1
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
Madesh S, Sudhakaran G, Ramamurthy K, Sau A, Muthu Kumaradoss K, Almutairi MH, Almutairi BO, Palaniappan S, Arockiaraj J. Protective role of 2-aminothiazole derivative against ethanol-induced teratogenic effects in-vivo zebrafish. Biochem Pharmacol 2024; 230:116601. [PMID: 39481658 DOI: 10.1016/j.bcp.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Teratology investigates the origins of congenital disabilities, often linked to environmental factors such as ethanol (EtOH) exposure. Ethanol at 150 μM has been associated with teratogenic effects, oxidative stress, immunological responses, and endocrine disruptions. Fetal alcohol spectrum disorder (FASD) arises from maternal alcohol consumption during pregnancy, leading to developmental delays and cognitive impairment. Due to their diverse therapeutic applications, amino thiazole derivatives are crucial in drug development. This study aimed to determine whether the 2-amino thiazole derivative, notably the 1-(4-chlorophenyl)-N-(6-nitrobenzo[d]thiazol-2-yl)ethan-1-imine (N4) compound, reduces teratogenic effects induced by embryonic EtOH exposure in a zebrafish model. Teratogenic effects, mortality, locomotion behaviour, oxidative stress, gene expression, and tissue damage were evaluated in larvae over a 7-day experimental period using three treatment concentrations (50, 100, and 150 μM). Results showed that EtOH induced morphological defects in the head, eyes, and body length of exposed larvae, along with behavioural abnormalities and oxidative damage. N4 effectively mitigated these toxic effects in a concentration-dependent manner, reducing oxidative damage, preventing teratogenic effects, and averting tissue damage induced by EtOH exposure. This study highlights the potential of N4 to enhance antioxidant and anti-inflammatory effects against ethanol-induced oxidative stress, offering promising therapeutic strategies for FASD treatment.
Collapse
Affiliation(s)
- S Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Avra Sau
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Kathiravan Muthu Kumaradoss
- Dr APJ Abdul Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Senthilkumar Palaniappan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Pollachi Main Road, Coimbatore 641021, Tamil Nadu, India; Centre for Active Pharmaceutical Ingredients, Karpagam Academy of Higher Education, Pollachi Main Road, Coimbatore 641021, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Mahoney H, Ankley P, Roberts C, Lamb A, Schultz M, Zhou Y, Giesy JP, Brinkmann M. Unveiling the Molecular Effects of Replacement and Legacy PFASs: Transcriptomic Analysis of Zebrafish Embryos Reveals Surprising Similarities and Potencies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18554-18565. [PMID: 39392652 DOI: 10.1021/acs.est.4c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of per- and poly fluoroalkyl substances (PFASs) in the environment has prompted restrictions on legacy PFASs due to their recognized toxic effects. Consequently, alternative "replacement" PFASs have been introduced and are prevalent in environmental matrices. Few studies have investigated the molecular effects of both legacy and replacement PFASs under short-term exposures. This study aimed to address this by utilizing transcriptomic sequencing to compare the molecular impacts of exposure to concentrations 0.001-5 mg/L of the legacy PFOS and two of its replacements, PFECHS and FBSA. Using zebrafish embryos, the research assessed apical effects (mortality, morphology, and growth), identified differentially expressed genes (DEGs) and enriched pathways, and determined transcriptomic points of departure (tPoDs) for each compound. Results indicated that PFOS exhibited the highest relative potency, followed by PFECHS and then FBSA. While similarities were observed among the ranked DEGs across all compounds, over-representation analysis revealed slight differences. Notably, PFOS demonstrated the lowest tPoD identified to date. These findings raise concerns regarding the safety of emerging replacement PFASs and challenge assumptions about PFAS toxicity solely resulting from their accumulative potential. As replacement PFASs proliferate in the environment, this study underscores the need for heightened scrutiny of their effects and questions current regulatory thresholds.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Catherine Roberts
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alicia Lamb
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yutong Zhou
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, Texas 76798-7266, United States
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan S7N 1K2, Canada
| |
Collapse
|
4
|
Caioni G, Merola C, Perugini M, Angelozzi G, Amorena M, Benedetti E, Lucon-Xiccato T, Bertolucci C. Sodium valproate effects on the morphological and neurobehavioral phenotype of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104500. [PMID: 38977114 DOI: 10.1016/j.etap.2024.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
The anticonvulsant sodium valproate (SV) is frequently administered as a medicament but bears several negative effects in case of exposure during development. We analyzed extensively these early development effects of using the zebrafish model. Zebrafish embryos were exposed as eggs to two sublethal concentrations of SV, 10 and 25 mg/L. A general embryo toxicity analysis revealed extended anomalies in the cardiovascular system, and in the craniofacial and the spinal skeleton, as well as high mortality, in the embryos exposed to SV. The teratogenic potential of SV was confirmed in hacthed larvae by morphometric and cartilage profile analysis. Last, neurobehavioral impairments due to SV were highlighted in subjects' activity, anxiety, response to stimulations, habituation learning, and daily synchronization of locomotor activity, overall mirroring typical phenotypes associated with autistic spectrum disorders. In conclusion, our results confirmed the presence of extended and multifaced impacts of exposure to SV during development.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy; Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Carmine Merola
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy.
| | - Giovanni Angelozzi
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Michele Amorena
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Rericha Y, St. Mary L, Truong L, McClure R, Martin JK, Leonard SW, Thunga P, Simonich MT, Waters KM, Field JA, Tanguay RL. Diverse PFAS produce unique transcriptomic changes linked to developmental toxicity in zebrafish. FRONTIERS IN TOXICOLOGY 2024; 6:1425537. [PMID: 39104825 PMCID: PMC11298493 DOI: 10.3389/ftox.2024.1425537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24-120 h post fertilization, and additional temporal transcriptomics at several timepoints (48-96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24-96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.
Collapse
Affiliation(s)
- Yvonne Rericha
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lindsey St. Mary
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lisa Truong
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Ryan McClure
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - J. Kainalu Martin
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Scott W. Leonard
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Preethi Thunga
- Biological Sciences Department, College of Sciences, North Carolina State University, Raleigh, NC, United States
| | - Michael T. Simonich
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Katrina M. Waters
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Jennifer A. Field
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
6
|
Yang Y, He B, Mu X, Qi S. Exposure to flutolanil at environmentally relevant concentrations can induce image and non-image-forming failure of zebrafish larvae through neuro and visual disruptions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134108. [PMID: 38521039 DOI: 10.1016/j.jhazmat.2024.134108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Numerous pesticides pose a threat to aquatic ecosystems, jeopardizing aquatic animal species and impacting human health. While the contamination of aquatic environment by flutolanil and its adverse effects on animal in the treatment of rich sheath blight have been reported, the neuro-visual effects of flutolanil at environmentally relevant concentrations remain unknown. In this study, we administered flutolanil to zebrafish embryos (0, 0.125, 0.50 and 2.0 mg/L) for 4 days to investigate its impact on the neuro and visual system. The results revealed that flutolanil induced abnormal behavior in larvae, affecting locomotor activity, stimuli response and phototactic response. Additionally, it led to defective brain and ocular development and differentiation. The disruption extended to the neurological system and visual phototransduction of larvae, evidenced by significant disturbances in genes and proteins related to neurodevelopment, neurotransmission, eye development, and visual function. Untargeted metabolomics analysis revealed that the GABAergic signaling pathway and increased levels of glutamine, glutamate, andγ-aminobutyric acid were implicated in the response to neuro and visual system injury induced by flutolanil, contributing to aberrant development, behavioral issues, and endocrine disruption. This study highlights the neuro-visual injury caused by flutolanil in aquatic environment, offering fresh insights into the mechanisms underlying image and non-image effects.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan 430070, People's Republic of China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, People's Republic of China.
| |
Collapse
|
7
|
Almeida LM, Lima LP, Oliveira NAS, Silva RFO, Sousa B, Bessa J, Pinho BR, Oliveira JMA. PERK inhibition in zebrafish mimics human Wolcott-Rallison syndrome phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589737. [PMID: 38659860 PMCID: PMC11042256 DOI: 10.1101/2024.04.16.589737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Wolcott-Rallison Syndrome (WRS) is the most common cause of permanent neonatal diabetes mellitus among consanguineous families. The diabetes associated with WRS is non-autoimmune, insulin-requiring and associated with skeletal dysplasia and growth retardation. The therapeutic options for WRS patients rely on permanent insulin pumping or on invasive transplants of liver and pancreas. WRS has a well identified genetic cause: loss-of-function mutations in the gene coding for an endoplasmic reticulum kinase named PERK (protein kinase R-like ER kinase). Currently, WRS research is facilitated by cellular and rodent models with PERK ablation. While these models have unique strengths, cellular models incompletely replicate the organ/system-level complexity of WRS, and rodents have limited scalability for efficiently screening potential therapeutics. To address these challenges, we developed a new in vivo model of WRS by pharmacologically inhibiting PERK in zebrafish. This small vertebrate displays high fecundity, rapid development of organ systems and is amenable to highly efficient in vivo drug testing. PERK inhibition in zebrafish produced typical WRS phenotypes such as glucose dysregulation, skeletal defects, and impaired development. PERK inhibition in zebrafish also produced broad-spectrum WRS phenotypes such as impaired neuromuscular function, compromised cardiac function and muscular integrity. These results show that zebrafish holds potential as a versatile model to study WRS mechanisms and contribute to the identification of promising therapeutic options for WRS.
Collapse
|
8
|
Lee H, Stead JD, Williams A, Cortés Ramírez SA, Atlas E, Mennigen JA, O’Brien JM, Yauk C. Empirical Characterization of False Discovery Rates of Differentially Expressed Genes and Transcriptomic Benchmark Concentrations in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6128-6137. [PMID: 38530926 PMCID: PMC11008580 DOI: 10.1021/acs.est.3c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
High-throughput transcriptomics (HTTr) is increasingly applied to zebrafish embryos to survey the toxicological effects of environmental chemicals. Before the adoption of this approach in regulatory testing, it is essential to characterize background noise in order to guide experimental designs. We thus empirically quantified the HTTr false discovery rate (FDR) across different embryo pool sizes, sample sizes, and concentration groups for toxicology studies. We exposed zebrafish embryos to 0.1% dimethyl sulfoxide (DMSO) for 5 days. Pools of 1, 5, 10, and 20 embryos were created (n = 24 samples for each pool size). Samples were sequenced on the TempO-Seq platform and then randomly assigned to mock treatment groups before differentially expressed gene (DEG), pathway, and benchmark concentration (BMC) analyses. Given that all samples were treated with DMSO, any significant DEGs, pathways, or BMCs are false positives. As expected, we found decreasing FDRs for DEG and pathway analyses with increasing pool and sample sizes. Similarly, FDRs for BMC analyses decreased with increasing pool size and concentration groups, with more stringent BMC premodel filtering reducing BMC FDRs. Our study provides foundational data for determining appropriate experiment designs for regulatory toxicity testing with HTTr in zebrafish embryos.
Collapse
Affiliation(s)
- Hyojin Lee
- Department
of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - John D.H. Stead
- Department
of Neuroscience, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Andrew Williams
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa, Ontario K1A 0K9, Canada
| | | | - Ella Atlas
- Environmental
Health Science and Research Bureau, Health
Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Jan A. Mennigen
- Department
of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jason M. O’Brien
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Carole Yauk
- Department
of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
9
|
Albers J, Mylroie J, Kimble A, Steward C, Chapman K, Wilbanks M, Perkins E, Garcia-Reyero N. Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. TOXICS 2024; 12:192. [PMID: 38535925 PMCID: PMC10975676 DOI: 10.3390/toxics12030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.
Collapse
Affiliation(s)
- Janice Albers
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - John Mylroie
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Ashley Kimble
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | | | - Kacy Chapman
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mitchell Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Edward Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| |
Collapse
|
10
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Fernandez-Lima F, Tose LV, Matysik J, Alia A, Berry JP. An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411227 DOI: 10.1002/etc.5824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Francisco Fernandez-Lima
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Lilian V Tose
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
11
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
12
|
Ismail T, Lee HK, Lee H, Kim Y, Kim E, Lee JY, Kim KB, Ryu HY, Cho DH, Kwon TK, Park TJ, Kwon T, Lee HS. Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115820. [PMID: 38103469 DOI: 10.1016/j.ecoenv.2023.115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Kyung Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hongchan Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youni Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Shik Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
13
|
An G, Park J, You J, Park H, Hong T, Lim W, Song G. Developmental toxicity of flufenacet including vascular, liver, and pancreas defects is mediated by apoptosis and alters the Mapk and PI3K/Akt signal transduction in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109735. [PMID: 37659609 DOI: 10.1016/j.cbpc.2023.109735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/09/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Release of agrochemicals from agricultural fields could unintentionally harm organisms that not targeted by pesticides. Flufenacet is one of the oxyacetamide herbicide applied in cultivation fields of crops and this has a possibility of unintentional exposure to diverse ecosystems including streams and surface water. Despite these environmental risks, limited information regarding toxicity of flufenacet on vertebrates is available. This study is aimed to assess environmental hazards and underlying toxic mechanisms of flufenacet by using a zebrafish model. Mortality measurements and morphological observations after the treatment of flufenacet suggested developmental toxicity of flufenacet in zebrafish. In addition, its toxicity on specific organs was evaluated using transgenic fluorescent zebrafish embryo. Adverse effects of flufenacet on vascular and hepatopancreatic development were demonstrated using Tg(flk1:EGFP) and Tg(fabp10a:DsRed; ela3l:EGFP) respectively. To address intracellular actions of flufenacet in zebrafish, cellular responses including apoptosis, cell cycle modulation, and Mapk and Akt signaling pathway were verified in transcriptional and protein levels. These results demonstrated developmental toxicity of flufenacet using the zebrafish model, providing essential information for assessing its potential hazards on vertebrates that are not directly targeted by the pesticide and for elucidating molecular mechanisms.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
15
|
Miranda DA, Zachritz AM, Whitehead HD, Cressman SR, Peaslee GF, Lamberti GA. Occurrence and biomagnification of perfluoroalkyl substances (PFAS) in Lake Michigan fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164903. [PMID: 37355115 DOI: 10.1016/j.scitotenv.2023.164903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
We measured perfluoroalkyl substances (PFAS) in prey and predator fish from Lake Michigan (USA) to investigate the occurrence and biomagnification of these compounds in this important ecosystem. Twenty-one PFAS were analyzed in 117 prey fish obtained from sites across Lake Michigan and in 87 salmonids collected in four lake quadrants. The mean concentration of sum (∑) PFAS above the method detection limit was 12.7 ± 6.96 ng g-1 wet weight in predator fish (all of which were salmonids) and 10.7 ± 10.4 ng g-1 in prey fish, with outlier levels found in slimy sculpin, Cottus cognatus (187 ± 12.2 ng g-1 ww). Perfluorooctanoic sulfonic acid (PFOS) was the most frequently detected and most abundant compound of the 21 PFAS, occurring in 98 % of individuals with a mean concentration of 9.86 ± 6.36 ng g-1 ww without outliers. Perfluoroalkyl carboxylates (PFCA) concentrations were higher in prey fish than in predators, with some compounds such as perfluorooctanoic acid (PFOA) being detected in higher frequency in prey fish. Besides PFOS, detection of several long-chain (C8-C12) PFCAs were observed in >80 % of the prey fish. Overall, the observed concentrations in Lake Michigan fish were lower than those reported in other Laurentian Great Lakes except for Lake Superior. Biomagnification factors (BMFs) for PFOS exceeded 1.0 (range, 1.80 to 5.12) in all predator-prey relationships analyzed, indicating biomagnification of these compounds, whereas BMFs of other long-chain PFCAs varied according to the fish species. PFAS were found in all fish species measured from Lake Michigan and commonly biomagnified from prey to predator fish, strongly suggesting a dietary connection.
Collapse
Affiliation(s)
- Daniele A Miranda
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States.
| | - Alison M Zachritz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Heather D Whitehead
- Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shannon R Cressman
- U.S. Fish and Wildlife Service, Green Bay Fish and Wildlife Conservation Office, New Franken, WI 54229, United States
| | - Graham F Peaslee
- Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Gary A Lamberti
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States; Environmental Change initiative, University of Notre Dame, Notre Dame, IN 46556, United States
| |
Collapse
|
16
|
Shaw K, Therrien M, Lu C, Liu X, Trudeau VL. Mutation of brain aromatase disrupts spawning behavior and reproductive health in female zebrafish. Front Endocrinol (Lausanne) 2023; 14:1225199. [PMID: 37435485 PMCID: PMC10332311 DOI: 10.3389/fendo.2023.1225199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
Aromatase (Cyp19a1) is the steroidogenic enzyme that converts androgens into bioactive estrogens, and hence is in a pivotal position to mediate reproduction and sexual behavior. In teleosts, there are two aromatase paralogs: cyp19a1a that is highly expressed in granulosa and Leydig cells in the gonads with critical function in sexual differentiation of the ovary, and cyp19a1b that is highly expressed in radial glial cells in the brain with unknown roles in reproduction. Cyp19a1 -/- mutant zebrafish lines were used to investigate the importance of the cyp19a1 paralogs for spawning behavior and offspring survival and early development. Mutation of cyp19a1b was found to increase the latency to the first oviposition in females. Mutation of cyp19a1b in females also increased the number of eggs spawned; however, significantly more progeny died during early development resulting in no net increase in female fecundity. This finding suggests a higher metabolic cost of reproduction in cyp19a1b -/- mutant females. In males, the combined mutation of both cyp19a1 paralogs resulted in significantly lower progeny survival rates, indicating a critical function of cyp19a1 during early larval development. These data establish the specific importance of cyp19a1b for female spawning behavior and the importance of the cyp19a1 paralogs for early larval survival.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Mylène Therrien
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | |
Collapse
|
17
|
Lopez-Antia A, Piña B, Lacorte S, Bervoets L, Eens M. Transcriptomic effects of Perfluoralkyl acids on the adipose tissue of a songbird species at environmentally relevant concentrations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121478. [PMID: 36972811 DOI: 10.1016/j.envpol.2023.121478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/03/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
Perfluoralkyl acids (PFAS) have been regarded as global pollutants for at least twenty years, with potentially negative physiological effects on multiple vertebrate species including humans. Here we analyze the effects of the administration of environmentally-relevant levels of PFAS on caged canaries (Serinus canaria) by using a combination of physiological, immunological, and transcriptomic analyses. This constitutes a completely new approach to understand the toxicity pathway of PFAS in birds. While we observed no effects on physiological and immunological parameters (e.g, body weight, fat index, cell-mediated immunity), the transcriptome of the pectoral fatty tissue showed changes compatible with the known effects of PFAS as obesogens in other vertebrates, particularly in mammals. First, transcripts related to the immunological response were affected (mainly enriched), including several key signaling pathways. Second, we found a repression of genes related to the peroxisome response and fatty acid metabolism. We interpret these results as indicative of the potential hazard of environmental concentrations of PFAS on the fat metabolism and the immunological system of birds, while exemplifying the ability of transcriptomic analyses of detecting early physiological responses to toxicants. As the potentially affected functions are essential for the survival of the animals during, for example, migration, our results underline the need for tight control of the exposure of natural populations of birds to these substances.
Collapse
Affiliation(s)
- Ana Lopez-Antia
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Benjamin Piña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain.
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034, Barcelona, Catalonia, Spain.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group (BECO), Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
18
|
Zhang J, Ren Z, Chen M. Immunotoxicity and Transcriptome Analyses of Zebrafish ( Danio rerio) Embryos Exposed to 6:2 FTSA. TOXICS 2023; 11:toxics11050459. [PMID: 37235273 DOI: 10.3390/toxics11050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
As a new alternative to perfluorooctane sulfonic acid (PFOS), 6:2 fluorotelomer sulfonic acid (6:2 FTSA) has been widely produced and used in recent years, and its concentration and frequency of detection in the aquatic environment and aquatic organisms are increasing. However, studies of its toxicity in aquatic biological systems are alarmingly scarce, and the relevant toxicological information needs to be improved. In this study, we investigated AB wild-type zebrafish (Danio rerio) embryos subjected to acute 6:2 FTSA exposure for immunotoxicity using immunoassays and transcriptomics. Immune indexes showed significant decreases in SOD and LZM activities, but no significant change in NO content. Other indexes (TNOS, iNOS, ACP, AKP activities, and MDA, IL-1β, TNF-α, NF-κB, TLR4 content) all showed significant increases. These results indicated that 6:2 FTSA induced oxidative stress and inflammatory responses in zebrafish embryos and exhibited immunotoxicity. Consistently, transcriptomics showed that genes involved in the MAPK, TLR and NOD-like receptor signaling pathways (hsp70, hsp701, stat1b, irf3, cxcl8b, map3k8, il1b, tnfa and nfkb) were significantly upregulated after 6:2 FTSA exposure, suggesting that 6:2 FTSA might induce immunotoxicity in zebrafish embryos through the TLR/NOD-MAPK pathway. The results of this study indicate that the safety of 6:2 FTSA should be examined further.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Zongming Ren
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| | - Meng Chen
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
19
|
Ojemaye CY, Ojemaye MO, Okoh AI, Okoh OO. Evaluation of the research trends on perfluorinated compounds using bibliometric analysis: knowledge gap and future perspectives. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:570-595. [PMID: 37128712 DOI: 10.1080/10934529.2023.2203639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Detection of perfluorinated compounds (PFCs) in the environment has been a global concern because of the risk they pose due to their endocrine-disruptive properties. This study analyzed the global trends and research productivity of PFCs from 1990 to 2021. A total number of 3256 articles on PFCs were retrieved from the Web of Science focusing on different environmental and biological matrices. An increase in the productivity of research on PFCs was observed during the survey period which indicates that more research and publications on this class of contaminants are expected in the future. Evaluating the most productive countries and the number of citations per country on PFCs research shows that China and the United States of America were ranked in first and second places. It was also observed that research on PFCs received the most attention from scientists in developed countries, with little research emerging from Africa. Hence, research on PFCs in developing countries, especially low-income countries should be promoted. Consequently, more research programs should be implemented to investigate PFCs in countries and regions where research on these contaminants is low. The study will help researchers, government agencies and policymakers to tailor future research, allocation of funds to PFCs research and countries' collaboration.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
| | - Mike O Ojemaye
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Anthony I Okoh
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Department of Environmental health Sciences, College of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
20
|
Merola C, Caioni G, Cimini A, Perugini M, Benedetti E. Sodium valproate exposure influences the expression of pparg in the zebrafish model. Birth Defects Res 2023; 115:658-667. [PMID: 36786327 DOI: 10.1002/bdr2.2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
Valproic acid (VPA) is an anti-epileptic drug used alone or in combination with other medications to treat seizures, mania, and bipolar disorder. VPA recognized as a teratogenic chemical can cause severe birth defects mainly affecting the brain and spinal cord when administered during pregnancy. However, the potential mechanisms of developmental toxicity are still less studied, and in the present study, the influence of VPA exposure was evaluated on zebrafish early-life stages. Zebrafish were exposed to two sublethal concentrations of sodium valproate (SV) (0.06 mM and 0.15 mM) from 24 hours post-fertilization (hpf) to 96 hpf and the SV teratogenic potential was investigated through morphometric analysis of zebrafish larvae combined with the evaluation of cartilage profile. Moreover, the effect of SV on the transcription level of pparg was also performed. The results of the study showed the teratogenic potential of SV, which disrupts the morphometric signature of the head and body. The marked distortion of cartilage structures was paralleled to a malformation of telencephalon and optic tectum in both concentrations suggesting a high teratogen effect of SV on the brain. These data were further confirmed by the increased expression of pparg in the zebrafish head. Overall, the present study confirms the teratogenic activity of SV in the zebrafish model and, for the first time, points out the potential protective role of pparg in the SV dose-dependent toxicity.
Collapse
Affiliation(s)
- Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
21
|
Gong S, McLamb F, Shea D, Vu JP, Vasquez MF, Feng Z, Bozinovic K, Hirata KK, Gersberg RM, Bozinovic G. Toxicity assessment of hexafluoropropylene oxide-dimer acid on morphology, heart physiology, and gene expression during zebrafish (Danio rerio) development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32320-32336. [PMID: 36462083 PMCID: PMC10017623 DOI: 10.1007/s11356-022-24542-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
Hexafluoropropylene oxide-dimer acid (HFPO-DA) is one of the emerging replacements for the "forever" carcinogenic and toxic long-chain PFAS. HFPO-DA is a polymerization aid used for manufacturing fluoropolymers, whose global distribution and undetermined toxic properties are a concern regarding human and ecological health. To assess embryotoxic potential, zebrafish embryos were exposed to HFPO-DA at concentrations of 0.5-20,000 mg/L at 24-, 48-, and 72-h post-fertilization (hpf). Heart rate increased significantly in embryos exposed to 2 mg/L and 10 mg/L HFPO-DA across all time points. Spinal deformities and edema phenotypes were evident among embryos exposed to 1000-16,000 mg/L HFPO-DA at 72 hpf. A median lethal concentration (LC50) was derived as 7651 mg/L at 72 hpf. Shallow RNA sequencing analysis of 9465 transcripts identified 38 consistently differentially expressed genes at 0.5 mg/L, 1 mg/L, 2 mg/L, and 10 mg/L HFPO-DA exposures. Notably, seven downregulated genes were associated with visual response, and seven upregulated genes were expressed in or regulated the cardiovascular system. This study identifies biological targets and molecular pathways affected during animal development by an emerging, potentially problematic, and ubiquitous industrial chemical.
Collapse
Affiliation(s)
- Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Kesten Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- Graduate School of Arts and Sciences, Georgetown University, Washington, DC, USA
| | - Ken K Hirata
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- School of Public Health, San Diego State University, San Diego, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0355, USA.
| |
Collapse
|
22
|
Yang Z, Fu L, Cao M, Li F, Li J, Chen Z, Guo A, Zhong H, Li W, Liang Y, Luo Q. PFAS-induced lipidomic dysregulations and their associations with developmental toxicity in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160691. [PMID: 36473658 DOI: 10.1016/j.scitotenv.2022.160691] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental contaminants, posing developmental toxicity to fish and human. PFAS-induced lipid metabolism disorders were demonstrated using the zebrafish (Danio rerio) embryo model, but the detailed changes of lipid compositions and the influence of these changes on the biological development are still unclear. Herein, lipidomics analysis was performed to reveal the dysregulations of lipid metabolism in zebrafish embryos exposed to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) through microinjection. Various abnormal phenotypes were observed, including heart bleeding, pericardium edema, spinal curvature and increased heart rate at 72 h after fertilization, especially in the PFOS exposure groups. Lipidomic profiling found downregulated phosphatidylethanolamines in the PFAS-exposed embryos, especially those containing a docosahexaenoyl (DHA) chain, indicating an excessive oxidative damage to the embryos. Glycerolipids were mainly upregulated in the PFOA groups but downregulated in the PFOS groups. These aberrations may reflect oxidative stress, energy metabolism malfunction and proinflammatory signals induced by PFASs. However, supplement of DHA may not be effective in recovering the lipidomic dysregulations and protecting from the developmental toxicity induced by PFASs, showing the complexity of the toxicological mechanisms. This work has revealed the associations between the abnormal phenotypes and dysregulations of lipid metabolism in zebrafish embryos induced by PFASs from the aspect of lipidomics, and discovered the underlying molecular mechanisms of the developmental toxicity of PFASs.
Collapse
Affiliation(s)
- Zhiyi Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lei Fu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengxi Cao
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Fang Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center of Food Safety and Risk Assessment, Beijing 100021, China
| | - Zhiyu Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ang Guo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huifang Zhong
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenbo Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qian Luo
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
23
|
Torres-Pérez JV, Anagianni S, Mech AM, Havelange W, García-González J, Fraser SE, Vallortigara G, Brennan CH. baz1b loss-of-function in zebrafish produces phenotypic alterations consistent with the domestication syndrome. iScience 2023; 26:105704. [PMID: 36582821 PMCID: PMC9793288 DOI: 10.1016/j.isci.2022.105704] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BAZ1B is a ubiquitously expressed nuclear protein with roles in chromatin remodeling, DNA replication and repair, and transcription. Reduced BAZ1B expression disrupts neuronal and neural crest development. Variation in the activity of BAZ1B has been proposed to underly morphological and behavioral aspects of domestication through disruption of neural crest development. Knockdown of baz1b in Xenopus embryos and Baz1b loss-of-function (LoF) in mice leads to craniofacial defects consistent with this hypothesis. We generated baz1b LoF zebrafish using CRISPR/Cas9 gene editing to test the hypothesis that baz1b regulates behavioral phenotypes associated with domestication in addition to craniofacial features. Zebrafish with baz1b LoF show mild underdevelopment at larval stages and distinctive craniofacial features later in life. Mutant zebrafish show reduced anxiety-associated phenotypes and an altered ontogeny of social behaviors. Thus, in zebrafish, developmental deficits in baz1b recapitulate both morphological and behavioral phenotypes associated with the domestication syndrome in other species.
Collapse
Affiliation(s)
- Jose V. Torres-Pérez
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia física, Fac. de CC. Biològiques, Universitat de València, C/ Dr. Moliner 50, Burjassot, València 46100, Spain
| | - Sofia Anagianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - William Havelange
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Judit García-González
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Genetics and Genomic Sciences, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Scott E. Fraser
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, CA, USA
| | | | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
24
|
Gui W, Guo H, Chen X, Wang J, Guo Y, Zhang H, Zhou X, Zhao Y, Dai J. Emerging polyfluorinated compound Nafion by-product 2 disturbs intestinal homeostasis in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114368. [PMID: 36508837 DOI: 10.1016/j.ecoenv.2022.114368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Nafion by-product 2 (Nafion BP2), an emerging fluorinated sulfonic acid commonly used in polymer electrolyte membrane technologies, has been detected in various environmental and human matrices. To date, however, few studies have explored its toxicity. In this study, zebrafish embryos were exposed to Nafion BP2 at concentrations of 20, 40, 60, 80, 100, 120, 140, and 160 mg/L from fertilization to 120 post-fertilization (hpf), and multiple developmental parameters (survival rate, hatching rate, and malformation rate) were then determined. Results showed that Nafion BP2 exposure led to a significant decrease in survival and hatching rates and an increase in malformations. The half maximal effective concentration (EC50) of Nafion BP2 for malformation at 120 hpf was 55 mg/L, which is higher than the globally important contaminant perfluorooctane sulfonate (PFOS, 6 mg/L). Furthermore, exposure to Nafion BP2 resulted in additional types of malformations compared to PFOS exposure. Pathologically, Nafion BP2 caused abnormal early foregut development, with exfoliation of intestinal mucosa, damage to lamina propria, and aberrant proliferation of lamina propria cells. Nitric oxide content also decreased markedly. In addition, embryos showed an inflammatory response following Nafion BP2 exposure, with significantly increased levels of pro-inflammatory factors C4 and IL-6. Acidic mucin in the hindgut increased more than two-fold. 16 S rRNA sequencing revealed a marked increase in the pathogen Pseudomonas otitidis. Furthermore, pathways involved in intestinal protein digestion and absorption, inflammatory response, and immune response were significantly altered. Our findings suggest that the intestine is a crucial toxicity target of Nafion BP2 in zebrafish, thus highlighting the need to evaluate its health risks.
Collapse
Affiliation(s)
- Wanying Gui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Guo
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Chen
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinghua Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
25
|
Qin Z, Wang W, Weng Y, Bao Z, Yang G, Jin Y. Bromuconazole exposure induces cardiotoxicity and lipid transport disorder in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109451. [PMID: 36064135 DOI: 10.1016/j.cbpc.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Bromuconazole (BRO), as one of the typical triazole fungicides, has not been reported on its effects on aquatic organisms. In this study, zebrafish embryos were used as experimental objects to evaluate the toxicity of BRO. In the acute embryo toxicity test, it was observed that the heart rate and growing development were affected by BRO in a concentration-dependent manner, and the half-lethal concentration (LC50) of BRO at 96 h post-fertilization (hpf) was about 11.83 mg/L. Then, low concentrations of BRO (50 ng/L, 0.075 mg/L, 0.3 mg/L, 1.2 mg/L), which were set according to the LC50 and environmental related concentrations, were used to analyze the toxic effects on the different endpoints in larval zebrafish. Interestingly, the transcriptomic analysis found that most different expressed genes (DEGs) could be focused on the pathways of lipid metabolism, myocardial function, glycometabolism, indicating that heart function and lipid metabolism in larval zebrafish were disrupted by BRO. For supporting this idea, we re-exposed the transgenic zebrafish and WT zebrafish embryos, proved that BRO caused damage to heart development and lipid transport on morphological and genetic level, which was consistent with transcriptomic results. In addition, BRO exposure caused oxidative damage in the larvae. Taken together, BRO exposure could affect the myocardial contraction function and lipid transport in larval zebrafish, accompanied by disturbances in the level of oxidative stress, which was of great significance for improving the biotoxicological information of BRO.
Collapse
Affiliation(s)
- Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
26
|
Xu K, Mittal K, Ewald J, Rulli S, Jakubowski JL, George S, Basu N. Transcriptomic points of departure calculated from human intestinal cells exposed to dietary nanoparticles. Food Chem Toxicol 2022; 170:113501. [DOI: 10.1016/j.fct.2022.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
27
|
Wang X, Shi X, Zheng S, Zhang Q, Peng J, Tan W, Wu K. Perfluorooctane sulfonic acid (PFOS) exposures interfere with behaviors and transcription of genes on nervous and muscle system in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157816. [PMID: 35931148 DOI: 10.1016/j.scitotenv.2022.157816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 02/05/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) has been widely detected in environment and organisms. PFOS has been identified as the driving agent for the behavioral changes of zebrafish larvae, while the underlying molecular mechanism remains unclear. In this study, zebrafish embryos/larvae were exposed to 0, 0.04, 0.1, 0.4 and 1 μM PFOS for 166 h. The locomotor behaviors and the mRNA transcription of genes in neuromuscular system were detected. Exposure to PFOS did not affect the hatching/death rates and body length, but increased the heart beat rates and frequency of spontaneous tail coiling. Locomotor behavior in zebrafish larvae of 0.4 and 1 μM PFOS groups were increased in the light condition. Additionally, the levels of acetylcholine (Ach) in 0.4 μM PFOS group and dopamine (DA) in 0.1, 0.4 and 1 μM PFOS groups were found to be significantly increased. The expression of genes related to the synthesis and decomposition of ACh,the synthesis and receptor of DA, and fosab was increased in the different PFOS treatment groups, while the expression of all the other genes of the neuromuscular system were significantly reduced. The findings of this investigation demonstrated that PFOS exposure may alter the locomotor behavior of zebrafish through disrupting the expressions of genes in neuromuscular system. The disturbed process of neurotransmitter transmission and muscle contraction caused by PFOS may be the dominant mechanism of hyperactivity in zebrafish.
Collapse
Affiliation(s)
- Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China; Medical Record Statistics Office, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| |
Collapse
|
28
|
Beale DJ, Sinclair GM, Shah R, Paten AM, Kumar A, Long SM, Vardy S, Jones OAH. A review of omics-based PFAS exposure studies reveals common biochemical response pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157255. [PMID: 35817100 DOI: 10.1016/j.scitotenv.2022.157255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Per and Polyfluoroalkyl Substances (PFAS) are a diverse group of man-made chemicals with a range of industrial applications and which are widespread in the environment. They are structurally diverse but comprise a common chemical feature of at least one (though usually more) perfluorocarbon moiety (-CnF2n-) attached to a functional group such as a carboxylic or sulphonic acid. The strength of the Carbon-Fluorine bond means the compounds do not break down easily and can thus bioaccumulate. PFAS are of high concern to regulators and the public due to their potential toxicity and high persistence. At high exposure levels, PFAS have been implicated in a range of harmful effects on human and environmental health, particularly problems in/with development, cholesterol and endocrine disruption, immune system function, and oncogenesis. However, most environmental toxicology studies use far higher levels of PFAS than are generally found in the environment. Additionally, since the type of exposure, the PFAS used, and the organisms tested all vary between studies, so do the results. Traditional ecotoxicology studies may thus not identify PFAS effects at environmentally relevant exposures. Here we conduct a review of omics-based PFAS exposure studies using laboratory ecotoxicological methodologies and environmentally relevant exposure levels and show that common biochemical response pathways are identified in multiple studies. A major pathway identified was the pentose phosphate shunt pathway. Such molecular markers of sublethal PFAS exposure will greatly benefit accurate and effective risk assessments to ensure that new PFAS regulations can consider the full effects of PFAS exposure on environmental and human health receptors.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Georgia M Sinclair
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohan Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Ecosciences Precinct, Dutton Park, QLD 4102, Australia; Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Amy M Paten
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, Acton, ACT 2601, Australia
| | - Anupama Kumar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Sara M Long
- Aquatic Environmental Stress Research Group (AQUEST), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
29
|
Rehman S, Gora AH, Varshney S, Dias J, Olsvik PA, Fernandes JMO, Brugman S, Kiron V. Developmental defects and behavioral changes in a diet-induced inflammation model of zebrafish. Front Immunol 2022; 13:1018768. [PMID: 36389790 PMCID: PMC9643868 DOI: 10.3389/fimmu.2022.1018768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Soybean meal evokes diet-induced intestinal inflammation in certain fishes. Although the molecular aspects of soybean-induced intestinal inflammation in zebrafish are known, the impact of the inflammatory diet on fish behavior remain largely underexplored. We fed zebrafish larvae with three diets - control, soybean meal and soybean meal with β-glucan to gain deeper insight into the behavioral changes associated with the soybean meal-induced inflammation model. We assessed the effect of the diets on the locomotor behavior, morphological development, oxygen consumption and larval transcriptome. Our study revealed that dietary soybean meal can reduce the locomotor activity, induce developmental defects and increase the oxygen demand in zebrafish larvae. Transcriptomic analysis pointed to the suppression of genes linked to visual perception, organ development, phototransduction pathway and activation of genes linked to the steroid biosynthesis pathway. On the contrary, β-glucan, an anti-inflammatory feed additive, counteracted the behavioral and phenotypic changes linked to dietary soybean. Although we did not identify any differentially expressed genes from the soybean meal alone fed group vs soybean meal + β-glucan-fed group comparison, the unique genes from the comparisons of the two groups with the control likely indicate reduction in inflammatory cytokine signaling, inhibition of proteolysis and induction of epigenetic modifications by the dietary glucan. Furthermore, we found that feeding an inflammatory diet at the larval stage can lead to long-lasting developmental defects. In conclusion, our study reveals the extra-intestinal manifestations associated with soybean meal-induced inflammation model.
Collapse
Affiliation(s)
- Saima Rehman
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Adnan H. Gora
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Shubham Varshney
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Pål A. Olsvik
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Sylvia Brugman
- Department of Animal Sciences, Host Microbe Interactomics, Wageningen University, Wageningen, Netherlands
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- *Correspondence: Viswanath Kiron,
| |
Collapse
|
30
|
Lin TA, Huang CW, Wei CC. Early-life perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) exposure cause obesity by disrupting fatty acids metabolism and enhancing triglyceride synthesis in Caenorhabditis elegans. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106274. [PMID: 36037606 DOI: 10.1016/j.aquatox.2022.106274] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are widely used and considered as emerging persistent pollutants, posing a potential threat to the aquatic ecosystem due to their metabolic toxicity. However, the effects of early-life PFOA and PFOS exposure on metabolic disruption and underlying mechanisms are not fully understood. Therefore, we investigated the effects of early-life PFOA or PFOS exposure on lipid accumulation, feeding behaviors, fatty acids composition, and possible genetic regulation using the nematode Caenorhabditis elegans as an in vivo model. Our results showed that low concentrations of PFOA and PFOS (0.1 and 1 μM) induced obesity in C. elegans, which was not due to the increased feeding rate. The altered fatty acid composition illustrated the decrease of saturated fatty acids and the increase of polyunsaturated fatty acids. Furthermore, the mutant assay and mRNA levels revealed that fatty acid desaturation related genes mdt-15, nhr-49, fat-6 as well as fatty acid (fasn-1) and triglyceride (TG) (dgat-2) synthesis related genes, were associated with the increased body fat, TG, and lipid droplet (LD) contents in C. elegans exposed to PFOA and PFOS. Hence, this present study provides the genetic regulatory information of PFOA and PFOS induced metabolic disruption of lipid metabolism and obesity.
Collapse
Affiliation(s)
- Ting-An Lin
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan
| | - Chi-Wei Huang
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, No. 142, Haizhuan Rd., Kaohsiung 811, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei 100, Taiwan.
| |
Collapse
|
31
|
Fey ME, Goodrum PE, Razavi NR, Whipps CM, Fernando S, Anderson JK. Is Mixtures' Additivity Supported by Empirical Data? A Case Study of Developmental Toxicity of PFOS and 6:2 FTS in Wildtype Zebrafish Embryos. TOXICS 2022; 10:toxics10080418. [PMID: 35893851 PMCID: PMC9329885 DOI: 10.3390/toxics10080418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a major priority for many federal and state regulatory agencies charged with monitoring levels of emerging contaminants in environmental media and setting health-protective benchmarks to guide risk assessments. While screening levels and toxicity reference values have been developed for numerous individual PFAS compounds, there remain important data gaps regarding the mode of action for toxicity of PFAS mixtures. The present study aims to contribute whole-mixture toxicity data and advance the methods for evaluating mixtures of two key components of aqueous film-forming foams: perfluorooctanesulfonic acid (PFOS), and 6:2 fluorotelomer sulfonic acid (6:2 FTS). Wildtype (AB) zebrafish embryos were exposed to PFOS and 6:2 FTS, both as individual components and as binary mixtures, from 2 to 122 h post-fertilization. Five treatment levels were selected to encompass environmentally relevant exposure levels. Experimental endpoints consisted of mortality, hatching, and developmental endpoints, including swim bladder inflation, yolk sac area, and larval body length. Results from dose-response analysis indicate that the assumption of additivity using conventional points of departure (e.g., NOAEL, LOAEL) is not supported for critical effect endpoints with these PFAS mixtures, and that the interactions vary as a function of the dose range. Alternative methods for quantifying relative potency are proposed, and recommendations for additional investigations are provided to further advance assessments of the toxicity of PFAS mixtures to aquatic organisms.
Collapse
Affiliation(s)
- Megan E. Fey
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; (M.E.F.); (N.R.R.); (C.M.W.)
| | - Philip E. Goodrum
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; (M.E.F.); (N.R.R.); (C.M.W.)
- GSI Environmental Inc., Austin, TX 78759, USA;
- Correspondence: ; Tel.: +1-315-396-6655
| | - N. Roxanna Razavi
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; (M.E.F.); (N.R.R.); (C.M.W.)
| | - Christopher M. Whipps
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA; (M.E.F.); (N.R.R.); (C.M.W.)
| | - Sujan Fernando
- Center for Air and Aquatic Resources Engineering and Science (CAARES), Clarkson University, Potsdam, NY 13699, USA;
| | | |
Collapse
|
32
|
Multi- and Transgenerational Effects of Developmental Exposure to Environmental Levels of PFAS and PFAS Mixture in Zebrafish ( Danio rerio). TOXICS 2022; 10:toxics10060334. [PMID: 35736942 PMCID: PMC9228135 DOI: 10.3390/toxics10060334] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment and are tied to myriad health effects. Despite the phasing out of the manufacturing of two types of PFASs (perfluorosulfonic acid (PFOS) and perfluorooctanoic acid (PFOA)), chemical composition renders them effectively indestructible by ambient environmental processes, where they thus remain in water. Exposure via water can affect both human and aquatic wildlife. PFASs easily cross the placenta, exposing the fetus at critical windows of development. Little is known about the effects of low-level exposure during this period; even less is known about the potential for multi- and transgenerational effects. We examined the effects of ultra-low, very low, and low-level PFAS exposure (7, 70, and 700 ng/L PFOA; 24, 240, 2400 ng/L PFOS; and stepwise mixtures) from 0–5 days post-fertilization (dpf) on larval zebrafish (Danio rerio) mortality, morphology, behavior and gene expression and fecundity in adult F0 and F1 fish. As expected, environmentally relevant PFAS levels did not affect survival. Morphological abnormalities were not observed until the F1 and F2 generations. Behavior was affected differentially by each chemical and generation. Gene expression was increasingly perturbed in each generation but consistently showed lipid pathway disruption across all generations. Dysregulation of behavior and gene expression is heritable, even in larvae with no direct or indirect exposure. This is the first report of the transgenerational effects of PFOA, PFOS, and their mixture in terms of zebrafish behavior and untargeted gene expression.
Collapse
|
33
|
Li XQ, Hua ZL, Zhang JY, Gu L. Ecotoxicological responses and removal of submerged macrophyte Hydrilla verticillate to multiple perfluoroalkyl acid (PFAA) pollutants in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153919. [PMID: 35189236 DOI: 10.1016/j.scitotenv.2022.153919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/31/2021] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
The ubiquitous existence of perfluoroalkyl acids (PFAAs) in aquatic environments might pose toxic potential to ecosystems. To assess the ecotoxicological responses and removal of submerged macrophyte to multiple PFAA pollutants in aquatic environments, a typical submerged macrophyte, Hydrilla verticillate, was exposed to solutions with 12 typical PFAAs in the present study. The results showed that PFAAs at concentrations higher than 10 μg/L had significantly passive effects on biomass, relative growth rates, chlorophyll contents, and chlorophyll autofluorescence. PFAAs could induce the accumulation of hydrogen peroxide and lipid peroxidation in H. verticillate. Significant upregulation of CAT was observed in treatments with more than 10 μg/L PFAAs (p < 0.05). The results also showed that 13.53-20.01% and 19.73-37.72% of PFAAs could be removed in treatments without plants and with H. verticillate, respectively. The removal rates of PFAAs were significantly correlated with perfluoroalkyl chain length in treatments with H. verticillate. The removal of PFAAs was suggested to be related to the uptake of plant tissues and biosorption of microbiota. Furthermore, the dominant microbiota and biomarkers were identified in water and biofilm. Betaproteobacteriales was the most dominant microbiota at the order level. The presence of PFAAs could significantly increase the relative abundance of Micrococcales, Verrucomicrobiales, Rhizobiales, Sphingomonadales, Roseomonas, Cyanobium_PCC_6307, and Synechococcales. Our results provide scientific basis for evaluating the ecotoxicological responses and removal of submerged macrophytes in response to multiple PFAA pollutants at environmentally relevant levels, thereby providing insights into PFAA management and removal.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| |
Collapse
|
34
|
Zampieri RM, Adessi A, Caldara F, De Philippis R, Dalla Valle L, La Rocca N. In vivo anti-inflammatory and antioxidant effects of microbial polysaccharides extracted from Euganean therapeutic muds. Int J Biol Macromol 2022; 209:1710-1719. [PMID: 35483514 DOI: 10.1016/j.ijbiomac.2022.04.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
Abstract
Therapeutic thermal mud produced by spas of the Euganean Thermal District (Italy) is used as a treatment for arthro-rheumatic diseases. Its production involves the growth of a specific microbiota embedded in a polysaccharidic matrix. Polysaccharides (Microbial-PolySaccharides, M-PS) released in the mud by the resident microorganisms were extracted and analyzed. The monosaccharidic composition analysis showed the presence of galacturonic acid, mannose, xylose, ribose and glucose and a high percentage of sulfated groups in the polymers. To assess their involvement in the therapeutic efficacy of the mud, the M-PS were tested using the model organism zebrafish (Danio rerio). The anti-inflammatory and antioxidant activities were evaluated after confirming the lack of toxic effects during development. Inflammatory state was induced chemically with copper sulfate, or through tail fin amputation procedure and UVB exposure. Recovery from inflammatory condition after exposure to M-PS was always observed with specific morphometric analyses, and further supported by qPCR. Genes linked with the inflammatory and oxidative stress response were investigated confirming the M-PS treatment's efficacy.
Collapse
Affiliation(s)
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Fabrizio Caldara
- Pietro d'Abano Thermal Studies Center, Via Jappelli 5, Abano Terme, 35031 Padova, Italy.
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Via Maragliano 77, 50144 Firenze, Italy.
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy.
| | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35131 Padova, Italy.
| |
Collapse
|
35
|
Martyniuk CJ, Martínez R, Navarro-Martín L, Kamstra JH, Schwendt A, Reynaud S, Chalifour L. Emerging concepts and opportunities for endocrine disruptor screening of the non-EATS modalities. ENVIRONMENTAL RESEARCH 2022; 204:111904. [PMID: 34418449 PMCID: PMC8669078 DOI: 10.1016/j.envres.2021.111904] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 05/15/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are ubiquitous in the environment and involve diverse chemical-receptor interactions that can perturb hormone signaling. The Organization for Economic Co-operation and Development has validated several EDC-receptor bioassays to detect endocrine active chemicals and has established guidelines for regulatory testing of EDCs. Focus on testing over the past decade has been initially directed to EATS modalities (estrogen, androgen, thyroid, and steroidogenesis) and validated tests for chemicals that exert effects through non-EATS modalities are less established. Due to recognition that EDCs are vast in their mechanisms of action, novel bioassays are needed to capture the full scope of activity. Here, we highlight the need for validated assays that detect non-EATS modalities and discuss major international efforts underway to develop such tools for regulatory purposes, focusing on non-EATS modalities of high concern (i.e., retinoic acid, aryl hydrocarbon receptor, peroxisome proliferator-activated receptor, and glucocorticoid signaling). Two case studies are presented with strong evidence amongst animals and human studies for non-EATS disruption and associations with wildlife and human disease. This includes metabolic syndrome and insulin signaling (case study 1) and chemicals that impact the cardiovascular system (case study 2). This is relevant as obesity and cardiovascular disease represent two of the most significant health-related crises of our time. Lastly, emerging topics related to EDCs are discussed, including recognition of crosstalk between the EATS and non-EATS axis, complex mixtures containing a variety of EDCs, adverse outcome pathways for chemicals acting through non-EATS mechanisms, and novel models for testing chemicals. Recommendations and considerations for evaluating non-EATS modalities are proposed. Moving forward, improved understanding of the non-EATS modalities will lead to integrated testing strategies that can be used in regulatory bodies to protect environmental, animal, and human health from harmful environmental chemicals.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| | - Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain
| | - Jorke H Kamstra
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Adam Schwendt
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Lorraine Chalifour
- Division of Experimental Medicine, School of Medicine, Faculty of Medicine and Biomedical Sciences, McGill University, 850 Sherbrooke Street, Montréal, Québec, H3A 1A2, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec, H3T 1E2, Canada
| |
Collapse
|
36
|
Rericha Y, Cao D, Truong L, Simonich MT, Field JA, Tanguay RL. Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. iScience 2022; 25:103789. [PMID: 35146398 PMCID: PMC8819378 DOI: 10.1016/j.isci.2022.103789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in environmental and biological samples and cause adverse health effects. Studies have predominately focused on long-chain PFAS, with far fewer addressing short-chain alternatives. This study leveraged embryonic zebrafish to investigate developmental toxicity of a short-chain series: perfluorobutane sulfonate (PFBS), perfluoropentanoic acid (PFPeA), perfluorobutane sulfonamide (FBSA), and 4:2 fluorotelomer sulfonic acid (4:2 FTS). Following static exposures at 8 h postfertilization (hpf) to each chemical (1-100 μM), morphological and behavioral endpoints were assessed at 24 and 120 hpf. Only FBSA induced abnormal morphology, while exposure to all chemicals caused aberrant larval behavior. RNA sequencing at 48 hpf following 47 μM exposures revealed only FBSA significantly disrupted normal gene expression. Measured tissue concentrations were FBSA > PFBS > 4:2 FTS > PFPeA. This study demonstrates functional head groups impact bioactivity and bioconcentration.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|
37
|
Hua ZL, Li XQ, Zhang JY, Gu L. Removal potential of multiple perfluoroalkyl acids (PFAAs) by submerged macrophytes in aquatic environments: Tolerance of Vallisneria natans and PFAA removal in submerged macrophyte-microbiota systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127695. [PMID: 34775308 DOI: 10.1016/j.jhazmat.2021.127695] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as a global concern in aquatic environment remediation due to their abundance, persistence, bioaccumulation, and toxicity. To comprehensively understand the removal potential of multiple PFAAs by submerged macrophytes in aquatic environments, systematic investigations into the tolerance of the typical submerged macrophyte Vallisneria natans to 12 typical PFAAs and the removal capacity to PFAAs in V. natans-microbiota systems were carried out. Results showed that although PFAAs could induce the accumulation of hydrogen peroxide and malondialdehyde, V. natans was overall resistant to multiple PFAAs with natural concentrations. Catalase is one of the main strategies of V. natans to alleviate PFAA stress. Microbiota can remove 18.10-30.84% of the PFAAs from the water column. 24.35-73.45% of PFAAs were removed from water in V. natans-microbiota systems. The uptake of plant tissues and the bioaccumulation of microbiota were proposed as the main removal processes. The removal rates were significantly correlated with the perfluorinated carbon atoms numbers (p < 0.05). PFAAs and V. natans increased the relative abundance of Betaproteobacteria, Nostocales, Microscillaceae, Sphingobacteriales, SBR1031, Chlamydiales, Phycisphaerae, Caldilineales, Rhodobacterales, and Verrucomicrobiales. The present study suggested that V. natans can be a potential species to remove multiple PFAAs in aquatic environments, and further providing insights into the PFAAs' remediation.
Collapse
Affiliation(s)
- Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| | - Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Jian-Yun Zhang
- Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China.
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Jiangsu 210098, PR China
| |
Collapse
|
38
|
Ekelund Ugge GMO, Jonsson A, Walstad A, Berglund O. Evaluation of transcriptional biomarkers using a high-resolution regression approach: Concentration-dependence of selected transcripts in copper-exposed freshwater mussels (Anodonta anatina). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103795. [PMID: 34971800 DOI: 10.1016/j.etap.2021.103795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
We tested concentration-dependence of selected gene transcripts (cat, gst, hsp70, hsp90, mt and sod) for evaluation as biomarkers of chemical stress. Contrary to the common approach of factorial designs and few exposure concentrations, we used regression across a high-resolution concentration series. Specifically, freshwater mussels (Anodonta anatina) were acutely (96 h) exposed to Cu (13 nominal concentrations, measuring 0.13-1 600 µg/L), and transcripts were measured by RT-qPCR. In digestive glands, cat, hsp90 and mt decreased with water Cu (p < 0.05), but response magnitudes saturated at < 2-fold decreases. In gills, gst, hsp70, hsp90 and mt increased with water Cu (p < 0.05). While hsp70, hsp90 and mt exceeded 2-fold increases within the exposure range, high Cu concentrations were required (38-160 µg/L). Although gill responses were generally more robust compared to digestive glands, overall small response magnitudes and moderate sensitivity may set limit for potential application as general biomarkers of chemical stress.
Collapse
Affiliation(s)
- Gustaf M O Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden; School of Bioscience, University of Skövde, Högskolevägen 3, SE-541 46 Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, SE-541 46 Skövde, Sweden
| | - Anders Walstad
- ALS Scandinavia Toxicon AB, Rosenhällsvägen 29, SE-261 92 Härslöv, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
39
|
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT. Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. ENVIRONMENT INTERNATIONAL 2021; 157:106802. [PMID: 34358914 DOI: 10.1016/j.envint.2021.106802] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Limited studies on multi-omics have been conducted to comprehensively investigate the molecular mechanism underlying the developmental neurotoxicity of perfluorooctanesulfonic acid (PFOS). In this study, the locomotor behavior of zebrafish larvae was assessed under the exposure to 0.1-20 μM PFOS based on its reported neurobehavioral effect. After the number of zebrafish larvae was optimized for proteomics and metabolomics studies, three kinds of omics (i.e., transcriptomics, proteomics, and metabolomics) were carried out with zebrafish larvae exposed to 0.1, 1, 5, and 10 μM PFOS. More importantly, a data-driven integration of multi-omics was performed to elucidate the toxicity mechanism involved in developmental neurotoxicity. In a concentration-dependent manner, exposure to PFOS provoked hyperactivity and hypoactivity under light and dark conditions, respectively. Individual omics revealed that PFOS exposure caused perturbations in the pathways of neurological function, oxidative stress, and energy metabolism. Integrated omics implied that there were decisive pathways for axonal deformation, neuroinflammatory stimulation, and dysregulation of calcium ion signaling, which are more clearly specified for neurotoxicity. Overall, our findings broaden the molecular understanding of the developmental neurotoxicity of PFOS, for which multi-omics and integrated omics analyses are efficient for discovering the significant molecular pathways related to developmental neurotoxicity in zebrafish.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Eun Ji Sung
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwoo Seo
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| | - Sangkyu Lee
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
40
|
Min EK, Lee AN, Lee JY, Shim I, Kim P, Kim TY, Kim KT, Lee S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol Res 2021; 37:395-403. [PMID: 34631496 DOI: 10.1007/s43188-020-00082-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/10/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
In the last decade, several advancements have been made in omics technologies and they have been applied extensively in diverse research areas. Especially in toxicological research, omics technology can efficiently and accurately generate relevant data on the molecular dynamics associated with adverse outcomes. Toxicomics is defined as the combination of toxicology and omics technologies and encompasses toxicogenomics, toxicoproteomics, and toxicometabolomics. This paper reviews the trend of applying omics technologies to evaluate cadmium (Cd) toxicity in zebrafish (D. rerio). Cd is a toxic heavy metal posing several environmental concerns; however, it is being used widely in everyday life. Zebrafish embryos and larvae are employed as standard models for many toxicity tests because they share 71.4% genetic homology with humans. This study summarizes the toxicity of Cd on the nerves, liver, heart, skeleton, etc. of zebrafish and introduces detailed omics techniques to understand the results of the toxicomic studies. Finally, the trend of toxicity evaluation in the zebrafish model of Cd based on omics technology is presented.
Collapse
Affiliation(s)
- Eun Ki Min
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Ahn Na Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Ji-Young Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Ilseob Shim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Pilje Kim
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689 Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811 Republic of Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
41
|
Mitovic N, Maksimovic S, Puflovic D, Kovacevic S, Lopicic S, Todorovic J, Spasic S, Dincic M, Ostojic JN. Cadmium significantly changes major morphometrical points and cardiovascular functional parameters during early development of zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103723. [PMID: 34391906 DOI: 10.1016/j.etap.2021.103723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 05/14/2023]
Abstract
Living organisms are commonly exposed to cadmium and other toxic metals. A vast body of research has shown the significant effects of these toxic metals on developmental processes. In order to study the role of toxic metals on early developmental stages of eukaryotes, we explored the effect of cadmium (Cd2+) contaminant on zebrafish. Thus, zebrafish embryos were exposed to 3 mg/L (16.7 μM) Cd2+ for 96 h and imaged every 24 h from the exposure onwards. Hatching rates of the eggs were determined at 72 h, followed by analyses at 96 h for: survival rate, morphometrical factors, and functional parameters of the cardiovascular system. Interestingly enough, significant hatching delays along with smaller cephalic region and some morphological abnormalities were observed in the treatment group. Moreover, substantial changes were noticed in the length of notochord and embryo, absorption of yolk sac with shorter extension, area of swimming bladder, as well as pericardium sac after Cd2+ treatment. Cadmium also caused significant abnormalities in heart physiology which could be the leading cause of mentioned morphological deformities. Herein, our results shine light on systematic acute embryological effects of cadmium in the early development of zebrafish for the first time.
Collapse
Affiliation(s)
- Nikola Mitovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia.
| | - Stefan Maksimovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Darko Puflovic
- Faculty of Electronic Engineering, University of Nis, Nis, Serbia
| | - Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Srdjan Lopicic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jasna Todorovic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Svetolik Spasic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Marko Dincic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jelena Nesovic Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
42
|
Campos B, Piña B, Barata C. Daphnia magna Gut-Specific Transcriptomic Responses to Feeding Inhibiting Chemicals and Food Limitation. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2510-2520. [PMID: 34081794 DOI: 10.1002/etc.5134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Transcriptomic responses combined with apical adverse ecologically relevant outcomes have proven to be useful to unravel and anchor molecular mechanisms of action to adverse outcomes. This is the case for feeding inhibition responses in the model ecotoxicological species Daphnia magna. The aim of the present study was to assess the transcriptomic responses in guts dissected from D. magna individuals exposed to concentrations of selected compounds that inhibit feeding and compare them with the responses associated to 2 levels of food restriction (low food and starvation). Chemical treatments included cadmium, copper, fluoranthene, λ-cyhalothrin, and the cyanotoxin anatoxin-a. Although the initial hypothesis was that exposure to chemical feeding inhibitors should elicit similar molecular responses as food limitation, the corresponding gut transcriptomic responses differed significantly. In moderate food limitation conditions, D. magna individuals increased protein and carbohydrate catabolism, likely to be used as energetic sources, whereas under severe starving conditions most metabolism-related pathways appeared down-regulated. Treatment with chemical feeding inhibitors promoted cell turnover-related signaling pathways in the gut, probably to renew tissue damage caused by the reported oxidative stress effects of these compounds, and inhibited the transcription of gut digestive gene enzymes and energetic metabolic pathways. We conclude that chemical feeding inhibitors, rather than mimicking the physiological response to low- or no-food conditions, cause specific toxic effects, preventing Daphnia both from feeding and from adjusting its metabolism to the resulting low energy intake. Environ Toxicol Chem 2021;40:2510-2520. © 2021 SETAC.
Collapse
Affiliation(s)
- Bruno Campos
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Barcelona, Spain
| |
Collapse
|
43
|
Caioni G, d'Angelo M, Panella G, Merola C, Cimini A, Amorena M, Benedetti E, Perugini M. Environmentally relevant concentrations of triclocarban affect morphological traits and melanogenesis in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105842. [PMID: 33964520 DOI: 10.1016/j.aquatox.2021.105842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Human activity is responsible for producing several chemical compounds, which contaminate the aquatic environment and adversely influence the survival of aquatic species and indirectly human health. Triclocarban (TCC) belongs to the category of emerging pollutants and its presence in aquatic environment is justified by its wide use as antimicrobial agent in personal care products. The concern about this chemical is due to the risk of persistence in water and soils and bioaccumulation, which contributes to human exposition through the contaminated food consumption. The present study evaluated the developmental toxicity of TCC in zebrafish early-life stages starting with the assessment of acute toxicity and then focusing on the integrative analyses of the observed phenotype on zebrafish development. For this purpose, lethal and sublethal alterations of zebrafish embryos were investigated by the Fish Embryo Acute Toxicity Tests (FET tests). Subsequently, two concentrations of TCC were used to investigate the morphometric features and defects in larvae developmental pigmentation: an environmentally relevant (5μg/L) and toxicological (50μg/L), derived from the No Observed Effect Concentration (NOEC) value concentration. Furthermore, the expression levels of a key transcription factor for melanocyte differentiation and melanin syntheses, such as mitfa (microphthalmia-associated transcription factor) and tyr (tyrosinase) and its activity, were evaluated.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Carmine Merola
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Michele Amorena
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila Italy.
| | - Monia Perugini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100, Teramo, Italy.
| |
Collapse
|
44
|
Lai KP, Gong Z, Tse WKF. Zebrafish as the toxicant screening model: Transgenic and omics approaches. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 234:105813. [PMID: 33812311 DOI: 10.1016/j.aquatox.2021.105813] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The production of large amounts of synthetic industrial and biomedical compounds, together with environmental pollutants, poses a risk to our ecosystem and induces negative effects on the health of wildlife and human beings. With the emergence of the global problem of chemical contamination, the adverse biological effects of these chemicals are gaining attention among the scientific communities, industry, governments, and the public. Among these chemicals, endocrine disrupting chemicals (EDCs) are regarded as one of the major global issues that potentially affecting our health. There is an urgent need of understanding the potential hazards of such chemicals. Zebrafish have been widely used in the aquatic toxicology. In this review, we first discuss the strategy of transgenic lines that used in the toxicological studies, followed by summarizing the current omics approaches (transcriptomics, proteomics, metabolomics, and epigenomics) on toxicities of EDCs in this model. We will also discuss the possible transgenerational effects in zebrafish and future prospective of the integrated omics approaches with customized transgenic organism. To conclude, we summarize the current findings in the field, and provide our opinions on future environmental toxicity research in the zebrafish model.
Collapse
Affiliation(s)
- Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin 541004, PR China; Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, PR China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117543, Singapore.
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
45
|
Mylroie JE, Wilbanks MS, Kimble AN, To KT, Cox CS, McLeod SJ, Gust KA, Moore DW, Perkins EJ, Garcia‐Reyero N. Perfluorooctanesulfonic Acid-Induced Toxicity on Zebrafish Embryos in the Presence or Absence of the Chorion. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:780-791. [PMID: 33044770 PMCID: PMC7984204 DOI: 10.1002/etc.4899] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/06/2020] [Accepted: 10/07/2020] [Indexed: 05/07/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a perfluorinated compound used in many industrial and consumer products. It has been linked to a broad range of adverse effects in several species, including zebrafish (Danio rerio). The zebrafish embryo is a widely used vertebrate model to elucidate potential adverse effects of chemicals because it is amenable to medium and high throughput. However, there is limited research on the full extent of the impact the chorion has on those effects. Results from the present study indicate that the presence of the chorion affected the timing and incidence of mortality as well as morphometric endpoints such as spinal curvature and swim bladder inflation in zebrafish embryos exposed to PFOS. Furthermore, removal of the chorion prior to exposure resulted in a lower threshold of sensitivity to PFOS for effects on transcriptional expression within the peroxisome proliferator-activated receptor (PPAR) nuclear signaling pathway. Perturbation of PPAR pathway gene expression can result in disruption of metabolic signaling and regulation, which can adversely affect development, energy availability, and survival. It can be concluded that removal of the chorion has significant effects on the timing and incidence of impacts associated with PFOS exposure, and more research is warranted to fully elucidate the protective role of the chorion and the critical timing of these events. Environ Toxicol Chem 2021;40:780-791. Published 2020. This article is a US Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | - Mitchell S. Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Ashley N. Kimble
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Kimberly T. To
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Catherine S. Cox
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Sheila J. McLeod
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Kurt A. Gust
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - David W. Moore
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Edward J. Perkins
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| | - Natàlia Garcia‐Reyero
- Environmental Laboratory, US Army Engineer Research & Development CenterVicksburgMississippi
| |
Collapse
|
46
|
Smirnova A, Mentor A, Ranefall P, Bornehag CG, Brunström B, Mattsson A, Jönsson M. Increased apoptosis, reduced Wnt/β-catenin signaling, and altered tail development in zebrafish embryos exposed to a human-relevant chemical mixture. CHEMOSPHERE 2021; 238:124584. [PMID: 33032226 DOI: 10.1016/j.chemosphere.2019.124584] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 05/22/2023]
Abstract
A wide variety of anthropogenic chemicals is detected in humans and wildlife and the health effects of various chemical exposures are not well understood. Early life stages are generally the most susceptible to chemical disruption and developmental exposure can cause disease in adulthood, but the mechanistic understanding of such effects is poor. Within the EU project EDC-MixRisk, a chemical mixture (Mixture G) was identified in the Swedish pregnancy cohort SELMA by the inverse association between levels in women at around gestational week ten with birth weight of their children. This mixture was composed of mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, mono-ethylhexyl phthalate, mono-isononyl phthalate, triclosan, perfluorohexane sulfonate, perfluorooctanoic acid, and perfluorooctane sulfonate. In a series of experimental studies, we characterized effects of Mixture G on early development in zebrafish models. Here, we studied apoptosis and Wnt/β-catenin signaling which are two evolutionarily conserved signaling pathways of crucial importance during development. We determined effects on apoptosis by measuring TUNEL staining, caspase-3 activity, and acridine orange staining in wildtype zebrafish embryos, while Wnt/β-catenin signaling was assayed using a transgenic line expressing an EGFP reporter at β-catenin-regulated promoters. We found that Mixture G increased apoptosis, suppressed Wnt/β-catenin signaling in the caudal fin, and altered the shape of the caudal fin at water concentrations only 20-100 times higher than the geometric mean serum concentration in the human cohort. These findings call for awareness that pollutant mixtures like mixture G may interfere with a variety of developmental processes, possibly resulting in adverse health effects.
Collapse
Affiliation(s)
- Anna Smirnova
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mentor
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Petter Ranefall
- SciLifeLab BioImage Informatics Facility, and Dept of Information Technology, Uppsala University, Uppsala, Sweden
| | - Carl-Gustaf Bornehag
- Public Health Sciences, Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York, USA
| | - Björn Brunström
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Anna Mattsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden
| | - Maria Jönsson
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden; The Centre for Reproductive Biology in Uppsala (CRU), Uppsala, Sweden.
| |
Collapse
|
47
|
Li XQ, Hua ZL. Multiphase distribution and spatial patterns of perfluoroalkyl acids (PFAAs) associated with catchment characteristics in a plain river network. CHEMOSPHERE 2021; 263:128284. [PMID: 33297228 DOI: 10.1016/j.chemosphere.2020.128284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/12/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have emerged as global concerning contaminants because of their persistence, bioaccumulation, and toxicological effects. The transport and fate of PFAAs on dimension of plain river networks (PRNs) are difficult to model due to the unique regional characteristics (i.e., undirectional flows, low slope, complicated structure and connectivity) and the lack of data on PFAAs concentrations and compositions. A typical PRN (Taihu Basin, China) was selected to elucidate the spatial patterns of PFAAs in multi-matrices, including colloidal phase, soluble phase, suspended particles, and sediment. PFAAs were ubiquitously detected in plain rivers with total concentrations of 18.48-1220 ng/L in colloids, 139.07-721.37 ng/L in soluble phase, 97.69-2247 ng/g dw in suspended particles, and <72.04-178.12 ng/g dw in sediment. PFAAs were more likely to transport via dissolved phase and accumulate into sediment. Colloids carried 45.46-62.59% of ∑PFAAs in overlying water, while suspended particles contained <36.63% of ∑PFAAs, suggesting the important role of colloids in preloading PFAAs. Moreover, PFAAs variability was correlated with indicators of the structure and connectivity of river network by gray relational analysis. The mean gray relational degrees can be sorted as edge-node ratio (0.7609) > network connectivity (0.7191) > river density (0.7012) > water surface ratio (0.6887) > river development coefficient (0.6504) > functional connectivity (0.4780). These results suggested that the effects of catchment characteristics should be taken into account in understanding PFAAs fate in the PRNs.
Collapse
Affiliation(s)
- Xiao-Qing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Zu-Lin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, PR China; College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
48
|
Martínez R, Codina AE, Barata C, Tauler R, Piña B, Navarro-Martín L. Transcriptomic effects of tributyltin (TBT) in zebrafish eleutheroembryos. A functional benchmark dose analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122881. [PMID: 32474318 DOI: 10.1016/j.jhazmat.2020.122881] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Exposure to the antifouling tributyltin (TBT) has been related to imposex in mollusks and to obesogenicity, adipogenesis and masculinization in fish. To understand the underlying molecular mechanisms, we evaluated dose-response effects of TBT (1.7-56 nM) in zebrafish eleutheroembryos transcriptome exposed from 2 to 5 days post-fertilization. RNA-sequencing analysis identified 3238 differentially expressed transcripts in eleutheroembryos exposed to TBT. Benchmark dose analyses (BMD) showed that the point of departure (PoD) for transcriptomic effects (9.28 nM) was similar to the metabolomic PoD (11.5 nM) and about one order of magnitude lower than the morphometric PoD (67.9 nM) or the median lethal concentration (LC50: 93.6 nM). Functional analysis of BMD transcriptomic data identified steroid metabolism and cholesterol and vitamin D3 biosynthesis as the most sensitive pathways to TBT (<50% PoD). Conversely, transcripts related to general stress and DNA damage became affected only at doses above the PoD. Therefore, our results indicate that transcriptomes can act as early molecular indicators of pollutant exposure, and illustrates their usefulness for the mechanistic identification of the initial toxic events. As the estimated molecular PoDs are close to environmental levels, we concluded that TBT may represent a substantial risk in some natural environments.
Collapse
Affiliation(s)
- Rubén Martínez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain; Universitat de Barcelona (UB), Barcelona, Catalunya 08007, Spain.
| | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Romà Tauler
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya, 08034, Spain.
| |
Collapse
|
49
|
Qian Y, Zhang Y, Zuh AA, Qiao W. New application of rutin: Repair the toxicity of emerging perfluoroalkyl substance to Pseudomonas stutzeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110879. [PMID: 32559694 DOI: 10.1016/j.ecoenv.2020.110879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are toxic to microorganisms, thereby affecting microbial communities in sludge and soil, but how to repair the toxicity of microorganisms remains unclear. In this study, rutin, an antioxidant, was added into a culture medium with an aerobic denitrification bacteria, Pseudomonas stutzeri, under the exposure of sodium perfluorononyloxy-benzenesulfonate (OBS) to evaluate the repair mechanisms of rutin to the toxicity of OBS to the bacteria. The results showed that rutin could repair the damage of OBS to cell structures, and reduce the death rates of the bacteria under OBS exposure. The dosage of rutin reduced the effect on the inhibition of denitrification ability of P. stutzeri under OBS exposure. Compared with the bacteria exposed to single OBS, the dosage of rutin resulted in that the death rates recovered from 96.2% to 66.4%, the growth inhibition rate decreased from 46.5% to 15.8%, the total nitrogen removal rate recovered from 66.9% to 100%, and the NO2- content recovered from 34.5 mg/L to 0.22 mg/L. The expressions of key denitrification genes (napA, nirS, norB, nosZ) were recovered after adding rutin under OBS exposure. Rutin changed the positive rate of reactive oxygen species, the relative superoxide dismutase and catalase activities in the bacteria which exposed to OBS. The mechanism by which rutin repaired the toxicity of OBS to P. stutzeri related to inhibiting the activities of antioxidant and denitrification enzymes rather than affecting the expressions of genes involved in these enzymes. This study sheds light on the repair method of micro-organics and reveals the repair mechanisms under PFASs exposure.
Collapse
Affiliation(s)
- Yi Qian
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunhao Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Achuo Anitta Zuh
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
50
|
Christou M, Fraser TWK, Berg V, Ropstad E, Kamstra JH. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. ENVIRONMENTAL RESEARCH 2020; 187:109702. [PMID: 32474314 DOI: 10.1016/j.envres.2020.109702] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 μM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584, CM Utrecht, the Netherlands
| |
Collapse
|