1
|
Tang W, Ni R, Wang X, Song L. Different effects of seasonal impoundment and land use change on microbiome in a tributary sediment of the three gorgers reservoir. ENVIRONMENTAL RESEARCH 2024; 259:119559. [PMID: 38969316 DOI: 10.1016/j.envres.2024.119559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
Anthropogenic activities significantly impact river ecosystem nutrient fluxes and microbial metabolism. Here, we examined the seasonal and spatial variation of sediments physicochemical parameters and the associated microbiome in the Pengxi river, a representative tributary of Three Gorges Reservoir, in response to seasonal impoundment and land use change by human activities. Results revealed that seasonal impoundment and land use change enhanced total organic carbon (TOC), total nitrogen (TN) and ammonium nitrogen (NH4+-N) concentration in the sediment, but have different effects on sediment microbiome. Sediment microbiota showed higher similarity during the seasonal high-water level (HWL) in consecutive two years. The abundant phyla Acidobacteria, Gemmatimonadetes, Cyanobacteria, Actinobacteria and Planctomycetes significantly increased as water level increased. Along the changes in bacterial taxa, we also observed changes in predicted carbon fixation functions and nitrogen-related functions, including the significantly higher levels of Calvin cycle, 4HB/3HP cycle, 3HP cycle and assimilatory nitrate reduction, while significantly lower level of denitrification. Though land use change significantly increased TOC, TN and NH4+-N concentration, its effects on spatial variation of bacterial community composition and predicted functions was not significant. The finding indicates that TGR hydrologic changes and land use change have different influences on the carbon and nitrogen fluxes and their associated microbiome in TGR sediments. A focus of future research will be on assessing on carbon and nitrogen flux balance and the associated carbon and nitrogen microbial cycling in TGR sediment.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xingzu Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Liyan Song
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Li J, Wang S, Liu P, Peng J, Liu X, Sun Q, Zhou B, Lei K. Environmental DNA metabarcoding reveals the influence of environmental heterogeneity on microeukaryotic plankton in the offshore waters of East China Sea. ENVIRONMENTAL RESEARCH 2024; 262:119921. [PMID: 39233035 DOI: 10.1016/j.envres.2024.119921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Microeukaryotic plankton are essential to marine food webs and biogeochemical cycles, with coastal seas playing a critical role in aquatic ecosystems. Understanding the diversity of microeukaryotic plankton, deciphering their community structure and succession patterns, and identifying the key factors influencing these dynamics remain central challenges in coastal ecology. In this study, we examine patterns of biodiversity, community structure, and co-occurrence using environmental DNA (eDNA)-based methods. Our results show a linear correlation between α-diversity and distance from the shore, with nutrient-related factors, especially inorganic nitrogen, being the primary determinants of the spatial distribution of plankton communities. Alternation of coastal habitat have shifted the succession patterns of coastal eukaryotic plankton communities from stochastic to deterministic processes. Additionally, our observations indicate that the topology and structure of eukaryotic plankton symbiotic patterns and networks are significantly influenced by environmental heterogeneity such as nutrients, which increase the vulnerability and decrease the stability of offshore ecological networks. Overall, our study demonstrates that the distribution of microeukaryotic plankton communities is influenced by factors related to environmental heterogeneity.
Collapse
Affiliation(s)
- Jiangnan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266000, China; Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Shuping Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Pengxia Liu
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai, 200125, China
| | - Jiayu Peng
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Xinmei Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Qianhang Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266000, China; Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Bo Zhou
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Kun Lei
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China.
| |
Collapse
|
3
|
Ding Y, Pan B, Han X, Guo S, Feng Z, Sun H, Wang X. Habitat selection drives diatom community assembly and network complexity in sediment-laden riverine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172983. [PMID: 38744389 DOI: 10.1016/j.scitotenv.2024.172983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
Microbial communities assemble stochastically and deterministically, but how different assembly processes shape diatom community structure across riverine habitats is unclear, especially in sediment-laden environments. In this study, we deciphered the mechanisms of riverine diatom community assembly in the water column and riverbed substrate with varying sediment concentrations. Water and sediment samples were collected from 44 sampling sites along the Yellow River mainstream during two seasons. Diatom communities were characterized based on high-throughput sequencing of the 18S ribosomal RNA genes coupled with multivariate statistical analyses. A total of 198 diatom species were taxonomically assigned, including 182 free-living and particle-attached species and 184 surface-sediment species. Planktonic communities were structurally different from benthic communities, with Cyclotella being dominant mainly in the middle and lower reaches of the river with higher sediment concentrations. Both stochastic and deterministic processes affected diatom community assembly in different habitats. Species dispersal was more important in the water than in the substrate, and this process was strengthened by increased sediment concentration across habitats. Diatom communities exhibited lower network complexity and enhanced antagonistic or competitive interactions between species in response to higher sediment concentrations compared with lower sediment concentrations mainly in the source region of the river. Differences in the species composition and community diversity of planktonic diatoms were closely correlated with the proportion of bare land area, nitrogen nutrients, precipitation, and sediment concentration. In particular, particle-attached diatoms responded sensitively to environmental factors. These findings provide strong evidence for sediment-mediated assembly and interactions of riverine diatom communities.
Collapse
Affiliation(s)
- Yitong Ding
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Xu Han
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Shansong Guo
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Zhiyuan Feng
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - He Sun
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| | - Xinyuan Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
4
|
Fan Y, Chen K, Dai Z, Peng J, Wang F, Liu H, Xu W, Huang Q, Yang S, Cao W. Land use/cover drive functional patterns of bacterial communities in sediments of a subtropical river, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174564. [PMID: 38972401 DOI: 10.1016/j.scitotenv.2024.174564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
The bacterial community in sediment serves as an important indicator for assessing the environmental health of river ecosystems. However, the response of bacterial community structure and function in river basin sediment to different land use/cover changes has not been widely studied. To characterize changes in the structure, composition, and function of bacterial communities under different types of land use/cover, we studied the bacterial communities and physicochemical properties of the surface sediments of rivers. Surface sediment in cropland and built-up areas was moderately polluted with cadmium and had high nitrogen and phosphorus levels, which disrupted the stability of bacterial communities. Significant differences in the α-diversity of bacterial communities were observed among different types of land use/cover. Bacterial α-diversity and energy sources were greater in woodlands than in cropland and built-up areas. The functional patterns of bacterial communities were shown that phosphorus levels and abundances of pathogenic bacteria and parasites were higher in cropland than in the other land use/cover types; Urban activities have resulted in the loss of the denitrification function and the accumulation of nitrogen in built-up areas, and bacteria in forested and agricultural areas play an important role in nitrogen degradation. Differences in heavy metal and nutrient inputs driven by land use/cover result in variation in the composition, structure, and function of bacterial communities.
Collapse
Affiliation(s)
- Yifei Fan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Kan Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Huibo Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xing'lin South Road, Xiamen, Fujian 361102, China
| | - Quanjia Huang
- Xiamen Environmental Monitoring Station, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
5
|
Yuan B, Guo M, Zhou X, Li M, Xie S. Spatiotemporal patterns and co-occurrence patterns of dissimilatory nitrate reduction to ammonium community in sediments of the Lancang River cascade reservoirs. Front Microbiol 2024; 15:1411753. [PMID: 38962138 PMCID: PMC11219630 DOI: 10.3389/fmicb.2024.1411753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Dissimilatory nitrate reduction to ammonium (DNRA) is an important nitrate reduction pathway in freshwater sediments. Many studies have focused on the DNRA process in various natural habitats. However, the joint operation of cascade reservoirs will affect the physical and chemical properties of sediments, which may change the DNRA process and bacterial community pattern in the surface sediments of cascade reservoirs. Our study was the first to investigate the spatiotemporal distribution patterns of potential DNRA rate, nrfA gene abundances, and DNRA bacterial community diversity in surface sediments of the Lancang River cascade reservoirs. The results of slurry incubation experiments combined with the 15N isotope tracer experiment ascertained that the potential rates of DNRA were 0.01-0.15 nmol-N cm-3 h-1, and qPCR results indicated that the abundance range of nrfA was 1.08 × 105-2.51 × 106 copies g-1 dry weight. High throughput sequencing of the nrfA gene revealed that the relative abundance of Anaeromyxobacter (4.52% on average), Polyangium (4.09%), Archangium (1.86%), Geobacter (1.34%), and Lacunisphaera (1.32%) were high. Pearson and RDA correlation analysis exhibited that nrfA gene abundance was positively correlated with altitude, pH, OC, and sand concentration. Anaeromyxobacter was positively correlated with reservoir age and DNRA potential rate. The deterministic environmental selection process plays a crucial role in the formation of the DNRA bacterial community. Network analysis displayed that the dominant DNRA genus was the key population of the DNRA microbial community in the sediments of Lancang River cascade reservoirs. This study reveals that the variation of DNRA bacterial activity and community structure is largely driven by the construction of cascade reservoirs, and provides a new idea for further understanding the characteristics of the DNRA community in the cascade reservoir ecosystem.
Collapse
Affiliation(s)
- Bo Yuan
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Mengjing Guo
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xiaode Zhou
- Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Miaojie Li
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Shuguang Xie
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Zheng Y, Li S, Feng X, He X, Li Y. Seasonality regulates the distinct assembly patterns of microeukaryotic plankton communities in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37705-37716. [PMID: 38780846 DOI: 10.1007/s11356-024-33613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The hydrographic and environmental factors along the Three Gorges Reservoir (TGR) have been significantly altered since the Three Gorges Dam (TGD) began working in 2006. Here, we collected 54 water samples, and then measured the environmental factors, followed by sequencing of the 18S rRNA gene and subsequent analysis of community assembly mechanisms. The findings indicated that the majority of environmental variables (such as AN, TP, Chl-a, CODMn, and Cu) exhibited both temporal and spatial variations due to the influences of the TGD. The distribution of different environmental factors and microeukaryotic plankton communities is influenced by the changing seasons. The community structure in TGR showed variations across three seasons, possibly due to variations in their environmental preferences, inherent dissimilarities, and seasonal succession. Furthermore, different communities exhibited a comparable distance-decay trend, suggesting that distinct taxa are likely to exhibit a similar spatial distribution. In addition, the community formation in TGR was influenced by both deterministic and stochastic factors, with the balance between them being mainly controlled by the season. Specifically, deterministic processes could explain 33.9-51.1% of community variations, while stochastic processes could contribute 23.5-32.2%. The findings of this research demonstrated that the varying ecological processes' significance relied on environmental gradients, geographical scale, and ecological conditions. This could offer a fresh outlook on comprehending the composition, assembly mechanisms, and distribution patterns of microeukaryotic plankton in reservoir ecosystems.
Collapse
Affiliation(s)
- Yu Zheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Suping Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiao Feng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- School of Biological Sciences, University of Western, Australia, Perth, WA, 6009, Australia
| | - Yong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Li L, Chen L, Chen S, Zhang Y, Xu Y, Zhi X, Meng X, Shen Z, Liu Y, Yang D, Tang L. The cumulative effects of cascade reservoirs control nitrogen and phosphorus flux: Base on biogeochemical processes. WATER RESEARCH 2024; 252:121177. [PMID: 38290240 DOI: 10.1016/j.watres.2024.121177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/01/2024]
Abstract
The reservoir serves as a water source, a flood control structure, a navigational aid, and also impacts the downstream ecosystem as well as the reservoir zone. However, debate exists about effectiveness of cascade reservoirs in controlling the transportation of nutrients, particularly in the Yangtze River basin, which has been significantly affected by reservoir development. This research develops a new model X-NPSEM (X with Nitrogen and Phosphorus Steady-state Reservoir Model) based on biogeochemical processes of nitrogen and phosphorus reaction for investigating the dynamic storage capacity of cascade reservoirs at both reservoir- and watershed scales. Then the cumulative effects of cascade reservoirs and the related mechanism were investigated in Fujiang watershed, China. Based on the results, cascade reservoirs retained 16.3 % of nitrogen fluxes and 37.6 % of phosphorus fluxes annually. Downstream reservoirs have higher retention rates of phosphorus (0.48/d) compared to upstream reservoirs (0.10/d), mainly due to inflow sediment. Nitrogen retention rates show seasonal variations: wet season (0.21/d) and dry season (0.17/d). These fluctuations in nitrogen retention are primarily influenced by changes in temperature rather than other factors such as operation period, nitrogen and phosphorus concentration, or the nitrogen/phosphorus ratio. In upstream, the concentration of sediment entering the reservoir plays a decisive role in the transformation of P retention from sink to source. The X-NPSRM coupler model could be used for global reservoir operation and watershed management.
Collapse
Affiliation(s)
- Leifang Li
- School of Environment, Beijing Normal University, Beijing 100875, China; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Lei Chen
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Shibo Chen
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuhan Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanzhe Xu
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaosha Zhi
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinyi Meng
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenyao Shen
- School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Hydrology and Sediment Science of Ministry of Education, Beijing 100875, China
| | - Yong Liu
- State Environmental Protection Key Laboratory of All Materials Flux in River Ecosystems, College of Environment science and Engineering, Peking University, Beijing 100871, China
| | - Dawen Yang
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Lihua Tang
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Gao Y, Li Y, Shang J, Zhang W. Temporal profiling of sediment microbial communities in the Three Gorges Reservoir Area discovered time-dissimilarity patterns and multiple stable states. WATER RESEARCH 2024; 252:121225. [PMID: 38309070 DOI: 10.1016/j.watres.2024.121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
Microbial communities play vital roles in cycling nutrients and maintaining water quality in aquatic ecosystems. To better understand the dynamics of microbial communities and to pave way to effective ecological remediation, it's essential to reveal the temporal patterns of the communities and to identify their states. However, research exploring the dynamic changes of microbial communities needs a large amount of time-series data, which could be an extravagant requirement for a single study. In this research, we overcame this challenge by conducting a meta-analysis of years of accumulations of 16S rRNA high-throughput sequencing data from the Three Gorges Reservoir Area (TGRA), an ecological and environmental hotspot. For better understanding the microbial communities time-dissimilarity dynamics, three microbial communities time-dissimilarity patterns were hypothesized, and the linear pattern in the TGRA was validated. In addition, to explore the stability of microbial communities in the TGRA, two alternative stable states were revealed, and their differences in community richness, alpha diversity indices, community composition, ecological network topological properties, and metabolic functions were demonstrated. In short, two states of microbial communities showed distinct richness and alpha diversity indices, and the communities in one state were more dominated by Halomonas and Nitrosopumilaceae genera, facilitating nitrogen cycling metabolic processes; whilst the main genera of the other state were Bathyarchaeia and Methanosaeta, which favored methane-related metabolism. Moreover, different studies and environmental differences between mainstream and tributaries were attributed as the potential inducing factors of the state division. Our study provides a comprehensive insight into the dynamics and stability of microbial communities in the TGRA, and a reference for future studies on microbial community dynamics.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Jiahui Shang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
9
|
Zheng S, Liu M, Han Q, Pang L, Cao H. Seasonal variation and human impacts of the river biofilm bacterial communities in the Shiting River in southeastern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:341. [PMID: 38436747 DOI: 10.1007/s10661-024-12490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bacterial communities in epilithic biofilm plays an important role in biogeochemistry processes in freshwater ecosystems. Nevertheless, our understanding of the geographical and seasonal variations of the composition of bacterial communities in the biofilm of gravels on river bed is still limited. Various anthropogenic activities also influence the biofilm bacteria in gravel rivers. By taking the Shiting River in the upper Yangtze River basin in Sichuan Province as an example, we studied the geographical and seasonal variations of epilithic bacteria and the impacts of weirs and other human activities (e.g., sewage pollution). The river has experienced severe degradation since the Ms 8.0 Wenchuan Earthquake, and weirs were constructed to prevent bed erosion. We collected epilithic biofilms samples at 17 sites along ~ 30 km river reach of the Shiting River in the autumn of 2021 and the summer of 2022, respectively. We applied 16S rRNA gene high-throughput sequencing technology and Functional Annotation of Prokaryotic Taxa (FAPROTAX) to analyze the seasonal and biogeographic patterns and potential functions of the biofilm bacterial communities. The results showed that epilithic bacteria from the two surveys exhibited variation in community composition, bacterial diversity and potential functions. The bacteria samples collected in the autumn have much higher alpha diversity and richness than those collected in the summer. Bacterial richness and diversity were lower downstream of the weirs than upstream. Low diversity was observed at a sampling site influenced by sewage inflow, which contains high level of nitrogen-related chemicals.
Collapse
Affiliation(s)
- Shan Zheng
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China.
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China.
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| | - Min Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China
| | - Qinghua Han
- Key Laboratory of Earthquake Engineering Simulation and Seismic Resilience of China, Earthquake Administration (Tianjin University), Tianjin, 300350, China
- School of Civil Engineering, Tianjin University, Tianjin, 300350, China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Huiqun Cao
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| |
Collapse
|
10
|
Zhang Q, Zhao J, Wang G, Guan H, Wang S, Yang J, Zhang J, Jian S, Ouyang L, Wu Z, Li A. Differences of bacterioplankton communities between the source and upstream regions of the Yangtze River: microbial structure, co-occurrence pattern, and environmental influencing factors. Braz J Microbiol 2024; 55:571-586. [PMID: 38302737 PMCID: PMC10920563 DOI: 10.1007/s42770-024-01265-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024] Open
Abstract
The source area of the Yangtze River is located in the hinterland of the Qinghai-Tibet Plateau, which is known as the "Earth's third pole." It is the water conservation area and the natural barrier of the ecosystem of the Yangtze River basin. It is also the most sensitive area of the natural ecosystem, and the ecological environment is very fragile. Microorganisms play key roles in the biogeochemical processes of water. In this paper, the bacterioplankton communities in the source and upstream regions of the Yangtze River were studied based on 16S rRNA high-throughput sequencing, and their environmental influencing factors were further analyzed. Results showed that the upstream region had higher richness and diversity than the source region. The predominant bacterial phyla in the source and upstream regions were Proteobacteria, Firmicutes, and Actinobacteriota. The bacterial phyla associated with municipal pollution and opportunistic pathogen, such as Firmicutes and Actinobacteriota, were more abundant in the upstream. By contrast, distinct planktonic bacterial genera associated with mining pollution, such as Acidiphilium and Acidithiobacillus, were more abundant in the source region. The co-occurrence network showed that the interaction of bacterioplankton community is more frequent in the upstream. The bacterioplankton community compositions, richness, and functional profiles were affected by the spatial heterogeneity. Moreover, variation partitioning analysis further confirmed that the amount of variation in the source region independently explained by variables of altitude was the largest, followed by water nutrient. This paper revealed the spatial distribution of planktonic bacterial communities in the source and upstream regions of the Yangtze River and its correlation with environmental factors, providing information support for ensuring the health and safety of aquatic ecosystems in the Yangtze River Basin.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Juan Zhao
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Guojie Wang
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Hongtao Guan
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jicheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jinyong Zhang
- The Laboratory of Aquatic Parasitology, School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266237, China
| | - Shenglong Jian
- Qinghai Provincial Fishery Environmental Monitoring Center, Xining, 810012, China
- Key Laboratory of Plateau Aquatic and Ecological Environmental in Qinghai Province, Xining, 810012, China
| | - Lijian Ouyang
- Ecological Engineering College, Guizhou University of Engineering Science, Bijie, 551700, China
| | - Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
11
|
Liu L, Xin Y, Guang SB, Lin GF, Liu CX, Zeng LQ, He SQ, Zheng YM, Chen GY, Zhao QB. Planktonic microbial community and biological metabolism in a subtropical drinking water river-reservoir system. ENVIRONMENTAL RESEARCH 2023; 237:116999. [PMID: 37634690 DOI: 10.1016/j.envres.2023.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
To understand the dynamics of planktonic microbial community and its metabolism processes in subtropical drinking water river-reservoir system with lower man-made pollution loading, this study selected Dongzhen river-reservoir system in Mulan Creek as object to investigate spatial-temporal characteristics of community profile and functional genes involved in biological metabolism, and to analyze the influence of environmental factors. The results indicated that Proteobacteria and Actinobacteria were the most diverse phyla with proportion ranges of 9%-80% in target system, and carbohydrate metabolism (5.76-7.12 × 10-2), amino acid metabolism (5.78-7.21 × 10-2) and energy metabolism (4.07-5.17 × 10-2) were found to be the dominant pathways of biological metabolism. Although there were variations in biological properties both spatially and temporally, seasonal variation had a greater influence on microbial community and biological metabolism, than locational differences. Regarding the role of environmental factors, this study revealed that microbial diversity could be affected by multiple abiotic factors, with total organic carbon, total phosphorus and temperature being more influential (absolute value of standardized regression weights >2.13). Stochastic processes dominated the microbial community assembly (R2 of neutral community model = 0.645), while niche-based processes differences represented by nutrients, temperature and pH level played secondary roles (R > 0.388, P < 0.01). Notably, the synergistic influences among the environmental factors accounted for the higher percentages of community variation (maximum proportion up to 17.6%). Additionally, pH level, temperature, and concentrations of dissolved oxygen, carbon and nitrogen were found to be the significant factors affecting carbon metabolism pathways (P < 0.05), yet only total organic carbon significantly affected on nitrogen transformation (P < 0.05). In summary, the microbial profile in reservoir is not completely dominated by that in feeding river, and planktonic microbial community and its metabolism in subtropical drinking water river-reservoir system are shaped by multiple abiotic and biotic factors with underlying interactions.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yu Xin
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shan-Bin Guang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Guo-Fu Lin
- Putian River Management Center, Putian, 351100, China
| | - Chao-Xiang Liu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Li-Qin Zeng
- Dongzhen Reservoir Administration, Putian, 351100, China
| | - Shao-Qin He
- Dongzhen Reservoir Administration, Putian, 351100, China
| | - Yu-Ming Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guan-Yu Chen
- Dongzhen Reservoir Administration, Putian, 351100, China
| | - Quan-Bao Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
12
|
Yu B, Zeng Q, Li J, Li J, Tan X, Gao X, Huang P, Wu S. Vertical variation in prokaryotic community composition and co-occurrence patterns in sediments of the Three Gorges Reservoir, China. ENVIRONMENTAL RESEARCH 2023; 237:116927. [PMID: 37604225 DOI: 10.1016/j.envres.2023.116927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Archaea and bacteria are distributed throughout the sediment; however, our understanding of their biodiversity patterns, community composition, and interactions is primarily limited to the surface horizons (0-20 cm). In this research, sediment samples were collected from three vertical sediment profiles (depths of 0-295 cm) in the Three Gorges Reservoir (TGR), one of the largest reservoirs in the world. Through 16S rRNA sequencing, it was shown that sediment microbial diversity did not significantly vary across the sediment. Nevertheless, a decline in the similarity of archaeal and bacterial communities over distance along sediment vertical profiles was noted. Nonmetric multidimensional scaling (NMDS) analysis revealed that archaeal and bacterial communities could be clearly separated into two groups, located in the upper sediments (0-135 cm) and deep sediments (155-295 cm). Meanwhile, at the fine-scale of the vertical section, noteworthy variations were observed in the relative abundance of prominent archaea (e.g., Euryarchaeota) and bacteria (e.g., Proteobacteria). The linear discriminant analysis effect size (LEfSe) demonstrated that twenty-four bacterial and twenty-six archaeal biomarker microbes exist in the upper and deep sediment layers. Each layer exhibited distinctive microbial divisions, suggesting that microbes with diverse biological functions are capable of thriving and propagating along the sediment profile. Co-occurrence network analysis further indicated that the microbial network in the upper sediments was more complex than that in the deep sediments. Additionally, the newly discovered anaerobic methanotrophic archaeon Candidatus Methanoperedens was identified as the most abundant keystone archaeal taxon in both sediment layers, highlighting the significance of methane oxidation in material cycling within the TGR ecosystem. In summary, our study examined the biodiversity and coexistence patterns of benthic microbial communities throughout the vertical sediment profile, providing detailed insights into the vertical geography of archaeal and bacterial communities in typical deep-water reservoir ecosystems.
Collapse
Affiliation(s)
- Baohong Yu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Quanchao Zeng
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| | - Jinlin Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Jun Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xun Tan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xin Gao
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Ping Huang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Shengjun Wu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| |
Collapse
|
13
|
Liu B, Tian Z, Xie P, Guo F, Zhang W, Zhang J, Wu J, Zhu X, Song Z, Hu H, Zhu Y. Temporal and spatial dynamic changes of planktonic bacteria community structure in Li River, China: a seasonal survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111244-111255. [PMID: 37814045 DOI: 10.1007/s11356-023-30166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
A combined temporal and spatial research approach helps us to evaluate the ecological status of a river scientifically and comprehensively. To understand the response mechanisms of bacteria in the Li River to different environments, we conducted a 1-year study (2020-2021) and collected water samples from 18 sections of the river in October, January, April, and August. 16S sequencing was used to study the composition and structure of bacterial communities in Li River at different temporal and spatial scales. The results showed that NO3--N, TP, T, pH, and DO were significantly different on spatial and temporal scales. Alpha diversity of planktonic bacteria in Li River fluctuated significantly with the season, reaching its highest in summer. Proteobacteria remained the most dominant phylum in all seasons, but the differential microorganisms varied between seasons. Although the abundance of metabolic functions of planktonic bacteria did not show significant differences between seasons, we found that DO, TP, T, and COD were the key environmental factors affecting bacterial metabolism. In addition, the co-occurrence network analysis showed that the autumn network had a higher number of nodes and edges and exhibited a high degree of complexity, while the summer network had the highest degree of modularity and exhibited greater stability. These results deepen our knowledge of the response mechanisms of river microorganisms to temporal and spatial changes and provide a scientific reference for the study of river ecosystems.
Collapse
Affiliation(s)
- Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Zeyuan Tian
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Penghao Xie
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Wenjun Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junxia Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Zhongxian Song
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yichun Zhu
- School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
14
|
Yuan B, Guo M, Wu W, Zhou X, Li M, Xie S. Spatial and Seasonal Patterns of Sediment Bacterial Communities in Large River Cascade Reservoirs: Drivers, Assembly Processes, and Co-occurrence Relationship. MICROBIAL ECOLOGY 2023; 85:586-603. [PMID: 35338380 DOI: 10.1007/s00248-022-01999-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Sediment bacteria play an irreplaceable role in promoting the function and biogeochemical cycle of the freshwater ecosystem; however, little is known about their biogeographical patterns and community assembly mechanisms in large river suffering from cascade development. Here, we investigated the spatiotemporal distribution patterns of bacterial communities employing next-generation sequencing analysis and multivariate statistical analyses from the Lancang River cascade reservoirs during summer and winter. We found that sediment bacterial composition has a significant seasonal turnover due to the modification of cascade reservoirs operation mode, and the spatial consistency of biogeographical models (including distance-decay relationship and covariation of community composition with geographical distance) also has subtle changes. The linear regression between the dissimilarity of bacterial communities in sediments, geographical and environmental distance showed that the synergistic effects of geographical and environmental factors explained the influence on bacterial communities. Furthermore, the environmental difference explained little variations (19.40%) in community structure, implying the homogeneity of environmental conditions across the cascade reservoirs of Lancang River. From the quantification of the ecological process, the homogeneous selection was recognized as the dominating factor of bacterial community assembly. The co-occurrence topological network analyses showed that the key genera were more important than the most connected genera. In general, the assembly of bacterial communities in sediment of cascade reservoirs was mediated by both deterministic and stochastic processes and is always dominated by homogeneous selection with the seasonal switching, but the effects of dispersal limitation and ecological drift cannot be ignored.
Collapse
Affiliation(s)
- Bo Yuan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China.
| | - Mengjing Guo
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Wei Wu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Xiaode Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, Shaanxi, China
| | - Miaojie Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Kuang B, Xiao R, Hu Y, Wang Y, Zhang L, Wei Z, Bai J, Zhang K, Acuña JJ, Jorquera MA, Pan W. Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Front Microbiol 2023; 13:1112669. [PMID: 36713194 PMCID: PMC9874162 DOI: 10.3389/fmicb.2022.1112669] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction As the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities. Methods The abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication. Results Many genera, with plural genes encoding key enzymes involved in genes, belonging to Proteobacteria and Actinobacteria which were the most main phylum in bacterial community of Baiyangdian sediment were involved in C, N, S, P cycling processes, such as Nocardioides (Actinobacteria), Thiobacillus, Nitrosomonas, Rhodoplanes and Sulfuricaulis (Proteobacteria).For instance, the abundance of Nocardioides were positively correlated to TN, EC, SOC and N/P ratio in pathways of phytase, regulation of phosphate starvation, dissimilatory sulfate reduction and oxidation, assimilatory sulfate reduction, assimilatory nitrate reduction and reductive tricarboxylic acid (rTCA) cycle. Many key genes in C, N, P, S cycling were closely related to the reductive citrate cycle. A complete while weaker sulfur cycle between SO4 2- and HS- might occur in Baiyangdian lake sediments compared to C fixation and N cycling. In addition, dissimilatory nitrate reduction to ammonia was determined to co-occur with denitrification. Methanogenesis was the main pathway of methane metabolism and the reductive citrate cycle was accounted for the highest proportion of C fixation processes. The abundance of pathways of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling in sediments with higher TN content was higher than those with lower TN content. Besides, Nocardioides with plural genes encoding key enzymes involved in nasAB and nirBD gene were involved in these pathways. Discussion Nocardioides involved in the processes of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling may have important effects on nitrogen transformation.
Collapse
Affiliation(s)
- Bo Kuang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Rong Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China,*Correspondence: Rong Xiao, ✉
| | - Yanping Hu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Yaping Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Zhuoqun Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
| | - Jacquelinne J. Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Milko A. Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Wenbin Pan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
16
|
Ji F, Sun Y, Yang Q. Early warning of red tides using bacterial and eukaryotic communities in nearshore waters. ENVIRONMENTAL RESEARCH 2023; 216:114711. [PMID: 36334824 DOI: 10.1016/j.envres.2022.114711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic discharge activities have increased nutrient pollution in coastal areas, leading to algal blooms and microbial community changes. Particularly, microbial communities could easily be affected with variation in nutrient pollution, and thus offered a promising strategy to predict early red tides warning via microbial community-levels variation and their keystone taxa hysteretic responses to nutrient pollution. Herein high-throughput sequencing technology from 52 samples were used to explore the variation of microbial communities and find the significant tipping points with aggravating nutrient conditions in Xiaoping Island coastal area. Results indicated that bacterial and microeukaryote communities were generally spatial and seasonal heterogeneity and were influenced by the different nutrient conditions. Procrustes test results showed that the comprehensive index of organics polluting (OPI), total nitrogen (TN), inorganic nitrogen (DIN), and total phosphorus (TP) were significantly correlated with the composition of bacteria and microeukaryotes. A SEGMENTED analysis revealed that the threshold of TN, DIN, and NH4-N for bacterial community were 0.23 ± 0.091 mg/L, 0.21 ± 0.084 mg/L, 0.09 ± 0.057 mg/L, respectively. Tipping points for TN, DIN, and NH4-N agreed with the concentration during Ceratium tripos and Skeletonema costatum blooms. Co-occurrence network results found that Planktomarina, Acinetobacter, and Verrucomicrobiaceae were keystone and OPI-discriminatory taxa. The abundant changes of Planktomarina at station A1 were significantly correlated with the development of C. tripos blooms (r = 0.55, p < 0.05), and also significantly correlated with TN, DIN, and NO3-N (r≥|0.55|, p < 0.05). The abundant changes of Acinetobacter and Verrucomicrobiaceae at station C1 were significantly correlated with the development of C. tripos blooms (r ≥ 0.77, p < 0.05), and also significantly correlated with PO4-P (r ≥ 0.64, p < 0.05). The dynamic abundance of keystone taxa showed that the trend of rapid changes could be monitored 1.5 months before the occurrence of red tide. Therefore, this study provides an assessment method for early warning of red tide occurrence and factors that trigger red tide.
Collapse
Affiliation(s)
- Fengyun Ji
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China; Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| | - Qing Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| |
Collapse
|
17
|
Li J, Sun Y, Zhang X, Pan C, Zhang S, Zheng B. Water Quality and Microbial Community in the Context of Ecological Restoration: A Case Study of the Yongding River, Beijing, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13056. [PMID: 36293637 PMCID: PMC9603554 DOI: 10.3390/ijerph192013056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Ecological water replenishment via interbasin water diversion projects provides opportunities for ecological river restoration. Untangling water quality changes, microbiota dynamics, and community functions is necessary for sustainable ecological management. Using the Yongding River as a case study, we monitored the water quality and applied genomic sequencing to investigate microbial communities of the river in different stages after ecological water replenishment. Our results showed that river water quality represented by chemical oxygen demand (COD), total nitrogen (TN), and chlorophyll-a (Chl-a) did not change significantly during months after water replenishment. The bacterial community composition varied in different months and river subsections. The Cyanobium_PCC-6307, CL500-29 marine group, and Pseudomonas were dominant in the later stages after water replenishment. Water temperature, pH, and nutrient levels significantly affected the microbial community composition, and ecological restoration may have the potential to influence nitrogen cycling in the river. Our results can provide ecological insights into sustainable water quality maintenance and river management following ecological restoration enabled by ecological water replenishment.
Collapse
Affiliation(s)
- Jie Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaoyue Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Chengzhong Pan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shurong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Binghui Zheng
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
18
|
Zhang Y, Zhang Y, Wei L, Li M, Zhu W, Zhu L. Spatiotemporal correlations between water quality and microbial community of typical inflow river into Taihu Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63722-63734. [PMID: 35460482 DOI: 10.1007/s11356-022-19023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Changxing River, which is a typical inflow river into Taihu Lake and occurs severe algae invasion, is selected to study the effect of different pollution sources on the water quality and ecological system. Four types of pollution sources, including the estuary of Taihu Lake, discharge outlets of urban wastewater treatment plants, stormwater outlets, and nonpoint source agricultural drainage areas, were chosen, and next-generation sequencing and multivariate statistical analyses were used to characterize the microbial communities and reveal their relationship with water physicochemical properties. The results showed that ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were the main pollutants in Changxing River, especially at stormwater outlets. At the same time, the diversity of microbial communities was the highest in the summer, and dominant microbes included Proteobacteria (40.9%), Bacteroidetes (21.0%), and Euryarchaeota (6.1%). The results of BIOENV analysis showed that the major seasonal differences in the diversity of microbial community of Changxing river were explained by the combination of water temperature (T), air pressure (P), TP, and CODMn. From the perspective of different pollution types, relative abundances of Microcystis and Nostocaceae at the estuary of Taihu Lake were correlated positively with dissolved oxygen (DO) and pH, and relative abundances of Pseudomonas and Arcobacter were correlated positively with concentrations of TN and nitrate nitrogen (NO3--N) at stormwater outlets. This study provided a reference for the impact of pollution types on river microbial ecosystem under complex hydrological conditions and guidance for the selection of restoration techniques for polluted rivers entering the important lake.
Collapse
Affiliation(s)
- Yajie Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Lecheng Wei
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, 07102, USA
| | - Weitang Zhu
- Environmental Protection Bureau of Changxing County, Huzhou, 313100, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, Hangzhou, 310058, China.
- Department of Environmental Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
19
|
Wang L, Liang Z, Guo Z, Cong W, Song M, Wang Y, Jiang Z. Response mechanism of microbial community to seasonal hypoxia in marine ranching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152387. [PMID: 34915008 DOI: 10.1016/j.scitotenv.2021.152387] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Seasonal hypoxia, as an increasingly recognized environmental issue, frequently occurred in marine ranching from northern Yellow Sea, China. Although microorganisms play an important ecological role in marine ecosystems, but little is known on the response mechanism of microbial community to seasonal hypoxia in marine ranching. A total of 132 seawater samples and 47 sediment samples were collected from the marine ranching, both in the death disaster zone of sea cucumbers and the non-disaster zone, and in different months. 16S rRNA gene high-throughput sequencing was used to explore the microbial community and its influencing factors. The results showed that the stratification in community composition and dissolved oxygen content appeared in August. The Alpha diversity in seawater was higher in summer than in winter, and significant differences in Beta diversity appeared between the death disaster zone of sea cucumbers and the non-disaster zone in sediments. In addition, environmental effects explained more of the variation in bacterial community composition in seawater as compared with spatial effects did, whereas, sedimentary bacterial communities were more closely related to spatial effects. The present results could provide fundamental data for understanding the response mechanism of the microbial community to seasonal hypoxia in marine ranching and are of great significance for the management and protection of marine ranching.
Collapse
Affiliation(s)
- Lu Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhenlin Liang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhansheng Guo
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Wei Cong
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Minpeng Song
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuxin Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhaoyang Jiang
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
20
|
Huang H, Liu J, Zhang F, Zhu K, Yang C, Xiang Q, Lei B. Characteristics of planktonic and sediment bacterial communities in a heavily polluted urban river. PeerJ 2021; 9:e10866. [PMID: 33665025 PMCID: PMC7912603 DOI: 10.7717/peerj.10866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/10/2021] [Indexed: 01/30/2023] Open
Abstract
Urban rivers represent a unique ecosystem in which pollution occurs regularly, altering the biogeochemical characteristics of waterbodies and sediments. However, little is presently known about the spatiotemporal patterns of planktonic and sediment bacterial community diversities and compositions in urban rivers. Herein, Illumina MiSeq high-throughput sequencing was performed to reveal the spatiotemporal dynamics of bacterial populations in Liangtan River, a heavily polluted urban river in Chongqing City (China). The results showed the richness and diversity of sediment bacteria were significantly higher than those of planktonic bacteria, whereas a strong overlap (46.7%) in OTUs was identified between water and sediment samples. Bacterial community composition remarkably differed in waters and sediments. Planktonic bacterial communities were dominated by Proteobacteria, Bacteroidetes, Cyanobacteria and Actinobacteria, while sediment bacterial communities mainly included Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Additionally, several taxonomic groups of potential bacterial pathogens showed an increasing trend in water and sediment samples from residential and industrial areas (RI). Variation partition analysis (VPA) indicated that temperature and nutrient were identified as the main drivers determining the planktonic and sediment bacterial assemblages. These results highlight that bacterial communities in the polluted urban river exhibit spatiotemporal variation due to the combined influence of environmental factors associated with sewage discharge and hydropower dams.
Collapse
Affiliation(s)
- Heqing Huang
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing, China
| | - Jianhui Liu
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing, China
| | - Fanghui Zhang
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing, China
| | - Kangwen Zhu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Chunhua Yang
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing, China
| | - Qiujie Xiang
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing, China
| | - Bo Lei
- Chongqing Academy of Ecology and Environmental Sciences, Chongqing, China
| |
Collapse
|
21
|
Bai X, Xu Q, Li H, Cheng C, He Q. Lack of methane hotspot in the upstream dam: Case study in a tributary of the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142151. [PMID: 32916496 DOI: 10.1016/j.scitotenv.2020.142151] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
River damming has seen a growing trend in demand worldwide and the impounded reaches are considered hotspots of greenhouse gas emissions. However, it remains unclear how the spatial distribution of C-gas in sediments and methane (CH4) emissions of dammed tributary changes under different operation periods of the Three Gorges reservoir (TGR). We measured CH4 and carbon dioxide (CO2) concentrations in sediment and CH4 emissions from a dammed river of the TGR, and evaluated the effect of damming on the spatial variability of carbon in the sediment and on CH4 flux. It was found that damming led to a distinct spatial pattern of total organic carbon (TOC) in the sediment, which resulted in higher CH4 and CO2 in upstream sediment compared to the downstream. During the TGR impounding period, the upstream CH4 diffusive flux (0.253-0.427 mg m-2 h-1) across the water-air interface was higher than in the downstream (0.093 mg m-2 h-1), which was consistent with the spatial variation of CH4 in the sediments. However, the CH4 emission was predominantly by ebullition and the flux in the downstream (169.173 mg m-2 h-1) was significantly higher than upstream (12.23-123.05 mg m-2 h-1) in the discharging period. This can be attributed to a sharp increase in TOC in downstream sediment due to riparian zone soil erosion on both banks, which was caused by periodic large fluctuation in the water level, and a shallow water depth in the downstream. This study adds to our understanding of effects of the TGR's operation on CH4 emissions from a dammed tributary and suggests that the water level fluctuation of tributaries which has direct influence on ebullition and methane oxidation caused by manipulation of the TGR should not be overlooked.
Collapse
Affiliation(s)
- Xiaoxia Bai
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang Xu
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Cheng Cheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
22
|
The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol 2021; 37:36. [PMID: 33507414 DOI: 10.1007/s11274-021-03008-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.
Collapse
|
23
|
Ouyang L, Chen H, Liu X, Wong MH, Xu F, Yang X, Xu W, Zeng Q, Wang W, Li S. Characteristics of spatial and seasonal bacterial community structures in a river under anthropogenic disturbances. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114818. [PMID: 32559870 DOI: 10.1016/j.envpol.2020.114818] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, the seasonal characteristics of microbial community compositions at different sites in a river under anthropogenic disturbances (Maozhou River) were analyzed using Illumina HiSeq sequencing. Taxonomic analysis revealed that Proteobacteria was the most abundant phylum in all sites, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria and Firmicutes. The variations of the community diversities and compositions between the seasons were not significant. However, significant differences between sites as well as water and sediment samples were observed. These results indicated that sites under different levels of anthropogenic disturbances have selected distinct bacterial communities. pH, dissolved oxygen (DO), concentrations of total nitrogen (TN) and heavy metals were the main factors that influence the diversity and the composition of bacterial community. Specifically, the relative abundance of Proteobacteria was negatively correlated with pH and DO and positively correlated with TN, while Actinobacteria and Verrucomicrobia showed the opposite pattern. Moreover, positive correlations between the relative abundances of Firmicutes and Bacteroidetes and the concentration of heavy metals were also found. Results of functional prediction analysis showed no significant differences of the carbon, nitrogen and phosphorus metabolism across the sites and seasons. Potential pathogens such as Vibrio, Arcobacter, Acinetobacter and Pseudomonas were found in these samples, which may pose potential risks for environment and human health. This study reveals the effect of anthropogenic activities on the riverine bacterial community compositions and provides new insights into the relationships between the environmental factors and the bacterial community distributions in a freshwater ecosystem under anthropogenic disturbances.
Collapse
Affiliation(s)
- Liao Ouyang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huirong Chen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xinyue Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ming Hung Wong
- Consortium on Health, Environment, Education and Research (CHEER), The Education University of HongKong, Taipo, Hong Kong, China
| | - Fangfang Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Xuewei Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, Guangdong, China
| | - Qinghuai Zeng
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, Guangdong, China
| | - Weimin Wang
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, Guangdong, China
| | - Shuangfei Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
24
|
Integrating Sustainable Water Resource Management and Land Use Decision-Making. WATER 2020. [DOI: 10.3390/w12082282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human uses of land and water are directly linked and must, therefore, be managed with each other in mind. This paper puts forward an approach for integrating sustainable water resource management into local land use decision-making in the Potomac basin. The approach includes developing a clear understanding of the current regulatory, programmatic, and financial approaches to land use management; identifying opportunities from innovation; and developing a flexible, stakeholder-based framework for moving forward. Four opportunities for innovation were identified in the Potomac basin utilizing this approach, including enhancing coordination and access to information, promoting incentives to achieve desired outcomes, encouraging and promoting innovation, and integrating programs to achieve multiple objectives. The successful integration of land and water decision-making requires a sustained, long-term commitment to improvement rather than a one-time fix mentality. Initial steps for implementation include identifying and engaging diverse partners, as well as establishing channels for information dissemination. The lessons learned from this work may prove valuable to decision-makers in other regions to holistically manage diverse land and water resources.
Collapse
|
25
|
Changes in Microbial Community Structures under Reclaimed Water Replenishment Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041174. [PMID: 32059594 PMCID: PMC7068412 DOI: 10.3390/ijerph17041174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
Using reclaimed water as a resource for landscape water replenishment may alleviate the major problems of water resource shortages and water environment pollution. However, the safety of the reclaimed water and the risk of eutrophication caused by the reclaimed water replenishment are unclear to the public and to the research community. This study aimed to reveal the differences between natural water and reclaimed water and to discuss the rationality of reclaimed water replenishment from the perspective of microorganisms. The microbial community structures in natural water, reclaimed water and natural biofilms were analyzed, and the community succession was clarified along the ecological niches, water resources, fluidity and time using 16S rRNA gene amplicon sequencing. Primary biofilms without the original community were added to study the formation of microbial community structures under reclaimed water acclimation. The results showed that the difference caused by ecological niches was more than those caused by the fluidity of water and different water resources. No significant difference caused by the addition of reclaimed water was found in the microbial diversity and community structure. Based on the results of microbial analysis, reclaimed water replenishment is a feasible solution that can be used for supplying river water.
Collapse
|