian
- Department of Community Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Kondratyeva EV, Vitkina TI. Effect Of Atmospheric Particulate Matter On The Functional State Of Mitochondria. RUSSIAN OPEN MEDICAL JOURNAL 2023. [DOI: 10.15275/rusomj.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
The health risks associated with outdoor air pollution are of global concern. Atmospheric air pollution negatively affects a number of key aspects of human health, including the functioning of the respiratory, cardiovascular and central nervous systems, but many issues remain unresolved about the relationship between atmospheric air pollution and the development and course of pathologies. The review analyzes data from Russian and foreign sources on the effect of atmospheric particulate matter on the functional state of mitochondria. The effect of air pollution on structural changes in mitochondria, ATP synthesis, production of reactive oxygen species, damage to mitochondrial DNA, and mitochondrial membrane potential has been shown. The data presented in the review indicate the need for further studies of the functional state of mitochondria under the impact of solid particles in atmospheric air.
Collapse
|
16
|
Liu F, Xu T, Ng NL, Lu H. Linking Cell Health and Reactive Oxygen Species from Secondary Organic Aerosols Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1039-1048. [PMID: 36580374 DOI: 10.1021/acs.est.2c05171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative stress is a possible mechanism by which ambient fine particulate matter (PM) exerts adverse biological effects. While multiple biological effects and reactive oxygen species (ROS) production have been observed upon PM exposure, whether the biological effects are ROS-mediated remains unclear. Secondary organic aerosols (SOA) constitute a major fraction of fine PM and can contribute substantially to its toxicity. In this work, we measured three types of cell responses (mitochondrial membrane potential (MMP), caspase 3/7 activity, and ROS) and investigated their associations upon exposure to SOA formed from anthropogenic (naphthalene) and biogenic (α-pinene) precursors. MMP and caspase 3/7 activity (an early indicator of apoptosis) are key indicators of cell health, and changes of them could occur downstream of ROS-mediated pathways. We observed a significant increase in caspase 3/7 activity after SOA exposure, suggesting that apoptosis is an important pathway of cell death induced by SOA. We further found strong associations between a decrease in MMP and increase in caspase 3/7 activity with an increase in cellular ROS level. These results suggest that cell health is largely dependent on the cellular ROS level, highlighting oxidative stress as a key mechanism for biological effects from SOA exposure. Linear regression analyses reveal greater changes of the three cellular responses with increasing carbon oxidation state (OSc) of SOA, suggesting that SOA are more toxic when they are more oxidized. Overall, our work provides critical insights into the associations between cell health and ROS level upon SOA exposure and proposes that OSc could be a suitable proxy to assess the overall SOA toxicity.
Collapse
Affiliation(s)
- Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi710049, China
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, Guangdong511443, China
| | - Tianchang Xu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
17
|
Wu M, Jiang M, Ding H, Tang S, Li D, Pi J, Zhang R, Chen W, Chen R, Zheng Y, Piao J. Nrf2 -/- regulated lung DNA demethylation and CYP2E1 DNA methylation under PM 2.5 exposure. Front Genet 2023; 14:1144903. [PMID: 37113990 PMCID: PMC10128193 DOI: 10.3389/fgene.2023.1144903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/08/2023] [Indexed: 04/29/2023] Open
Abstract
Cytochrome P450 (CYP450) can mediate fine particulate matter (PM2.5) exposure leading to lung injury. Nuclear factor E2-related factor 2 (Nrf2) can regulate CYP450 expression; however, the mechanism by which Nrf2-/- (KO) regulates CYP450 expression via methylation of its promoter after PM2.5 exposure remains unclear. Here, Nrf2-/- (KO) mice and wild-type (WT) were placed in a PM2.5 exposure chamber (PM) or a filtered air chamber (FA) for 12 weeks using the real-ambient exposure system. The CYP2E1 expression trends were opposite between the WT and KO mice following PM2.5 exposure. After exposure to PM2.5, CYP2E1 mRNA and protein levels were increased in WT mice but decreased in KO mice, and CYP1A1 expression was increased after exposure to PM2.5 in both WT and KO mice. CYP2S1 expression decreased after exposure to PM2.5 in both the WT and KO groups. We studied the effect of PM2.5 exposure on CYP450 promoter methylation and global methylation levels in WT and KO mice. In WT and KO mice in the PM2.5 exposure chamber, among the methylation sites examined in the CYP2E1 promoter, the CpG2 methylation level showed an opposite trend with CYP2E1 mRNA expression. The same relationship was evident between CpG3 unit methylation in the CYP1A1 promoter and CYP1A1 mRNA expression, and between CpG1 unit methylation in the CYP2S1 promoter and CYP2S1 mRNA expression. This data suggests that methylation of these CpG units regulates the expression of the corresponding gene. After exposure to PM2.5, the expression of the DNA methylation markers ten-eleven translocation 3 (TET3) and 5-hydroxymethylcytosine (5hmC) was decreased in the WT group but significantly increased in the KO group. In summary, the changes in CYP2E1, CYP1A1, and CYP2S1 expression in the PM2.5 exposure chamber of WT and Nrf2-/- mice might be related to the specific methylation patterns in their promoter CpG units. After exposure to PM2.5, Nrf2 might regulate CYP2E1 expression by affecting CpG2 unit methylation and induce DNA demethylation via TET3 expression. Our study revealed the underlying mechanism for Nrf2 to regulate epigenetics after lung exposure to PM2.5.
Collapse
Affiliation(s)
- Mengjie Wu
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Ding
- The Municipal Government Hospital of Zibo, Zibo, Shandong, China
| | - Siying Tang
- Qingdao Chengyang District Center for Disease Control and Prevention, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Jinmei Piao,
| |
Collapse
|
18
|
Xue Y, Wang L, Zhang Y, Zhao Y, Liu Y. Air pollution: A culprit of lung cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128937. [PMID: 35452993 DOI: 10.1016/j.jhazmat.2022.128937] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a global health problem, especially in the context of rapid economic development and the expansion of urbanization. Herein, we discuss the harmful effects of outdoor and indoor pollution on the lungs. Ambient particulate matters (PMs) from industrial and vehicle exhausts is associated with lung cancer. Workers exposed to asbestos, polycyclic aromatic hydrocarbons (PAHs), and toxic metals are also likely to develop lung cancer. Indoors, cooking fumes, second-hand smoke, and radioactive products from house decoration materials play roles in the development of lung cancer. Bacteria and viruses can also be detrimental to health and are important risk factors in lung inflammation and cancer. Specific effects of lung cancer caused by air pollution are discussed in detail, including inflammation, DNA damage, and epigenetic regulation. In addition, advanced materials for personal protection, as well as the current government policies to prevent air pollution, are summarized. This review provides a basis for future research on the relationship between lung cancer and air pollution.
Collapse
Affiliation(s)
- Yueguang Xue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Liuxiang Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| | - Ying Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| |
Collapse
|
19
|
Lakhdar R, Mumby S, Abubakar-Waziri H, Porter A, Adcock IM, Chung KF. Lung toxicity of particulates and gaseous pollutants using ex-vivo airway epithelial cell culture systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119323. [PMID: 35447256 DOI: 10.1016/j.envpol.2022.119323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Air pollution consists of a multi-faceted mix of gases and ambient particulate matter (PM) with diverse organic and non-organic chemical components that contribute to increasing morbidity and mortality worldwide. In particular, epidemiological and clinical studies indicate that respiratory health is adversely affected by exposure to air pollution by both causing and worsening (exacerbating) diseases such as chronic obstructive pulmonary disease (COPD), asthma, interstitial pulmonary fibrosis and lung cancer. The molecular mechanisms of air pollution-induced pulmonary toxicity have been evaluated with regards to different types of PM of various sizes and concentrations with single and multiple exposures over different time periods. These data provide a plausible interrelationship between cellular toxicity and the activation of multiple biological processes including proinflammatory responses, oxidative stress, mitochondrial oxidative damage, autophagy, apoptosis, cell genotoxicity, cellular senescence and epithelial-mesenchymal transition. However, these molecular changes have been studied predominantly in cell lines rather than in primary bronchial or nasal cells from healthy subjects or those isolated from patients with airways disease. In addition, they have been conducted under different cell culture conditions and generally in submerged culture rather than the more relevant air-liquid interface culture and with a variety of air pollutant exposure protocols. Cell types may respond differentially to pollution delivered as an aerosol rather than being bathed in media containing agglomerations of particles. As a result, the actual pathophysiological pathways activated by different PMs in primary cells from the airways of healthy and asthmatic subjects remains unclear. This review summarises the literature on the different methodologies utilised in studying the impact of submicron-sized pollutants on cells derived from the respiratory tract with an emphasis on data obtained from primary human cell. We highlight the critical underlying molecular mechanisms that may be important in driving disease processes in response to air pollution in vivo.
Collapse
Affiliation(s)
- Ramzi Lakhdar
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Sharon Mumby
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Alexandra Porter
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Ian M Adcock
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| | - Kian Fan Chung
- National Heart and Lung Institute and *Department of Materials, Imperial College London, London, SW3 6LY, United Kingdom.
| |
Collapse
|
20
|
Particulate matter in COPD pathogenesis: an overview. Inflamm Res 2022; 71:797-815. [PMID: 35710643 DOI: 10.1007/s00011-022-01594-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder with substantial patient burden and leading cause of death globally. Cigarette smoke remains to be the most recognised causative factor behind COPD pathogenesis. Given the alarming increase in prevalence of COPD amongst non-smokers in recent past, a potential role of air pollution particularly particulate matter (PM) in COPD development has gained much attention of the scientists. Indeed, several epidemiological studies indicate strong correlation between airborne PM and COPD incidence/exacerbations. PM-induced oxidative stress seems to be the major player in orchestrating COPD inflammatory cycle but the exact molecular mechanism(s) behind such a process are still poorly understood. This may be due to the complexity of multiple molecular pathways involved. Oxidative stress-linked mitochondrial dysfunction and autophagy have also gained importance and have been the focus of recent studies regarding COPD pathogenesis. Accordingly, the present review is aimed at understanding the key molecular players behind PM-mediated COPD pathogenesis through analysis of various experimental studies supported by epidemiological data to identify relevant preventive/therapeutic targets in the area.
Collapse
|
21
|
Mishra PK, Bhargava A, Kumari R, Bunkar N, Chauhan P, Mukherjee S, Shandilya R, Singh RD, Tiwari R, Chaudhury K. Integrated mitoepigenetic signalling mechanisms associated with airborne particulate matter exposure: A cross-sectional pilot study. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101399. [DOI: 10.1016/j.apr.2022.101399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
22
|
Yang Y, Wang G, Li X, Iradukunda Y, Liu F, Li Z, Gao H, Shi G. Preparation of Electrospun Active Molecules Membrane Application to Atmospheric Free Radicals. MEMBRANES 2022; 12:membranes12050480. [PMID: 35629806 PMCID: PMC9143268 DOI: 10.3390/membranes12050480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022]
Abstract
Atmospheric reactive oxygen species (ROS) play a key role in the process of air pollution and oxidative damage to organisms. The analysis of ROS was carried out by the capture-derivative method. Therefore, it is necessary to prepare an effective molecular membrane to trap and detect ROS. Electrospinning membranes were prepared by combining the electrospinning technique with chrysin, baicalein, scutellarin, genistein, quercetin, and baicalin. By comparing the structures of the membranes before and after the reaction, the fluorescence enhancement characteristics of the reactive molecular membranes and the atmospheric radicals were studied. The ability of the active molecular membranes to trap atmospheric radicals was also studied. It was found that the genistein active molecular membrane had good trapping ability in four environments. The fluorescence enhancement rates in ROS, OH radical and O3 simulated environments were 39.32%, 7.99% and 11.92%, respectively. The fluorescence enhancement rate in atmospheric environment was 16.16%. Indeed, the sites where the atmospheric radicals react with the active molecular membranes are discussed. It is found that it is mainly related to the 5,7 phenolic hydroxyl of ring A, catechol structure and the coexistence structure of 4′ phenolic hydroxyl of ring B and 7 phenolic hydroxyl of ring A. Therefore, the genistein molecular membrane has shown great potential in its trapping ability and it is also environmentally friendly.
Collapse
Affiliation(s)
- Yang Yang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
| | - Guoying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
- Correspondence:
| | - Xin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
| | - Yves Iradukunda
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
| | - Fengshuo Liu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
| | - Zhiqian Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
| | - Hongli Gao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
| | - Gaofeng Shi
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.Y.); (X.L.); (F.L.); (Z.L.); (H.G.); (G.S.)
| |
Collapse
|
23
|
Characteristics of a novel photoinitiator aceanthrenequinone-initiated polymerization and cytocompatibility of its triggered polymer. Toxicol Rep 2022; 9:191-203. [PMID: 35169545 PMCID: PMC8829579 DOI: 10.1016/j.toxrep.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
AATQ is a novel photosensitizer with high-photoinitiating conversion efficiency at a relatively low concentration under 455 nm-blue light. Cytotoxicity of AATQ to different tissue types of cells is much lower than widely used-BAPO. Cytocompatibility of AATQ-initiated polymer is significantly superior to PANQ, but inferior to CQ. AATQ offers an alternative in industrial or biomedical areas, especially in the required low concentration of photoinitiators.
A number of photoinitiators are available in chemical industry, but less of them in biomedicine or clinical therapy due to the limitation of their cytotoxicity and biocompatibility. Thus, it is urgently necessary to find non-toxic or low-toxic photoinitiators to meet clinical demands. Aceanthrenequinone (AATQ) is a novel photosensitizer with high-photoinitiating ability, but no reports contribute, to date, to its cytotoxicity and biocompatibility. Here, primary cells and various cell lines were exposed to different concentrations of AATQ with or without irradiation. AATQ had the similar photoinitiating conversion efficiency to the extensively used bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide (BAPO) and higher one than 9,10-phenanthrenequinone (PANQ) with the similar extent of polymerization in depth within a certain range, but displayed much lower cytotoxicity than BAPO under non-irradiation or irradiation. The biocompatibility of BisGMA/TEGDMA polymer prepared by AATQ was superior to that of PANQ, but inferior to that of camphorquinone (CQ) although the far lower dose of AATQ is enough to initiate polymerization of monomer than that of CQ. Hence, AATQ offers a valuable alternative in applications of industrial or biomedical areas.
Collapse
|
24
|
Kahremany S, Hofmann L, Eretz-Kdosha N, Silberstein E, Gruzman A, Cohen G. SH-29 and SK-119 Attenuates Air-Pollution Induced Damage by Activating Nrf2 in HaCaT Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312371. [PMID: 34886097 PMCID: PMC8656889 DOI: 10.3390/ijerph182312371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022]
Abstract
Air pollution has been repeatedly linked to numerous health-related disorders, including skin sensitization, oxidative imbalance, premature extrinsic aging, skin inflammation, and increased cancer prevalence. Nrf2 is a key player in the endogenous protective mechanism of the skin. We hypothesized that pharmacological activation of Nrf2 might reduce the deleterious action of diesel particulate matter (DPM), evaluated in HaCaT cells. SK-119, a recently synthesized pharmacological agent as well as 2,2′-((1E,1′E)-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(benzene-1,3,5-triol) (SH-29) were first evaluated in silico, suggesting a potent Nrf2 activation capacity that was validated in vitro. In addition, both compounds were able to attenuate key pathways underlying DPM damage, including cytosolic and mitochondrial reactive oxygen species (ROS) generation, tested by DC-FDA and MitoSOX fluorescent dye, respectively. This effect was independent of the low direct scavenging ability of the compounds. In addition, both SK-119 and SH-29 were able to reduce DPM-induced IL-8 hypersecretion in pharmacologically relevant concentrations. Lastly, the safety of both compounds was evaluated and demonstrated in the ex vivo human skin organ culture model. Collectively, these results suggest that Nrf2 activation by SK-119 and SH-29 can revert the deleterious action of air pollution.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.K.); (L.H.)
- The Dead Sea and Arava Science Center, The Skin Research Institute, Masada 8691000, Israel;
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.K.); (L.H.)
| | - Noy Eretz-Kdosha
- The Dead Sea and Arava Science Center, The Skin Research Institute, Masada 8691000, Israel;
| | - Eldad Silberstein
- Department of Plastic Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 8410100, Israel;
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.K.); (L.H.)
- Correspondence: (A.G.); (G.C.)
| | - Guy Cohen
- The Dead Sea and Arava Science Center, The Skin Research Institute, Masada 8691000, Israel;
- Eilat Campus, Ben Gurion University of the Negev, Eilat 8855630, Israel
- Correspondence: (A.G.); (G.C.)
| |
Collapse
|
25
|
Wang Y, Xiong L, Yao Y, Ma Y, Liu Q, Pang Y, Tang M. The involvement of DRP1-mediated caspase-1 activation in inflammatory response by urban particulate matter in EA.hy926 human vascular endothelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117369. [PMID: 34182399 DOI: 10.1016/j.envpol.2021.117369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Atmospheric particulate matter (PM) has been reported to be closely related to cardiovascular adverse events. However, the underlying mode of action remains to be elucidated. Previous studies have documented that PM induces mitochondrial damage and inflammation, the relation between these two biological outcomes is still unclear though. In this study, we used EA.hy926 human vascular endothelial cells and a standard PM, PM SRM1648a to study the potential effects of mitochondrial dysfunction on endothelial inflammatory responses. As a result, PM SRM1648a changes mitochondrial morphology and interrupts mitochondrial dynamics with a persistent tendency of fission in a dose-dependent manner. Additionally, the caspase-1/IL-1β axis is involved in inflammatory responses but not cell pyroptosis in EA.hy926 cells following the exposure to PM SRM1648a. The activation of caspase-1 has implications in inflammation but not pyroptosis, because caspase-1-dependent pyroptosis is not the main modality of cell death in PM SRM1648a-treated EA.hy926 cells. With regard to the association between mitochondrial damage and inflammation in the case of particle stimulation, DRP1-mediated mitochondrial fission is responsible for inflammatory responses as a result of caspase-1 activation. The current study showed that PM SRM1648a has the ability to disturb mitochondrial dynamics, and trigger endothelial inflammation via DRP1/caspase-1/IL-1β regulatory pathway. In a conclusion, mitochondrial fission enables EA.hy926 cells to facilitate caspase-1 activation in response to PM SRM1648a, which is a crucial step for inflammatory reaction in vascular endothelial cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Lilin Xiong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Qing Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Yanting Pang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
26
|
Lai A, Baumgartner J, Schauer JJ, Rudich Y, Pardo M. Cytotoxicity and chemical composition of women's personal PM 2.5 exposures from rural China. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2021; 1:359-371. [PMID: 34604754 PMCID: PMC8459644 DOI: 10.1039/d1ea00022e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Personal exposure PM samples aid in determining the sources and chemical composition of real-world exposures, particularly in settings with household air pollution. However, their use in toxicological research is limited, despite uncertainty regarding health effects in these settings and evidence of differential toxicity among PM2.5 sources and components. This study used women's PM2.5 exposure samples collected using personal exposure monitoring in rural villages in three Chinese provinces (Beijing, Shanxi, and Sichuan) during summer and winter. Water-soluble organic carbon, ions, elements, and organic tracers (e.g. levoglucosan and polycyclic aromatic hydrocarbons [PAHs]) were quantified in water and organic PM2.5 extracts. Human lung epithelial cells (A549) were exposed to the extracts. Cell death, reactive oxygen species (ROS), and gene expression were measured. Biomass burning contributions were higher in Sichuan samples than in Beijing or Shanxi. Some PM characteristics (total PAHs and coal combustion source contributions) and biological effects of organic extract exposures (cell death, ROS, and cytokine gene expression) shared a common trend of higher levels and effects in winter than in summer for Shanxi and Beijing but no seasonal differences in Sichuan. Modulation of phase I/AhR-related genes (cyp1a1 and cyp1b1) and phase II/oxidative stress-related genes (HO-1, SOD1/2, NQO-1, and catalase) was either low or insignificant, without clear trends between samples. No significant cell death or ROS production was observed for water extract treatments among all sites and seasons, even at possible higher concentrations tested. These results support organic components, particularly PAHs, as essential drivers of biological effects, which is consistent with some other evidence from ambient PM2.5. Direct measurement with personal samplers captures the chemical complexity of PM2.5 exposures better than fixed monitors. To investigate biological effects, lung cells were exposed to extracts of exposure PM2.5 samples.![]()
Collapse
Affiliation(s)
- Alexandra Lai
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Jill Baumgartner
- Institute for Health and Social Policy, Department of Epidemiology, Biostatistics, and Occupational Health, McGill University Montreal Quebec Canada
| | - James J Schauer
- Environmental Chemistry & Technology Program, University of Wisconsin-Madison Madison WI USA
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| | - Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
27
|
Dowlath MJH, Karuppannan SK, Sinha P, Dowlath NS, Arunachalam KD, Ravindran B, Chang SW, Nguyen-Tri P, Nguyen DD. Effects of radiation and role of plants in radioprotection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146431. [PMID: 34030282 DOI: 10.1016/j.scitotenv.2021.146431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Radiation can be lethal at high doses, whereas controlled doses are useful in medical applications. Other applications include power generation, agriculture sterilization, nuclear weapons, and archeology. Radiation damages genetic material, which is reflected in genotoxicity and can cause hereditary damage. In the medical field, it is essential to avoid the harmful effects of radiation. Radiation countermeasures and the need for radioprotective agents have been explored in recent years. Considering plants that evolve in radiative conditions, their ability to protect organisms against radiation has been studied and demonstrated. Crude extracts, fractioned extracts, isolated phytocompounds, and plant polysaccharides from various plants have been used in radioprotection studies, and their efficiency has been proven in various in vitro and in vivo experimental models. It is important to identify the mechanism of action to develop a potent plant-based radioprotective agent. To identify this protective mechanism, it is necessary to understand the damage caused by radiation in biological systems. This review intends to discuss the effects of ionizing radiation on biological systems and evaluate plant-based radioprotectants that have tested thus far as well as their mechanism of action in protecting against the toxic effects of radiation. From the review, the mechanism of radioprotection exhibited by the plant-based products could be understood. Meanwhile, we strongly suggest that the potential products identified so far should undergo clinical trials for critically evaluating their effects and for developing an ideal and compatible radioprotectant with no side-effects.
Collapse
Affiliation(s)
- Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Pamela Sinha
- Project Management, Bioneeds India Pvt. Ltd, Peenya Industrial Area, Bengaluru 560058, India
| | - Nihala Sultana Dowlath
- Department of Biochemistry, Ethiraj College for Women, Chennai, Tamil Nadu 600008, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - S Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Phuong Nguyen-Tri
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| |
Collapse
|
28
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
29
|
Zhu C, Maharajan K, Liu K, Zhang Y. Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. ENVIRONMENTAL RESEARCH 2021; 198:111281. [PMID: 33961825 PMCID: PMC8096764 DOI: 10.1016/j.envres.2021.111281] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 05/04/2023]
Abstract
Due to intense industrialization and urbanization, air pollution has become a serious global concern as a hazard to human health. Epidemiological studies found that exposure to atmospheric particulate matter (PM) causes severe health problems in human and significant damage to the physiological systems. In recent days, PM exposure could be related as a carrier for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus transmission and Coronavirus disease 2019 (COVID-19) infection. Hence, it is important to understand the adverse effects of PM in human health. This review aims to provide insights on the detrimental effects of PM in various human health problems including respiratory, circulatory, nervous, and immune system along with their possible toxicity mechanisms. Overall, this review highlights the potential relationship of PM with several life-limiting human diseases and their significance for better management strategies.
Collapse
Affiliation(s)
- Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kannan Maharajan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
30
|
Pardo M, Li C, Fang Z, Levin-Zaidman S, Dezorella N, Czech H, Martens P, Käfer U, Gröger T, Rüger CP, Friederici L, Zimmermann R, Rudich Y. Toxicity of Water- and Organic-Soluble Wood Tar Fractions from Biomass Burning in Lung Epithelial Cells. Chem Res Toxicol 2021; 34:1588-1603. [PMID: 34033466 PMCID: PMC8277191 DOI: 10.1021/acs.chemrestox.1c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/28/2022]
Abstract
Widespread smoke from wildfires and biomass burning contributes to air pollution and the deterioration of air quality and human health. A common and major emission of biomass burning, often found in collected smoke particles, is spherical wood tar particles, also known as "tar balls". However, the toxicity of wood tar particles and the mechanisms that govern their health impacts and the impact of their complicated chemical matrix are not fully elucidated. To address these questions, we generated wood tar material from wood pyrolysis and isolated two main subfractions: water-soluble and organic-soluble fractions. The chemical characteristics as well as the cytotoxicity, oxidative damage, and DNA damage mechanisms were investigated after exposure of A549 and BEAS-2B lung epithelial cells to wood tar. Our results suggest that both wood tar subfractions reduce cell viability in exposed lung cells; however, these fractions have different modes of action that are related to their physicochemical properties. Exposure to the water-soluble wood tar fraction increased total reactive oxygen species production in the cells, decreased mitochondrial membrane potential (MMP), and induced oxidative damage and cell death, probably through apoptosis. Exposure to the organic-soluble fraction increased superoxide anion production, with a sharp decrease in MMP. DNA damage is a significant process that may explain the course of toxicity of the organic-soluble fraction. For both subfractions, exposure caused cell cycle alterations in the G2/M phase that were induced by upregulation of p21 and p16. Collectively, both subfractions of wood tar are toxic. The water-soluble fraction contains chemicals (such as phenolic compounds) that induce a strong oxidative stress response and penetrate living cells more easily. The organic-soluble fraction contained more polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs and induced genotoxic processes, such as DNA damage.
Collapse
Affiliation(s)
- Michal Pardo
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | | | - Nili Dezorella
- Electron
Microscopy Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hendryk Czech
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Patrick Martens
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Uwe Käfer
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Thomas Gröger
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
| | - Christopher P. Rüger
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Lukas Friederici
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Ralf Zimmermann
- Joint
Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA), Cooperation Group Helmholtz Zentrum München
- German Research Center for Environmental Health GmbH, Gmunder Str. 37, 81379 München, Germany
- Joint
Mass Spectrometry Centre, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
31
|
Shi J, Yu T, Song K, Du S, He S, Hu X, Li X, Li H, Dong S, Zhang Y, Xie Z, Li C, Yu J. Dexmedetomidine ameliorates endotoxin-induced acute lung injury in vivo and in vitro by preserving mitochondrial dynamic equilibrium through the HIF-1a/HO-1 signaling pathway. Redox Biol 2021; 41:101954. [PMID: 33774474 PMCID: PMC8027777 DOI: 10.1016/j.redox.2021.101954] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing lines of evidence identified that dexmedetomidine (DEX) exerted protective effects against sepsis-stimulated acute lung injury via anti-inflammation, anti-oxidation and anti-apoptosis. However, the mechanisms remain unclear. Herein, we investigated whether DEX afforded lung protection by regulating the process of mitochondrial dynamics through the HIF-1a/HO-1 pathway in vivo and in vitro. Using C57BL/6J mice exposed to lipopolysaccharide, it was initially observed that preemptive administration of DEX (50μg/kg) alleviated lung pathologic injury, reduced oxidative stress indices (OSI), improved mitochondrial dysfunction, upregulated the expression of HIF-1α and HO-1, accompanied by shifting the dynamic course of mitochondria into fusion. Moreover, HO-1-knockout mice or HO-1 siRNA transfected NR8383 cells were pretreated with HIF-1α stabilizer DMOG and DEX to validate the effect of HIF-1a/HO-1 pathway on DEX-mediated mitochondrial dynamics in a model of endotoxin-induced lung injury. We found that pretreatment with DEX and DMOG distinctly relieved lung injury, decreased the levels of mitochondrial ROS and mtDNA, reduced OSI, increased nuclear accumulation of HIF-1a and HO-1 protein in wild type mice but not HO-1 KO mice. Similar observations were recapitulated in NC siRNA transfected NR8383 cells after LPS stimulation but not HO-1 siRNA transfected cells. Concertedly, DEX reversed the impaired mitochondrial morphology in LPS stimulated-wild type mice or NC siRNA transfected NR8383 cells, upregulated the expression of mitochondrial fusion protein, while downregulated the expression of fission protein in HIF-1a/HO-1 dependent pathway. Altogether, our data both in vivo and in vitro certified that DEX treatment ameliorated endotoxin-induced acute lung injury by preserving the dynamic equilibrium of mitochondrial fusion/fission through the regulation of HIF-1a/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Tianxi Yu
- Department of Sanitary Inspection and Quarantine, Kunming Medical University, YunNan, China
| | - Kai Song
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shihan Du
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Simeng He
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Nankai University, Tianjin, China
| | - Xinxin Hu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Haibo Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Zilei Xie
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Cui Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
32
|
Jiang M, Li D, Piao J, Li Y, Chen L, Li J, Yu D, Pi J, Zhang R, Chen R, Chen W, Zheng Y. Nrf2 modulated the restriction of lung function via impairment of intrinsic autophagy upon real-ambient PM 2.5 exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124903. [PMID: 33373951 DOI: 10.1016/j.jhazmat.2020.124903] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/28/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Compelling studies approve that fine particle matter (PM2.5) exposure was associated with high risk of respiratory disorders. However, the available data assessing the detailed influence of PM2.5 on lung was limited. To overcome the difficulty of inhalational PM2.5 exposure, the real-ambient PM2.5 exposure system was constructed. The mice were exposed to filtered air (FA) or real-ambient PM2.5 (PM2.5), and the adverse effect on lung was determined. Nuclear factor E2-related factor 2 (Nrf2) as a transcription factor, was reported to affect autophagy. Autophagy was proposed as a two-edge sword in respiratory disorders. Here, our data presented that PM2.5 exposure dramatically reduced the lung function of WT mice rather than Nrf2-/- mice. Consistently, thickened alveolar walls was observed in WT mice in PM2.5 exposure group, whereas the histological phenotype of Nrf2-/- mice exhibited no obvious alteration. Furthermore, PM2.5 exposure triggered low-grade production of inflammatory profile in WT and Nrf2-/- mice. Moreover, the protein levels of p62, Beclin1 and LC3B of WT mice rather than Nrf2-/- mice were also altered in PM2.5 exposure group. Taken together, the present study applied the real-ambient exposure system, revealed the adverse effect of air pollution on lung, and proposed the underlying mechanism.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
33
|
Gao M, Ma Y, Luo J, Li D, Jiang M, Jiang Q, Pi J, Chen R, Chen W, Zhang R, Zheng Y, Cui L. The Role of Nrf2 in the PM-Induced Vascular Injury Under Real Ambient Particulate Matter Exposure in C57/B6 Mice. Front Pharmacol 2021; 12:618023. [PMID: 33716746 PMCID: PMC7952307 DOI: 10.3389/fphar.2021.618023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Short-and long-term exposure to particulate matter (PM) has been associated with cardiovascular disease (CVD). It is well recognized that oxidative stress is a potential major mechanism in PM-induced vascular injuries, in which the nuclear factor E2-related factor 2 (Nrf2) signaling pathway plays a critical role. In the current study, a Nrf2 knockout mouse model was used in combination with an individual ventilated cage (IVC)-based real-ambient PM exposure system to assess the potential vascular injury and the potential role of Nrf2 in the angiotensin II (Ang II)-associated vascular injury. After 6-or 11-week exposure to PM, the histopathology assay revealed that PM exposure resulted in the thickening of the walls of vascular. After 6 weeks exposure to PM, the ELISA assay revealed that PM exposure resulted in the elevated plasma concentration of Ang II. The expression levels of genes of interest were then further investigated with quantitative real-time PCR. Notably, the results showed that Angiotensinogen (AGT), Angiotensin converting enzyme (ACE) and Angiotensin type I receptor (AT1R) were involved in PM-induced pathological changes. Western blotting for ACE showed similar results. Moreover, the extent of vascular thickening and the Ang II elevation was most prominent in the Nrf2 gene knockout PM exposure group (KOE). Furthermore, the expression of Nrf2 downstream relevant genes (HO1, Nqo1, Gclc, Gsta4) were significantly enhanced in the wildtype PM exposure group (WTE), while those were remarkably suppressed in the Nrf2 gene knockout groups. The ELISA result of monocyte chemoattractant protein-1 (MCP-1) serum levels in the KOE group was significantly higher in relation to that in the Nrf2 knockout control group (KOC). In summary, PM exposure is associated with thickening of vascular wall, while Nrf2 knockout may further enhance this effect. A potential mechanistic contributor of such effects is the activation of ACE/ANGII/AT1R axis, in which Nrf2 played a regulatory role.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Menghui Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Sharma J, Parsai K, Raghuwanshi P, Ali SA, Tiwari V, Bhargava A, Mishra PK. Emerging role of mitochondria in airborne particulate matter-induced immunotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116242. [PMID: 33321436 DOI: 10.1016/j.envpol.2020.116242] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
The immune system is one of the primary targets of airborne particulate matter. Recent evidence suggests that mitochondria lie at the center of particulate matter-induced immunotoxicity. Particulate matter can directly interact with mitochondrial components (proteins, lipids, and nucleic acids) and impairs the vital mitochondrial processes including redox mechanisms, fusion-fission, autophagy, and metabolic pathways. These disturbances impede different mitochondrial functions including ATP production, which acts as an important platform to regulate immunity and inflammatory responses. Moreover, the mitochondrial DNA released into the cytosol or in the extracellular milieu acts as a danger-associated molecular pattern and triggers the signaling pathways, involving cGAS-STING, TLR9, and NLRP3. In the present review, we discuss the emerging role of mitochondria in airborne particulate matter-induced immunotoxicity and its myriad biological consequences in health and disease.
Collapse
Affiliation(s)
- Jahnavi Sharma
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Kamakshi Parsai
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pragati Raghuwanshi
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Sophiya Anjum Ali
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vineeta Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
35
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
36
|
Li S, Shi M, Wang Y, Xiao Y, Cai D, Xiao F. Keap1-Nrf2 pathway up-regulation via hydrogen sulfide mitigates polystyrene microplastics induced-hepatotoxic effects. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123933. [PMID: 33254827 DOI: 10.1016/j.jhazmat.2020.123933] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 05/23/2023]
Abstract
Microplastics, which are new types of environmental pollutants, are recently receiving widespread attention worldwide. Hydrogen sulfide (H2S) as the third endogenous gaseous mediator had protective effects in multiple physiological and pathological conditions. However, the protective role of H2S in microplastics-induced hepatotoxocity remain unclear. In this study, our data showed that H2S significantly suppressed inflammation, apoptosis and oxidative stress induced by polystyrene microplastics (mic-PS) (20 mg/kg b.w.) in the liver. Strikingly, although mic-PS exposure increased the expression of nuclear factor-E2-related factor (Nrf2), it did not influence the levels of heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQOl) in the L02 hepatocytes. Immunofluorescence assay showed that sodium hydrosulfide (NaHS) reduced micro-Ps-induced hepatic apoptosis by facilitating nuclear accumulation of Nrf2. Simultaneously, flow cytometry also showed that NaHS could prevent mic-PS-induced accumulation of reactive oxygen species (ROS) by increasing the expression of HO-1 and NQO1. Furthermore, inhibition of HO-1 could reverse the hepatic protective effects of NaHS during mic-PS exposure. Mechanistically, H2S elevating the HO-1 and NQO1 expression by facilitating nuclear accumulation of Nrf2, and consequently reducing mic-PS-induced hepatic apoptosis and inflammation. This study unveils the hepatotoxic effects of MPs and suggest NaHS have protective effects on mic-PS-induced liver damage.
Collapse
Affiliation(s)
- Siwen Li
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China; College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China.
| | - Mei Shi
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Yanling Wang
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Yanxin Xiao
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Daihong Cai
- College of Basic Medical Sciences, Southwest Medical University, Sichuan Province, Luzhou, 646000, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, 410078, PR China.
| |
Collapse
|
37
|
Lan Y, Ng CT, Ong CN, Yu LE, Bay BH. Transcriptomic analysis identifies dysregulated genes and functional networks in human small airway epithelial cells exposed to ambient PM 2.5. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111702. [PMID: 33396033 DOI: 10.1016/j.ecoenv.2020.111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.
Collapse
Affiliation(s)
- Yang Lan
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Cheng Teng Ng
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
38
|
Shi F, Zhang Z, Wang J, Wang Y, Deng J, Zeng Y, Zou P, Ling X, Han F, Liu J, Ao L, Cao J. Analysis by Metabolomics and Transcriptomics for the Energy Metabolism Disorder and the Aryl Hydrocarbon Receptor Activation in Male Reproduction of Mice and GC-2spd Cells Exposed to PM 2.5. Front Endocrinol (Lausanne) 2021; 12:807374. [PMID: 35046903 PMCID: PMC8761788 DOI: 10.3389/fendo.2021.807374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Fine particulate matter (PM2.5)-induced male reproductive toxicity arouses global public health concerns. However, the mechanisms of toxicity remain unclear. This study aimed to further investigate toxicity pathways by exposure to PM2.5in vitro and in vivo through the application of metabolomics and transcriptomics. In vitro, spermatocyte-derived GC-2spd cells were treated with 0, 25, 50, 100 μg/mL PM2.5 for 48 h. In vivo, the real-world exposure of PM2.5 for mouse was established. Forty-five male C57BL/6 mice were exposed to filtered air, unfiltered air, and concentrated ambient PM2.5 in Tangshan of China for 8 weeks, respectively. The results in vitro and in vivo showed that PM2.5 exposure inhibited GC-2spd cell proliferation and reduced sperm motility. Mitochondrial damage was observed after PM2.5 treatment. Increased Humanin and MOTS-c levels and decreased mitochondrial respiratory indicated that mitochondrial function was disturbed. Furthermore, nontargeted metabolomics analysis revealed that PM2.5 exposure could disturb the citrate cycle (TCA cycle) and reduce amino acids and nucleotide synthesis. Mechanically, the aryl hydrocarbon receptor (AhR) pathway was activated after exposure to PM2.5, with a significant increase in CYP1A1 expression. Further studies showed that PM2.5 exposure significantly increased both intracellular and mitochondrial reactive oxygen species (ROS) and activated NRF2 antioxidative pathway. With the RNA-sequencing technique, the differentially expressed genes induced by PM2.5 exposure were mainly enriched in the metabolism of xenobiotics by the cytochrome P450 pathway, of which Cyp1a1 was the most significantly changed gene. Our findings demonstrated that PM2.5 exposure could induce spermatocyte damage and energy metabolism disorder. The activation of the aryl hydrocarbon receptor might be involved in the mechanism of male reproductive toxicity.
Collapse
Affiliation(s)
- Fuquan Shi
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhonghao Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiankang Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yimeng Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiuyang Deng
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Yingfei Zeng
- School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xi Ling
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Han
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jia Cao, ; Lin Ao,
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- *Correspondence: Jia Cao, ; Lin Ao,
| |
Collapse
|
39
|
Liu F, Whitley J, Ng NL, Lu H. Time-Resolved Single-Cell Assay for Measuring Intracellular Reactive Oxygen Species upon Exposure to Ambient Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13121-13130. [PMID: 32914962 DOI: 10.1021/acs.est.0c02889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Health risks associated with exposure to ambient particulate matter (PM) are a major concern around the world. Adverse PM health effects have been proposed to be linked to oxidative stress through the generation of reactive oxygen species (ROS). In vitro cellular assays can provide insights into components or characteristics of PM that best account for its toxicity at a cellular level. However, most current assays report cell population averages and are mostly time endpoint measurements and thus provide no temporal information. This poses limitations on our understanding of PM health effects. In this study, we developed a microfluidic assay that can measure cellular ROS responses at the single-cell level and evaluate temporal dynamic behavior of single cells. We first established a protocol that enables culturing cells in our microfluidic platform and that can provide reproducible ROS readouts. We further examined the heterogeneous ROS responses of cell populations and tracked the dynamics of individual cellular responses upon exposure to different concentrations of PM extracts. Our results show that in an alveolar macrophage cell line, cellular ROS responses are highly heterogeneous. ROS responses from different cells can vary over an order of magnitude, and large coefficients of variation at each timepoint measurement indicate a high variability. The dynamic behavior of single-cell responses is strongly dependent on PM concentrations. Our work serves as a proof-of-principle demonstration of the capability of our microfluidic technology to study time-resolved single-cell responses upon PM exposure. We envision applying this high-resolution, high-content assay to investigate a wide array of single-cell responses (beyond ROS) upon exposure to different types of PM in the future.
Collapse
Affiliation(s)
- Fobang Liu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Josh Whitley
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nga Lee Ng
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Earth & Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Civil & Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Liu X, Zhao X, Li X, Lv S, Ma R, Qi Y, Abulikemu A, Duan H, Guo C, Li Y, Sun Z. PM 2.5 triggered apoptosis in lung epithelial cells through the mitochondrial apoptotic way mediated by a ROS-DRP1-mitochondrial fission axis. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122608. [PMID: 32387827 DOI: 10.1016/j.jhazmat.2020.122608] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological studies revealed a sharp increase in respiratory diseases attributed to PM2.5. However, the underlying mechanisms remain unclear. Evidence suggested mitochondrion as a sensitive target upon the stimulus of PM2.5, and the centrality in the pathological processes and clinical characterization of lung diseases. To investigate cell fate and related mechanisms caused by PM2.5, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-100 μg/mL). Consequently, PM2.5 components were found in cytoplasm, and morphological and functional alterations in mitochondria occurred, as evidenced by loss of cristae, vacuolization and even the outer mitochondrial membrane rupture, mitochondrial membrane potential collapse, enhanced reactive oxygen species (ROS)/mtROS level, calcium overload, suppressed cellular respiration and ATP production in PM2.5-treated cells. Further, disturbed dynamics toward fission was clearly observed in PM2.5-treated mitochondria, associated with DRP1 mitochondrial translocation and phosphorylation. Besides, PM2.5 induced mitochondria-mediated apoptosis. More importantly, mechanistic results revealed ROS- and DRP1-mediated mitochondrial fission in a reciprocal way, and DRP1 inhibitor (Mdivi-1) significantly alleviated the pro-apoptotic effect of PM2.5 through reversing the activated mitochondrial apoptotic pathway. In summary, our results firstly revealed PM2.5 induced apoptosis in lung epithelial cells through a ROS-DRP1-mitochodrial fission axis-mediated mitochondrial apoptotic pathway, ultimately contributing to the onset and development of pulmonary diseases.
Collapse
Affiliation(s)
- Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
41
|
Duan S, Zhang M, Sun Y, Fang Z, Wang H, Li S, Peng Y, Li J, Li J, Tian J, Yin H, Yao S, Zhang L. Mechanism of PM 2.5-induced human bronchial epithelial cell toxicity in central China. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122747. [PMID: 32339879 DOI: 10.1016/j.jhazmat.2020.122747] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 05/05/2023]
Abstract
Exposure to PM2.5 has been linked to respiratory disorders, yet knowledge of the molecular mechanism is limited. Here, PM2.5 was monitored and collected in central China, and its cytotoxicity mechanism on human bronchial epithelial cells (BEAS-2B) was investigated. With the average concentration of 109 ± 69 μg/m3, PM2.5 was rich in heavy metals and organic pollutants. After exposure to PM2.5, the viability of BEAS-2B cells decreased, where 510 dysregulated genes were predicted to induce necroptosis via inhibiting ATP synthesis through the oxidative phosphorylation signaling pathway. Cellular experiments demonstrated that the content of ATP was downregulated, while the expression of RIP3, a necroptosis indicator, was upregulated. Besides, four enzymes in charge of ATP synthesis were downregulated, including ATP5F, NDUF, COX7A, and UQCR, while two genes of RELA and CAPN1 responsible for necroptosis were upregulated. Furthermore, N-acetylcysteine was applied as an enhancer for ATP synthesis, which reversed the downregulation of ATP5F, NDUF, and COX7A, and consequently alleviated the elevation of RELA, CAPN1, and RIP3. In conclusion, PM2.5 exposure downregulates ATP5F, NDUF, COX7A, and UQCR, and that inhibits ATP synthesis via the oxidative phosphorylation signaling pathway, which subsequently upregulates RELA and CAPN1 and ultimately leads to necroptosis of BEAS-2B cells.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; Department of Occupational and Environmental Hygiene, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yaqiong Sun
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Hefeng Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Yanze Peng
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Juan Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Junxia Li
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Jiaqi Tian
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Department of Occupational and Environmental Hygiene, School of Public Health and Management, Weifang Medical University, Weifang 261042, China
| | - Sanqiao Yao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
42
|
Sotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman LY, Canivet L, Perdrix E, Loyens A, Marchetti P, Lo Guidice JM, Garçon G. Mitochondrial alterations triggered by repeated exposure to fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) fractions of ambient particulate matter. ENVIRONMENT INTERNATIONAL 2020; 142:105830. [PMID: 32585499 DOI: 10.1016/j.envint.2020.105830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive. Mitochondria are major endogenous sources of reactive oxygen species (ROS) through oxidative metabolism, and coordinate many critical cellular signaling processes. Mitochondria have been often studied in the context of PM toxicity and generally associated with apoptosis activation. However, little is known about the underlying adaptation mechanisms that could occur following exposure at sub-apoptotic doses of ambient PM. Here, normal human bronchial epithelial BEAS-2B cells were acutely or repeatedly exposed to relatively low doses (5 µg.cm-2) of FP (PM2.5-0.18) or quasi-UFP (Q-UFP; PM0.18) to better access the critical changes in mitochondrial morphology, functions, and dynamics. No significant cytotoxicity nor increase of apoptotic events were reported for any exposure. Mitochondrial membrane potential (ΔΨm) and intracellular ATP content were also not significantly impaired. After cell exposure to sub-apoptotic doses of FP and notably Q-UFP, oxidative phosphorylation was increased as well as mitochondrial mass, resulting in increased production of mitochondrial superoxide anion. Given this oxidative boost, the NRF2-ARE signaling pathway was significantly activated. However, mitochondrial dynamic alterations in favor of accentuated fission process were observed, in particular after Q-UFP vs FP, and repeated vs acute exposure. Taken together, these results supported mitochondrial quality control and metabolism dysfunction as an early lung underlying mechanism of toxicity, thereby leading to accumulation of defective mitochondria and enhanced endogenous ROS generation. Therefore, these features might play a key role in maintaining PM-induced oxidative stress and inflammation within lung cells, which could dramatically contribute to the exacerbation of inflammatory chronic lung diseases. The prospective findings of this work could also offer new insights into the physiopathology of lung toxicity, arguably initiate and/or exacerbate by acutely and rather repeated exposure to ambient FP and mostly Q-UFP.
Collapse
Affiliation(s)
- J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - C De Sousa
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - M Tardivel
- Univ. Lille, BioImaging Centre Lille-Nord de France (BICeL), 59000, Lille, France
| | - S Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - L Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - A Loyens
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - Lille Neuroscience & Cognition, 59000 Lille, France
| | - P Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France.
| |
Collapse
|
43
|
Ge C, Tan J, Zhong S, Lai L, Chen G, Zhao J, Yi C, Wang L, Zhou L, Tang T, Yang Q, Lou D, Li Q, Wu Y, Hu L, Kuang G, Liu X, Wang B, Xu M. Nrf2 mitigates prolonged PM2.5 exposure-triggered liver inflammation by positively regulating SIKE activity: Protection by Juglanin. Redox Biol 2020; 36:101645. [PMID: 32863207 PMCID: PMC7387847 DOI: 10.1016/j.redox.2020.101645] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 02/07/2023] Open
Abstract
Air pollution containing particulate matter (PM) less than 2.5 μm (PM2.5) plays an essential role in regulating hepatic disease. However, its molecular mechanism is not yet clear, lacking effective therapeutic strategies. In this study, we attempted to investigate the effects and mechanisms of PM2.5 exposure on hepatic injury by the in vitro and in vivo experiments. At first, we found that PM2.5 incubation led to a significant reduction of nuclear factor erythroid-derived 2-related factor 2 (Nrf2), along with markedly reduced expression of different anti-oxidants. Notably, suppressor of IKKε (SIKE), known as a negative regulator of the interferon pathway, was decreased in PM2.5-incubated cells, accompanied with increased activation of TANK-binding kinase 1 (TBK1) and nuclear factor-κB (NF-κB). The in vitro studies showed that Nrf2 positively regulated SIKE expression under the conditions with or without PM2.5. After PM2.5 treatment, Nrf2 knockdown further accelerated SIEK decrease and TBK1/NF-κB activation, and opposite results were observed in cells with Nrf2 over-expression. Subsequently, the gene loss- and gain-function analysis demonstrated that SIKE deficiency further aggravated inflammation and TBK1/NF-κB activation caused by PM2.5, which could be abrogated by SIKE over-expression. Importantly, SIKE-alleviated inflammation was mainly dependent on TBK1 activation. The in vivo studies confirmed that SIKE- and Nrf2-knockout mice showed significantly accelerated hepatic injury after long-term PM2.5 exposure through reducing inflammatory response and oxidative stress. Juglanin (Jug), mainly isolated from Polygonum aviculare, exhibits anti-inflammatory and anti-oxidant effects. We found that Jug could increase Nrf2 activation, and then up-regulated SIKE in cells and liver tissues, mitigating PM2.5-induced liver injury. Together, all these data demonstrated that Nrf2 might positively meditate SIKE to inhibit inflammatory and oxidative damage, ameliorating PM2.5-induced liver injury. Jug could be considered as an effective therapeutic strategy against this disease by improving Nrf2/SIKE signaling pathway.
Collapse
Affiliation(s)
- Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China.
| | - Shaoyu Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Lili Lai
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Geng Chen
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Junjie Zhao
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Chao Yi
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Longyan Wang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Liwei Zhou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Tingting Tang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Qiufeng Yang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Yekuan Wu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Linfeng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China
| | - Gang Kuang
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Xi Liu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, PR China; Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
44
|
Jiang M, Li D, Piao J, Li J, Sun H, Chen L, Chen S, Pi J, Zhang R, Chen R, Leng S, Chen W, Zheng Y. Real-ambient exposure to air pollution exaggerates excessive growth of adipose tissue modulated by Nrf2 signal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:138652. [PMID: 32416500 DOI: 10.1016/j.scitotenv.2020.138652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 05/24/2023]
Abstract
Air pollution was becoming a global threat to the public health, which was primarily mediated by PM2.5 induced cardiovascular diseases and pulmonary diseases. Recently, observational epidemiologic studies proposed the link between PM2.5 and obesity. Consistently, the link was also supported by limited animal researches. However, the potential mechanism mediating the harmful effects of PM2.5 was still elusive. In this study, we applied the "real-ambient exposure" system to conduct the experiments, which was closer to the status of ambient air pollution compared with the method of intratracheal instillation and concentrated air particles (CAPs) exposure system. Nuclear factor E2-related factor 2 (Nrf2) was previously reported to protect against inflammation and oxidative stress when exposed to PM2.5. Here, we reported that Nrf2-/- mice developed overgrowth of adipose tissue after "real-ambient exposure" to PM2.5, compared to filtered air (FA) group. Consistently, compared to FA group, adipocytes from subcutaneous (sWAT) and gonadal (gWAT) white adipose tissue of Nrf2-/- mice exhibited enlarged cell size in PM2.5 exposure group. Furthermore, the levels of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in serum and liver of Nrf2-/- mice were also altered statistically in PM2.5 exposure group. Importantly, when the expression of lipogenic enzymes was analyzed, the levels of the related specific genes in adipose tissue and liver of Nrf2-/- mice were altered in PM2.5 exposure group. Interestingly, the key transcription factors modulating expression of lipogenic enzymes in liver of Nrf2-/- mice were also found altered in PM2.5 exposure group, such as peroxisome proliferator-activated receptor (PPARα, PPARγ). Taken together, our study mimicked the status of ambient air pollution, revealed new insights into the adverse effect of PM2.5 exposure, provided new link between air pollution and overgrowth of adipose tissue, and supported the vital role of Nrf2 in mediating the side effects of PM2.5.
Collapse
Affiliation(s)
- Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jinmei Piao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Hao Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Shuguang Leng
- School of Public Health, Qingdao University, Qingdao, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
45
|
Seposo X, Ueda K, Sugata S, Yoshino A, Takami A. Short-term effects of air pollution on daily single- and co-morbidity cardiorespiratory outpatient visits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138934. [PMID: 32371210 DOI: 10.1016/j.scitotenv.2020.138934] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 04/14/2023]
Abstract
Several studies have noted that the existence of comorbidities lead to an increase in the risk of premature mortality and morbidity. Most of the studies examining the effects of air pollution on comorbidity visits were from Northern American countries, with scarce literature from Asia. This study contributes to existing, yet limited understanding of air pollution-comorbidity by examining the effects of daily air pollutants on outpatient single morbidity and comorbid cardiorespiratory visits in Japan. A total of 1,452,505 outpatient cardiorespiratory visits were recorded among the 21 Japanese cities from 2013 to 2016. Daily outpatient cardiorespiratory visit data were obtained from a health insurance claims database managed by the Japan Medical Data Center Co., Ltd. (JMDC). A time-stratified case crossover analysis coupled with Generalized Additive Mixed Model was used to analyze the association of daily air pollutants (particulate matter 2.5 μm or less in diameter, ozone and nitrogen dioxide) on daily single (respiratory and cardiovascular) and comorbidity health outcomes. We further examined single and cumulative effects for 0-3 and 0-14 lag periods. Ozone, NO2, and PM2.5 were positively associated with cardiorespiratory visits in either shorter or longer lags, with more apparent comorbidity associations with NO2 exposure. A 10-unit increase in NO2, after adjusting for ozone, was associated with a 2.24% (95% CI: 1.34-3.15) and 6.49% (95% CI: 5.00-8.01) increase in comorbidity visit at Lag 0 (of Lag 0-3) and cumulative lag 0-3, respectively. Our results contribute to existing evidence suggesting that short-term and extended exposure to air pollution elicit health risks on cardiovascular, respiratory and comorbid clinic visits. Exposure to NO2, in particular, was associated with increase in the risk of single and comorbidity cardiorespiratory visits. Results can be potentially utilized for both individual health (e.g. risk population health management) and health facility management (e.g. health visit influx determination).
Collapse
Affiliation(s)
- Xerxes Seposo
- School of Tropical Medicine and Global Health, Nagasaki University, Japan.
| | - Kayo Ueda
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Japan; Environmental Health Sciences, Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Japan
| | - Seiji Sugata
- Center for Regional Environmental Research, National Institute for Environmental Studies, Japan
| | - Ayako Yoshino
- Center for Regional Environmental Research, National Institute for Environmental Studies, Japan
| | - Akinori Takami
- Center for Regional Environmental Research, National Institute for Environmental Studies, Japan
| |
Collapse
|
46
|
Liu K, Yang BY, Guo Y, Bloom MS, Dharmage SC, Knibbs LD, Heinrich J, Leskinen A, Lin S, Morawska L, Jalaludin B, Markevych I, Jalava P, Komppula M, Yu Y, Gao M, Zhou Y, Yu HY, Hu LW, Zeng XW, Dong GH. The role of influenza vaccination in mitigating the adverse impact of ambient air pollution on lung function in children: New insights from the Seven Northeastern Cities Study in China. ENVIRONMENTAL RESEARCH 2020; 187:109624. [PMID: 32416358 DOI: 10.1016/j.envres.2020.109624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/17/2020] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
BACKGROUND Ambient air pollution exposure and influenza virus infection have been documented to be independently associated with reduced lung function previously. Influenza vaccination plays an important role in protecting against influenza-induced severe diseases. However, no study to date has focused on whether influenza vaccination may modify the associations between ambient air pollution exposure and lung function. METHODS We undertook a cross-sectional study of 6740 children aged 7-14 years into Seven Northeast Cities (SNEC) Study in China during 2012-2013. We collected information from parents/guardians about sociodemographic factors and influenza vaccination status in the past three years. Lung function was measured using portable electronic spirometers. Machine learning methods were used to predict 4-year average ambient air pollutant exposures to nitrogen dioxide (NO2) and particulate matter with an aerodynamic diameter <1 μm (PM1), <2.5 μm (PM2.5) and <10 μm (PM10). Two-level linear and logistic regression models were used to assess interactions between influenza vaccination and long-term ambient air pollutants exposure on lung function reduction, controlling for potential confounding factors. RESULTS Ambient air pollution were observed significantly associated with reductions in lung function among children. We found significant interactions between influenza vaccination and air pollutants on lung function, suggesting greater vulnerability to air pollution among unvaccinated children. For example, an interaction (pinteraction = 0.002) indicated a -283.44 mL (95% CI: -327.04, -239.83) reduction in forced vital capacity (FVC) per interquartile range (IQR) increase in PM1 concentrations among unvaccinated children, compared with the -108.24 mL (95%CI: -174.88, -41.60) reduction in FVC observed among vaccinated children. Results from logistic regression models also showed stronger associations between per IQR increase in PM1 and lung function reduction measured by FVC and peak expiratory flow (PEF) among unvaccinated children than the according ORs among vaccinated children [i.e., Odds Ratio (OR) for PM1 and impaired FVC: 2.33 (95%CI: 1.79, 3.03) vs 1.65 (95%CI: 1.20, 2.28); OR for PM2.5 and impaired PEF: 1.45 (95%CI: 1.12,1.87) vs 1.04 (95%CI: 0.76,1.43)]. The heterogeneity of the modification by influenza vaccination of the associations between air pollution exposure and lung function reduction appeared to be more substantial in girls than in boys. CONCLUSION Our results suggest that influenza vaccination may moderate the detrimental effects of ambient air pollution on lung function among children. This study provides new insights into the possible co-benefits of strengthening and promoting global influenza vaccination programs among children.
Collapse
Affiliation(s)
- Kangkang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael S Bloom
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Luke D Knibbs
- School of Public Health, The University of Queensland, Brisbane, 4006, Australia
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilian-University, Munich, 80336, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziemssenstrasse 1, Muenchen, 80336, Germany
| | - Ari Leskinen
- Finnish Meteorological Institute, Kuopio, 70211, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Shao Lin
- Department of Environmental Health Sciences and Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Lidia Morawska
- International Laboratory for Air Quality & Health (ILAQH), Science and Engineering Faculty, Institute of Health Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, 4059, Australia
| | - Bin Jalaludin
- School of Public Health and Community Medicine, The University of New South Wales, Kensington, 2052, Australia
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilian-University, Munich, 80336, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany; Division of Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, Munich, Ludwig-Maximilians-University of Munich, Munich, 80336, Germany
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Kuopio, 70211, Finland
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences, The Ministry of Ecological and Environment of China, Guangzhou, 510535, China
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yang Zhou
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong-Yao Yu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
47
|
TFAM, a potential oxidative stress biomarker used for monitoring environment pollutants in Musca domestica. Int J Biol Macromol 2020; 155:524-534. [DOI: 10.1016/j.ijbiomac.2020.03.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
|
48
|
Cheng CY, Vo TTT, Lin WN, Huang HW, Chuang CC, Chu PM, Lee IT. Nrf2/HO-1 partially regulates cytoprotective effects of carbon monoxide against urban particulate matter-induced inflammatory responses in oral keratinocytes. Cytokine 2020; 133:155185. [PMID: 32615411 DOI: 10.1016/j.cyto.2020.155185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exposure to airborne particulate matter (PM) increases the proportion of oral inflammatory diseases. During the formation of inflammatory conditions, the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome activation plays an important regulator. Carbon monoxide (CO) arising from heme degradation, catalyzed particularly by heme oxygenase-1 (HO-1), has been shown to own cytoprotective effects including anti-inflammation and antioxidant. Here, we determined the novel mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on PM-induced inflammatory responses in human oral keratinocytes (HOKs). METHODS The effects of CORM-2 on the expression of various inflammatory proteins induced by PM were determined by Western blot, real-time PCR, promoter assay, and ELISA. The involvement of signaling molecules in these responses was studied by using the selective pharmacological inhibitors and siRNAs. RESULTS We proved that PM enhanced C-reactive protein (CRP) levels, NLRP3 inflammasome and caspase-1 activation, and IL-1β release, which were reduced by preincubation with CORM-2. Transfection with PKCα siRNA and preincubation with the ROS scavenger (N-acetyl-cysteine, NAC), an inhibitor of NADPH oxidase (diphenyleneiodonium, DPI), or the mitochondria-specific superoxide scavenger (MitoTEMPO) inhibited PM-mediated inflammatory responses. In addition, PM-regulated PKCα and NADPH oxidase activation as well as NADPH oxidase- and mitochondria-derived ROS generation were inhibited by CORM-2, but not inactivate CORM-2 (iCORM-2) pretreatment. At the end, we confirmed that CORM-2 improved PM-induced inflammatory responses via the induction of Nrf2 activation and HO-1 expression. CONCLUSION We suggest that CORM-2 inhibits PM-induced inflammatory responses in HOKs via the inhibition of PKCα/ROS/NLRP3 inflammasome activation combined with the induction of Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pulmonary Infection and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hsiang-Wei Huang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Chun Chuang
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ming Chu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
49
|
Bhargava A, Kumari R, Khare S, Shandilya R, Gupta PK, Tiwari R, Rahman A, Chaudhury K, Goryacheva IY, Mishra PK. Mapping the Mitochondrial Regulation of Epigenetic Modifications in Association With Carcinogenic and Noncarcinogenic Polycyclic Aromatic Hydrocarbon Exposure. Int J Toxicol 2020; 39:465-476. [PMID: 32588678 DOI: 10.1177/1091581820932875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) refer to a ubiquitous group of anthropogenic air pollutants that are generated through incomplete carbon combustion. Although the immunotoxic nature of PAHs has been previously reported, the underlying molecular mechanisms of this effect are not fully understood. In the present study, we investigated the mitochondrial-mediated epigenetic regulation of 2 PAHs, carcinogenic (benzo[a]pyrene; BaP) and noncarcinogenic (anthracene [ANT]), in peripheral lymphocytes. While ANT exposure triggered mitochondrial oxidative damage, no appreciable epigenetic modifications were observed. On the other hand, exposure to BaP perturbed the mitochondrial redox machinery and initiated cascade of epigenetic modifications. Cells exposed to BaP showed prominent changes in the expression of mitochondrial microRNAs (miR-24, miR-34a, miR-150, and miR-155) and their respective gene targets (NF-κβ, MYC, and p53). The exposure of BaP also caused significant alterations in the expression of epigenetic modifiers (DNMT1, HDAC1, HDAC7, KDM3a, EZH2, and P300) and hypomethylation within nuclear and mitochondrial DNA. This further induced methylation of histone tails, which play a crucial role in the regulation of chromatin structure. Overall, our study provides novel mechanistic insights into the mitochondrial regulation of epigenetic modifications in association with PAH-induced immunotoxicity.
Collapse
Affiliation(s)
- Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Roshani Kumari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Khare
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pushpendra Kumar Gupta
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Akhlaqur Rahman
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| |
Collapse
|
50
|
Impairment of mitochondrial function by particulate matter: Implications for the brain. Neurochem Int 2020; 135:104694. [DOI: 10.1016/j.neuint.2020.104694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
|