1
|
Rovira J, Savadkoohi M, Chen GI, Močnik G, Aas W, Alados-Arboledas L, Artiñano B, Aurela M, Backman J, Banerji S, Beddows D, Brem B, Chazeau B, Coen MC, Colombi C, Conil S, Costabile F, Coz E, de Brito JF, Eleftheriadis K, Favez O, Flentje H, Freney E, Gregorič A, Gysel-Beer M, Harrison R, Hueglin C, Hyvärinen A, Ivančič M, Kalogridis AC, Keernik H, Konstantinos G, Laj P, Liakakou E, Lin C, Listrani S, Luoma K, Maasikmets M, Manninen HE, Marchand N, Dos Santos SM, Mbengue S, Mihalopoulos N, Nicolae D, Niemi JV, Norman M, Ovadnevaite J, Petit JE, Platt S, Prévôt ASH, Pujadas M, Putaud JP, Riffault V, Rigler M, Rinaldi M, Schwarz J, Silvergren S, Teinemaa E, Teinilä K, Timonen H, Titos G, Tobler A, Vasilescu J, Vratolis S, Yttri KE, Yubero E, Zíková N, Alastuey A, Petäjä T, Querol X, Yus-Díez J, Pandolfi M. A European aerosol phenomenology - 9: Light absorption properties of carbonaceous aerosol particles across surface Europe. ENVIRONMENT INTERNATIONAL 2025; 195:109185. [PMID: 39673871 DOI: 10.1016/j.envint.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11-20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV-VIS radiation presenting highly variable absorption properties in Europe.
Collapse
Affiliation(s)
- Jordi Rovira
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Applied Physics-Meteorology, Universitat de Barcelona, Barcelona, 08028, Spain.
| | - Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain; Department of Mining, Industrial and ICT Engineering (EMIT), Manresa School of Engineering (EPSEM), Universitat Politècnica de Catalunya (UPC), Manresa 08242, Spain
| | - Gang I Chen
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, London W12 0BZ, UK
| | - Griša Močnik
- Center for Atmospheric Research, University of Nova Gorica, Ajdovščina 5270, Slovenia; Haze Instruments d.o.o., Ljubljana 1000, Slovenia; Department of Condensed Matter Physics, Jozef Stefan Institute, Ljubljana, 1000, Slovenia
| | | | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | | | - Minna Aurela
- Atmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, Finland; Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere University, P.O. Box 692, FI-33014, Finland
| | - John Backman
- Atmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Sujai Banerji
- Institute for Atmospheric and Earth System Research/Physics (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - David Beddows
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Benjamin Brem
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Benjamin Chazeau
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Aix Marseille Univ., CNRS, LCE, Marseille, France
| | | | - Cristina Colombi
- Arpa Lombardia, Settore Monitoraggi Ambientali, Unità Operativa Qualità dell'Aria, Milano, Italy
| | - Sebastien Conil
- ANDRA DRD/GES Observatoire Pérenne de l'Environnement, 55290 Bure, France
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), 00133, Rome, Italy
| | - Esther Coz
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - Joel F de Brito
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Kostas Eleftheriadis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | - Harald Flentje
- German Meteorological Service (DWD), Observatory Hohenpeissenberg, Germany
| | - Evelyn Freney
- Laboratoire de Météorologie Physique, UMR6016, Université Clermont Auvergne-CNRS, Aubière, France
| | - Asta Gregorič
- Center for Atmospheric Research, University of Nova Gorica, Ajdovščina 5270, Slovenia; Aerosol d.o.o., Kamniška 39A, 1000 Ljubljana, Slovenia
| | - Martin Gysel-Beer
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Roy Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland
| | - Antti Hyvärinen
- Atmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Matic Ivančič
- Aerosol d.o.o., Kamniška 39A, 1000 Ljubljana, Slovenia
| | - Athina-Cerise Kalogridis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Hannes Keernik
- Estonian Environmental Research Centre, Air Quality Management Department, Tallinn, Estonia
| | - Granakis Konstantinos
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | - Paolo Laj
- Aerosol Physics Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, Tampere University, P.O. Box 692, FI-33014, Finland; Univ. Grenoble, CNRS, IRD, IGE, 38000 Grenoble, France
| | - Eleni Liakakou
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Chunshui Lin
- School of Natural Sciences, Physics, Centre for Climate and Air Pollution Studies, Ryan Institute, University of Galway, University Road, Galway H91 CF50, Ireland
| | - Stefano Listrani
- ARPA Lazio, Regional Environmental Protection Agency, Rome, Italy
| | - Krista Luoma
- Atmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, Finland; Institute for Atmospheric and Earth System Research/Physics (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Marek Maasikmets
- Estonian Environmental Research Centre, Air Quality Management Department, Tallinn, Estonia
| | - Hanna E Manninen
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | | | | | - Saliou Mbengue
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Nikos Mihalopoulos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Doina Nicolae
- National Institute of Research and Development for Optoelectronics INOE 2000, Magurele, Romania
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Michael Norman
- Environment and Health Administration, SLB-analysis, Stockholm, Sweden
| | - Jurgita Ovadnevaite
- School of Natural Sciences, Physics, Centre for Climate and Air Pollution Studies, Ryan Institute, University of Galway, University Road, Galway H91 CF50, Ireland
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | | | - André S H Prévôt
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | | | | - Véronique Riffault
- IMT Nord Europe, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, Lille, France
| | - Martin Rigler
- Aerosol d.o.o., Kamniška 39A, 1000 Ljubljana, Slovenia
| | - Matteo Rinaldi
- Institute of Atmospheric Sciences and Climate (ISAC), National Research Council (CNR), 40129 Bologna, Italy
| | - Jaroslav Schwarz
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135/1, 16502 Prague, Czech Republic
| | - Sanna Silvergren
- Environment and Health Administration, SLB-analysis, Stockholm, Sweden
| | - Erik Teinemaa
- Estonian Environmental Research Centre, Air Quality Management Department, Tallinn, Estonia
| | - Kimmo Teinilä
- Atmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, 00560 Helsinki, Finland
| | - Gloria Titos
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - Anna Tobler
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland; Datalystica Ltd., Parkstrasse 1, 5234 Villigen, Switzerland
| | - Jeni Vasilescu
- National Institute of Research and Development for Optoelectronics INOE 2000, Magurele, Romania
| | - Stergios Vratolis
- ENRACT, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR Demokritos, 15310 Ag. Paraskevi, Athens, Greece
| | | | - Eduardo Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Elche 03202, Spain
| | - Naděžda Zíková
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135/1, 16502 Prague, Czech Republic
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jesús Yus-Díez
- Center for Atmospheric Research, University of Nova Gorica, Ajdovščina 5270, Slovenia
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Ruiz-Páez R, López-Bueno JA, Padrón-Monedero A, Navas MA, Salvador P, Linares C, Díaz J. Short-term effects of fine particulate matter from biomass combustion and Saharan dust intrusions on emergency hospital admissions due to mental and behavioural disorders, anxiety and depression in Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174316. [PMID: 38945243 DOI: 10.1016/j.scitotenv.2024.174316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Climate change is affecting both the frequency and scale of wildfires, as well as the increase in the number of days with Saharan dust intrusions. Traditionally, studies have focused on the extent to which the increase in fine particulate matter (PM) has had an impact on cardio-respiratory diseases, but (apart from PM) not on how the meteorological and pollution conditions in these situations affect other diseases, such as those linked to mental health. This study therefore sought to ascertain how daily mean PM10, PM 2.5, NO2, O3 concentrations and daily maximum temperature in heat waves influence daily emergency hospital admissions in Spain caused by mental and behavioural disorders, depression and anxiety on days with PM from biomass combustion and/or Saharan dust intrusions, as compared to days without such conditions, across the period 2009-2018. Our results indicate that on days on which there is biomass combustion, PM concentrations have a statistically significant effect on emergency admissions due to mental disorders, probably related with the toxicity of these particles. Yet on days with intrusions of Saharan dust rather than PM, it is the other variables considered in the analysis that are most closely linked to these types of admissions. The results of this study thus point to the need to implement public health prevention plans which take into account the joint effect of various environmental risk factors that act synergistically in given situations.
Collapse
Affiliation(s)
- R Ruiz-Páez
- University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - J A López-Bueno
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), 28029 Madrid, Spain
| | - A Padrón-Monedero
- National School of Health, Carlos III Institute of Health, 28029 Madrid, Spain
| | - M A Navas
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), 28029 Madrid, Spain
| | - P Salvador
- Centre for Energy, Environmental and Technological Research/CIEMAT, Department of the Environment, 28040 Madrid, Spain
| | - C Linares
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), 28029 Madrid, Spain
| | - J Díaz
- Climate Change, Health and Urban Environment Reference Unit, Carlos III Institute of Health (Instituto de Salud Carlos III/ISCIII), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Quishpe-Vásquez C, Oliva P, López-Barrera EA, Casallas A. Wildfires impact on PM 2.5 concentration in galicia Spain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122093. [PMID: 39106804 DOI: 10.1016/j.jenvman.2024.122093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Wildfire intensity and severity have been increasing in the Iberian Peninsula in recent years, particularly in the Galicia region, due to rising temperatures and accumulating drier combustible vegetation in unmanaged lands. This leads to substantial emissions of air pollutants, notably fine particles (PM2.5), posing a risk to public health. This study aims to assess the impact of local and regional wildfires on PM2.5 levels in Galicia's main cities and their implications for air quality and public health. Over a decade (2013-2022), PM2.5 data during wildfire seasons were analyzed using statistical methods and Lagrangian tracking to monitor smoke plume evolution. The results reveal a notable increase in PM2.5 concentration during the wildfire season (June-November) in Galicia, surpassing health guidelines during extreme events and posing a significant health risk to the population. Regional wildfire analyses indicate that smoke plumes from Northern Portugal contribute to pollution in Galician cities, influencing the seasonality of heightened PM2.5 levels. During extensive wildfires, elevated PM2.5 concentration values persisted for several days, potentially exacerbating health concerns in Galicia. These findings underscore the urgency of implementing air pollution prevention and management measures in the region, including developing effective alerts for large-scale events and improved wildfire management strategies to mitigate their impact on air quality in Galician cities.
Collapse
Affiliation(s)
- César Quishpe-Vásquez
- Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá, Alcalá, Spain.
| | - Patricia Oliva
- Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá, Alcalá, Spain
| | | | - Alejandro Casallas
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria; Earth System Physics, Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| |
Collapse
|
4
|
Salazar-Carballo PA, Catalán-Acosta A, Hernández F, López-Pérez M. Temporal assessment of Gross alpha emissions from the petroleum industry in Tenerife, Canary Islands (2001-2022). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122104. [PMID: 39121620 DOI: 10.1016/j.jenvman.2024.122104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
A ca. 76% decrease in gross alpha activity levels, measured in surface aerosols collected in the city of Santa Cruz de Tenerife (Spain), has been explained in the present study in connection with the reduction of activities, and eventual closure, of an oil refinery in the city. Gross Alpha in surface aerosols, collected at weekly intervals over a period of 22 years (2001-2022), was used for the analysis. The dynamic behaviour of the gross alpha time series was studied using statistical wavelet, multifractal analysis, empirical decomposition method, multivariate analysis, principal component, and cluster analyses approaches. This was performed to separate the impact of other sources of alpha emitting radionuclides influencing the gross alpha levels at this site. These in-depth analyses revealed a noteworthy shift in the dynamic behaviour of the gross alpha levels following the refinery's closure in 2013. This analysis also attributed fluctuations and trends in the gross alpha levels to factors such as the 2008 global economic crisis and the refinery's gradual reduction of activity leading up to its closure. The mixed-model approach, incorporating multivariate regression and autoregressive integrated moving average methods, explained approximately 84% of the variance of the gross alpha levels. Finally, this work underscored the marked reduction in alpha activity levels following the refinery's closure, alongside the decline of other pollutants (CO, SO2, NO, NO2, Benzene, Toluene and Xylene) linked to the primary industrial activity in the municipality of Santa Cruz de Tenerife.
Collapse
Affiliation(s)
- Pedro A Salazar-Carballo
- Departamento de Medicina Física y Farmacología, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain; Laboratorio de Física Médica y Radioactividad Ambiental, SEGAI, Universidad de La Laguna, San Cristóbal de La Laguna, Spain.
| | - Antonio Catalán-Acosta
- Departamento de Medicina Física y Farmacología, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain; Laboratorio de Física Médica y Radioactividad Ambiental, SEGAI, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Francisco Hernández
- Grupo de Observación de la Tierra y la Atmósfera, Universidad de La Laguna, Spain
| | - María López-Pérez
- Laboratorio de Física Médica y Radioactividad Ambiental, SEGAI, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
5
|
He C, Liu J, Zhou Y, Zhou J, Zhang L, Wang Y, Liu L, Peng S. Synergistic PM 2.5 and O 3 control to address the emerging global PM 2.5-O 3 compound pollution challenges. ECO-ENVIRONMENT & HEALTH 2024; 3:325-337. [PMID: 39281068 PMCID: PMC11400616 DOI: 10.1016/j.eehl.2024.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 09/18/2024]
Abstract
In recent years, the issue of PM2.5-O3 compound pollution has become a significant global environmental concern. This study examines the spatial and temporal patterns of global PM2.5-O3 compound pollution and exposure risks, firstly at the global and urban scale, using spatial statistical regression, exposure risk assessment, and trend analyses based on the datasets of daily PM2.5 and surface O3 concentrations monitored in 120 cities around the world from 2019 to 2022. Additionally, on the basis of the common emission sources, spatial heterogeneity, interacting chemical mechanisms, and synergistic exposure risk levels between PM2.5 and O3 pollution, we proposed a synergistic PM2.5-O3 control framework for the joint control of PM2.5 and O3. The results indicated that: (1) Nearly 50% of cities worldwide were affected by PM2.5-O3 compound pollution, with China, South Korea, Japan, and India being the global hotspots for PM2.5-O3 compound pollution; (2) Cities with PM2.5-O3 compound pollution have exposure risk levels dominated by ST + ST (Stabilization) and ST + HR (High Risk). Exposure risk levels of compound pollution in developing countries are significantly higher than those in developed countries, with unequal exposure characteristics; (3) The selected cities showed significant positive spatial correlations between PM2.5 and O3 concentrations, which were consistent with the spatial distribution of the precursors NOx and VOCs; (4) During the study period, 52.5% of cities worldwide achieved synergistic reductions in annual average PM2.5 and O3 concentrations. The average PM2.5 concentration in these cities decreased by 13.97%, while the average O3 concentration decreased by 19.18%. This new solution offers the opportunity to construct intelligent and healthy cities in the upcoming low-carbon transition.
Collapse
Affiliation(s)
- Chao He
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China
| | - Jianhua Liu
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China
| | - Yiqi Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jingwei Zhou
- Hydrology and Environmental Hydraulics Group, Wageningen University and Research, Wageningen 6700 HB, the Netherlands
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yifei Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, School of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Sha Peng
- Collaborative Innovation Center for Emissions Trading System Co-constructed by the Province and Ministry, Hubei University of Economics, Wuhan 430205, China
| |
Collapse
|
6
|
Merenda B, Drzeniecka-Osiadacz A, Sówka I, Sawiński T, Samek L. Influence of meteorological conditions on the variability of indoor and outdoor particulate matter concentrations in a selected Polish health resort. Sci Rep 2024; 14:19461. [PMID: 39169074 PMCID: PMC11339401 DOI: 10.1038/s41598-024-70081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The article evaluates air pollution by particulate matter (PM) in indoor and outdoor air in one of the Polish health resorts, where children and adults with respiratory diseases are treated. The highest indoor PM concentrations were recorded during the winter season. Therefore, the maximum average daily concentration values in indoor air for the PM10, PM2.5, and PM1 fractions were 50, 42 and 23 µg/m3, respectively. In the case of outdoor air, the highest average daily concentrations of PM2.5 reached a value of 40 µg/m3. The analyses and backward trajectories of episodes of high PM concentrations showed the impact of supra-regional sources and the influx of pollutants from North Africa on the variability of PM concentrations. The correlation between selected meteorological parameters and PM concentrations shows the relationship between PM concentrations and wind speed. For example, the correlation coefficients between PM1(I) and PM1(O) concentrations and wind speed were - 0.8 and - 0.7 respectively. These factors determined episodes of high PM concentrations during winter periods in the outdoor air, which were then transferred to the indoor air. Elevated concentrations in indoor air during summer were also influenced by chimney/gravity ventilation and the appearance of reverse chimney effect.
Collapse
Affiliation(s)
- Beata Merenda
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370, Wrocław, Poland.
- "Poltegor-Institute" Institute of Opencast Mining, Parkowa 25, 51-616, Wroclaw, Poland.
| | - Anetta Drzeniecka-Osiadacz
- Department of Climatology and Atmosphere Protection, University of Wroclaw, Kosiby 8 Str., 51-621, Wrocław, Poland
| | - Izabela Sówka
- Faculty of Environmental Engineering, Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Tymoteusz Sawiński
- Department of Climatology and Atmosphere Protection, University of Wroclaw, Kosiby 8 Str., 51-621, Wrocław, Poland
| | - Lucyna Samek
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059, Krakow, Poland
| |
Collapse
|
7
|
Kouis P, Galanakis E, Michaelidou E, Kinni P, Michanikou A, Pitsios C, Perez J, Achilleos S, Middleton N, Anagnostopoulou P, Dimitriou H, Revvas E, Stamatelatos G, Zacharatos H, Savvides C, Vasiliadou E, Kalivitis N, Chrysanthou A, Tymvios F, Papatheodorou SI, Koutrakis P, Yiallouros PK. Improved childhood asthma control after exposure reduction interventions for desert dust and anthropogenic air pollution: the MEDEA randomised controlled trial. Thorax 2024; 79:495-507. [PMID: 38388489 DOI: 10.1136/thorax-2023-220877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
INTRODUCTION Elevated particulate matter (PM) concentrations of anthropogenic and/or desert dust origin are associated with increased morbidity among children with asthma. OBJECTIVE The Mitigating the Health Effects of Desert Dust Storms Using Exposure-Reduction Approaches randomised controlled trial assessed the impact of exposure reduction recommendations, including indoor air filtration, on childhood asthma control during high desert dust storms (DDS) season in Cyprus and Greece. DESIGN, PARTICIPANTS, INTERVENTIONS AND SETTING Primary school children with asthma were randomised into three parallel groups: (a) no intervention (controls); (b) outdoor intervention (early alerts notifications, recommendations to stay indoors and limit outdoor physical activity during DDS) and (c) combined intervention (same as (b) combined with indoor air purification with high efficiency particulate air filters in children's homes and school classrooms. Asthma symptom control was assessed using the childhood Asthma Control Test (c-ACT), spirometry (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC)) and fractional exhaled nitric oxide (FeNO). RESULTS In total, 182 children with asthma (age; mean=9.5, SD=1.63) were evaluated during 2019 and 2021. After three follow-up months, the combined intervention group demonstrated a significant improvement in c-ACT in comparison to controls (β=2.63, 95% CI 0.72 to 4.54, p=0.007), which was more profound among atopic children (β=3.56, 95% CI 0.04 to 7.07, p=0.047). Similarly, FEV1% predicted (β=4.26, 95% CI 0.54 to 7.99, p=0.025), the need for any asthma medication and unscheduled clinician visits, but not FVC% and FeNO, were significantly improved in the combined intervention compared with controls. CONCLUSION Recommendations to reduce exposure and use of indoor air filtration in areas with high PM pollution may improve symptom control and lung function in children with asthma. TRIAL REGISTRATION NUMBER NCT03503812.
Collapse
Affiliation(s)
- Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | | - Paraskevi Kinni
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Antonis Michanikou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Constantinos Pitsios
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | - Souzana Achilleos
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
- Cyprus International Institute for Environmental and Public Health, School of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Nicos Middleton
- Department of Nursing, Faculty of Health Sciences, Cyprus University of Technology, Limassol, Cyprus
| | | | | | | | | | | | - Chrysanthos Savvides
- Air Quality and Strategic Planning Section, Department of Labour Inspection, Ministry of Labour, Welfare and Social Insurance, Nicosia, Cyprus
| | - Emily Vasiliadou
- Air Quality and Strategic Planning Section, Department of Labour Inspection, Ministry of Labour, Welfare and Social Insurance, Nicosia, Cyprus
| | - Nikos Kalivitis
- Department of Chemistry, University of Crete, Heraklion, Greece
| | - Andreas Chrysanthou
- Department of Meteorology, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Filippos Tymvios
- Department of Meteorology, Ministry of Agriculture, Rural Development and Environment, Heraklion, Cyprus
| | - Stefania I Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, New Brunswick, New Jersey, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Cambridge, Massachusetts, USA
| | | |
Collapse
|
8
|
Salvador P, Pey J, Pérez N, Alastuey A, Querol X, Artíñano B. Estimating the probability of occurrence of African dust outbreaks over regions of the western Mediterranean basin from thermodynamic atmospheric parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171307. [PMID: 38428593 DOI: 10.1016/j.scitotenv.2024.171307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Desert dust is currently recognized as a health risk factor. Therefore, the World Health Organization (WHO) is actively promoting the establishment of early warning systems for sand and dust storms. This study introduces a methodology to estimate the probability of African dust outbreaks occurring in eight different regions of the Iberian Peninsula and the Balearic Islands. In each region, a multilinear regression model was developed to calculate daily probabilities of dust events using three thermodynamic variables (geopotential thickness in the 1000-500 hPa layer, mean potential temperature between 925 and 700 hPa, and temperature anomalies at 850 hPa) as assessment parameters. All days with African dust transport over each study region were identified in the period 2001-2021 using a proven procedure. This information was then utilized to establish a functional relationship between the values of the thermodynamic parameters and the probability of African dust outbreaks occurring. The validation of this methodology involved comparing the daily probabilities of dust events generated by the models in 2001-2021 with the daily African dust contributions to PM10 regional background levels in each region. On average, daily dust contributions increased proportionally with the increase in daily probabilities, reaching zero for days with low probabilities. Furthermore, a well-defined seasonal evolution of probability values was observed in all regions, with the highest values in the summer months and the lowest in the winter period, ensuring the physical relevance of the models' results. Finally, upward trends were observed in all regions for the three thermodynamic parameters over 1940-2021. Thus, the probability of dust events development also increased in this period. It demonstrates that the aggravation of warm conditions in southern Europe in the last decades, have modified the frequency of North-African dust outbreaks over the western Mediterranean basin.
Collapse
Affiliation(s)
- Pedro Salvador
- CIEMAT, Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, Av. Complutense 40, 28040 Madrid, Spain.
| | - Jorge Pey
- Instituto Pirenaico de Ecología (IPE), CSIC, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - Noemí Pérez
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034 Barcelona, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034 Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, c. Jordi Girona 18, 08034 Barcelona, Spain
| | - Begoña Artíñano
- CIEMAT, Department of Environment - Joint Research Unit Atmospheric Pollution CIEMAT-CSIC, Av. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
9
|
Liu J, He C, Si Y, Li B, Wu Q, Ni J, Zhao Y, Hu Q, Du S, Lu Z, Jin J, Xu C. Toward Better and Healthier Air Quality: Global PM 2.5 and O 3 Pollution Status and Risk Assessment Based on the New WHO Air Quality Guidelines for 2021. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300258. [PMID: 38617028 PMCID: PMC11009431 DOI: 10.1002/gch2.202300258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/14/2023] [Indexed: 04/16/2024]
Abstract
To reduce the high burden of disease caused by air pollution, the World Health Organization (WHO) released new Air Quality Guidelines (AQG) on September 22, 2021. In this study, the daily fine particulate matter (PM2.5) and surface ozone (O3) data of 618 cities around the world is collected from 2019 to 2022. Based on the new AQG, the number of attainment days for daily average concentrations of PM2.5 (≤ 15 µg m-3) and O3 (≤ 100 µg m-3) is approximately 10% and 90%, respectively. China and India exhibit a decreasing trend in the number of highly polluted days (> 75 µg m-3) for PM. Every year over 68% and 27% of cities in the world are exposed to harmful PM2.5 (> 35 µg m-3) and O3 (> 100 µg m-3) pollution, respectively. Combined with the United Nations Sustainable Development Goals (SDGs), it is found that more than 35% of the world's cities face PM2.5-O3 compound pollution. Furthermore, the exposure risks in these cities (China, India, etc.) are mainly categorized as "High Risk", "Risk", and "Stabilization". In contrast, economically developed cities are mainly categorized as "High Safety", "Safety", and "Deep Stabilization." These findings indicate that global implementation of the WHO's new AQG will minimize the inequitable exposure risk from air pollution.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Chao He
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Yajun Si
- College of Water Resources and Architectural EngineeringNorthwest A&F UniversityYanglingShaanxi712100China
| | - Bin Li
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Qian Wu
- School of Resource and Environmental ScienceWuhan UniversityWuhanHubei430079China
| | - Jinmian Ni
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Yue Zhao
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Qixin Hu
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Shenwen Du
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Zhendong Lu
- Interdisciplinary Graduate Program in InformaticsThe University of IowaIowa CityIA52242USA
| | - Jiming Jin
- College of Resources and EnvironmentYangtze UniversityWuhan430100China
- Hubei Key Laboratory of Petroleum Geochemistry and EnvironmentYangtze UniversityWuhan430100China
| | - Chao Xu
- College of Resource and EnvironmentXinjiang Agricultural UniversityUrumqi830052China
- Xinjiang Key Laboratory of Soil and Plant Ecological ProcessesUrumqi830052China
| |
Collapse
|
10
|
Savadkoohi M, Pandolfi M, Favez O, Putaud JP, Eleftheriadis K, Fiebig M, Hopke PK, Laj P, Wiedensohler A, Alados-Arboledas L, Bastian S, Chazeau B, María ÁC, Colombi C, Costabile F, Green DC, Hueglin C, Liakakou E, Luoma K, Listrani S, Mihalopoulos N, Marchand N, Močnik G, Niemi JV, Ondráček J, Petit JE, Rattigan OV, Reche C, Timonen H, Titos G, Tremper AH, Vratolis S, Vodička P, Funes EY, Zíková N, Harrison RM, Petäjä T, Alastuey A, Querol X. Recommendations for reporting equivalent black carbon (eBC) mass concentrations based on long-term pan-European in-situ observations. ENVIRONMENT INTERNATIONAL 2024; 185:108553. [PMID: 38460240 DOI: 10.1016/j.envint.2024.108553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.
Collapse
Affiliation(s)
- Marjan Savadkoohi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; Department of Natural Resources & Environment, Industrial & TIC Engineering (EMIT-UPC), Manresa, Spain.
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain.
| | - Olivier Favez
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | - Konstantinos Eleftheriadis
- Environmental Radioactivity & Aerosol Technology for Atmospheric & Climate Impact Lab, INRaSTES, NCSR "Demokritos", Athens, Greece
| | - Markus Fiebig
- Dept. Atmospheric and Climate Research, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine & Dentistry, Rochester, NY, USA; Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, USA
| | - Paolo Laj
- Univ. Grenoble, CNRS, IRD, IGE, 38000 Grenoble, France
| | | | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - Susanne Bastian
- Saxon State Office for Environment, Agriculture and Geology/Saxon State Department for Agricultural and Environmental Operations, Dresden, Germany
| | - Benjamin Chazeau
- Aix Marseille Univ., CNRS, LCE, Marseille, France; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Álvaro Clemente María
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Cristina Colombi
- Arpa Lombardia, Settore Monitoraggi Ambientali, Unità Operativa Qualità dell'Aria, Milano, Italy
| | - Francesca Costabile
- Institute of Atmospheric Sciences and Climate-National Research Council, Rome, Italy
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK; HPRU in Environmental Exposures and Health, Imperial College London, UK
| | - Christoph Hueglin
- Laboratory for Air Pollution and Environmental Technology, Swiss Federal Laboratories for Materials Science and Technology (Empa), Duebendorf, Switzerland
| | - Eleni Liakakou
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | - Krista Luoma
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Stefano Listrani
- ARPA Lazio, Regional Environmental Protection Agency, Rome, Italy
| | - Nikos Mihalopoulos
- Institute for Environmental Research & Sustainable Development, National Observatory of Athens, Athens, Greece
| | | | - Griša Močnik
- Center for Atmospheric Research, University of Nova Gorica, Nova Gorica, 5270, Slovenia; Jozef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Jarkko V Niemi
- Helsinki Region Environmental Services Authority (HSY), Helsinki, Finland
| | - Jakub Ondráček
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Jean-Eudes Petit
- Laboratoire des Sciences du Climat et de l'Environnement, CEA/Orme des Merisiers, Gif-sur-Yvette, France
| | - Oliver V Rattigan
- Division of Air Resources, New York State Dept of Environmental Conservation, NY, USA
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Gloria Titos
- Andalusian Institute for Earth System Research (IISTA-CEAMA), University of Granada, Granada, Spain
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College London, UK
| | - Stergios Vratolis
- Environmental Radioactivity & Aerosol Technology for Atmospheric & Climate Impact Lab, INRaSTES, NCSR "Demokritos", Athens, Greece
| | - Petr Vodička
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Eduardo Yubero Funes
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Naděžda Zíková
- Laboratory of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, Rozvojova, Prague, Czech Republic
| | - Roy M Harrison
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom; Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics (INAR), Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| |
Collapse
|
11
|
Mylonaki M, Gini M, Georgopoulou M, Pilou M, Chalvatzaki E, Solomos S, Diapouli E, Giannakaki E, Lazaridis M, Pandis SN, Nenes A, Eleftheriadis K, Papayannis A. Wildfire and African dust aerosol oxidative potential, exposure and dose in the human respiratory tract. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169683. [PMID: 38160832 DOI: 10.1016/j.scitotenv.2023.169683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Exposure to wildfire smoke and dust can severely affect air quality and health. Although particulate matter (PM) levels and exposure are well-established metrics linking to health outcomes, they do not consider differences in particle toxicity or deposition location in the respiratory tract (RT). Usage of the oxidative potential (OP) exposure may further shape our understanding on how different pollution events impact health. Towards this goal, we estimate the aerosol deposition rates, OP and resulting OP deposition rates in the RT for a typical adult Caucasian male residing in Athens, Greece. We focus on a period when African dust (1-3 of August 2021) and severe wildfires at the northern part of the Attika peninsula and the Evia island, Greece (4-18 of August 2021) affected air quality in Athens. During these periods, the aerosol levels increased twofold leading to exceedances of the World Health Organization (WHO) [15(5) μg m-3] PM10 (PM2.5) air quality standard by almost 100 %. We show that the OP exposure is 1.5-times larger during the wildfire smoke events than during the dust intrusion, even if the latter was present in higher mass loads - because wildfire smoke has a higher specific OP than dust. This result carries two important implications: OP exposure should be synergistically used with other metrics - such as PM levels - to efficiently link aerosol exposure with the resulting health effects, and, certain sources of air pollution (in our case, exposure to biomass burning smoke) may need to be preferentially controlled, whenever possible, owing to their disproportionate contribution to OP exposure and ability to penetrate deeper into the human RT.
Collapse
Affiliation(s)
- Maria Mylonaki
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Meteorological Institute, Ludwig-Maximilians-Universität München, Munich 80333, Germany
| | - Maria Gini
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Maria Georgopoulou
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Marika Pilou
- Thermal Hydraulics and Multiphase Flow Laboratory, INRaSTES, NCSR "Demokritos", Agia Paraskevi 15310, Greece
| | - Eleftheria Chalvatzaki
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Stavros Solomos
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens 10679, Greece
| | - Evangelia Diapouli
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Elina Giannakaki
- Department of Environmental Physics and Meteorology, Faculty of Physics, National and Kapodistrian University of Athens, Athens, Greece
| | - Mihalis Lazaridis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania 73100, Greece
| | - Spyros N Pandis
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Department of Chemical Engineering, University of Patras, Patras 26504, Greece
| | - Athanasios Nenes
- Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| | - Konstantinos Eleftheriadis
- ENRACT, Institute of Nuclear & Radiological Sciences and Technology, Energy & Safety, N.C.S.R. "Demokritos", Ag. Paraskevi 15310, Greece
| | - Alexandros Papayannis
- Laser Remote Sensing Unit, Department of Physics, National and Technical University of Athens, Zografou 15780, Greece; Laboratory of Atmospheric Processes and their Impacts, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.
| |
Collapse
|
12
|
Forello AC, Cunha-Lopes I, Almeida SM, Alves CA, Tchepel O, Crova F, Vecchi R. Insights on the combination of off-line and on-line measurement approaches for source apportionment studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165860. [PMID: 37516189 DOI: 10.1016/j.scitotenv.2023.165860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
This paper presents a source apportionment study performed on a dataset collected at a trafficked site in Coimbra (Portugal) during the period December 2018-June 2019. The novelty of this work consists in the methodological approach used and the sensitivity study carried out to give hints to potential future applications. Indeed, a multi-time resolution and multi-parameter study was performed joining together aerosol data from 24-h chemically characterized samples and high-time resolution multi-wavelength absorption coefficients retrieved by an Aethalometer. A detailed sensitivity study on the most suitable combination of time resolution and uncertainties was carried out to obtain reliable physical and stable solutions over all analyses. In parallel, a regular EPA-PMF source apportionment study using chemical and optical variables averaged on 24 h is presented and discussed in comparison to the more complex multi-time and multi-parameter approach. Apart from results pertaining to the identification and relevance of different sources in Coimbra, the methodological results shown here can give guidance for readers who want to implement optical variables jointly with chemical ones in the same model run.
Collapse
Affiliation(s)
- Alice C Forello
- Department of Physics, Università degli Studi di Milano, Milan 20133, Italy; National Institute of Nuclear Physics INFN-Milan, Milan 20133, Italy
| | - Inés Cunha-Lopes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela-LRS, Portugal
| | - Susana M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela-LRS, Portugal
| | - Célia A Alves
- Centre of Environmental and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Oxana Tchepel
- CITTA, Faculty of Sciences and Technology, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Federica Crova
- Department of Physics, Università degli Studi di Milano, Milan 20133, Italy; National Institute of Nuclear Physics INFN-Milan, Milan 20133, Italy
| | - Roberta Vecchi
- Department of Physics, Università degli Studi di Milano, Milan 20133, Italy; National Institute of Nuclear Physics INFN-Milan, Milan 20133, Italy.
| |
Collapse
|
13
|
Turner MC, Andersen ZJ, Neira M, Krzyzanowski M, Malmqvist E, González Ortiz A, Kiesewetter G, Katsouyanni K, Brunekreef B, Melén E, Ljungman P, Tolotto M, Forastiere F, Dendale P, Price R, Bakke O, Reichert S, Hoek G, Pershagen G, Peters A, Querol X, Gerometta A, Samoli E, Markevych I, Basthiste R, Khreis H, Pant P, Nieuwenhuijsen M, Sacks JD, Hansen K, Lymes T, Stauffer A, Fuller GW, Boogaard H, Hoffmann B. Clean air in Europe for all! Taking stock of the proposed revision to the ambient air quality directives: a joint ERS, HEI and ISEE workshop report. Eur Respir J 2023; 62:2301380. [PMID: 37827574 PMCID: PMC10894647 DOI: 10.1183/13993003.01380-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Ambient air pollution is a major public health concern and comprehensive new legislation is currently being considered to improve air quality in Europe. The European Respiratory Society (ERS), Health Effects Institute (HEI), and International Society for Environmental Epidemiology (ISEE) organised a joint meeting on May 24, 2023 in Brussels, Belgium, to review and critically evaluate the latest evidence on the health effects of air pollution and discuss ongoing revisions of the European Ambient Air Quality Directives (AAQDs). A multi-disciplinary expert group of air pollution and health researchers, patient and medical societies, and policy representatives participated. This report summarises key discussions at the meeting.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maria Neira
- World Health Organization (WHO), Geneva, Switzerland
| | | | | | | | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | | | - Erik Melén
- Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Paul Dendale
- European Society of Cardiology (ESC), Sophia Antipolis, France
| | - Richard Price
- European Cancer Organisation (ECO), Brussels, Belgium
| | - Ole Bakke
- Standing Committee of European Doctors (CPME), Brussels, Belgium
| | - Sibylle Reichert
- International Association of Mutual Benefit Societies (AIM), Brussels, Belgium
| | - Gerard Hoek
- Utrecht University, Utrecht, The Netherlands
| | | | - Annette Peters
- Helmholtz München - German Center for Environmental Health, Neuherberg, Germany
- IBE, Medical Faculty, Ludwig Maximilians Universität, Munich, Germany
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | | | - Evangelia Samoli
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
- Health and Quality of Life in a Green and Sustainable Environment, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jason D Sacks
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Kjeld Hansen
- European Lung Foundation, Sheffield, UK
- Kristiania University College, Oslo, Norway
| | | | | | - Gary W Fuller
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | | | | |
Collapse
|
14
|
Alonso-Pérez S, López-Solano J. Long-Term Analysis of Aerosol Concentrations Using a Low-Cost Sensor: Monitoring African Dust Outbreaks in a Suburban Environment in the Canary Islands. SENSORS (BASEL, SWITZERLAND) 2023; 23:7768. [PMID: 37765825 PMCID: PMC10535801 DOI: 10.3390/s23187768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
This study presents the results of the long-term monitoring of PM10 and PM2.5 concentrations using a low-cost particle sensor installed in a suburban environment in the Canary Islands. A laser-scattering Nova Fitness SDS011 sensor was operated continuously for approximately three and a half years, which is longer than most other studies using this type of sensor. The impact of African dust outbreaks on the aerosol concentrations was assessed, showing a significant increase in both PM10 and PM2.5 concentrations during the outbreaks. Additionally, a good correlation was found with a nearby reference instrument of the air quality network of the Canary Islands' government. The correlation between the PM10 and PM2.5 concentrations, the effect of relative humidity, and the stability of the sensor were also investigated. This study highlights the potential of this kind of sensor for long-term air quality monitoring with a view to developing extensive and dense low-cost air quality networks that are complementary to official air quality networks.
Collapse
Affiliation(s)
- Silvia Alonso-Pérez
- Departamento. de Ingeniería Industrial, Escuela Superior de Ingeniería y Tecnología, Universidad de La Laguna, 38206 San Cristóbal de La Laguna, Spain
| | - Javier López-Solano
- Izaña Atmospheric Research Center, AEMET, 38001 Santa Cruz de Tenerife, Spain
| |
Collapse
|
15
|
Kosmopoulos G, Salamalikis V, Wilbert S, Zarzalejo LF, Hanrieder N, Karatzas S, Kazantzidis A. Investigating the Sensitivity of Low-Cost Sensors in Measuring Particle Number Concentrations across Diverse Atmospheric Conditions in Greece and Spain. SENSORS (BASEL, SWITZERLAND) 2023; 23:6541. [PMID: 37514835 PMCID: PMC10383866 DOI: 10.3390/s23146541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Low-cost sensors (LCSs) for particulate matter (PM) concentrations have attracted the interest of researchers, supplementing their efforts to quantify PM in higher spatiotemporal resolution. The precision of PM mass concentration measurements from PMS 5003 sensors has been widely documented, though limited information is available regarding their size selectivity and number concentration measurement accuracy. In this work, PMS 5003 sensors, along with a Federal Referral Methods (FRM) sampler (Grimm spectrometer), were deployed across three sites with different atmospheric profiles, an urban (Germanou) and a background (UPat) site in Patras (Greece), and a semi-arid site in Almería (Spain, PSA). The LCSs particle number concentration measurements were investigated for different size bins. Findings for particles with diameter between 0.3 and 10 μm suggest that particle size significantly affected the LCSs' response. The LCSs could accurately detect number concentrations for particles smaller than 1 μm in the urban (R2 = 0.9) and background sites (R2 = 0.92), while a modest correlation was found with the reference instrument in the semi-arid area (R2 = 0.69). However, their performance was rather poor (R2 < 0.31) for coarser aerosol fractions at all sites. Moreover, during periods when coarse particles were dominant, i.e., dust events, PMS 5003 sensors were unable to report accurate number distributions (R2 values < 0.47) and systematically underestimated particle number concentrations. The results indicate that several questions arise concerning the sensors' capabilities to estimate PM2.5 and PM10 concentrations, since their size distribution did not agree with the reference instruments.
Collapse
Affiliation(s)
- Georgios Kosmopoulos
- Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras, Greece
| | | | - Stefan Wilbert
- Institute of Solar Research, German Aerospace Center (DLR), Paseo de Almería 73, 04001 Almería, Spain
| | - Luis F Zarzalejo
- Renewable Energy Division, CIEMAT Energy Department, Avenida Complutense, 40, 28040 Madrid, Spain
| | - Natalie Hanrieder
- Institute of Solar Research, German Aerospace Center (DLR), Paseo de Almería 73, 04001 Almería, Spain
| | - Stylianos Karatzas
- Civil Engineering Department, University of Patras, GR 26500 Patras, Greece
| | - Andreas Kazantzidis
- Laboratory of Atmospheric Physics, Department of Physics, University of Patras, GR 26500 Patras, Greece
| |
Collapse
|
16
|
Calatayud V, Diéguez JJ, Agathokleous E, Sicard P. Machine learning model to predict vehicle electrification impacts on urban air quality and related human health effects. ENVIRONMENTAL RESEARCH 2023; 228:115835. [PMID: 37019297 DOI: 10.1016/j.envres.2023.115835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/16/2023]
Abstract
Air pollution is a prevailing environmental problem in cities worldwide. The future vehicle electrification (VE), which in Europe will be importantly fostered by the ban of thermal engines from 2035, is expected to have an important effect on urban air quality. Machine learning models represent an optimal tool for predicting changes in air pollutants concentrations in the context of future VE. For the city of Valencia (Spain), a XGBoost (eXtreme Gradient Boosting package) model was used in combination with SHAP (SHapley Additive exPlanations) analysis, both to investigate the importance of different factors explaining air pollution concentrations and predicting the effect of different levels of VE. The model was trained with 5 years of data including the COVID-19 lockdown period in 2020, in which mobility was strongly reduced resulting in unprecedent changes in air pollution concentrations. The interannual meteorological variability of 10 years was also considered in the analyses. For a 70% VE, the model predicted: 1) improvements in nitrogen dioxide pollution (-34% to -55% change in annual mean concentrations, for the different air quality stations), 2) a very limited effect on particulate matter concentrations (-1 to -4% change in annual means of PM2.5 and PM10), 3) heterogeneous responses in ground-level ozone concentrations (-2% to +12% change in the annual means of the daily maximum 8-h average concentrations). Even at a high VE increase of 70%, the 2021 World Health Organization Air Quality Guidelines will be exceeded for all pollutants in some stations. VE has a potentially important impact in terms of reducing NO2-associated premature mortality, but complementary strategies for reducing traffic and controlling all different air pollution sources should also be implemented to protect human health.
Collapse
Affiliation(s)
- V Calatayud
- Fundación CEAM, Parque Tecnológico, C/Charles R. Darwin, 14, Paterna, Spain.
| | - J J Diéguez
- Fundación CEAM, Parque Tecnológico, C/Charles R. Darwin, 14, Paterna, Spain
| | - E Agathokleous
- Institute of Ecology, Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - P Sicard
- ARGANS, 260 Route Du Pin Montard, Biot, France
| |
Collapse
|
17
|
Liu T, Duan F, Ma Y, Ma T, Zhang Q, Xu Y, Li F, Huang T, Kimoto T, Zhang Q, He K. Classification and sources of extremely severe sandstorms mixed with haze pollution in Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121154. [PMID: 36736562 DOI: 10.1016/j.envpol.2023.121154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Air quality has significantly improved in China; however, new challenges emerge when dust weather is combined with haze pollution during spring in northern China. On March 15, 2021, an extremely severe sandstorm occurred in Beijing, with hourly maximum PM10 and PM2.5 concentrations reaching 5267.7 μg m-3 and 963.9 μg m-3, respectively. Continuous sandstorm events usually lead to complicated pollution status in spring. Three pollution types were identified disregarding the time sequence throughout March. The secondary formation type was dominant, with high ratios of PM2.5/PM10 (mean 74%) and PM1/PM2.5 (mean 52%). This suggests that secondary transformations are the primary cause of heavy pollution, even during the dry seasons. Sandstorm type resulted in dramatic PM10 levels, with a noticeable decrease in PM2.5/PM10 levels (27%), although PM2.5 levels remain high. The transitional pollution type was distinguished by an independent increase in PM10 levels, although PM2.5 and PM1 levels differed from the PM10 levels. Throughout March, the sulfur oxidation rate varied considerably, with high levels during most periods (mean 0.52). A strong correlation indicated that relative humidity was the primary variable promoting the formation of secondary sulfate. Sandstorms promote heterogeneous reactions by providing abundant reaction surfaces from mineral particles, therefore aggravating secondary pollution. The sandstorm air mass from the northwest passing through the sand sources of Mongolia carried not only crustal matter but also organic components, such as bioaerosols, resulting in a sharp increase in the organic carbon in PM2.5.
Collapse
Affiliation(s)
- Tianyi Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fengkui Duan
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Yongliang Ma
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tao Ma
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Qinqin Zhang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunzhi Xu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Fan Li
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Tao Huang
- Kimoto Electric Co., Ltd, 3-1 Funahashi-cho Tennoji-ku, Osaka, 543-0024, Japan
| | - Takashi Kimoto
- Kimoto Electric Co., Ltd, 3-1 Funahashi-cho Tennoji-ku, Osaka, 543-0024, Japan
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Kebin He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
Kouis P, Michanikou A, Galanakis E, Michaelidou E, Dimitriou H, Perez J, Kinni P, Achilleos S, Revvas E, Stamatelatos G, Zacharatos H, Savvides C, Vasiliadou E, Kalivitis N, Chrysanthou A, Tymvios F, Papatheodorou SI, Koutrakis P, Yiallouros PK. Responses of schoolchildren with asthma to recommendations to reduce desert dust exposure: Results from the LIFE-MEDEA intervention project using wearable technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160518. [PMID: 36573449 DOI: 10.1016/j.scitotenv.2022.160518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Current public health recommendations for desert dust storms (DDS) events focus on vulnerable population groups, such as children with asthma, and include advice to stay indoors and limit outdoor physical activity. To date, no scientific evidence exists on the efficacy of these recommendations in reducing DDS exposure. We aimed to objectively assess the behavioral responses of children with asthma to recommendations for reduction of DDS exposure. In two heavily affected by DDS Mediterranean regions (Cyprus & Crete, Greece), schoolchildren with asthma (6-11 years) were recruited from primary schools and were randomized to control (business as usual scenario) and intervention groups. All children were equipped with pedometer and GPS sensors embedded in smartwatches for objective real-time data collection from inside and outside their classroom and household settings. Interventions included the timely communication of personal DDS alerts accompanied by exposure reduction recommendations to both the parents and school-teachers of children in the intervention group. A mixed effect model was used to assess changes in daily levels of time spent, and steps performed outside classrooms and households, between non-DDS and DDS days across the study groups. The change in the time spent outside classrooms and homes, between non-DDS and DDS days, was 37.2 min (pvalue = 0.098) in the control group and -62.4 min (pvalue < 0.001) in the intervention group. The difference in the effects between the two groups was statistically significant (interaction pvalue < 0.001). The change in daily steps performed outside classrooms and homes, was -495.1 steps (pvalue = 0.350) in the control group and -1039.5 (pvalue = 0.003) in the intervention group (interaction pvalue = 0.575). The effects on both the time and steps performed outside were more profound during after-school hours. To summarize, among children with asthma, we demonstrated that timely personal DDS alerts and detailed recommendations lead to significant behavioral changes in contrast to the usual public health recommendations.
Collapse
Affiliation(s)
- Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Antonis Michanikou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | | | | | - Helen Dimitriou
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Julietta Perez
- Medical School, University of Crete, Heraklion, Crete, Greece
| | - Paraskevi Kinni
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Souzana Achilleos
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus; Cyprus International Institute for Environmental & Public Health, Cyprus University of Technology, Limassol, Cyprus
| | | | | | | | - Chrysanthos Savvides
- Air Quality and Strategic Planning Section, Department of Labour Inspection, Ministry of Labour and Social Insurance, Nicosia, Cyprus
| | - Emily Vasiliadou
- Air Quality and Strategic Planning Section, Department of Labour Inspection, Ministry of Labour and Social Insurance, Nicosia, Cyprus
| | - Nikos Kalivitis
- Department of Chemistry, University of Crete, Heraklion, Crete, Greece
| | | | | | - Stefania I Papatheodorou
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard TH Chan School of Public Health, Harvard University, Boston, USA
| | | |
Collapse
|
19
|
Das S, Prospero JM, Chellam S. Quantifying international and interstate contributions to primary ambient PM 2.5 and PM 10 in a complex metropolitan atmosphere. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 292:119415. [PMID: 36937802 PMCID: PMC10022636 DOI: 10.1016/j.atmosenv.2022.119415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We quantify the contributions of long-range and regionally transported aerosols to ambient primary PM2.5 and PM10 in a representative United States industrialized/urban atmosphere via detailed elemental analysis and chemical mass balance (CMB) modeling after identifying their presence using a variety of publicly available satellite data/information, software products, and synoptic-scale aerosol models. A year-long study in Houston, Texas identified North African dust as the principal long-range global source of primary particulate matter (PM). CMB estimated transatlantic dust from the Sahara-Sahel region to be dominant in the summer months contributing an average of 3.5 μg m-3 to PM2.5 and 7.9 μg m-3 to PM10 during May-August, i.e., the active Saharan dust season. Biomass burning was the chief source of regionally transported PM impacting air quality on different occasions throughout the year depending on the fire location. Four major biomass combustion events affecting air quality in Texas were calculated to contribute an average of 1.3 μg m-3 to PM2.5 and 1.4 μg m-3 to PM10 in corresponding samples whose origins were tracked to Canada, southeastern states of USA, and Central America using fire maps, HYSPLIT back trajectories, and the Navy Aerosol Analysis and Prediction System global aerosol model. Elemental concentrations and signature ratios revealed significant mixing of potassium, rare earth metals, and vanadium from proximal and distal crustal (natural) sources with anthropogenically emitted PM. This demonstrates the need to isolate the non-mineral components of these metals to employ them as tracers for primary PM emitted by biomass burning, petroleum refineries, and oil combustion. Transboundary contributions to primary PM2.5 were 1.5 μg m-3 and 3.1 μg m-3 to PM10 adding 16% to annual average mass concentration of both size fractions demonstrating that local sources were primarily responsible for ambient air quality with non-trivial contributions from international and interstate sources. Rigorously identifying and quantifying aerosol sources assists in improving air quality management policies designed to protect public health and comply with ever-decreasing federal PM standards that allow state agencies to exclude contributions that are not reasonably controllable or preventable from regulatory decisions and actions.
Collapse
Affiliation(s)
- Sourav Das
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph M. Prospero
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Shankararaman Chellam
- Zachry Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, 77843, USA
| |
Collapse
|
20
|
Rodríguez-Arias RM, Rojo J, Fernández-González F, Pérez-Badia R. Desert dust intrusions and their incidence on airborne biological content. Review and case study in the Iberian Peninsula. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120464. [PMID: 36273688 DOI: 10.1016/j.envpol.2022.120464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/27/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Desert dust intrusions cause the transport of airborne particulate matter from natural sources, with important consequences for climate regulation, biodiversity, ecosystem functioning and dynamics, human health, and socio-economic activities. Some effects of desert intrusions are reinforced or aggravated by the bioaerosol content of the air during these episodes. The influence of desert intrusions on airborne bioaerosol content has been very little studied from a scientific point of view. In this study, a systematic review of scientific literature during 1970-2021 was carried out following the standard protocol Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). After this literature review, only 6% of the articles on airborne transport from desert areas published in the last 50 years are in some way associated with airborne pollen, and of these, only a small proportion focus on the study of pollen-related parameters. The Iberian Peninsula is affected by Saharan intrusions due to its proximity to the African continent and is seeing an increasing trend the number of intrusion events. There is a close relationship among the conditions favouring the occurrence of intrusion episodes, the transport of particulate matter, and the transport of bioaerosols such as pollen grains, spores, or bacteria. The lack of linearity in this relationship and the different seasonal patterns in the occurrence of intrusion events and the pollen season of most plants hinders the study of the correspondence between both phenomena. It is therefore important to analyse the proportion of pollen that comes from regional sources and the proportion that travels over long distances, and the atmospheric conditions that cause greater pollen emission during dust episodes. Current advances in aerobiological techniques make it possible to identify bioaerosols such as pollen and spores that serve as indicators of long-distance transport from remote areas belonging to other bioclimatic and biogeographical units. A greater incidence of desert intrusion episodes may pose a challenge for both traditional systems and for the calibration and correct validation of automatic aerobiological monitoring methods.
Collapse
Affiliation(s)
- R M Rodríguez-Arias
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - J Rojo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - F Fernández-González
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain
| | - R Pérez-Badia
- University of Castilla-La Mancha, Institute of Environmental Sciences (Botany), Toledo, Spain.
| |
Collapse
|
21
|
Avdoulou MM, Golfinopoulos AG, Kalavrouziotis IK. Monitoring Air Pollution in Greek Urban Areas During the Lockdowns, as a Response Measure of SARS-CoV-2 (COVID-19). WATER, AIR, AND SOIL POLLUTION 2022; 234:13. [PMID: 36575694 PMCID: PMC9782276 DOI: 10.1007/s11270-022-06024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
On March 11, 2020, the World Health Organization declared COVID-19 (SARS-CoV-2) a pandemic. Countries all over the world imposed restriction measures, in an attempt to limit the expansion of the pandemic. Provided that human activities in large urban areas affect air quality, we studied the concentrations of gaseous pollutants ΝΟ, ΝΟ2, O3, C6H6, and particulate matter PM10 in the air, through gas pollution measuring stations in the center of Athens (Greek capital), the center of Piraeus (Greece's largest port), Athens International Airport (most international and domestic flights within Greece). We monitored and compared the concentrations of ΝΟ, ΝΟ2, O3, C6H6, and ΡΜ10, of 2020 to those of the previous years and found that the primary air pollutants, ΝΟ, ΝΟ2, and C6H6, recorded decreased compared to those of the past years. The O3, which is produced secondarily at the ground of the earth being inversely dependent on NO/NO2, had in most cases increased. The particulate matter PM10, although reduced by the cessation of human activities, was inextricably linked to natural conditions, such as wind velocity and direction transporting African desert dust masses through storms, during which at certain periods was showing increased in concentrations. Supplementary Information The online version contains supplementary material available at 10.1007/s11270-022-06024-7.
Collapse
|
22
|
Barnaba F, Alvan Romero N, Bolignano A, Basart S, Renzi M, Stafoggia M. Multiannual assessment of the desert dust impact on air quality in Italy combining PM10 data with physics-based and geostatistical models. ENVIRONMENT INTERNATIONAL 2022; 163:107204. [PMID: 35366556 DOI: 10.1016/j.envint.2022.107204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Desert dust storms pose real threats to air quality and health of millions of people in source regions, with associated impacts extending to downwind areas. Europe (EU) is frequently affected by atmospheric transport of desert dust from the Northern Africa and Middle East drylands. This investigation aims at quantifying the role of desert dust transport events on air quality (AQ) over Italy, which is among the EU countries most impacted by this phenomenon. We focus on the particulate matter (PM) metrics regulated by the EU AQ Directive. In particular, we use multiannual (2006-2012) PM10 records collected in hundreds monitoring sites within the national AQ network to quantify daily and annual contributions of dust during transport episodes. The methodology followed was built on specific European Commission guidelines released to evaluate the natural contributions to the measured PM-levels, and was partially modified, tested and adapted to the Italian case in a previous study. Overall, we show that impact of dust on the yearly average PM10 has a clear latitudinal gradient (from less than 1 to greater than 10 µg/m3 going from north to south Italy), this feature being mainly driven by an increased number of dust episodes per year with decreasing latitude. Conversely, the daily-average dust-PM10 (≅12 µg/m3) is more homogenous over the country and shown to be mainly influenced by the site type, with enhanced values in more urbanized locations. This study also combines the PM10 measurements-approach with geostatistical modelling. In particular, exploiting the dust-PM10 dataset obtained at site- and daily-resolution over Italy, a geostatistical, random-forest model was set up to derive a daily, spatially-continuous field of desert-dust PM10 at high (1-km) resolution. This finely resolved information represent the basis for a follow up investigation of both acute and chronic health effects of desert dust over Italy, stemming from daily and annual exposures, respectively.
Collapse
Affiliation(s)
- Francesca Barnaba
- National Research Council, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy.
| | - Nancy Alvan Romero
- National Research Council, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Rome, Italy; University of Rome 'La Sapienza', Department of Information Engineering, Electronics and Telecommunications (DIET), Rome, Italy(1)
| | - Andrea Bolignano
- Environmental Protection Agency of the Lazio Region, ARPA-Lazio, Rome, Italy
| | - Sara Basart
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Matteo Renzi
- Department of Epidemiology (DEP), Lazio Region Health Service / ASL Roma 1, Rome, Italy
| | - Massimo Stafoggia
- Department of Epidemiology (DEP), Lazio Region Health Service / ASL Roma 1, Rome, Italy
| |
Collapse
|
23
|
Iakovides M, Tsiamis G, Tziaras T, Stathopoulou P, Nikolaki S, Iakovides G, Stephanou EG. Two-year systematic investigation reveals alterations induced on chemical and bacteriome profile of PM 2.5 by African dust incursions to the Mediterranean atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151976. [PMID: 34843760 DOI: 10.1016/j.scitotenv.2021.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 atmospheric samples were regularly collected between January 2013 and March 2015 at a central location of Eastern Mediterranean (Island of Crete) during African dust events (DES) and periods of absence of such episodes as controls (CS). The elemental composition and microbiome DES and CS were thoroughly investigated. Fifty-six major and trace elements were determined by inductively coupled plasma-mass spectrometry. Relative mass abundances (RMA) of major crustal elements and lanthanoids were higher in DES than in CS. Conversely in CS, RMAs were higher for most anthropogenic transition metals. Lanthanum-to-other lanthanoids concentration ratios for DES approached the corresponding reference values for continental crust and several African dust source regions, while in CS they exceeded these values. USEPA's UNMIX receptor model, applied in all PM2.5 samples, established that African dust is the dominant contributing source (by 80%) followed by road dust/fuel oil emissions (17%) in the receptor area. Potential source contribution function (PSCF) identified dust hotspots in Tunisia, Libya and Egypt. The application of 16S rRNA gene amplicon sequencing revealed high variation of bacterial composition and diversity between DES and CS samples. Proteobacteria, Actinobacteria and Bacteroides were the most dominant in both DES and CS samples, representing ~88% of the total bacterial diversity. Cutibacterium, Tumebacillus and Sphingomonas dominated the CS samples, while Rhizobium and Brevundimonas were the most prevalent genera in DES. Mutual exclusion/co-occurrence network analysis indicated that Sphingomonas and Chryseobacterium exhibited the highest degrees of mutual exclusion in CS, while in DES the corresponding species were Brevundimonas, Delftia, Rubellimicrobium, Flavobacterium, Blastococcus, and Pseudarthrobacter. Some of these microorganisms are emerging global opportunistic pathogens and an increase in human exposure to them as a result of environmental changes, is inevitable.
Collapse
Affiliation(s)
- Minas Iakovides
- Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | | | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Sofia Nikolaki
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Giannis Iakovides
- Department of Mathematics and Applied Mathematics, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
24
|
Gini M, Manousakas M, Karydas AG, Eleftheriadis K. Mass size distributions, composition and dose estimates of particulate matter in Saharan dust outbreaks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118768. [PMID: 34990737 DOI: 10.1016/j.envpol.2021.118768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The present study highlights the importance of examining the contribution of Saharan dust (SD) sources not only in terms of overall mass contribution but also in terms of composition, size distribution and inhaled dose. The effect of SD intrusions on PM and the respective major and trace metals mass concentrations and size distributions was investigated in a suburban site in Athens, Greece. SD events were associated, on average, with lower boundary layer heights (BLH) compared to the non-Sahara (nSD) dust days. During SD events, PM1-10 concentrations showed an increasing trend with increasing atmospheric BLH, in contrary to the fine PM (PM1). Generally, increased PM1 and CO (i.e. anthropogenic origin) levels were observed for BLH lower than around 500 m. The average contribution of SD to PM10 and PM2.5 mass concentration was roughly equal to 30.9% and 19.4%, respectively. The mass size distributions of PM and specific major and trace elements (Na, Al, Si, S, Cl, K, Ca, Fe, and Zn) displayed a somewhat different behavior with respect to the mass origin (Algeria-Tunisia vs Libya-Egypt), affecting in turn the regional deposition of inhaled aerosol in the human respiratory tract (HRT). The average PM deposited mass in the upper and lower HRT was 80.1% (Head) and 26.9% (Lung; Tracheobronchial and Pulmonary region) higher for SD days than for nSD days. Higher doses were estimated in the upper and lower HRT for the majority of the elements, when SD intrusions occurred, supporting the increasingly growing interest in exploring the health effects of SD. Only the mass deposition for S, and Na in the lower HRT and Zn in the upper HRT was higher in the case of nSD.
Collapse
Affiliation(s)
- M Gini
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, Athens, 15310, Greece.
| | - M Manousakas
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, Athens, 15310, Greece; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - A G Karydas
- Institute of Nuclear and Particle Physics, N.C.S.R. "Demokritos", 15310, Agia Paraskevi, Athens, Greece
| | - K Eleftheriadis
- Environmental Radioactivity Laboratory, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. "Demokritos", Agia Paraskevi, Athens, 15310, Greece
| |
Collapse
|
25
|
Luo H, Wang Q, Guan Q, Ma Y, Ni F, Yang E, Zhang J. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126878. [PMID: 34418825 DOI: 10.1016/j.jhazmat.2021.126878] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, the potential hazards of heavy metals in dust storms were investigated by collecting dust storm samples, measuring their heavy metal concentrations, and using index evaluation, spatial analysis, positive matrix factorization (PMF) model and risk assessment model. Heavy metals in dust storms were contaminated by anthropogenic sources leading to their concentrations being higher than the background values. The enrichment factors and geoaccumulation indices showed that the heavy metals came from both natural and anthropogenic sources, Cu, Ni, Zn and Pb are strongly influenced by anthropogenic sources. Heavy metals in dust storms were divided into four sources: Cu and Ni were attributed to industrial sources mainly from local mining and metal processing; Cr was mainly contributed by industrial sources related to industrial production such as coal combustion; Pb and Zn were mainly contributed by transportation sources; and Ti, V, Mn, Fe, and As were from natural and agricultural sources. The level of comprehensive ecological risk of heavy metals in dust storms were low, but there were moderate and above risks at individual sites. Both adults and children had the highest carcinogenic and non-carcinogenic risks from the ingestion route, and the risk for children was higher than that for adults.
Collapse
Affiliation(s)
- Haiping Luo
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingzheng Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qingyu Guan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Yunrui Ma
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Ni
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Enqi Yang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jun Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Abera A, Friberg J, Isaxon C, Jerrett M, Malmqvist E, Sjöström C, Taj T, Vargas AM. Air Quality in Africa: Public Health Implications. Annu Rev Public Health 2021; 42:193-210. [PMID: 33348996 DOI: 10.1146/annurev-publhealth-100119-113802] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review highlights the importance of air quality in the African urban development process. We address connections between air pollution and (a) rapid urbanization, (b) social problems, (c) health impacts, (d) climate change, (e) policies, and (f) new innovations. We acknowledge that air pollution levels in Africa can be extremely high and a serious health threat. The toxic content of the pollution could relate to region-specific sources such as low standards for vehicles and fuels, cooking with solid fuels, and burning household waste. We implore the pursuit of interdisciplinary research to create new approaches with relevant stakeholders. Moreover, successful air pollution research must regard conflicts, tensions, and synergies inherent to development processes in African municipalities, regions, and countries. This includes global relationships regarding climate change, trade, urban planning, and transportation. Incorporating aspects of local political situations (e.g., democracy) can also enhance greater political accountability and awareness about air pollution.
Collapse
Affiliation(s)
- Asmamaw Abera
- Department of Public Health, Addis Ababa University, 9086 Addis Ababa, Ethiopia
| | - Johan Friberg
- Division of Nuclear Physics, Faculty of Engineering, Lund University, 223 63 Lund, Sweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Lund University, 223 62 Lund, Sweden;
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, California 90095, USA
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden;
| | - Cheryl Sjöström
- Centre for Environmental and Climate Science, Lund University, 221 00 Lund, Sweden
| | - Tahir Taj
- Division of Occupational and Environmental Medicine, Lund University, 221 00 Lund, Sweden
| | | |
Collapse
|
27
|
Millán-Martínez M, Sánchez-Rodas D, Sánchez de la Campa AM, de la Rosa J. Contribution of anthropogenic and natural sources in PM10 during North African dust events in Southern Europe. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118065. [PMID: 34523517 DOI: 10.1016/j.envpol.2021.118065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The influence of North African (NAF) dust events on the air quality at the regional level (12 representative monitoring stations) in Southern Europe during a long time series (2007-2014) was studied. PM10 levels and chemical composition were separated by Atlantic (ATL) and NAF air masses. An increase in the average PM10 concentrations was observed on sampling days with NAF dust influence (42 μg m-3) when compared to ATL air masses (29 μg m-3). Major compounds such as crustal components and secondary inorganic compounds (SIC), as well as toxic trace elements derived from industrial emissions, also showed higher concentrations of NAF events. A source contribution analysis using positive matrix factorisation (PMF) 5.0 of the PM10 chemical data, discriminating ATL and NAF air mass origins, allowed the identification of five sources: crustal, sea salt, traffic, regional, and industrial. A higher contribution (74%) of the natural sources to PM10 concentrations was confirmed under NAF episodes compared with ATL. Furthermore, there was an increase in anthropogenic sources during these events (51%), indicating the important influence of the NAF air masses on these sources. The results of this study highlight that environmental managers should take appropriate actions to reduce local emissions during NAF events to ensure good air quality.
Collapse
Affiliation(s)
- María Millán-Martínez
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, 21071, Huelva, Spain.
| | - Daniel Sánchez-Rodas
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071, Huelva, Spain; Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, 21071, Huelva, Spain
| | - Ana M Sánchez de la Campa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071, Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071, Huelva, Spain
| | - Jesús de la Rosa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071, Huelva, Spain; Department of Earth Science, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, 21071, Huelva, Spain
| |
Collapse
|
28
|
Veld MI', Alastuey A, Pandolfi M, Amato F, Pérez N, Reche C, Via M, Minguillón MC, Escudero M, Querol X. Compositional changes of PM 2.5 in NE Spain during 2009-2018: A trend analysis of the chemical composition and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148728. [PMID: 34328931 DOI: 10.1016/j.scitotenv.2021.148728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
In this work, time-series analyses of the chemical composition and source contributions of PM2.5 from an urban background station in Barcelona (BCN) and a rural background station in Montseny (MSY) in northeastern Spain from 2009 to 2018 were investigated and compared. A multisite positive matrix factorization analysis was used to compare the source contributions between the two stations, while the trends for both the chemical species and source contributions were studied using the Theil-Sen trend estimator. Between 2009 and 2018, both stations showed a statistically significant decrease in PM2.5 concentrations, which was driven by the downward trends of levels of chemical species and anthropogenic source contributions, mainly from heavy oil combustion, mixed combustion, industry, and secondary sulfate. These source contributions showed a continuous decrease over the study period, signifying the continuing success of mitigation strategies, although the trends of heavy oil combustion and secondary sulfate have flattened since 2016. Secondary nitrate also followed a significant decreasing trend in BCN, while secondary organic aerosols (SOA) very slightly decreased in MSY. The observed decreasing trends, in combination with the absence of a trend for the organic aerosols (OA) at both stations, resulted in an increase in the relative proportion of OA in PM2.5 by 12% in BCN and 9% in MSY, mostly from SOA, which increased by 7% in BCN and 4% in MSY. Thus, at the end of the study period, OA accounted for 40% and 50% of the annual mean PM2.5 at BCN and MSY, respectively. This might have relevant implications for air quality policies aiming at abating PM2.5 in the study region and for possible changes in toxicity of PM2.5 due to marked changes in composition and source apportionment.
Collapse
Affiliation(s)
- Marten In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona 08034, Spain.
| | - Andres Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marco Pandolfi
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Fulvio Amato
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Noemi Pérez
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Cristina Reche
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Marta Via
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Applied Physics, University of Barcelona, Barcelona 08028, Spain
| | - María Cruz Minguillón
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Miguel Escudero
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza 50090, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| |
Collapse
|
29
|
Rojo J, Moreno JM, Romero-Morte J, Lara B, Elvira-Rendueles B, Negral L, Fernández-González F, Moreno-Grau S, Pérez-Badia R. Causes of increased pollen exposure during Saharan-Sahel dust intrusions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117441. [PMID: 34062432 DOI: 10.1016/j.envpol.2021.117441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Airborne particulate matter such as mineral dust comes mainly from natural sources, and the African regions of Sahara and Sahel originate large amounts of the aerosols dispersed worldwide. There is little knowledge about the influence of dust episodes on airborne pollen concentrations, and although the centre and southeast of the Iberian Peninsula are frequently affected by dust intrusions, until now, no specific works have analysed the effect of these episodes on airborne pollen concentrations in these areas. The aims of this study were to analyse the simultaneous occurrence of airborne pollen peaks and Saharan-Sahel dust intrusions in the central and south-eastern Iberian Peninsula, and to study the weather conditions - air mass pathways and conditions of air temperature, relative humidity and atmospheric pressure - that influence the airborne pollen concentrations during dust episodes. The results showed that the rise in airborne pollen concentrations during dust episodes is apparent in inland Iberian areas, although not in coastal areas in the southeast where pollen concentrations are even observed to decrease, coinciding with prevailing easterly winds from the sea. Total pollen concentrations and specific pollen types such as Olea, Poaceae and Quercus showed an increase in the central Iberian Peninsula during dust episodes when two meteorological phenomena concur: 1) prevailing winds from extensive areas of major wind-pollinated pollen sources over a medium or short distance (mainly from western and southwestern areas); and 2) optimal meteorological conditions that favour pollen release and dispersal into the atmosphere (mainly high temperatures and subsequently low humidity in central areas). Both conditions often occur during the Saharan-Sahel dust intrusions in the centre. Maximum pollen peaks are therefore most likely to occur during dust episodes in the central Iberian Peninsula, thus dramatically increasing the risk of outbreaks of pollinosis and other respiratory diseases in the population.
Collapse
Affiliation(s)
- Jesús Rojo
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain; Department of Pharmacology, Pharmacognosy and Botany, Complutense University. Madrid, Spain.
| | - José María Moreno
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Jorge Romero-Morte
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| | - Beatriz Lara
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| | - Belén Elvira-Rendueles
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Luis Negral
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Stella Moreno-Grau
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Rosa Pérez-Badia
- University of Castilla-La Mancha. Institute of Environmental Sciences, Toledo, Spain
| |
Collapse
|
30
|
Querol X, Massagué J, Alastuey A, Moreno T, Gangoiti G, Mantilla E, Duéguez JJ, Escudero M, Monfort E, Pérez García-Pando C, Petetin H, Jorba O, Vázquez V, de la Rosa J, Campos A, Muñóz M, Monge S, Hervás M, Javato R, Cornide MJ. Lessons from the COVID-19 air pollution decrease in Spain: Now what? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146380. [PMID: 34030280 PMCID: PMC8612101 DOI: 10.1016/j.scitotenv.2021.146380] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
We offer an overview of the COVID-19 -driven air quality changes across 11 metropolises in Spain with the focus on lessons learned on how continuing abating pollution. Traffic flow decreased by up to 80% during the lockdown and remained relatively low during the full relaxation (June and July). After the lockdown a significant shift from public transport to private vehicles (+21% in Barcelona) persisted due to the pervasive fear that using public transport might increase the risk of SARS-CoV-2 infection, which need to be reverted as soon as possible. NO2 levels fell below 50% of the WHO annual air quality guidelines (WHOAQGs), but those of PM2.5 were reduced less than expected due to the lower contributions from traffic, increased contributions from agricultural and domestic biomass burning, or meteorological conditions favoring high secondary aerosol formation yields. Even during the lockdown, the annual PM2.5 WHOAQG was exceeded in cities within the NE and E regions with high NH3 emissions from farming and agriculture. Decreases in PM10 levels were greater than in PM2.5 due to reduced emissions from road dust, vehicle wear, and construction/demolition. Averaged O3 daily maximum 8-h (8hDM) experienced a generalized decrease in the rural receptor sites in the relaxation (June-July) with -20% reduced mobility. For urban areas O3 8hDM responses were heterogeneous, with increases or decreases depending on the period and location. Thus, after canceling out the effect of meteorology, 5 out of 11 cities experienced O3 decreases during the lockdown, while the remaining 6 either did not experience relevant reductions or increased. During the relaxation period and coinciding with the growing O3 season (June-July), most cities experienced decreases. However, the O3 WHOAQG was still exceeded during the lockdown and full relaxation periods in several cities. For secondary pollutants, such as O3 and PM2.5, further chemical and dispersion modeling along with source apportionment techniques to identify major precursor reduction targets are required to evaluate their abatement potential.
Collapse
Affiliation(s)
- Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain.
| | - Jordi Massagué
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya - BarcelonaTech (UPC), Manresa 08242, Spain
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - Gotzon Gangoiti
- Department of Chemical and Environmental Engineering, University of Basque Country, Leioa 48940, Spain
| | - Enrique Mantilla
- Centro de Estudios Ambientales del Mediterráneo, CEAM, València 46980, Spain
| | - José Jaime Duéguez
- Centro de Estudios Ambientales del Mediterráneo, CEAM, València 46980, Spain
| | - Miguel Escudero
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza 50090, Spain
| | - Eliseo Monfort
- Instituto de Tecnología Cerámica ITC-UJI, Castelló 12006, Spain
| | - Carlos Pérez García-Pando
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain; ICREA, Catalan Institution for Research and Advanced Studies, Barcelona 08010, Spain
| | - Hervé Petetin
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain
| | - Oriol Jorba
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain
| | - Víctor Vázquez
- Department of Ecology, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; Department of Research and Development, Coccosphere Environmental Analysis, 29120 Málaga, Spain
| | - Jesús de la Rosa
- Department of Geology, University of Huelva, Unidad de Investigación Associada a IDAEA-CSIC, Huelva 21819, Spain
| | - Alberto Campos
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - Marta Muñóz
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - Silvia Monge
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - María Hervás
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - Rebeca Javato
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| | - María J Cornide
- D.G. Calidad y Evaluación Ambiental del Ministerio de Transición Ecológica y Reto Demográfico, Madrid 28071, Spain
| |
Collapse
|
31
|
In 't Veld M, Carnerero C, Massagué J, Alastuey A, de la Rosa JD, Sánchez de la Campa AM, Escudero M, Mantilla E, Gangoiti G, García-Pando CP, Olid M, Moreta JR, Hernández JL, Santamaría J, Millán M, Querol X. Understanding the local and remote source contributions to ambient O 3 during a pollution episode using a combination of experimental approaches in the Guadalquivir valley, southern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:144579. [PMID: 33677295 DOI: 10.1016/j.scitotenv.2020.144579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
The Guadalquivir Valley is one of three major O3 hotspots in Spain. An airborne and surface measurement campaign was carried out from July 9th to 11th, 2019 to quantify the local/regional O3 contributions using experimental approaches. Air quality and meteorology data from surface measurements, a microlight aircraft, a helium balloon, and remote sensing data (TROPOMI-NO2-ESA) were used to obtain the 3D distribution of O3 and various tracer pollutants. O3 accumulation over 2.5 days started with inputs from oceanic air masses transported inland by sea breezes, which drew O3 and its precursors from a local/regional origin to the northeastern end of the basin. The orographic-meteorological setting of the valley caused vertical recirculation of the air masses inside the valley that caused the accumulation by increasing regional background O3 concentration by 25-30 ppb. Furthermore, possible Mediterranean O3 contributions and additional vertical recirculation through the entrainment zone of the convective boundary layer also contributed. Using particulate matter finer than 2.5 μm (PM2.5), ultrafine particles (UFP), and black carbon (BC) as tracers of local sources, we calculated that local contributions increased regional O3 levels by 20 ppb inside specific pollution plumes transported by the breeze into the valley, and by 10 ppb during midday when flying over an area with abundant agricultural burning during the morning. Air masses that crossed the southern boundaries of the Betic system at mid-altitude (400-1850 m a.s.l.) on July 10th and 11th may have provided additional O3. Meanwhile, a decreasing trend at high altitudes (3000-5000 m a.s.l.) was observed, signifying that the impact of stratospheric O3 intrusion decreased during the campaign.
Collapse
Affiliation(s)
- M In 't Veld
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain.
| | - C Carnerero
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain
| | - J Massagué
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain; Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya (UPC), Manresa, 08242, Spain
| | - A Alastuey
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| | - J D de la Rosa
- Department of Geology, University of Huelva, Huelva 21819, Spain
| | | | - M Escudero
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza 50090, Spain
| | - E Mantilla
- Centro de Estudios Ambientales del Mediterráneo, CEAM, Valencia 46980, Spain
| | - G Gangoiti
- Department of Chemical and Environmental Engineering, University of Basque Country, Leioa 48940, Spain
| | - C Pérez García-Pando
- Catalan Institution for Research and Advanced Studies, ICREA, Barcelona 08010, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona 08010, Spain
| | - M Olid
- Barcelona Supercomputing Center, BSC-CNS, Barcelona 08034, Spain
| | - J R Moreta
- Agencia Estatal de Meteorología, AEMET, Madrid 28071, Spain
| | - J L Hernández
- Agencia Estatal de Meteorología, AEMET, Madrid 28071, Spain
| | - J Santamaría
- Agencia Estatal de Meteorología, AEMET, Madrid 28071, Spain
| | - M Millán
- Centro de Estudios Ambientales del Mediterráneo, CEAM, Valencia 46980, Spain
| | - X Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona 08034, Spain
| |
Collapse
|
32
|
Radiative Effect and Mixing Processes of a Long-Lasting Dust Event over Athens, Greece, during the COVID-19 Period. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties in the absence of important air pollution sources over the European continent. During the event, moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and 28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values reported here are very close to pure dust measurements performed during dedicated campaigns in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to +0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height. On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d) at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast model provided the dust mass concentration over Athens, while the air mass advection from the African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model.
Collapse
|
33
|
Varga G. Changing nature of Saharan dust deposition in the Carpathian Basin (Central Europe): 40 years of identified North African dust events (1979-2018). ENVIRONMENT INTERNATIONAL 2020; 139:105712. [PMID: 32283354 DOI: 10.1016/j.envint.2020.105712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Several billion tonnes of mineral dust is emitted, and transported through winds every year from arid-semiarid areas. North African dust hot spots located in the Sahara are responsible for 50-70% of the global mineral dust budget. Dust-loaded air-masses originated from these sources can be transported over long distances and can also affect remote areas, such as North and South Americas, Europe, and the Middle East. In this study, we analysed 218 identified Saharan dust events (SDEs) in the Carpathian Basin (Central Europe) during 1979 to 2018. Systematic identification of SDEs and analyses of dust emission, dust source area activity, dust transporting wind systems, and transport routes revealed that different synoptic meteorological patterns are responsible for SDEs, and these are occurring mostly in spring and summer. The characteristic synoptic meteorological background of episodes was also identified, and three major types of atmospheric pressure-system patterns were distinguished. In recent years, several intense wintertime dust deposition events have been recorded in Central Europe. All of the identified unusual episodes were characterised by severe washout of mineral dust material and were related to very similar synoptic meteorological situations. Enhanced southward propagation of a high-latitude upper-level atmospheric trough to north-western Africa and orographic blocking of Atlas Mountains played an essential role in the formation of severe dust storms, whereas the long-range transport was associated with the northward branch of the meandering jet. The occurrence and southerly penetration of high-latitude upper-level atmospheric trough to low-latitudes and the increased meridionality of the dominant flow patterns may be associated with enhanced warming of the Arctic, leading to more meandering jet streams. Particles size of sampled dust material of some intense deposition episodes were very coarse with a considerable volumetric proportion of > 20 µm particles.
Collapse
Affiliation(s)
- György Varga
- Research Centre for Astronomy and Earth Sciences, Budapest H-1112, Hungary.
| |
Collapse
|
34
|
Russo A, Sousa PM, Durão RM, Ramos AM, Salvador P, Linares C, Díaz J, Trigo RM. Saharan dust intrusions in the Iberian Peninsula: Predominant synoptic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137041. [PMID: 32065896 DOI: 10.1016/j.scitotenv.2020.137041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 05/24/2023]
Abstract
The Iberian Peninsula (IP) is recurrently affected by dust transport from the Sahara Desert and from the semi-arid Sahel regions. African dust is one of the most important sources of particulate matter in the southern Mediterranean. Therefore, it is vital to understand the underlying processes that lead to episodes of air pollution associated to the occurrence of dust intrusions. This work proposes to make an extended characterization of the preferential circulation weather patterns associated to the onset of dust events affecting the IP between 2006 and 2016. Saharan dust intrusions were analysed and an automatic objective classification procedure was used to classify circulation weather patterns associated to dust events. The spatial distribution of intrusion episodes is not homogeneous throughout the IP, occurring less frequently at northern and northwestern locations than at central and southern sites. Moreover, days with Saharan dust intrusions were more frequent in summer months, and more probable to occur under regimes with a southerly component. Finally, two extreme events with high concentration of particulate matter were analysed relatively to their life-cycle and particle trajectories. The distinct extreme episodes can be associated to different synoptic situations. However, and despite different large-scale configurations, a south or south-easterly component over the region is responsible for the establishment of a dust transport from the Saharan region towards Iberia, and thus leading to the intrusion onset. These results were supported by the calculation of back-trajectories which allowed to source apportioning the particles' origin, through a clear trajectory of air parcels originating from northern Africa in both events. The proposed framework can be useful to the prediction of dust and air pollution events based on the forecast of circulation weather patterns, as the results show that these events across the IP are mainly induced by specific patterns.
Collapse
Affiliation(s)
- A Russo
- Instituto Dom Luíz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Piso 3, 1749-016 Lisboa, Portugal.
| | - P M Sousa
- Instituto Dom Luíz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Piso 3, 1749-016 Lisboa, Portugal
| | - R M Durão
- IPMA-Instituto Português do Mar e Atmosfera, Lisboa, Portugal; Centro de Recursos Naturais e Ambiente, Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - A M Ramos
- Instituto Dom Luíz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Piso 3, 1749-016 Lisboa, Portugal
| | - P Salvador
- Environmental Department of the Research Center for Energy, Environment and Technology (CIEMAT), Madrid, Spain
| | - C Linares
- Department of Epidemiology and Biostatistic, National School of Public Health, Carlos III National Institute of Health, Madrid, Spain
| | - J Díaz
- Department of Epidemiology and Biostatistic, National School of Public Health, Carlos III National Institute of Health, Madrid, Spain
| | - R M Trigo
- Instituto Dom Luíz, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Edifício C8, Piso 3, 1749-016 Lisboa, Portugal; Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, 21941-916, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Galindo N, Yubero E, Clemente Á, Nicolás JF, Varea M, Crespo J. PM events and changes in the chemical composition of urban aerosols: A case study in the western Mediterranean. CHEMOSPHERE 2020; 244:125520. [PMID: 31816544 DOI: 10.1016/j.chemosphere.2019.125520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
More than 400 PM1 and 400 PM10 daily samples were collected in the urban center of Elche (close to the Spanish Mediterranean coast) from February 2015 to February 2018. Samples were analyzed to determine the concentrations of major and trace components with the aim of evaluating the influence of specific pollution events on the chemical composition of both PM fractions. The concentrations of crustal elements in PM10 significantly increased during Saharan dust outbreaks, particularly titanium, which has been identified as a good tracer of these events in the study area. Sulfate and nitrate levels were also enhanced due to secondary aerosol formation on mineral dust particles. Local pollution episodes had a great impact on submicron nitrate, whose mean concentration was more than four times higher than on non-event days. The chemical mass closure method was used to reconstruct PM1 and PM10 concentrations. Reasonably good correlations between measured and reconstructed concentrations were obtained, except for PM10 samples collected during Saharan dust events. This was due to the underestimation of the dust contribution during these episodes. Moderate differences in the average chemical composition of PM10 were observed between event and non-event days. Regarding PM1, only local pollution episodes had a certain impact on its chemical composition.
Collapse
Affiliation(s)
- Nuria Galindo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain.
| | - Eduardo Yubero
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Álvaro Clemente
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Jose F Nicolás
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Montse Varea
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| | - Javier Crespo
- Atmospheric Pollution Laboratory (LCA), Department of Applied Physics, Miguel Hernández University, Avenida de la Universidad S/N, 03202, Elche, Spain
| |
Collapse
|
36
|
Negral L, Suárez-Peña B, Zapico E, Fernández-Nava Y, Megido L, Moreno J, Marañón E, Castrillón L. Anthropogenic and meteorological influences on PM 10 metal/semi-metal concentrations: Implications for human health. CHEMOSPHERE 2020; 243:125347. [PMID: 31765904 DOI: 10.1016/j.chemosphere.2019.125347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
There is growing interest in investigating the human health risk associated with metals in airborne particulate matter. The objective of this paper is the health risk assessment of Al, Be, Sb, Sn, Ti and Tl in PM10 under different advections of air masses. These metals/semi-metal were studied in samples collected in an area influenced by industrial activities in northern Spain with the aim of analysing the variations in PM10 metal/semi-metal. Elemental concentrations were assessed over a period of one year in terms of air mass origin by means of back trajectories (HYSPLIT), the conditional probability function, polar plots, PM concentration roses, aerosol maps (NAAPs) and receptor modelling. The mean concentrations of Al, Be, Sb, Sn, Ti and Tl were 254, 0.02, 1.30, 1.15, 15.3 and 0.20 ng/m3, respectively, and were within the usual range for suburban stations in Europe. The highest levels were recorded during conditions of regional air mass origin, highlighting the importance of sources not far from the station. Under these circumstances, the renovation of air masses was not produced. The main sources of metals were anthropogenic, mostly related to the use of coal and coke production. In general, the cancer and non-cancer risk values obtained in this study fell within accepted precautionary criteria in all trajectory groups. However, in order to improve air quality and reduce risks to human health, the impact resulting from the joint inhalation of Al, Be, Sb, Sn, Ti and Tl should not be ignored when air masses are fundamentally of regional origin.
Collapse
Affiliation(s)
- Luis Negral
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Beatriz Suárez-Peña
- Department of Materials Science and Metallurgical Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Eugenia Zapico
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Yolanda Fernández-Nava
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Laura Megido
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Jose Moreno
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, 30202, Cartagena, Spain.
| | - Elena Marañón
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| | - Leonor Castrillón
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
| |
Collapse
|
37
|
Research Progress of HP Characteristics, Hazards, Control Technologies, and Measures in China after 2013. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In recent years, hazy weather (hazy weather (HW) has frequently invaded peoples’ lives in China, resulting in the disturbance of social operation, so it is urgent to resolve the haze pollution (HP) problem. A comprehensive understanding of HP is essential to further effectively alleviate or even eliminate it. In this study, HP characteristics in China, after 2013, were presented. It was found that the situation of HP is getting better year by year while it has been a pattern of high levels in the north and low levels in the south. In most regions of China, the contribution of a secondary source for HP is relatively large, and that of traffic is greater in the regions with rapid economic development. Hazards of HP were then summarized. Not only does HP cause harm to human health, but it also has effects on human production and quality of life, furthermore, property and atmospheric environment cannot be ignored. Next, the source and non-source control technologies of HP were first reviewed to recognize the weakness of HP control in China. This review provides more systematic information about HP problems and the future development directions of HP research were proposed to further effectively control HP in China.
Collapse
|
38
|
Analysis and Modelling of PM2.5 Temporal and Spatial Behaviors in European Cities. SUSTAINABILITY 2019. [DOI: 10.3390/su11216019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is associated with adverse effects on human health (e.g., fatal cardiovascular and respiratory diseases), and environmental concerns (e.g., visibility impairment and damage in ecosystems). This study aimed to evaluate temporal and spatial trends and behaviors of PM2.5 concentrations in different European locations. Statistical threshold models using Artificial Neural Networks (ANN) defined by Genetic Algorithms (GA) were also applied for an urban centre site in Istanbul, to evaluate the influence of meteorological variables and PM10 concentrations on PM2.5 concentrations. Lower PM2.5 concentrations were observed in northern Europe. The highest values were found at traffic-related sites. PM2.5 concentrations were usually higher during the winter and tended to present strong increases during rush hours. PM2.5/PM10 ratios were slightly higher at background sites and the lower values were found in northern Europe (Helsinki and Stockholm). Ratios were usually higher during cold months and during the night. The statistical model (ANN + GA) allowed evaluating the combined effect of different explanatory variables (temperature, wind speed, relative humidity, air pressure and PM10 concentrations) on PM2.5 concentrations, under different regimes defined by relative humidity (threshold value of 79.1%). Important information about the temporal and spatial trends and behaviors related to PM2.5 concentrations in different European locations was developed.
Collapse
|
39
|
Querol X, Tobías A, Pérez N, Karanasiou A, Amato F, Stafoggia M, Pérez García-Pando C, Ginoux P, Forastiere F, Gumy S, Mudu P, Alastuey A. Monitoring the impact of desert dust outbreaks for air quality for health studies. ENVIRONMENT INTERNATIONAL 2019; 130:104867. [PMID: 31207476 PMCID: PMC6686079 DOI: 10.1016/j.envint.2019.05.061] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 05/21/2023]
Abstract
We review the major features of desert dust outbreaks that are relevant to the assessment of dust impacts upon human health. Our ultimate goal is to provide scientific guidance for the acquisition of relevant population exposure information for epidemiological studies tackling the short and long term health effects of desert dust. We first describe the source regions and the typical levels of dust particles in regions close and far away from the source areas, along with their size, composition, and bio-aerosol load. We then describe the processes by which dust may become mixed with anthropogenic particulate matter (PM) and/or alter its load in receptor areas. Short term health effects are found during desert dust episodes in different regions of the world, but in a number of cases the results differ when it comes to associate the effects to the bulk PM, the desert dust-PM, or non-desert dust-PM. These differences are likely due to the different monitoring strategies applied in the epidemiological studies, and to the differences on atmospheric and emission (natural and anthropogenic) patterns of desert dust around the world. We finally propose methods to allow the discrimination of health effects by PM fraction during dust outbreaks, and a strategy to implement desert dust alert and monitoring systems for health studies and air quality management.
Collapse
Affiliation(s)
- X Querol
- Institute of Environmental Assessment & Water Research, Barcelona, Spain.
| | - A Tobías
- Institute of Environmental Assessment & Water Research, Barcelona, Spain
| | - N Pérez
- Institute of Environmental Assessment & Water Research, Barcelona, Spain
| | - A Karanasiou
- Institute of Environmental Assessment & Water Research, Barcelona, Spain
| | - F Amato
- Institute of Environmental Assessment & Water Research, Barcelona, Spain
| | - M Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | | | - P Ginoux
- Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, USA
| | - F Forastiere
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - S Gumy
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - P Mudu
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland
| | - A Alastuey
- Institute of Environmental Assessment & Water Research, Barcelona, Spain
| |
Collapse
|