1
|
Cardoso-Vera JD, Islas-Flores H, Pérez-Alvarez I, Díaz-Camal N. Evidence of Oxidative Stress as a Mechanism of Pharmaceutical-Induced Toxicity in Amphibians. Antioxidants (Basel) 2024; 13:1399. [PMID: 39594540 PMCID: PMC11590872 DOI: 10.3390/antiox13111399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Amphibians, which are essential components of ecosystems, are susceptible to pharmaceutical contamination, a phenomenon of increasing concern owing to the widespread consumption and detection of pharmaceutical compounds in environmental matrices. This review investigates oxidative stress (OS) as the primary mechanism of drug toxicity in these organisms. The evidence gathered reveals that various pharmaceuticals, from antibiotics to anesthetics, induce OS by altering biomarkers of oxidative damage and antioxidant defense. These findings underscore the deleterious effects of pharmaceuticals on amphibian health and development and emphasize the necessity of incorporating OS biomarkers into ecotoxicological risk assessments. Although further studies on diverse amphibian species, drug mixtures, and field studies are required, OS biomarkers offer valuable tools for identifying sublethal risks. Furthermore, the development of more refined OS biomarkers will facilitate the early detection of adverse effects, which are crucial for protecting amphibians and their ecosystems. Ultimately, this review calls for continued research and mitigation strategies to safeguard biodiversity from pharmaceutical contamination.
Collapse
Affiliation(s)
- Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México. Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, Toluca 50120, Estado de México, Mexico; (I.P.-A.); (N.D.-C.)
| | | | | |
Collapse
|
2
|
Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Proc Biol Sci 2024; 291:20241536. [PMID: 39191283 PMCID: PMC11349447 DOI: 10.1098/rspb.2024.1536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Collapse
Affiliation(s)
- Colette Martin
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, Braunschweig38106, Germany
| | - Pablo Capilla-Lasheras
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, Sempach6204, Switzerland
| | - Pat Monaghan
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
| | - Pablo Burraco
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, GlasgowG12 8QQ, UK
- Doñana Biological Station (CSIC), Seville41092, Spain
| |
Collapse
|
3
|
Kandaswamy K, Guru A, Panda SP, Antonyraj APM, Kari ZA, Giri J, Almutairi BO, Arokiyaraj S, Malafaia G, Arockiaraj J. Polystyrene nanoplastics synergistically exacerbate diclofenac toxicity in embryonic development and the health of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109926. [PMID: 38641085 DOI: 10.1016/j.cbpc.2024.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
In this study, we investigated the possible ecotoxicological effect of co-exposure to polystyrene nanoplastics (PS-NPs) and diclofenac (DCF) in zebrafish (Danio rerio). After six days of exposure, we noticed that the co-exposure to PS-NP (100 μg/L) and DCF (at 50 and 500 μg/L) decreased the hatching rate and increased the mortality rate compared to the control group. Furthermore, we noted that larvae exposed to combined pollutants showed a higher frequency of morphological abnormalities and increased oxidative stress, apoptosis, and lipid peroxidation. In adults, superoxide dismutase and catalase activities were also impaired in the intestine, and the co-exposure groups showed more histopathological alterations. Furthermore, the TNF-α, COX-2, and IL-1β expressions were significantly upregulated in the adult zebrafish co-exposed to pollutants. Based on these findings, the co-exposure to PS-NPs and DCF has shown an adverse effect on the intestinal region, supporting the notion that PS-NPs synergistically exacerbate DCF toxicity in zebrafish.
Collapse
Affiliation(s)
- Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600 077, Tamil Nadu, India.
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttarpradesh, India
| | - Anahas Perianaika Matharasi Antonyraj
- Department of Research Analytics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Poonamallee, Chennai 600 077, Tamil Nadu, India
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia; Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment and Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Cuzziol Boccioni AP, Peltzer PM, Attademo AM, Leiva L, Colussi CL, Repetti MR, Russell-White K, Di Conza N, Lajmanovich RC. High toxicity of agro-industrial wastewater on aquatic fauna of a South American stream: Mortality of aquatic turtles and amphibian tadpoles as bioindicators of environmental health. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11010. [PMID: 38433361 DOI: 10.1002/wer.11010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
The aim of this study was to characterize an aquatic system of Santa Fe province (Argentina) receiving wastewater from agro-industrial activities (mainly dairy) by in situ assessment (fauna mortality, physicochemical, microbiological, and pesticide residues measurement), and ecotoxicity bioassays on amphibian tadpoles. Water and sediment samples were obtained from the Los Troncos Stream (LTS), previous to the confluence with the "San Carlos" drainage channel (SCC), and from the SCC. Biological parameters (mortality and sublethal biomarkers) were used to evaluate ecotoxicity during 10-day exposure of Rhinella arenarum tadpoles to LTS and SCC samples. Nine pesticides were detected in both LTS and SCC. Chemical and biochemical oxygen demand, ammonia, and coliform count recorded in SCC greatly exceeded limits for aquatic life protection. At SCC and LTS after the confluence with SCC, numerous dying and dead aquatic turtles (Phrynops hilarii) were recorded. In the ecotoxicity assessment, no mortality of tadpoles was observed in LTS treatment, whereas total mortality (100%) was observed in SCC treatments in dilution higher than 50% of water and sediment. For SCC, median lethal concentration and the 95% confidence limits was 18.30% (14.71-22.77) at 24 h; lowest-observed and no-observed effect concentrations were 12.5% and 6.25%, respectively. Oxidative stress and neurotoxicity were observed in tadpoles exposed to 25% SCC dilution treatment. In addition, there was a large genotoxic effect (micronuclei test) in all sublethal SCC dilution treatments (6.25%, 12.5%, and 25%). These results alert about the high environmental quality deterioration and high ecotoxicity for aquatic fauna of aquatic ecosystems affected by agro-industrial wastewater. PRACTITIONER POINTS: Great mortality of turtles was observed in a basin with a high load of agro-industrial wastewater. San Carlos Channel (SCC), where effluents are spilled, is environmentally deteriorated. The water-sediment matrix of SCC caused 100% lethality in tadpoles. SCC dilutions caused neurotoxicity, oxidative stress, and genotoxicity on tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Leonardo Leiva
- Museo Provincial de Ciencias Naturales Florentino Ameghino, Santa Fe, Argentina
| | - Carlina L Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Karen Russell-White
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Noelia Di Conza
- Cátedras de Microbiología General y Principios de Biotecnología, Departamento de Ingeniería en Alimentos y Biotecnología, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
5
|
Iovino P, Lavorgna M, Orlo E, Russo C, De Felice B, Campolattano N, Muscariello L, Fenti A, Chianese S, Isidori M, Musmarra D. An integrated approach for the assessment of the electrochemical oxidation of diclofenac: By-product identification, microbiological and eco-genotoxicological evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168511. [PMID: 37977373 DOI: 10.1016/j.scitotenv.2023.168511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Diclofenac (DCF), a contaminant of emerging concern, is a non-steroidal anti-inflammatory drug widely detected in water bodies, which demonstrated harmful acute and chronic toxicity toward algae, zooplankton and aquatic invertebrates, therefore its removal from impacted water is necessary. DCF is recalcitrant toward traditional treatment technologies, thus, innovative approaches are required. Among them, electrochemical oxidation (EO) has shown promising results. In this research, an innovative multidisciplinary approach is proposed to assess the electrochemical oxidation (EO) of diclofenac from wastewater by integrating the investigations on the removal efficiency and by-product identification with the disinfection capacity and the assessment of the effect on environmental geno-toxicity of by-products generated through the oxidation. The electrochemical treatment successfully degraded DCF by achieving >98 % removal efficiency, operating with NaCl 0.02 M at 50 A m-2. By-product identification analyses showed the formation of five DCF parental compounds generated by decarboxylic and CN cleavage reactions. The disinfection capacity of the EO technique was evaluated by carrying out microbiological tests on pathogens generally found in aquatic environments, including two rod-shaped Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), one rod-shaped Gram-positive bacterium (Bacillus atrophaeus), and one Gram-positive coccus (Enterococcus hirae). Eco-toxicity was evaluated in freshwater organisms (algae, rotifers and crustaceans) belonging to two trophic levels through acute and chronic tests. Genotoxicity tests were carried out by Comet assay, and relative expression levels of catalase, manganese and copper superoxide dismutase genes in crustaceans. Results highlight the effectiveness of EO for the degradation of diclofenac and the inactivation of pathogens; however, the downstream mixture results in being harmful to the aquatic ecosystem.
Collapse
Affiliation(s)
- P Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - M Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - E Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - C Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy.
| | - B De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - N Campolattano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - L Muscariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - A Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy.
| | - S Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy
| | - M Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - D Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy
| |
Collapse
|
6
|
Kroll A, von der Ohe PC, Köhler HR, Sellier O, Junghans M. Aquatic thresholds for ionisable substances, such as diclofenac, should consider pH-specific differences in uptake and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168222. [PMID: 37952656 DOI: 10.1016/j.scitotenv.2023.168222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Diclofenac, a widely used nonsteroidal anti-inflammatory drug (NSAID), enters the aquatic environment worldwide. The effect values available for the derivation of an environmental quality standard (EQS) are markedly heterogeneous, even within the same species. This heterogeneity could partially be attributed to inter-laboratory variation, but is also observed in repeated tests within the same facility. Diclofenac is ionisable; its speciation and potential for uptake and thus toxicity is influenced by pH. A high correlation has previously been observed between effects in zebrafish embryos and the pH-specific partitioning coefficient logD for diclofenac. We hypothesized that the observed heterogeneity could also be attributed to differences in study pH. To test this hypothesis, we reviewed physicochemical data and selected ecotoxicity data that were considered to be reliable and relevant in the latest EU EQS Dossier for which a study pH was reported for further analysis and EQS derivation. We adjusted the reported effect concentrations for differences in uptake using the delta logD value for the worst case pH value of 6.5. pH adjustment of effect values resulted in decreased heterogeneity of the acute effect data and a better fit of the chronic species sensitivity distribution. Both, the MAC-EQS and the AA-EQS were derived using the deterministic approach as data requirements for deriving EQS based on the SSD were not fulfilled. Many studies had to be discarded because test pH was not reported or exposure concentrations had not been analytically verified. Physico-chemical data had to be discarded due to non-relevant experimental conditions or missing information. We strongly encourage scientists publishing ecotoxicity data for ionisable substances to report the test pH together with the effect values and encourage measurement of physico-chemical parameters at environmentally relevant conditions. We recommend to consider adjusting the effect data for ionisable substances according to a worst-case pH in future hazard assessments.
Collapse
Affiliation(s)
- Alexandra Kroll
- Swiss Centre for Applied Ecotoxicology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland.
| | | | - Heinz-R Köhler
- Animal Physiological Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Odile Sellier
- Swiss Centre for Applied Ecotoxicology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| | - Marion Junghans
- Swiss Centre for Applied Ecotoxicology, Ueberlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
7
|
Tsukada E, Rodrigues CC, Jacintho JC, Franco-Belussi L, Jones-Costa M, Abdalla FC, Rocha TL, Salla RF. The amphibian's spleen as a source of biomarkers for ecotoxicity assessment: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165915. [PMID: 37532037 DOI: 10.1016/j.scitotenv.2023.165915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Amphibians are very sensitive to many environmental changes, so these animals are considered good bioindicator models for ecotoxicology. Given the importance of the amphibian spleen for hematopoietic and immune responses, this can be a key organ for the evaluation of biomarkers to monitor the health of individuals in nature or in captivity. In this systematic review, we searched databases and summarized the main findings concerning the amphibian spleen as a source of possible biomarkers applied in different scientific fields. The searches resulted in 83 articles published from 1923 to 2022, which applied the use of splenic samples to evaluate the effects of distinct stressors on amphibians. Articles were distributed in more than twenty countries, with USA, Europe, and Brazil, standing out among them. Publications focused mainly on anatomical and histomorphological characterization of the spleen, its physiology, and development. Recently, the use of splenic biomarkers in pathology and ecotoxicology began to grow but many gaps still need to be addressed in herpetological research. About 85 % of the splenic biomarkers showed responses to various stressors, which indicates that the spleen can provide numerous biomarkers to be used in many study fields. The limited amount of information on morphological description and splenic anatomy in amphibians may be a contributing factor to the underestimated use of splenic biomarkers in herpetological research around the world. We hope that this unprecedented review can instigate researchers to refine herpetological experimentation, using the spleen as a versatile and alternative source for biomarkers in ecotoxicology.
Collapse
Affiliation(s)
- Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Cândido C Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lilian Franco-Belussi
- Departament of Biological Sciences, São Paulo State University, campus São José do Rio Preto, São Paulo, Brazil; Laboratory of Experimental Pathology (LAPex), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Monica Jones-Costa
- Department of Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fábio Camargo Abdalla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Structural and Functional Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Raquel F Salla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
8
|
Pérez-Alvarez I, Islas-Flores H, Sánchez-Aceves LM, Gómez-Olivan LM, Chamorro-Cevallos G. Spirulina (Arthrospira maxima) mitigates the toxicity induced by a mixture of metal and NSAID in Xenopus laevis. Reprod Toxicol 2023; 120:108422. [PMID: 37330176 DOI: 10.1016/j.reprotox.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is often detected in the environment due to its wide use in industry; also, NSAIDs are one of the most consumed pharmaceuticals, particularly diclofenac (DCF). Several studies have reported the presence of both contaminants in water bodies at concentrations ranging from ng L-1 to μg L-1; in addition, they have shown that they can induce oxidative stress in aquatic species and disturb signal transduction, cell proliferation, and intercellular communication, which could lead to teratogenesis. Spirulina has been consumed as a dietary supplement; its antioxidant, anti-inflammatory, neuroprotective, and nutritional properties are well documented. This work aimed to evaluate if Spirulina reduces the damage induced by Cd and DCF mixture in Xenopus laevis at early life stages. FETAX assay was carried out: 20 fertilized oocytes were exposed to seven different treatments on triplicate, control, Cd (24.5 μg L-1), DCF (149 μg L-1), Cd + DCF, Cd+DCF+Spirulina (2 mg L-1), Cd+DCF+Spirulina (4 mg L-1), Cd+DCF+Spirulina (10 mg L-1), malformations, mortality, and growth were evaluated after 96 h, also lipid peroxidation, superoxide dismutase and catalase activity were determined after 192 h. Cd increased DCF mortality, Cd and DCF mixture increased the incidence of malformations as well as oxidative damage; on the other hand, the results obtained show that Spirulina can be used to reduce the damage caused by the mixture of Cd and DCF since it promotes growth, reduce mortality, malformations, and oxidative stress in X. laevis.
Collapse
Affiliation(s)
- Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico.
| | - Livier Mireya Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colon intersección Paseo Tollocan s/n, Col. Residencial Colon, 50120 Toluca, Estado de México, Mexico
| | - Germán Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu Esq. Cda. Miguel Stampa S/N, Delegación Gustavo a. Madero, México DF CP 07738, Mexico
| |
Collapse
|
9
|
Hanada H, Morishita F, Sanoh S, Kashiwagi K, Kashiwagi A. Long-term Xenopus laevis tadpole -heart-organ-culture: Physiological changes in cholinergic and adrenergic sensitivities of tadpole heart with thyroxine-treatment. Curr Res Physiol 2023; 6:100100. [PMID: 38107785 PMCID: PMC10724204 DOI: 10.1016/j.crphys.2023.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 12/19/2023] Open
Abstract
The present study clarified changes in physiological sensitivities of cultured Nieuwkoop and Faber stage 57 Xenopus laevis tadpole-organ-heart exposed to thyroxine (T4) using acetylcholine (ACh), norepinephrine (NE) and atropine. For preliminary life span and the chemical tests, 60% minimum essential medium (MEM), two types of modified Hank's balanced salt-solution-culture-media (MHBSS-CM) I and II containing relatively lower concentrations of amino acids and collagen were prepared. In preliminary lifespan-test of cultured tadpole hearts, the hearts maintained in 60% MEM was 50 days on average, whereas that of the tadpole-hearts in MHBSS-CMs was extended by 109 days on average, showing superior effectiveness of MHBSS-CMs. 4 min-stimulation by 5 × 10-9 M T4 tended to increase the tadpole heartbeat. 10-9 M ACh decreased the tadpole heartbeat. Frog-heart at 2-4 weeks after metamorphosis completion and tadpole heart treated with 5 × 10-10 M T4 for 45 h also responded to 10-9 M ACh, and low-resting hearts were restored to the control level with the competitive muscarinic antagonist 10-8 M atropine, whereas excessive exposure of 10-5 M atropine to T4-treated tadpole heart did not increase heartbeat in spite of the increased frog heartbeat over the control. 10-14 -10-12 M NE increase the tadpole heartbeat in a concentration-dependent manner, however, 10-12 M NE did not act to stimulate adrenergic receptors on both T4-treated tadpole- and the frog-hearts. These results suggest that T4 induces the desensitization of atropine-sensitive muscarinic and adrenergic receptors in organ-cultured tadpole-heart.
Collapse
Affiliation(s)
- Hideki Hanada
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Fumihiro Morishita
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama, 640-8156, Japan
| | - Keiko Kashiwagi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Akihiko Kashiwagi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| |
Collapse
|
10
|
Schvezov N, Caffetti J, Silva C, Boeris J, Baldo D, Lajmanovich R. Impact of soil from monoculture pine plantations on two anuran species from the Atlantic Forest: Odontophrynus reigi and Leptodactylus luctator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161769. [PMID: 36702263 DOI: 10.1016/j.scitotenv.2023.161769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Monoculture tree plantations reduces landscape heterogeneity and the number and diversity of habitats available for species. Physical-chemical changes in soil may affect the ponds where tadpoles develop. This work aimed to study the effect on tadpoles of two species of frogs, Leptodactylus luctator (Ll) and Odontophrynus reigi (Or) exposed to soils from a pine plantation (PP), which were compared to tadpoles exposed to soils from Atlantic Forest, the native forest (NF). The impact of soils from both places on growth, development, antioxidant system and genetic damage of Ll and Or tadpoles were observed. A composite sample (5 kg) of soil was taken from the top 10 cm stratum in a 200 m transect in each site, with random plots of 50x50cm. In collected soil samples Organic Matter (OM), Organic Carbon (OC), and Total Nitrogen (TN) were determined. We conducted laboratory experiments, from 23 until 38 Gosner stages. During the experiment, pH and ammonium in the water were determined. Soil from NF presented higher content of OM, OC and TN, and water pH in PP was 0.2 units lower than in NF. Both species showed ≈60 % increase of catalase activity in PP, and ≈40 % increase of lipid peroxidation in NF. Ll tadpoles presented 10 times higher protein oxidation in PP than in NF, but Gosner stage was higher in NF. In NF the higher OM and OC in both species causes the increase of lipid peroxidation; and Ll responds to a stressor in PP that in Or is not observed. Or presented lower stress response towards PP soils, which indicates a tolerance towards this soil. The changes observed in soil chemistry, although not big from a physical-chemical point of view, affects the growth, development and oxidative stress of two species of anuran tadpoles from the NF, which can affect future populations and anuran diversity.
Collapse
Affiliation(s)
- Natasha Schvezov
- Instituto de Biología Subtropical (CONICET-UNaM), Laboratorio de Genética Evolutiva, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina; Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina.
| | - Jacqueline Caffetti
- Instituto de Biología Subtropical (CONICET-UNaM), Laboratorio de Genética Evolutiva, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina; Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina
| | - Carla Silva
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina
| | - Juan Boeris
- Instituto de Biología Subtropical (CONICET-UNaM), Laboratorio de Genética Evolutiva, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina
| | - Diego Baldo
- Instituto de Biología Subtropical (CONICET-UNaM), Laboratorio de Genética Evolutiva, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina; Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales, Félix de Azara 1552, N3300LQH Posadas, Misiones, Argentina
| | - Rafael Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000, RN168 Santa Fe, Argentina
| |
Collapse
|
11
|
Mishra S, Kumar P, Mehrotra I, Kumar M. Prevalence of organic micropollutants in the Yamuna River, Delhi, India: seasonal variations and governing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159684. [PMID: 36302441 DOI: 10.1016/j.scitotenv.2022.159684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This work primarily emphases on evaluating the prevalence of organic micropollutants (OMPs) in the perennial Yamuna River (YR) that flow through the national capital of India, Delhi. Sixteen sampling campaigns (non-monsoon, n = 9; monsoon n = 7) were organized to understand the seasonal variations with special emphasis on monsoon. We have found fifty-five OMPs in the monsoon; while forty-seven were detected in non-monsoon. Fifty-seven screened and quantified OMPs in the most polluted stretch of River Yamuna included the pharmaceutically active compounds, pesticides, endocrine-disrupting chemicals, phthalates, personal care products, fatty acids, food additives, hormones, and trace organics present in hospital wastes. During monsoon months, compounds for which concentrations exceeded 50 μg/L were: adenine (64.6 μg/L), diethyl phthalate (62.9 μg/L), and octamethyltrisiloxane (56.9 μg/L); and the same for non-monsoon months was only for 1-dodecanethiol (52.3 μg/L). The average concentration of OMPs in non-monsoon months indicate PhACs>PCPs>Pesticides>Fatty acids>Hospital waste>Hormones>Pesticides>EDCs. In monsoon months due to surface runoff and high volume of untreated wastewater discharges few more OMPs concentrations were detected which mainly includes PhACs (clofibric acid, diclofenac sodium, gemfibrozil, ketoprofen), pesticides (aldrin, metribuzin, atrazine, simazine). Due to dilution effect in the monsoon months, average concentrations of 3-acetamido-5-bromobenzoic acid (PhACs) was reduced from 45.22 μg/L to 14.07 μg/L, whereas some EDCs such as 2,4- Di-tert-amylphenol, 3,5- di-tert-butyl-4-hydroxybenzyl alcohol, Triphenylphosphine oxide, Benzophenone were found in much higher concentrations in the monsoon months. Octamethyltrisiloxane (PCPs) was detected 50 times higher in concentration in the monsoon months. Interestingly, the concentration of about 50 % of the OMPs was more in the monsoon samples than in non-monsoon samples which is contrary to the general understanding that monsoon-induced dilution lowers the concentrations of OMPs. In RY water higher magnitude of diclofenac sodium, ibuprofen, ketoprofen, and clofibric acid was found than Europe and North America rivers. Hormones such as estriol and estrone in RY water are found 70 to 100 times higher than the maximum reported concentrations in the US streams. Finally, various OMPs responded differently to the monsoon season as evident from multivariate analyses.
Collapse
Affiliation(s)
- Soma Mishra
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Pradeep Kumar
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India; Department of Civil Engineering, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, UP, India
| | - Indu Mehrotra
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
12
|
Zhu L, Liu J, Zhou J, Wu X, Yang K, Ni Z, Liu Z, Jia H. The overlooked toxicity of environmentally persistent free radicals (EPFRs) induced by anthracene transformation to earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158571. [PMID: 36075414 DOI: 10.1016/j.scitotenv.2022.158571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/22/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmentally persistent free radicals (EPFRs) as intermediate products exist widely in the PAHs-contaminated soils, but toxicity assessment associated with EPFRs for terrestrial invertebrates remains unclear. Using the model organism Eisenia fetida, we compared the adverse effects among anthracene (ANT), anthraquinone (ANQ), and EPFRs induced by ANT transformation on clay surfaces. Our results showed that EPFRs-exposed earthworms experienced histopathological damage, which was more severe than ANT and ANQ-exposed earthworms. The source of EPFRs damage was associated with the obvious dysbiosis of reactive oxygen species in earthworms. Specifically, EPFRs trigged more severe antioxidant responses and oxidative damages (e.g., membrane lipid and DNA injury) in comparison with ANT and ANQ exposure, as evidenced by the values of integrated biomarker response (IBR) following the order of EPFRs (14.5) > ANT (12.8) > ANQ (10.9). Moreover, high-throughput sequencing found that EPFRs induced dramatic changes in the composition and structure of earthworm gut microbiota, which may involve immune and metabolism dysfunction, in turn aggravated EPFRs toxicity. Overall, the obtained information highlights the more severe injury of EPFRs to terrestrial organisms, deserving more attentions for the assessment of potential risks associated with radical intermediates in PAHs-contaminated soils.
Collapse
Affiliation(s)
- Lang Zhu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinbo Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Jinyi Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Xintong Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kangjie Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Zheng Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
13
|
Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. FISH & SHELLFISH IMMUNOLOGY 2022; 131:244-256. [PMID: 36182025 DOI: 10.1016/j.fsi.2022.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of two probiotics namely Clostridium butyricum and Bacillus subtilis, and one prebiotic known as algae-sourced β-1,3 glucan, on the overall performances of grass turtles (Chinemys reevesii) juveniles. Growth performance, immune responses, enzymatic antioxidant activities, intestinal histomorphology, and disease resistance against the challenge with Aeromonas veronii were assessed. Two hundred and sixteen (216) juvenile turtles with an average initial weight of 106.35 ± 0.03 g were divided into four groups, each containing three replicates with 18 turtles per each replicate, which were fed a basic diet (control group, GD) and a basal diet supplemented with C. butyricum 1.0 × 108 CFU per kg (GA group), or with B. subtilis 1.0 × 108 CFU per kg (GB group) and with algal-sourced β-1,3-glucan 50 mg per kg (GC group), respectively. After the turtles had been fed for 60 d, 90 d, and 120 d of the experimental period, the growth performance and survival rate (SR), intestinal digestive enzyme, hepatic and intestinal antioxidant capacity, serum biochemical indexes, and immune performance were measured. The results showed that the weight gain rate and SR were significantly enhanced (P < 0.05) after fed probiotics and algae-sourced β-1,3-glucan in all test times;The pepsin, amylase, acid phosphatase, total antioxidant capacity, triglyceride, alkaline phosphatase, urea nitrogen, cholesterol, total protein, IgA, IgG, IgM at 120 d were significantly enhanced (P<0.05) after fed C. butyricum. The intestinal villi heights, widths, and the thickness of the muscle layer were significantly higher in groups GA, GB, and GC than those reared within the GD control group (P < 0.05). After injecting the challenge by A. veronii the survival rate of grass turtles in the GA group (75%) was significantly higher than the other three groups (P<0.05), while there was no significant difference between the GB and GC groups compared with the control GD group, respectively (P>0.05). Overall, these results indicated that dietary supplementation with probiotics or algae-sourced β-1,3 glucan, exhibited positive effects on C. reevesii. In particular, C. butyricum, showed the greatest improvements relating to growth, immune response, antioxidant activity, intestinal health, and disease resistance.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
14
|
Cuzziol Boccioni AP, Lener G, Peluso J, Peltzer PM, Attademo AM, Aronzon C, Simoniello MF, Demonte LD, Repetti MR, Lajmanovich RC. Comparative assessment of individual and mixture chronic toxicity of glyphosate and glufosinate ammonium on amphibian tadpoles: A multibiomarker approach. CHEMOSPHERE 2022; 309:136554. [PMID: 36174726 DOI: 10.1016/j.chemosphere.2022.136554] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of the present study was to assess the ecotoxicity of glyphosate and glufosinate ammonium mixtures on amphibian tadpoles and the potential impact of mixture in aquatic ecosystems health. The bonding properties of the mixture based on computational chemistry and an experimental bioassay on morphology, DNA damage and biochemical biomarkers on tadpoles of the common toad Rhinella arenarum were studied. The results of the density functional theory analysis showed trends of the pesticides clustering to form exothermic mixtures, suggesting the likelihood of hot-spots of pesticides in real aquatic systems. In addition, biological effects of individual pesticides and the mixture were studied on tadpoles over 45 days-chronic bioassay. The bioassay consisted of four treatments: a negative control (CO), 2.5 mg L-1 of a glyphosate-based herbicide (GBH), 2.5 mg L-1 of a glufosinate ammonium-based herbicide (GABH) and their 50:50 (% v/v) mixture (GBH-GABH). Morphological abnormality rates were significantly higher in all herbicide treatments with respect to CO at 48 h of exposure. Abdominal edema was the most frequent type of abnormality recorded at 48 h, 10 and 45 days of exposure. DNA damage was recorded in all herbicides treatments. Thyroxin increased only in GABH treatment. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) significantly increased in GBH treatment, indicating a GBH-neurotoxic effect. Glutathione S-transferase decreased in GABH and GBH-GABH treatments, while catalase decreased in individual GBH and GABH treatments. Overall, teratogenicity, DNA damage, hormonal disruption (T4), and oxidative stress were greater in GABH-treated tadpoles than GBH-treated tadpoles. This study also highlights the robust chemical interaction between the active ingredients of both herbicides, which is reflected on antagonisms in most of analyzed biomarkers, as well as potentiation and additivity in others. Based on our results, the GABH had a higher toxicity than GBH for amphibian tadpoles.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - German Lener
- Instituto de Investigaciones en Físico-Química de Córdoba-CONICET. Departamento de Química Teórica y Computacional. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Córdoba, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Aronzon
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (IIIA-UNSAM)-CONICET, Campus Miguelete, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María F Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos. Facultad de Ingeniería Química, Universidad Nacional Del Litoral, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Boualit L, Cayuela H, Cattin L, Chèvre N. The Amphibian Short-Term Assay: Evaluation of a New Ecotoxicological Method for Amphibians Using Two Organophosphate Pesticides Commonly Found in Nature-Assessment of Biochemical, Morphological, and Life-History Traits. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2688-2699. [PMID: 35856881 PMCID: PMC9828030 DOI: 10.1002/etc.5436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Amphibia is the most threatened class among vertebrates, with >40% of the species threatened with extinction. Pollution is thought to alter amphibian population dynamics. With the growing interest in behavioral ecotoxicology, the neurotoxic organophosphate pesticides are of special concern. Understanding how exposure to neurotoxics leads to behavioral alterations is of crucial importance, and mechanistic endpoints should be included in ecotoxicological methods. In the present study, we tested an 8-day assay to evaluate the toxicity of two organophosphates, diazinon and chlorpyrifos, on Xenopus laevis, that is, on biochemical, morphological, and life-history traits related to locomotion capacities. The method involves measuring biomarkers such as glutathione-S-transferase (GST) and ethoxyresorufin-O-deethylase (EROD; two indicators of the detoxifying system) in the 8-day-old larvae as well as acetylcholinesterase (AChE) activity (involved in the nervous system) in 4-day-old embryos and 8-day-old larvae. Snout-to-vent length and snout-to-tail length of 4-day-old embryos and 8-day larvae were recorded as well as the corresponding growth rate. Fin and tail muscle widths were measured as well for testing changes in tail shape. Both tests showed effects of both organophosphates on AChE activity; however, no changes were observed in GST and EROD. Furthermore, exposure to chlorpyrifos demonstrated impacts on morphological and life-history traits, presaging alteration of locomotor traits. In addition, the results suggest a lower sensitivity to chlorpyrifos of 4-day-old embryos compared to 8-day-old larvae. Tests on other organophosphates are needed to test the validity of this method for the whole organophosphate group. Environ Toxicol Chem 2022;41:2688-2699. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laurent Boualit
- Institute of Earth Surface DynamicsUniversity of LausanneCanton de VaudSwitzerland
| | - Hugo Cayuela
- Laboratoire de Biométrie et Biologie EvolutionUniversité Lyon 1Auvergne‐Rhône‐AlpesFrance
| | - Loic Cattin
- Institute of Earth Surface DynamicsUniversity of LausanneCanton de VaudSwitzerland
| | - Nathalie Chèvre
- Institute of Earth Surface DynamicsUniversity of LausanneCanton de VaudSwitzerland
| |
Collapse
|
16
|
Ellepola N, Viera T, Patidar PL, Rubasinghege G. Fate, transformation and toxicological implications of environmental diclofenac: Role of mineralogy and solar flux. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114138. [PMID: 36201921 DOI: 10.1016/j.ecoenv.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac is an emerging surface water contaminant, yet the environmental impact of its degradation products remains elusive. The current study focuses on mineralogy-controlled diclofenac photo-degradation and its potential health impacts. Under irradiated conditions, we studied the effects of kaolinite, hematite, and anatase on diclofenac degradation. Our results showed that kaolinite doubled the diclofenac degradation rate, which can be attributed to the high catalytic effect, mediated via increased surface area and pore size of mineral surface in the low pH. Conversely, anatase, a crystal phase of titanium dioxide (TiO2), diminished the diclofenac degradation compared to treatments without TiO2. Hematite, on the other hand, showed no effect on diclofenac degradation. Photo-degradation products also varied with the mineral surface. We further assessed in vitro toxicological effects of photo-degraded products on two human cell lines, HEK293T and HepG2. Biological assays confirmed that photo-degraded compound 6 (1-(2,6-dichlorophenyl)indolin-2-one) decreased HEK293T cell survival significantly (p < 0.05) when compared to diclofenac in all concentrations. At lower concentrations, inhibition of HEK293T cells caused by compounds 4 (2-(8-chloro-9H-carbazol-1-yl)acetic acid), and 5 (2-(9H-carbazol-1-yl)acetic acid) was greater than diclofenac. Compound 7 (1-phenylindolin-2-one) was toxic only at 250 µM. Additionally, compound 6 decreased HepG2 cell viability significantly when compared to diclofenac. Overall, our data highlighted that mineralogy plays a vital role in environmental diclofenac transformation and its photo-degraded products. Some photo-degraded compounds can be more cytotoxic than the parent compound, diclofenac.
Collapse
Affiliation(s)
- Nishanthi Ellepola
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Talysa Viera
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Praveen L Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA.
| |
Collapse
|
17
|
Fernández LP, Brasca R, Repetti MR, Attademo AM, Peltzer PM, Lajmanovich RC, Culzoni MJ. Bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles after exposure to environmentally relevant concentrations. CHEMOSPHERE 2022; 301:134631. [PMID: 35443209 DOI: 10.1016/j.chemosphere.2022.134631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Antiretrovirals are pharmaceuticals used in the treatment of the human immunodeficiency virus; they are contaminants of emerging concern that have received considerable attention in recent decades due to their potential negative environmental effects. Data on the bioaccumulation and possible environmental risks posed by these drugs to aquatic organisms are very scarce. Therefore, the aim of this study was to evaluate the bioaccumulation of abacavir and efavirenz in Rhinella arenarum tadpoles subjected to acute static toxicity tests (96 h) at environmentally relevant concentrations. The analytical procedure consisted of the development and optimization of a method involving ultra-high performance liquid chromatography with tandem mass spectrometry detection. The instrumental conditions, optimized by design of experiments using the response surface methodology, yielded limits of detection of 0.3 μg L-1 for abacavir and 0.9 μg L-1 for efavirenz; and limits of quantification of 1.9 μg L-1 for abacavir and 5.6 μg L-1 for efavirenz. Subsequently, the bioaccumulation of the pharmaceutical drugs in tadpoles was evaluated at three exposure concentrations. Efavirenz displayed the highest bioaccumulation levels. This study shows the bioaccumulation potential of abacavir and efavirenz in amphibian tadpoles at exposure concentrations similar to those already detected in the environment, indicating an ecological risk for R. arenarum and probably other aquatic organisms exposed to these drugs in water bodies.
Collapse
Affiliation(s)
- Lesly Paradina Fernández
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Romina Brasca
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Maria Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| |
Collapse
|
18
|
María Teresa S, Romina G, Lucila Marilén C, Fernanda A, Rafael Carlos L, Paola Mariela P. Anuran heart development and critical developmental periods: a comparative analysis of three Neotropical anuran species. Anat Rec (Hoboken) 2022; 305:3441-3455. [PMID: 35412699 DOI: 10.1002/ar.24933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/11/2022]
Abstract
The heart begins to form early during vertebrate development and is the first functional organ of the embryo. This study aimed to describe and compare the heart development in three Neotropical anuran species, Physalaemus albonotatus, Elachistocleis bicolor, and Scinax nasicus. Different Gosner Stages (GS) of embryos (GS 18-20) and premetamorphic (GS 21-25), prometamorphic (GS 26-41) and metamorphic (GS 42-46) tadpoles were analyzed using stereoscopic microscopy and Scanning Electronic Microscopy. Heart development was similar in the three analyzed species; however, some heterochronic events were identified between P. albonotatus and S. nasicus compared to E. bicolor. In addition, different patterns of melanophores arrangement were observed. During the embryonic and metamorphic periods, the main morphogenetic events occur: formation of the heart tube, regionalization of the heart compartments, development of spiral valve, onset of heartbeat, looping, and final displacement of the atrium and its complete septation. Both periods are critical for the normal morphogenesis and the correct functioning of the anuran heart. These results are useful to characterize the normal anuran heart morphology and to identify possible abnormalities caused by exposure to environmental contaminants.
Collapse
Affiliation(s)
- Sandoval María Teresa
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura. Embriología Animal, Av. Libertad 5470 (3400)., Corrientes, Argentina
| | - Gaona Romina
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura. Embriología Animal, Av. Libertad 5470 (3400)., Corrientes, Argentina
| | - Curi Lucila Marilén
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Ictiología del Nordeste (INICNE), Facultad de Ciencias Veterinarias. Universidad Nacional del Nordeste (FCV, UNNE), Sargento Cabral 2139, (3400) Corrientes, Argentina
| | - Abreliano Fernanda
- Universidad Nacional del Nordeste, Facultad de Ciencias Exactas y Naturales y Agrimensura. Embriología Animal, Av. Libertad 5470 (3400)., Corrientes, Argentina
| | - Lajmanovich Rafael Carlos
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| | - Peltzer Paola Mariela
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.,Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
19
|
Bouly L, Courant F, Bonnafé E, Carayon JL, Malgouyres JM, Vignet C, Gomez E, Géret F, Fenet H. Long-term exposure to environmental diclofenac concentrations impairs growth and induces molecular changes in Lymnaea stagnalis freshwater snails. CHEMOSPHERE 2022; 291:133065. [PMID: 34848232 DOI: 10.1016/j.chemosphere.2021.133065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
As pharmaceutical substances are highly used in human and veterinary medicine and subsequently released in the environment, they represent emerging contaminants in the aquatic compartment. Diclofenac (DCF) is one of the most commonly detected pharmaceuticals in water and little research has been focused on its long-term effects on freshwater invertebrates. In this study, we assessed the chronic impacts of DCF on the freshwater gastropod Lymnaea stagnalis using life history, behavioral and molecular approaches. These organisms were exposed from the embryo to the adult stage to three environmentally relevant DCF concentrations (0.1, 2 and 10 μg/L). The results indicated that DCF impaired shell growth and feeding behavior at the juvenile stage, yet no impacts on hatching, locomotion and response to light stress were noted. The molecular findings (metabolomics and transcriptomic) suggested that DCF may disturb the immune system, energy metabolism, osmoregulation and redox balance. In addition, prostaglandin synthesis could potentially be inhibited by DCF exposure. The molecular findings revealed signs of reproduction impairment but this trend was not confirmed by the physiological tests. Combined omics tools provided complementary information and enabled us to gain further insight into DCF effects in freshwater organisms.
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France; HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Elsa Bonnafé
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Elena Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
20
|
Berezina NA, Sharov AN, Chernova EN, Malysheva OA. Effects of Diclofenac on the Reproductive Health, Respiratory Rate, Cardiac Activity, and Heat Tolerance of Aquatic Animals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:677-686. [PMID: 34932842 DOI: 10.1002/etc.5278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 11/19/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Diclofenac is an important pharmaceutical present in the water cycle of wastewater treatment and one of the most distributed drugs in aquatic ecosystems. Despite the great interest in the fate of diclofenac in freshwaters, the effects of environmentally relevant concentrations on invertebrates are still unclear. Two species of freshwater invertebrates, the amphipod Gmelinoides fasciatus and the bivalve mollusk Unio pictorum, were exposed to diclofenac concentrations of 0.001-2 μg/L (environmentally relevant levels) for 96 h. A set of biological endpoints (survival, fecundity, embryo abnormalities, respiration and heart rates, heat tolerance, and cardiac stress tolerance) were estimated in exposed invertebrates. Effects of diclofenac on amphipod metabolic rate and reproduction (number and state of embryos) and adaptive capacity (cardiac stress tolerance) in both species were evident. The oxygen consumption of amphipods exposed to diclofenac of 0.1-2 μg/L was 1.5-2 times higher than in the control, indicating increased energy requirements for standard metabolism in the presence of diclofenac (>0.1 μg/L). The heart rate recovery time in mollusks after heating to critical temperature (30 °C) was 1.7 and 9 times greater in mollusks exposed to 0.1 and 0.9 μg/L, respectively, than in the control (24 min). A level of diclofenac >0.9 μg/L adversely affected amphipod embryos, leading to an increase in the number of embryos with impaired development, which subsequently died. Thus, the lowest effective concentration of diclofenac (0.1 μg/L) led to increased energy demands of animals while reducing cardiac stress tolerance, and at a level close to 1 μg/L reproductive disorders (elevated mortality of the embryos) occurred. Environ Toxicol Chem 2022;41:677-686. © 2021 SETAC.
Collapse
Affiliation(s)
- Nadezhda A Berezina
- Laboratory of Freshwater and Experimental Hydrobiology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrey N Sharov
- Laboratory of Algologia, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok, Russia
- Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina N Chernova
- Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, St. Petersburg Federal Research Center of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Olga A Malysheva
- Laboratory of Algologia, Papanin Institute for Biology of Inland Waters of the Russian Academy of Sciences, Borok, Russia
| |
Collapse
|
21
|
Lajmanovich RC, Attademo AM, Lener G, Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Demonte LD, Repetti MR. Glyphosate and glufosinate ammonium, herbicides commonly used on genetically modified crops, and their interaction with microplastics: Ecotoxicity in anuran tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150177. [PMID: 34520929 DOI: 10.1016/j.scitotenv.2021.150177] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The effects of glyphosate (GLY)-based and glufosinate ammonium (GA)-based herbicides (GBH and GABH, respectively) and polyethylene microplastic particles (PEMPs) on Scinax squalirostris tadpoles were assessed. Tadpoles were exposed to nominal concentrations of both herbicides (from 1.56 to 100 mg L-1) and PEMPs (60 mg L-1), either alone or in combination, and toxicity evaluated at 48 h. Acetylcholinesterase (AChE), carboxylesterase (CbE), and glutathione-S-transferase (GST) activities were analyzed at the three lowest concentrations (1.56, 3.12 and 6.25 mg L-1, survival rates >85%) of both herbicides alone and with PEMPs. Additionally, the thermochemistry of the interactions between the herbicides and polyethylene (PE) was analyzed by Density Functional Theory (DFT). The median-lethal concentration (LC50) was 43.53 mg L-1 for GBH, 38.56 mg L-1 for GBH + PEMPs, 7.69 for GABH, and 6.25 mg L-1 for GABH+PEMPs. The PEMP treatment increased GST but decreased CbE activity, whereas GBH and GABH treatments increased GST but decreased AChE activity. In general, the mixture of herbicides with PEMPs increased the effect observed in the individual treatments: the highest concentration of GBH + PEMPs increased GST activity, whereas GABH+PEMP treatments decreased both AChE and CbE activities. DFT analysis revealed spontaneous interactions between the herbicides and PE, leading to the formation of bonds at the herbicide-PE interface, significantly stronger for GA than for GLY. The experimental and theoretical findings of our study indicate that these interactions may lead to an increase in toxicity when pollutants are together, meaning potential environmental risk of these combinations, especially in the case of GA.
Collapse
Affiliation(s)
- Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Germán Lener
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Instituto de Investigaciones en Físico-Química de Córdoba-CONICET, Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
| | - Luisina D Demonte
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
22
|
Peltzer PM, Cuzziol Boccioni AP, Attademo AM, Martinuzzi CS, Colussi CL, Lajmanovich RC. Risk of chlorine dioxide as emerging contaminant during SARS-CoV-2 pandemic: enzyme, cardiac, and behavior effects on amphibian tadpoles. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022. [PMCID: PMC8564275 DOI: 10.1007/s13530-021-00116-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Objective The use of chlorine dioxide (ClO2) increased in the last year to prevent SARS-CoV-2 infection due to its use as disinfectant and therapeutic human treatments against viral infections. The absence of toxicological studies and sanitary regulation of this contaminant represents a serious threat to human and environmental health worldwide. The aim of this study was to evaluate the acute toxicity and sublethal effects of ClO2 on tadpoles of Trachycephalus typhonius, which is a common bioindicator species of contamination from aquatic ecosystems. Materials and methods Median lethal concentration (LC50), the lowest-observed effect concentration (LOEC), and the no-observed effect concentration (NOEC) were performed. Acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities, swimming behavior parameters, and cardiac rhythm were estimated on tadpoles of concentrations ≤ LOEC exposed at 24 and 96 h. ANOVA and Dunnett’s post-hoc comparisons were performed to define treatments significance (p ≤ 0.05). Results The LC50 of ClO2 was 4.17 mg L−1 (confidence limits: 3.73–4.66). In addition, NOEC and LOEC values were 1.56 and 3.12 mg L−1 ClO2, respectively, at 48 h. AChE and GST activities, swimming parameters, and heart rates increased in sublethal exposure of ClO2 (0.78–1.56 mg L−1) at 24 h. However, both enzyme activities and swimming parameters decreased, whereas heart rates increased at 96 h. Conclusion Overall, this study determined that sublethal concentrations of ClO2 produced alterations on antioxidant systems, neurotoxicity reflected on swimming performances, and variations in cardiac rhythm on treated tadpoles. Thus, our findings highlighted the need for urgent monitoring of this chemical in the aquatic ecosystems. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13530-021-00116-3.
Collapse
Affiliation(s)
- Paola M. Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana P. Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M. Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S. Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlina L. Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C. Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Sánchez-Aceves LM, Pérez-Alvarez I, Gómez-Oliván LM, Islas-Flores H, Barceló D. Developmental alterations, teratogenic effects, and oxidative disruption induced by ibuprofen, aluminum, and their binary mixture on Danio rerio. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118078. [PMID: 34534830 DOI: 10.1016/j.envpol.2021.118078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Several studies highlighted the ubiquitous presence of ibuprofen and aluminum in the aquatic environment around the world and demonstrated their potential to induce embryotoxic and teratogenic defects on aquatic species individually. Although studies that evaluate developmental alterations induced by mixtures of these pollutants are scarce; and, since environmental contamination presented in the form of a mixture of toxicants with different chemical properties and toxicity mechanisms capable of generating interactions; the objective of this study was to evaluate the developmental defects, teratogenic alterations, and oxidative stress induced by individual forms and the mixture of ibuprofen (IBU) and aluminum (Al) on zebrafish embryos. Oocytes exposed to environmentally relevant concentrations of IBU (0.1-20 μg L-1) and Al (0.01-8 mg L-1) and one binary mixture. The LC50 and EC50 were obtained to calculate the teratogenic index (TI). The IBU LC50, EC50, and TI were 8.06 μg L-1, 2.85 μg L-1 and 2.82. In contrast, Al LC50 was 5.0 mg L-1with an EC50 of 3.58 mg L-1 and TI of 1.39. The main alterations observed for individual compounds were hatching alterations, head malformation, skeletal deformities, hypopigmentation, pericardial edema, and heart rate impairment. The mixture also showed significant delays to embryonic development. Moreover, oxidative stress biomarkers of cellular oxidation and antioxidant defenses at 72 and 96 hpf significantly increased. Results show that environmentally relevant concentrations of ibuprofen (IBU), aluminum (Al), and their mixture promote a series of developmental defects, teratogenic effects, and oxidative disruption on D. rerio embryos, and the interaction of both substances altered the response. In conclusion, morphological and biochemical tests are suitable tools for assessing the health risk of aquatic wildlife by exposure to individual and mixed pollutants in freshwater bodies.
Collapse
Affiliation(s)
- Livier M Sánchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón Intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017, Barcelona, Spain
| |
Collapse
|
24
|
Di Cicco M, Di Lorenzo T, Fiasca B, Ruggieri F, Cimini A, Panella G, Benedetti E, Galassi DMP. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149461. [PMID: 34426329 DOI: 10.1016/j.scitotenv.2021.149461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF) is one of the most widespread pharmaceutical compounds found in freshwaters as a pseudo-persistent pollutant due to its continuous release from point and diffuse sources, being its removal in Wastewater Treatment Plants incomplete. Moreover, DCF is particularly persistent in interstitial habitats and potentially toxic for the species that spend their whole life cycle among the same sediment grains. This study is aimed at offering a first contribution to the assessment of DCF effects on freshwater invertebrate species living in the interstitial habitats of springs, rivers, lakes and groundwaters. The Crustacea Copepoda are one of the main components of the freshwater interstitial communities, with the primacy taken by the worm-like and small-sized harpacticoids. A sub-lethal concentration of 50 μg L-1 DCF significantly affected six out of the eight behavior parameters of the burrower/interstitial crustacean harpacticoid Bryocamptus pygmaeus recorded by video tracking analysis. DCF exposure reduced swimming speed, swimming activity, exploration ability and thigmotaxis, and increased swimming path tortuosity. The biochemical approach revealed a reduced level of the mitochondrial superoxide dismutase 2 in individuals exposed to DCF. It could be explained by a decline in mitochondrial performance or by a reduced number of functional mitochondria. Since mitochondrial dysfunction may determine ATP reduction, it comes that less energy is produced for maintaining the cell functions of the DCF-exposed individuals. In addition, the increasing energy demand for the detoxification process further contributes to decrease the total energetic budget allocated for other physiological activities. These observations can explain the changes we have observed in the swimming behavior of the copepod B. pygmaeus.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Firenze, Italy; "Emil Racovita" Institute of Speleology, Romanian Academy, Clinicilor 5, Cluj Napoca 400006, Romania
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Fabrizio Ruggieri
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Gloria Panella
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Diana M P Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy.
| |
Collapse
|
25
|
Chen M, Yin G, Zhao N, Gan T, Feng C, Gu M, Qi P, Ding Z. Rapid and Sensitive Detection of Water Toxicity Based on Photosynthetic Inhibition Effect. TOXICS 2021; 9:toxics9120321. [PMID: 34941755 PMCID: PMC8707688 DOI: 10.3390/toxics9120321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
To achieve rapid and sensitive detection of the toxicity of pollutants in the aquatic environment, a photosynthetic inhibition method with microalgae as the test organism and photosynthetic fluorescence parameters as the test endpoint was proposed. In this study, eight environmental pollutants were selected to act on the tested organism, Chlorella pyrenoidosa, including herbicides (diuron, atrazine), fungicides (fuberidazole), organic chemical raw materials (phenanthrene, phenol, p-benzoquinone), disinfectants (trichloroacetonitrile uric acid), and disinfection by-products (trichloroacetonitrile). The results showed that, in addition to specific PSII inhibitors (diuretic and atrazine), other types of pollutants could also quickly affect the photosynthetic system. The photosynthetic fluorescence parameters (Fv/Fm, Yield, α, and rP) could be used to detect the effects of pollutants on the photosynthetic system. Although the decay rate of the photosynthetic fluorescence parameters corresponding to the different pollutants was different, 1 h could be used as an appropriate toxicity exposure time. Moreover, the lowest respondent concentrations of photosynthetic fluorescence parameters to diuron, atrazine, fuberidazole, phenanthrene, P-benzoquinone, phenol, trichloroacetonitrile uric acid, and trichloroacetonitrile were 2 μg·L−1, 5 μg·L−1, 0.05 mg·L−1, 2 μg·L−1, 1.0 mg·L−1, 0.4 g·L−1, 0.1 mg·L−1, and 2.0 mg·L−1, respectively. Finally, diuron, atrazine, fuberidazole, and phenanthrene were selected for a comparison of their photosynthetic inhibition and growth inhibition. The results suggested that photosynthetic inhibition could overcome the time dependence of growth inhibition and shorten the toxic exposure time from more than 24 h to less than 1 h, or even a few minutes, while, the sensitivity of the toxicity test was not weakened. This study indicates that the photosynthetic inhibition method could be used for rapid detection of the toxicity of water pollutants and that algae fluorescence provides convenient access to toxicity data.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Gaofang Yin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
- Correspondence:
| | - Nanjing Zhao
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Tingting Gan
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Chun Feng
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Mengyuan Gu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Peilong Qi
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| | - Zhichao Ding
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (M.C.); (N.Z.); (T.G.); (C.F.); (M.G.); (P.Q.); (Z.D.)
- University of Science and Technology of China, Hefei 230026, China
- Key Laboratory of Optical Monitoring Technology for Environment of Anhui Province, Hefei 230031, China
| |
Collapse
|
26
|
Sun N, Liu Q, Wang J, He F, Jing M, Chu S, Zong W, Liu R, Gao C. Probing the biological toxicity of pyrene to the earthworm Eisenia fetida and the toxicity pathways of oxidative damage: A systematic study at the animal and molecular levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117936. [PMID: 34391044 DOI: 10.1016/j.envpol.2021.117936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Pyrene (Pyr), a widely used tetracyclic aromatic hydrocarbon, enters soil in large quantities and causes environmental pollution due to its production and mining. In order to systematically study the biotoxicity of pyrene to model organisms Eisenia fetida in soil, experiments were carried out from four dimensions: animal, tissue, cell and molecule. Experimental results proved that the mortality rate increased with increasing concentration and time of exposure to pyrene, while the mean body weight and spawning rate decreased. Meanwhile, when the pyrene concentration reached 900 mg/kg, the seminal vesicle and longitudinal muscle of the earthworm showed obvious atrophy. Experimental results at the cellular level showed that pyrene induced cell membrane damage and Ca2+ influx triggered mitochondrial membrane depolarization and a surge in ROS levels. Oxidative stress causes damage to proteins and lipids and DNA inside cells. When the mortality rate was 91.67 %, the Olive Tail Movement (OTM) of the comet experiment reached 15. The results of molecular level tests showed that pyrene inhibited the activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) mainly by changing the microenvironment and secondary structure of amino acid Tyr 108. The weakened function of direct antioxidant enzymes may be the root cause of the excessive increase of reactive oxygen species (ROS) in cells. The systematic approach used in this study enriches the network of toxic pathways in toxicological studies, and basic data on the biological toxicity of pyrene can provide support for future soil contamination detection.
Collapse
Affiliation(s)
- Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Qiang Liu
- Solid Waste and Hazardous Chemicals Pollution Prevention and Control Center of Shandong Province, 145# Jingshi West Road, Jinan, 250117, PR China
| | - Jinhu Wang
- College of Chemistry, Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang, Shandong Province, 277160, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Shanshan Chu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| | - Canzhu Gao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| |
Collapse
|
27
|
Cuzziol Boccioni AP, Lajmanovich RC, Peltzer PM, Attademo AM, Martinuzzi CS. Toxicity assessment at different experimental scenarios with glyphosate, chlorpyrifos and antibiotics in Rhinella arenarum (Anura: Bufonidae) tadpoles. CHEMOSPHERE 2021; 273:128475. [PMID: 33069438 DOI: 10.1016/j.chemosphere.2020.128475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The presence of pesticides as well as that of several antibiotics provided at a great scale to poultry, cattle, and swine in aquatic environments within agroecosystems is a matter of growing concern. The objective of the present study was to characterize the sublethal effects of four environmental toxic compounds at two experimental pollution scenarios on the morphology, development and thyroid (T4), acetylcholinesterase (AChE) and glutathione S-transferase (GST) levels in Rhinella arenarum tadpoles. The first experimental pollution scenario aimed to evaluate the individual and mixed toxicity (50:50% v/v) of a glyphosate-based herbicide (GBH) and the antibiotic ciprofloxacin (CIP) on earlier developmental stages. The second experimental pollution scenario aimed to evaluate the effects of other toxic compounds (the insecticide chlorpyrifos (CP) and the antibiotic amoxicillin (AMX)) added to the ones from the first scenario on previously exposed premetamorphic tadpoles. In all the treatments of the first pollution scenario, the most conspicuous effect observed in early-stage tadpoles was a high prevalence of morphological abnormalities. Exposure to GBH and to its mixture with CIP also led to a significant decrease in T4 levels and lower development. Both pollutant combinations from the second experimental scenario significantly increased T4 levels, inhibited AChE activities, and led to lower development, whereas the quaternary mixture led to a significant decrease in GST levels. The alterations here revealed by our approaches in several morphological and biochemical endpoints allow characterizing the ecotoxicological risk for anurans exposed to complex mixtures of pollutants that frequently occur in aquatic systems.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional Del Litoral (FBCB-UNL), Casilla de Correo 242, 3000 Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), C1033AAJ Buenos Aires, Argentina.
| |
Collapse
|
28
|
Cuzziol Boccioni AP, Peltzer PM, Martinuzzi CS, Attademo AM, León EJ, Lajmanovich RC. Morphological and histological abnormalities of the neotropical toad, Rhinella arenarum (Anura: Bufonidae) larvae exposed to dexamethasone. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 56:41-53. [PMID: 33112724 DOI: 10.1080/03601234.2020.1832410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dexamethasone (DEX) is a glucocorticoid highly effective as an anti-inflammatory, immunosuppressant and decongestant drug. In the present study, a preliminary acute toxicity test was assayed in order to determinate DEX median-lethal, lowest-observed-effect and the no-observed-effect concentrations (LC50, LOEC and NOEC, respectively) on the common toad embryos (Rhinella arenarum). Also, morphological and histological abnormalities from five body larval regions, liver melanomacrophages (MM) and glutathione S-transferase (GST) activity were evaluated in the toad larvae to characterize the chronic sublethal effects of DEX (1-1,000 µg L-L). Results of the acute test showed that the LC50 of DEX at 96 h of exposure for the toad embryos (GS 18-20) was 10.720 mg L-g, and the LOEC was 1 µg L-g. In the chronic assay, the larval development and body length were significantly affected. DEX exposition also induced teratogenic effects. Most frequent external abnormalities observed in DEX-treated larvae included abdominal edema and swollen body, abnormal gut coiling and visceral congestion. Intestinal dysplasia was recurrent in cross-section of all DEX-treated larvae. Neural, conjunctive and renal epithelial cells were also affected. Significant increase in liver MM number and size, and GST activity levels were also registered in DEX treatments with respect to controls. The evaluation of a variety of biomarkers provided clear evidence of toad larvae sensitivity to DEX, and the ecotoxicological risk of these pharmaceuticals, commonly found in different water bodies worldwide on aquatic animals.
Collapse
Affiliation(s)
- Ana P Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paola M Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Evelina J León
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rafael C Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
29
|
Adedara IA, Awogbindin IO, Afolabi BA, Ajayi BO, Rocha JBT, Farombi EO. Hazardous impact of diclofenac exposure on the behavior and antioxidant defense system in Nauphoeta cinerea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115053. [PMID: 32806419 DOI: 10.1016/j.envpol.2020.115053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 05/27/2023]
Abstract
Environmental pollution by pharmaceuticals such as diclofenac (DCF) is globally acknowledged to be a threat to the ecosystems. Nauphoeta cinerea is an important insect with valuable ecological role. The present investigation aimed to elucidate the impact of DCF on insects by assessing the behavior and antioxidant defense response in nymphs of N. cinerea exposed to DCF-contaminated food at 0, 0.5, 1.0 and 2.0 μg kg-1 feed for 42 successive days. Subsequent to exposure period, neurobehavioral analysis using video-tracking software in a novel apparatus was performed before estimation of biochemical endpoints in the head, midgut and hemolymph of the insects. Results indicated that DCF-exposed insects exhibited marked reduction in the maximum speed, total distance traveled, mobile episodes, total mobile time, body rotation, absolute turn angle and path efficiency, whereas the total freezing time was increased compared with the control. The diminution in the exploratory activities of DCF-exposed insects was substantiated by heat maps and track plots. Additionally, DCF elicited marked diminution in antioxidant enzyme and acetylcholinesterase (AChE) activities along with increase in nitric oxide (NO), reactive oxygen and nitrogen species (RONS), and lipid peroxidation (LPO) levels in the head, midgut and hemolymph of the insects. Taken together, DCF elicited neurotoxicity and oxido-inflammatory stress in exposed insects. N. cinerea may be a suitable model insect for environmental risk assessment of pharmaceuticals in non-target insect species.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
30
|
Tenorio-Chávez P, Cerro-López M, Castro-Pastrana LI, Ramírez-Rodrigues MM, Orozco-Hernández JM, Gómez-Oliván LM. Effects of effluent from a hospital in Mexico on the embryonic development of zebrafish, Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138716. [PMID: 32334233 DOI: 10.1016/j.scitotenv.2020.138716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Hospitals consume a large amount of water, so they also generate large amounts of wastewater, which contain a wide variety of contaminants. It is important to consider that hospital effluents are a mixture of pollutants that can interact with each other and have a negative impact on aquatic species of water bodies. The aim of this study was to evaluate the effects induced by a hospital effluent using Danio rerio embryos. In this study, Danio rerio embryos were exposed to different concentrations of the hospital effluent and a lethality test was evaluated and the malformations present in zebrafish embryos were evaluated. The lethal concentration of effluent 50% was 6.1% and the effective malformation concentration was of 2.5%. The teratogenic index was 2.45%. The main malformations identified were yolc sac malformation, pericardial edema, hatching abnormalities, hypopigmentation, tail deformation, chorda malformation, without fin, chorion deformation and craniofacial malformation. The risks that this type of water represents for the survival of living organisms, as well as the presence of malformations in them, are reference indicators for a future regulation focused on the adequate treatment of hospital effluents.
Collapse
Affiliation(s)
- Paulina Tenorio-Chávez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón i2antersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Mónica Cerro-López
- Universidad de las Américas Puebla, Departamento de Ciencias Químico-Biológicas, ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, Mexico.
| | - Lucila Isabel Castro-Pastrana
- Universidad de las Américas Puebla, Departamento de Ciencias Químico-Biológicas, ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, Mexico
| | - Milena María Ramírez-Rodrigues
- Universidad de las Américas Puebla, Departamento de Ciencias Químico-Biológicas, ExHda. Sta. Catarina Martir s/n, Cholula 72820, Puebla, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón i2antersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón i2antersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| |
Collapse
|
31
|
Fernández LP, Brasca R, Attademo AM, Peltzer PM, Lajmanovich RC, Culzoni MJ. Bioaccumulation and glutathione S-transferase activity on Rhinella arenarum tadpoles after short-term exposure to antiretrovirals. CHEMOSPHERE 2020; 246:125830. [PMID: 31927383 DOI: 10.1016/j.chemosphere.2020.125830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate the bioaccumulation and toxicological effects of four antiretrovirals (lamivudine, stavudine, zidovudine and nevirapine) on Rhinella arenarum tadpoles, after short-term (48 h) exposure to these drugs at sublethal concentrations. The analytical procedure involved a simple extraction method followed by ultra-high performance liquid chromatography with diode array detection and chemometric analysis for data processing. Under the conditions studied, the analytes investigated, particularly nevirapine, showed possible bioaccumulation in tadpoles. Besides, an increase in the bioaccumulation was observed when increasing the exposure concentration. In addition, the enzymatic biomarkers measured to evaluate the toxicological effects showed that acethylcholinesterase activity was similar to that of the control group, while glutathione S-transferase activity was increased, indicating potential oxidative stress damage. Our results also allowed demonstrating the usefulness of chemometric algorithms to quantitate analytes in complex matrices, such as those absorbed by tadpoles in aquatic ecosystems. The results also evidenced the short-term antiretroviral bioaccumulation in tadpoles and the alteration of antioxidant systems, highlighting the need of environmental studies to elucidate the ecotoxicological risk of antiretrovirals in humans and wildlife.
Collapse
Affiliation(s)
- Lesly Paradina Fernández
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Romina Brasca
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| | - Andrés M Attademo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Paola M Peltzer
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Rafael C Lajmanovich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.
| |
Collapse
|
32
|
SanJuan-Reyes N, Gómez-Oliván LM, Pérez-Pastén Borja R, Luja-Mondragón M, Orozco-Hernández JM, Heredia-García G, Islas-Flores H, Galar-Martínez M, Escobar-Huérfano F. Survival and malformation rate in oocytes and larvae of Cyprinus carpio by exposure to an industrial effluent. ENVIRONMENTAL RESEARCH 2020; 182:108992. [PMID: 31830696 DOI: 10.1016/j.envres.2019.108992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Pharmaceuticals are used for the prevention or treatment of diseases, and due to their manufacturing process they are continuously released to water bodies. One of the pharmacological groups detected in aquatic environments is non-steroidal anti-inflammatory drugs (NSAIDs) at trace concentrations. This study evaluated the survival and malformation rate in oocytes and larvae of Cyprinus carpio (C. carpio) after exposure to different proportions of an industrial effluent. Initially, the industrial effluent was sampled from an NSAID manufacturing plant located in the city of Toluca, State of Mexico, subsequently the physicochemical characterization and determination of the concentration of chemical compounds present were carried out. On the other hand, the lethal concentration 50 (LC50) and the effective concentration 50 (EC50) were calculated to determine the teratogenic index (TI), as well as the alterations to the embryonic development and the teratogenic effects on oocytes and larvae of C. carpio at the following proportions of the industrial effluent: 0.1, 0.3, 0.5, 0.7, 0.9 and 1.1%, following the Test Guideline 236, which describes a Fish Embryo Acute Toxicity test, the exposure times were 12, 24, 48, 72 and 96 h post-fertilization. The contaminants detected were NaClO (2.6 mg L-1) and NSAIDs such as diclofenac, ibuprofen, naproxen and paracetamol in the range of 1.09-2.68 mg L-1. In this study the LC50 was 0.275%, the EC50 0.133% and the TI 2.068. Several malformations were observed in all proportions of the industrial effluent evaluated, however the most severe such as spina bifida and paravertebral hemorrhage were observed at the highest effluent proportion. The industrial effluent evaluated in this study represents a risk for organisms that are in contact with it, since it contains chemical compounds that induce embryotoxic and teratogenic effects as observed in oocytes and larvae of C. carpio.
Collapse
Affiliation(s)
- Nely SanJuan-Reyes
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Marlenne Luja-Mondragón
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - José Manuel Orozco-Hernández
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Gerardo Heredia-García
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Esq. Calzada Manuel Stampa s/n, Del. Gustavo A. Madero, Ciudad de México, C.P. 07738, Mexico
| | - Francisco Escobar-Huérfano
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, Toluca, Estado de México, C.P. 50120, Mexico
| |
Collapse
|
33
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|