1
|
Wang ZL, Lao J, Xie ZN, He W, Zhong C, Zhang SH, Jin J. Fermentation of Polygonati Rhizoma aqueous extract using Lactiplantibacillus plantarum under the condition of eutrophication. Arch Microbiol 2024; 206:359. [PMID: 39033087 DOI: 10.1007/s00203-024-04082-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.
Collapse
Affiliation(s)
- Zi-Ling Wang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, 410329, China
| | - Zhen-Ni Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wei He
- Resgreen Group International Inc., Changsha, 410329, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
- Hunan Shenzhou Chinese Medicine Inc., Zhangjiajie, 427200, China
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410013, China.
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Xie M, Zhu Y, Zhao K, Zhao L, Gong Y, Wang Y, Wang Y, Zhu M, Ran W, Cai M, Du S. R-Napropamide Potentially Regulates Cadmium Accumulation in Arabidopsis Shoots through Transport Channel Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38842427 DOI: 10.1021/acs.jafc.4c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Heavy metal contamination in soils poses a significant environmental threat to human health. This study examines the effects of the chiral herbicide napropamide (NAP) on Arabidopsis thaliana, focusing on growth metrics and cadmium (Cd) accumulation. R-NAP does not adversely affect plant growth compared to the control, whereas S-NAP significantly reduces root length and fresh weight. Notably, R-NAP markedly increases Cd accumulation in the shoots, exceeding levels observed in the control and S-NAP. This increase coincides with reduced photosynthetic efficiency. Noninvasive electrode techniques reveal a higher net Cd absorption flux in the root mature zone under R-NAP than S-NAP, although similar to the control. Transcriptomic analysis highlights significant stereoisomer differences in Cd transporters, predominantly under R-NAP treatment. SEM and molecular docking simulations support that R-NAP primarily upregulates transporters such as HMA4. The results suggest careful management of herbicides like R-NAP in contaminated fields to avoid excessive heavy metal buildup in crops.
Collapse
Affiliation(s)
- Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Zhao
- Zhejiang Zhongyi Testing Research Institute Co., Ltd, Ningbo 315040, China
| | - Lu Zhao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yanxia Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yin Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuying Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mengfei Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Wu Ran
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
3
|
Chen H, Chu Z, Huang J, Wen Y. Regulatory potential of secondary metabolite DIMBOA and baicalein to imazethapyr-induced toxicity in wheat seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38265-38273. [PMID: 38801610 DOI: 10.1007/s11356-024-33812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Controlling and mitigating the toxicity of herbicides to non-target plants is of significant importance in reducing ecological risks. The development of green and natural herbicide control technologies has become an urgent necessity. In this paper, how 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) and baicalein alleviated oxidative stress induced by imazethapyr (IM) in wheat seedlings was investigated. We found that DIMBOA and baicalein enhanced the antioxidant enzyme activities in wheat seedlings exposed to IM and reduced the excessive reactive oxygen species due to IM stress by 21.3% and 23.5%, respectively. DIMBOA and baicalein also restored the iron content reduced by IM and effectively mitigated Fe2+ overload by alleviating the response of heme oxygenase 1 to IM stress. The antioxidant and iron homeostatic maintenance properties of DIMBOA and baicalein enhanced the defenses of wheat seedlings against IM stress. Our results highlight the potential implication of secondary metabolites as natural products to modulate herbicide toxicity to non-target plants.
Collapse
Affiliation(s)
- Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Zheyu Chu
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Zhang Z, Wang X, Zang J, Lee D, Zhu Q, Chen L. Phenotypic Characteristics and Occurrence Basis of Leaf Necrotic Spots in Response of Weedy Rice to Imazethapyr. PLANTS (BASEL, SWITZERLAND) 2024; 13:1218. [PMID: 38732432 PMCID: PMC11085574 DOI: 10.3390/plants13091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Weedy rice is the most challenging weed species to remove in rice production. We found a novel phenotype of seedling leaves which rapidly generates necrotic spots in response to imidazolinone herbicides in weedy rice, but its influencing factors and formation basis are still unknown. In this study, we used the leaf necrotic spot-producing type of weedy rice as the material. First, leaf necrotic spots were defined as physiological and vacuole-mediated cell necrosis by microscopic examination. The imazethapyr concentration was positively correlated with the degree of necrotic spots occurring, while the action site was in accordance with necrosis using herbicide stability tests combined with fluorescence parameters. Furthermore, transcriptome analysis revealed significant differences in the gene expression of endoplasmic reticulum stress and the lipid metabolism membrane structure damage pathway during necrosis, as confirmed by transmission electron microscopy. The light-temperature test also showed that high temperature and intense light could promote the appearance of necrotic spots. These experimental results are helpful in clarifying the process and basis of imazethapyr in inducing the rapid generation of necrotic spots in rice leaves and providing new insight into understanding the mechanism of response to imidazolinone herbicides and the control of weedy rice.
Collapse
Affiliation(s)
- Zeyu Zhang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
| | - Xianyu Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
| | - Jianing Zang
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
| | - Dongsun Lee
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China; (Z.Z.); (D.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Fan C, Li J, Dai S, Xuan X, Xu D, Wen Y. Plasma Membrane (PM) H +-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38623691 DOI: 10.1021/acs.jafc.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.
Collapse
Affiliation(s)
- Chenyang Fan
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyuan Dai
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Hou M, Zhu Y, Chen H, Wen Y. Chiral herbicide imazethapy influences plant-soil feedback on nitrogen metabolism by shaping rhizosphere microorganisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:18625-18635. [PMID: 38351351 DOI: 10.1007/s11356-024-32393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024]
Abstract
Herbicides are known to affect the soil nitrogen cycle by shaping soil microorganisms. However, it is not clear how herbicides regulate diverse transformation processes of soil nitrogen cycling by altering rhizosphere microorganisms, subsequently influencing the feedback to plant nitrogen metabolism. Here, we investigated how imazethapyr (IM) enantiomers drive plant-soil feedback on nitrogen metabolism by altering the rhizosphere microorganisms. The results indicated that (R)- and (S)-IM significantly changed the composition and structure rhizosphere microbiome with enantioselectivity and functional changes in microbial communities were associated with soil nitrogen circulation. The determination of nitrogen-cycling functional genes further supported the above findings. The results revealed that (R)- and (S)-IM could change the abundance of nitrogen-cycling functional genes by changing specific bacteria abundances, such as Bacteroidetes, Proteobacteria, and Acidobacteria, thus resulting in diverse nitrogen transformation processes. The alternation of nitrogen transformation processes indicated (R)-IM exhibited a more notable tendency to form a nitrogen cycling pattern with lower energy cost and higher nitrogen retention than (S)-IM. Sterilization experiments demonstrated changes in soil nitrogen cycling drive plant nitrogen metabolism and rhizosphere microorganisms are responsible for the above process of plant-soil feedback for nitrogen metabolism. Under IM enantiomer treatments, rhizosphere microorganisms might stimulate glutamate synthesis by promoting NH4+ uptake and glutamine-glutamate synthesis cycling in roots, thus contributing to positive feedback, with (R)-IM treatments showing more pronounced positive feedback on nitrogen metabolism than (S)-IM treatments. Our results provide theoretical support for determining the mechanism by which IM enantiomers drive plant-soil nitrogen metabolism by changing the rhizosphere microbial communities.
Collapse
Affiliation(s)
- Mengchun Hou
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youfeng Zhu
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Zhang Q, Li J, Chen H, Xuan X, Xu D, Wen Y. Mechanisms Underlying Allelopathic Disturbance of Herbicide Imazethapyr on Wheat and Its Neighboring Ryegrass ( Lolium perenne). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3445-3455. [PMID: 38325393 DOI: 10.1021/acs.jafc.3c09519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
As representatives of allelopathy, weeds consistently coexist with crops, exhibiting mutual growth inhibition. At the same time, herbicides are usually employed to control weeds. However, few studies have investigated how herbicides will affect allelopathy between crops and their neighboring weeds. Our findings suggested that allelopathic-induced phenotypic variations in ryegrass were reduced in the presence of the herbicide imazethapyr (IM), consistent with the antioxidant system analysis results. Additionally, IM affected the levels of allelochemical hydroxamic acid (Hx) in both plants. Hydroponic experiments revealed that this impact was due to the accelerated transportation of Hx from wheat to ryegrass, driven by ryegrass-secreted jasmonic acid. This study holds paramount significance for comprehending the effects of herbicides on the allelopathic interactions between nontargeted crops and neighboring weeds, contributing to an enhanced understanding of herbicides on plant species interactions.
Collapse
Affiliation(s)
- Qiushui Zhang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Yang L, Luo L, Cai W, Chen Z, Luo X, Chen Y. Changes in carbohydrate metabolism and soil microorganisms under the stress of polyamide and polyethylene nanoplastics during rice (Oryza sativa L.) growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169183. [PMID: 38092212 DOI: 10.1016/j.scitotenv.2023.169183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Nanoplastics (NPs) presence in agricultural soils can affect plant growth and impact the quality of agricultural products. To investigate the effect of polyamide (PA) NPs and polyethylene (PE) NPs on carbohydrate metabolism and soil microorganisms during rice growth, rice seedlings were exposed to soil containing 2 g/kg of 100 nm PA or 100 nm PE powder for 33 d. The results revealed that 100 nm PE reduced shoot length and dry weight of rice by 4.14 % and 15.68 %, respectively. Analyzing the expression of hexokinase-2 (HXK), phosphofructokinase-1 (PFK), pyruvate kinase (PK) and isocitrate dehydrogenase (IDH), which are four genes related to carbohydrate metabolism, 100 nm PA decreased the expression of PFK and increased the expression of PK and IDH. 100 nm PE increased the expression of HXK, PFK, PK, and IDH. The results of soil microorganisms showed that 100 nm PA significantly effects on 3 bacterial phyla (Bacteroidota, Deinococcota, and Desulfobacterota), whereas 100 nm PE significantly effects on phylum Rozellomycota, class Umbelopsidomycetes, and an unclassified Firmicutes. Our study provides direct evidence of the negative effects of PA and PE on rice, which may be important for assessing the risk of NPs on agroecosystems.
Collapse
Affiliation(s)
- Limin Yang
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China; Institute of High Energy Physics, Chinese Academy of Sciences, China
| | - Lili Luo
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China
| | - Wenshan Cai
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China
| | - Zheng Chen
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China
| | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China.
| | - Yaling Chen
- College of Life Science, Jiangxi Normal University, Jiangxi 330000, China.
| |
Collapse
|
9
|
Huang J, Li J, Chen H, Shen C, Wen Y. Phytotoxicity alleviation of imazethapyr to non-target plant wheat: active regulation between auxin and DIMBOA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116004-116017. [PMID: 37897577 DOI: 10.1007/s11356-023-30608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Effectively controlling target organisms while reducing the adverse effects of pesticides on non-target organisms is a crucial scientific inquiry and challenge in pesticide ecotoxicology research. Here, we studied the alleviation of herbicide (R)-imazethapyr [(R)-IM] to non-target plant wheat by active regulation between auxin and secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA). We found (R)-IM reduced 32.4% auxin content in wheat leaves and induced 40.7% DIMBOA accumulation compared to the control group, which effortlessly disrupted the balance between wheat growth and defense. Transcriptomic results indicated that restoration of the auxin level in plants promoted the up-regulation of growth-related genes and the accumulation of DIMBOA up-regulated the expression of defense-related genes. Auxin and DIMBOA alleviated herbicide stress primarily through effects in the two directions of wheat growth and defense, respectively. Additionally, as a common precursor of auxin and DIMBOA, indole adopted a combined growth and defense strategy in response to (R)-IM toxicity, i.e., restoring growth development and enhancing the defense system. Future regulation of auxin and DIMBOA levels in plants may be possible through appropriate methods, thus regulating the plant growth-defense balance under herbicide stress. Our insight into the interference mechanism of herbicides to the plant growth-defense system will facilitate the design of improved strategies for herbicide detoxification.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Chen
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, 315300, China
| | - Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zhang W, Li Q, Yang Y, Yu Y, Li S, Liu J, Xiao Y, Wen Y, Wang Q, Lei N, Gu P. Joint toxicity mechanisms of perfluorooctanoic acid and sulfadiazine on submerged macrophytes and periphytic biofilms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131910. [PMID: 37390681 DOI: 10.1016/j.jhazmat.2023.131910] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Hazardous chemicals, such as perfluoroalkyl substances (PFASs) and antibiotics, coexist in aquatic environments and pose a severe threat to aquatic organisms. However, research into the toxicity of these pollutants on submerged macrophytes and their periphyton is still limited. To assess their combined toxicity, Vallisneria natans (V. natans) was exposed to perfluorooctanoic acid (PFOA) and sulfadiazine (SD) at environmental concentrations. Photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were lower in the SD exposure group, indicating that SD had a significant effect on the photosynthesis of aquatic plants. Single and combined exposures effectively induced antioxidant responses, with increases in superoxide dismutase, peroxidase activities, and ribulose-1,5-bisphosphate carboxylase concentrations, as well as malondialdehyde content. Accordingly, antagonistic toxicity was assessed between PFOA and SD. Furthermore, metabolomics revealed that V. natans improved stress tolerance through changes in enoic acid, palmitic acid, and palmitoleoyloxymyristic acid related to the fatty acid metabolism pathway responding to the coexisting pollutants. Additionally, PFOA and SD in combination induced more effects on the microbial community of biofilm. The alternation of α- and β-D-glucopyranose polysaccharides and the increased content of autoinducer peptides and N-acylated homoserine lactones indicated that PFOA and SD changed the structure and function of biofilm. These investigations provide a broader perspective and comprehensive analysis of the responses of aquatic plants and periphyton biofilms to PFAS and antibiotics in the environment.
Collapse
Affiliation(s)
- Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yangjinzhi Yu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuang Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yuelin Wen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | | | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
11
|
Vithanage M, Zhang X, Gunarathne V, Zhu Y, Herath L, Peiris K, Solaiman ZM, Bolan N, Siddique KHM. Plant nanobionics: Fortifying food security via engineered plant productivity. ENVIRONMENTAL RESEARCH 2023; 229:115934. [PMID: 37080274 DOI: 10.1016/j.envres.2023.115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The world's human population is increasing exponentially, increasing the demand for high-quality food sources. As a result, there is a major global concern over hunger and malnutrition in developing countries with limited food resources. To address this issue, researchers worldwide must focus on developing improved crop varieties with greater productivity to overcome hunger. However, conventional crop breeding methods require extensive periods to develop new varieties with desirable traits. To tackle this challenge, an innovative approach termed plant nanobionics introduces nanomaterials (NMs) into cell organelles to enhance or modify plant function and thus crop productivity and yield. A comprehensive review of nanomaterials affect crop yield is needed to guide nanotechnology research. This article critically reviews nanotechnology applications for engineering plant productivity, seed germination, crop growth, enhancing photosynthesis, and improving crop yield and quality, and discusses nanobionic approaches such as smart drug delivery systems and plant nanobiosensors. Moreover, the review describes NM classification and synthesis and human health-related and plant toxicity hazards. Our findings suggest that nanotechnology application in agricultural production could significantly increase crop yields to alleviate global hunger pressures. However, the environmental risks associated with NMs should be investigated thoroughly before their widespread adoption in agriculture.
Collapse
Affiliation(s)
- Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun, India.
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Lasantha Herath
- Sri Lanka Institute of Nano Technology, Pitipana, Homagama, Sri Lanka
| | - Kanchana Peiris
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Zakaria M Solaiman
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, 6009, Australia; UWA School of Agriculture and Environment, The Uniersity of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Lu S, Huo Z, Niu T, Zhu W, Wang J, Wu D, He C, Wang Y, Zou L, Sheng L. Molecular mechanisms of toxicity and detoxification in rice (Oryza sativa L.) exposed to polystyrene nanoplastics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107605. [PMID: 37119549 DOI: 10.1016/j.plaphy.2023.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 05/01/2023]
Abstract
Nanoplastics (NPs) are an emerging threat to higher plants in terrestrial ecosystems. However, the molecular of NP-related phytotoxicity remains unclear. In the present study, rice seedlings were exposed to polystyrene (PS, 50 nm) NPs at 0, 50, 100, and 200 mg/L under hydroponic conditions to investigate the induced physiological indices and transcriptional mechanisms. We found that 50, 100, and 200 mg/L PS significantly reduced root (53.05%, 49.61%, and 57.58%, respectively) and shoot (54.63%, 61.56%, and 62.64%, respectively) biomass as compared with the control seedlings. The activities of antioxidant enzymes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), were significantly activated in all PS treatment groups, indicating that PS inhibited plant growth and induced oxidative stress. Transcriptome analyses showed that PS modulated the expression of the genes involved in cell detoxification, active oxygen metabolism, mitogen-activated protein kinase (MAPK), and plant hormone transduction pathways. Our study provides new insights into phytotoxicity by demonstrating the potential underlying toxicity of PS NPs in higher plants.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Zhongqi Huo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Tingting Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Weize Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Yong Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lifang Zou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| |
Collapse
|
13
|
Wang Z, Lao J, Kang X, Xie Z, He W, Liu X, Zhong C, Zhang S, Jin J. Insights into the metabolic profiling of Polygonati Rhizoma fermented by Lactiplantibacillus plantarum under aerobic and anaerobic conditions using a UHPLC-QE-MS/MS system. Front Nutr 2023; 10:1093761. [PMID: 36776612 PMCID: PMC9908587 DOI: 10.3389/fnut.2023.1093761] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Polygonati Rhizoma is a multi-purpose food with medicinal uses. Fermentation of Polygonati Rhizoma by lactic acid bacteria could provide new insights into the development of Polygonati Rhizoma products. Methods In this study, Lactiplantibacillus plantarum was fermented with Polygonati Rhizoma extracts in a bioreactor under aerobic and anaerobic conditions with pH and DO real-time detection. Metabolic profiling was determined by UHPLC-QE-MS/MS system. Principal component analysis and orthogonal partial least-squares discriminant analysis were used to perform multivariate analysis. Results A total of 98 differential metabolites were identified in broth after fermentation, and 36 were identified between fermentation under aerobic and anaerobic conditions. The main metabolic pathways in the fermentation process are ABC transport and amino acid biosynthesis. Most of the compounds such as L-arginine, L-aspartic acid, leucine, L-lysine, citrate, inosine, carnitine, betaine, and thiamine were significantly increased during fermentation, playing a role in enhancing food flavor. Compared with anaerobic fermentation, aerobic conditions led to a significant rise in the levels of some compounds such as valine, isoleucine, and glutamate; this increase was mainly related to branched-chain amino acid transaminase, isocitrate dehydrogenase, and glutamate dehydrogenase. Discussion Aerobic fermentation is more beneficial for the fermentation of Polygonati Rhizoma by L. plantarum to produce flavor and functional substances. This study is the first report on the fermentation of Polygonati Rhizoma by L. plantarum and provides insights that would be applicable in the development of Polygonati Rhizoma fermented products.
Collapse
Affiliation(s)
- ZiLing Wang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jia Lao
- Resgreen Group International Inc., Changsha, China
| | - XingYi Kang
- College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, Hunan, China
| | - ZhenNi Xie
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Wei He
- Resgreen Group International Inc., Changsha, China
| | - XiaoLiu Liu
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China,Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Can Zhong
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - ShuiHan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Jian Jin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Jian Jin,
| |
Collapse
|
14
|
Metabolomics Integrated with HPLC-MS Reveals the Crucial Antioxidant Compounds of Muscadine Wine. Antioxidants (Basel) 2022; 12:antiox12010055. [PMID: 36670917 PMCID: PMC9854500 DOI: 10.3390/antiox12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Wine is a kind of beverage with a variety of compounds beneficial to human health, which makes it popular all over the world and it contributes importantly to economics. The excessive oxidation of wine has always been a major problem in wine production and storage. Unlike traditional wines which are made from Eurasian grapes, wines made from muscadine grapes (Muscadinia rotundifolia Michx.) can maintain their sensory qualities under natural oxidation conditions for relatively long periods of time despite the insight mechanisms still being unclear. In this study, two muscadine wines, Carlos (CAL) and Noble (NOB), and two traditional wines, Chardonnay (CH) and Marselan (MAS), were chosen for comparison of their compositional alteration during oxidation, in order to analyze the principal components contributing to the antioxidant characteristics of muscadine wines. The DPPH, ORAC, color intensity, and total phenolic content changes during the natural oxidation process were analyzed. Six core significantly changed metabolites (SCMs, avicularin, beta-lactose, delphinidin-3-O-glucoside, ellagic acid, myricetin, and 4-methylcatechol [p < 0.05]) related to the oxidation process were determined. In addition, HPLC−MS was also used to identify pyrogallol which is a unique antioxidant compound in muscadine wine. The present work aims to reveal the crucial antioxidant compounds of muscadine wine and provide valuable information and a new platform for future research on wine oxidation.
Collapse
|
15
|
Menzyanova NG, Shishatskaya EI, Pyatina SA, Volova TG. Cytogenotoxic activity of herbicidal and fungicidal pesticides on Triticum aestivum root meristem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87602-87612. [PMID: 35818017 DOI: 10.1007/s11356-022-21936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phytotoxicity, cytotoxicity and genotoxicity of pesticides with various mechanisms of targeted activity were studied in a hydroponic culture of 2-day-old seedlings of Triticum aestivum. All studied pesticides (with the exception of metribuzin) exhibited dose-dependent phytotoxicity (inhibited the growth of the main root and reduced the yield of root biomass). All studied pesticides did not affect mitotic index in the root apex meristem but did affect the duration of some phases of mitosis. Herbicides increased, while fungicides, on the contrary, decreased the duration of the cytokinesis phase. All pesticides (1 μg/mL) exhibited genotoxic activity: in the root apex meristem the number of cells with mitotic abnormalities was significantly higher than in the control variant (7-14 times). The genotoxic activity of metribuzin and tebuconazole was 2 times lower than for tribenuron-methyl, fenoxaprop-P-ethyl, epoxiconazole and azoxystrobin. The genotoxicity of the studied pesticides was combined: depending on the class of the pesticide, clastogenic or aneugenous effects dominated.
Collapse
Affiliation(s)
| | - Ekaterina Igorevna Shishatskaya
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia.
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia.
| | | | - Tatiana Grigorievna Volova
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
16
|
Zhou C, Cheng H, Wu Y, Zhang J, Li D, Pan C. Bensulfuron-Methyl, Terbutylazine, and 2,4-D Butylate Disturb Plant Growth and Resistance by Deteriorating Rhizosphere Environment and Plant Secondary Metabolism in Wheat Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12796-12806. [PMID: 36135711 DOI: 10.1021/acs.jafc.2c03126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequent and improper use of herbicides disrupts a plant's metabolism, causing oxidative stress that degrades crop quality. However, few studies have examined the inhibitory effects of herbicides on plant growth and defense mechanisms in terms of their impact on soil quality and crop rhizosphere. Therefore, the current study investigated the detrimental impacts of six typical and multilevel herbicides on the microbial community and signal molecules in the soil as well as on the levels of hormones and secondary metabolites in wheat seedlings. Interestingly, bensulfuron-methyl, terbutylazine (TBA), and 2,4-D butylate significantly induced oxidative damage while reducing the number of phytohormones (salicylic acid and jasmonic acid) and secondary metabolites (tricin, quercetin, and caffeic acid) in the roots and leaves compared with the controls, isoproturon, fenoxaprop-p-ethyl, and pretilachlor. At twice the recommended levels (2×), they also decreased the microbial α diversity and, in particular, the abundance of Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia, Verrucomicrobia, Bacilli, Acidimicrobiia, Deltaproteobacteria, and Gemmatimonadetes by disrupting the level of enzymes (e.g., urease and sucrase) and metabolites (indole-3-acetic acid, salicylic acid, apigenin, 4-hydroxybenzoic acid, DIMBOA, and melatonin) in the rhizosphere soil. Overall, significant exposure to herbicides may inhibit wheat growth by disturbing the microbial composition in the rhizosphere soil and the distribution of secondary metabolites in wheat seedlings.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Haiyan Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Yangliu Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Jingbang Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| | - Dong Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, China Yuanmingyuan West Road 2, Beijing 100193, People's Republic of China
| |
Collapse
|
17
|
Chu L, Hou X, Song X, Zhao X. Toxicological effects of different ionic liquids on growth, photosynthetic pigments, oxidative stress, and ultrastructure of Nostoc punctiforme and the combined toxicity with heavy metals. CHEMOSPHERE 2022; 298:134273. [PMID: 35276117 DOI: 10.1016/j.chemosphere.2022.134273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs1) are used widely because of their excellent properties. However, their ecotoxicity for environment has aroused great concern. Here we studied, the toxicity of three ILs with different numbers of methyl substituents and anions as well as the combined effect of heavy metals to edible algae Nostoc punctiforme. The results show that fresh weight and chlorophyll content decreased, indicating that the growth and photosynthesis were adversely affected. Polysaccharides and soluble protein contents decreased, resulting in a reduced nutritional value of Nostoc punctiforme. ILs can produce many reactive oxygen species (ROS), which lead to increased the malondialdehyde (MDA) content. In order to remove excessive ROS, antioxidant enzymes activity is increased, but decreases under high IL concentration, because the structure and function of the enzymes became damaged. ILs cause stress to algae, as the cell ultrastructure is indicating by increased amounts of starch and osmiophilic globules. The combined action of heavy metals with ILs decreases the antioxidant enzymes activity and chlorophyll content, and increases the MDA content. The results show that the order of toxicity is [C8MIM]Cl >[C8MIM]Br> [C8DMIM]Br. The combination of heavy metals and ILs cause an increase of the toxicity to Nostoc punctiforme.
Collapse
Affiliation(s)
- Linglong Chu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
18
|
Huang J, Bao M, Li J, Chen H, Xu D, Chen Z, Wen Y. Enantioselective Response of Wheat Seedlings to Imazethapyr: From the Perspective of Fe and the Secondary Metabolite DIMBOA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5516-5525. [PMID: 35476430 DOI: 10.1021/acs.jafc.1c07727] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The responses of trace elements and secondary metabolites to stress can reflect plant adaptation to the environment. If and how the imperative trace element Fe and the defensive secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA) mediate the toxicity of chiral herbicides to nontarget plants remains inconclusive. We found that the herbicidal-active imazethapyr enantiomer [(R)-IM] stimulated heme oxygenase-1 activity, triggered the release of the catalytic product Fe2+, increased reactive oxygen species production, decreased the DIMBOA content, and increased the DIMBOA-Fe content. XAFS analyses and in vitro Fenton assays demonstrated that DIMBOA could relieve phytotoxicity by chelating excessive Fe3+ to restore Fe homeostasis. The free radical scavenging ability of the chelate of DIMBOA and Fe was also involved. This work refines the dual role of DIMBOA and Fe in mediating the enantioselective phytotoxicity of chiral herbicides, which provides a new direction for improving the herbicide resistance of crops.
Collapse
Affiliation(s)
- Jinye Huang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Qiu D, Ye Y, Ke M, Xu N, Zhang Z, Zhang F, Kang J, Yu Y, Lu T, Qian H. Effects of chiral herbicide dichlorprop on Arabidopsis thaliana metabolic profile and its implications for microbial communities in the phyllosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28256-28266. [PMID: 34988791 DOI: 10.1007/s11356-021-17936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Dichlorprop (2-(2,4-dichlorophenoxy) propionic acid, DCPP), a commonly used herbicide for weed control, can be residually detected in soil. It is still unclear whether chiral DCPP exerts an enantioselective adverse effect on plant metabolism and the microbial community of the phyllosphere. In this study, we selected Arabidopsis thaliana as a model plant to explore the effects of R- and S-DCPP enantiomers on plant physiological activities, metabolism, and associated changes in the phyllosphere microbial community. Results indicated that the fresh weight of plants decreased by 37.6% after R-DCPP treatment, whereas it increased by 7.6% after S-DCPP treatment. The R-DCPP enantiomer also caused stronger disturbance to leaf morphology, mesophyll cell structure, and leaf metabolites compared with S-DCPP. GC-MS analysis of DCPP-treated Arabidopsis leaves pointed out a differential profile mostly in carbohydrates, organic acids, and fatty acids, between S-DCPP and R-DCPP treatments. The diversity of phyllospheric microorganisms decreased and the stability of microbial community in the phyllosphere increased after R-DCPP treatment, whereas the opposite result was detected after S-DCPP exposure. The correlation analysis revealed that chiral herbicides may affect microbial communities in the phyllosphere by influencing leaf metabolism, while sugars and terpenoids were considered the main factors in reshaping the microbial community structure in the phyllosphere. Our study provides a new perspective for evaluating the effect of residual DCPP enantiomers on plant physiology and corresponding phyllosphere microorganism changes via the regulation of leaf metabolism, and clarifies the ecological risk of DCPP enantiomer application in agriculture.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
20
|
Metabolomics analysis of cucumber fruit in response to foliar fertilizer and pesticides using UHPLC-Q-Orbitrap-HRMS. Food Chem 2022; 369:130960. [PMID: 34500210 DOI: 10.1016/j.foodchem.2021.130960] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Pesticides and fertilizers are often used to improve the yield and quality of cucumber fruit. In this study, the effect of pesticide applied with or without foliar fertilizer on the cucumber fruit metabolism was investigated. The results showed that the mixed use of pesticides and foliar fertilizer could significantly increase the contents of organic acids and the antioxidant level. When pesticide was used without foliar fertilizer, cucumber fruit up-regulated (1.3 times) shikimate-phenylpropanoid pathway and improved the antioxidant capacity to deal with the pesticide stress. However, the tricarboxylic acid cycle was up-regulated 1.1 times and the antioxidant capacity was improved to promote the pesticide dissipation when pesticide was applied with foliar fertilizer. These observations indicate that the mixed application of foliar fertilizer and pesticides can regulate related metabolites and metabolic pathways, improve the quality and antioxidant capacity of cucumber fruit, and promote the dissipation of pesticides.
Collapse
|
21
|
Wu X, Hou H, Liu Y, Yin S, Bian S, Liang S, Wan C, Yuan S, Xiao K, Liu B, Hu J, Yang J. Microplastics affect rice (Oryza sativa L.) quality by interfering metabolite accumulation and energy expenditure pathways: A field study. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126834. [PMID: 34390954 DOI: 10.1016/j.jhazmat.2021.126834] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Microplastic accumulation in agricultural soils can stress plants and affects quality of the products. Current research on the effects of microplastics on plants is not consistent and the underlying mechanisms are yet unknown. Here, the molecular mechanisms of the stress response were investigated via metabolomic and transcriptomic analyses of rice Oryza sativa L. II Y900 and XS123 under the exposure of polystyrene microplastics (PS-MPs) in a field study. Distinct responses were obtained in these two rice subspecies, showing decreased head rice yield by 10.62% in Y900 and increase by 6.35% in XS123. The metabolomics results showed that PS-MPs exposure inhibited 29.63% of the substance accumulation-related metabolic pathways and 43.25% of the energy expenditure-related metabolic pathways in the Y900 grains; however, these related pathways were promoted in the XS123 grains. The transcriptomics results indicated that the expression of genes encoding proteins involved in the tricarboxylic acid cycle in the Y900 grains was inhibited, but it was enhanced in the XS123 grains. The XS123 subspecies could response against microplastic exposure stress through the metabolite accumulation and energy expenditure pathways, while the Y900 could not. The results provide insight into the perturbation of rice grains in farmlands with microplastics contamination.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei 430065, China
| | - Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Chaofan Wan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
22
|
Feng L, Xu N, Qu Q, Zhang Z, Ke M, Lu T, Qian H. Synergetic toxicity of silver nanoparticle and glyphosate on wheat (Triticum aestivum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149200. [PMID: 34303973 DOI: 10.1016/j.scitotenv.2021.149200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in industrial and agricultural production. Glyphosate is a broad-spectrum systemic herbicide, which mainly acts in the phloem of weeds that compete with crop growth and is widely used in agriculture. This study investigated the interactive effects of AgNPs and glyphosate on the physiological morphology, gene transcription, and rhizosphere microorganisms of wheat. Our results demonstrated that wheat growth, and the structure and diversity of rhizosphere microorganisms were slightly influenced by AgNPs and glyphosate single treatment at the test concentration. However, AgNPs and glyphosate (Gly) combined treatment (AgNPs + Gly) strongly inhibited wheat growth and influenced gene transcription. In total, 955, 601, and 1336 genes were determined to be differentially expressed in AgNPs, glyphosate, and combined treatment, respectively. According to KEGG analysis, the combined groups induced an antioxidant response by upregulating the transcription of phenylpropanoid biosynthesis-related genes. In addition, more energy was needed, and disrupted cell membrane was shown in the combined treatment, which displayed in the upregulation of sucrose, starch, and lipid synthesis. Moreover, the relative abundance of Bradyrhizobium, Devosia, Kribbella, Sphingopyxis (nitrogen-fixing bacteria), and Streptomyces (plant growth-promoting bacteria) in soil microbiota were decreased, implicated that nitrogen fixation and some beneficial substance secretions were inhibited by the combined treatment. This study emphasized that the synergetic effects of AgNPs and glyphosate exerted a negative impact on wheat growth.
Collapse
Affiliation(s)
- Lan Feng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
23
|
Chen H, Qin Y, Pu J, Hu J, Wen Y. Phytotoxicity of the chiral herbicide dichlorprop: Cross-talk between nitric oxide, reactive oxygen species and phytohormones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147866. [PMID: 34134377 DOI: 10.1016/j.scitotenv.2021.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Nitric oxide (NO), reactive oxygen species (ROS), and phytohormones in plants often initiate responses to sources of abiotic stress. However, we have a poor understanding of the cross-talk between NO, ROS, and phytohormones during exogenous chiral auxin-induced phytotoxicity. In this study, the toxicity of the chiral synthetic auxin herbicide dichlorprop (DCPP) to Arabidopsis thaliana, as well as the mutual regulation of NO, hydrogen peroxide (H2O2), superoxide anion (O2.-), and phytohormones at the enantiomeric level was investigated. The ROS production exhibited an enantioselective manner, further, that was positively correlated with the change of the morphological indicators. This confirmed that ROS played an important role in the enantioselective effect of DCPP. The distribution of ROS and NO was partially overlapped, indicating that the production of NO may be affected by ROS, and also related to the degree of plant damage. In terms of phytohormones, the level of salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in the whole plant increased as the (R)-DCPP concentration applied increased, however, the trend has changed, when the data of leaves and roots was discussed separately. The results revealed that the redistribution of phytohormones may exist between leaves and roots, caused by the joint action of ROS and NO. The differences in the biological activity identified between the two enantiomers in this study enhance our understanding of the toxicity mechanism of exogenous auxin via their effects on phytohormones.
Collapse
Affiliation(s)
- Hui Chen
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Yongxiang Qin
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Jiawei Pu
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Jinxing Hu
- College of Science and Technology, Ningbo University, Cixi 315302, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Qu Q, Li Y, Zhang Z, Cui H, Zhao Q, Liu W, Lu T, Qian H. Effects of S-metolachlor on wheat (Triticum aestivum L.) seedling root exudates and the rhizosphere microbiome. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125137. [PMID: 33858101 DOI: 10.1016/j.jhazmat.2021.125137] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
S-metolachlor (S-ME) is a common chloroacetanilide herbicide. Here, we investigated the effects of S-ME on wheat seedling growth and explored via metabolomics the driver through which S-ME changes the rhizosphere microbiome. The results indicated that 4 mg/kg S-ME had a strong inhibitory effect on plant growth by inducing hydrogen peroxide (H2O2) levels. The richness of the rhizosphere microbiome markedly decreased after S-ME treatment, although the abundance of some potential beneficial rhizobacteria, such as Rhizobiaceae and Burkholderiaceae, increased suggesting that plants recruited potential beneficial microorganisms to resist S-ME-induced stress. Spearman correlation analysis revealed that Rhizobiaceae and Burkholderiaceae were positively correlated with organic acids secreted by plants after S-ME treatment, implying that potential beneficial microorganisms may be attracted mainly by organic acids. Our results demonstrated the phytotoxicity of S-ME on crop growth and indicated both that S-ME could influence rhizosphere microorganism abundance and that recruitment of potential beneficial microorganisms could be the result of root exudate regulation.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wanyue Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
25
|
Ke M, Ye Y, Zhang Z, Gillings M, Qu Q, Xu N, Xu L, Lu T, Wang J, Qian H. Synergistic effects of glyphosate and multiwall carbon nanotubes on Arabidopsis thaliana physiology and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145156. [PMID: 33477045 DOI: 10.1016/j.scitotenv.2021.145156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Agricultural chemicals have the potential to become pollutants that adversely affect plant growth. Interactions between these compounds are likely, but potential synergies are under-researched. Multiwall carbon nanotubes are increasingly finding novel uses in agriculture, as delivery mechanisms and as slow-release fertilizers. There is potential for nanotubes to interact with other agricultural chemicals in unpredictable ways. To investigate this possibility, we examined interactions with glyphosate, a widely used herbicide that is also attracting increasing concern over its potential for non-target effects. Here we examined potential synergistic effects on hydroponically grown Arabidopsis thaliana. Single treatments did not affect plant growth significantly, or did only mildly. However, combined treatment significantly affected both plant root and shoot growth. High-level content of malondialdehyde and up-regulated of metabolic antioxidant molecules in plant indicated that combined group caused the strong oxidative damage, while the decreased of antioxidant enzyme activities indicated an imbalance between reactive oxygen species (ROS)and the antioxidant defense system due to the continuously generated ROS. Besides, several intermediate metabolites of unsaturated fatty acids synthesis pathways were up-regulated in combined treatment, which clarified that combined group changed membrane components. The increase of intermediate metabolites in combined group also reflected more energy consumption in the repairment of the disrupt of combined treatment. The synergistic effect observed was attributed to the accumulation of glyphosate resulting from permeability and transportability of the carbon nanotubes. Overall, the risk of nanotube-herbicide interaction suggests a caution use of nanotubes in agricultural applications.
Collapse
Affiliation(s)
- Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Michael Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lusheng Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
26
|
Bao M, Li J, Chen H, Chen Z, Xu D, Wen Y. Enantioselective effects of imazethapyr on the secondary metabolites and nutritional value of wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143759. [PMID: 33279196 DOI: 10.1016/j.scitotenv.2020.143759] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/31/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
The secondary metabolism of plants is key for mediating responses to environmental stress, but few studies have examined how the relationship between secondary metabolism and the stress response of plants is affected by exposure to chiral herbicides. Here, we studied the enantioselective disturbance of the chiral herbicide imazethapyr (IM) on the secondary metabolism and nutrient levels of wheat seedlings. The bioactive enantiomer R-IM significantly increased the contents of major secondary metabolites, including phenolic acids, flavonoids, and carotenoids but greatly inhibited the production of benzoxazine. The antioxidant system also responded strongly to R-IM; specifically, the activities of SOD, CAT, and GPX enzymes were all significantly induced, and the GSH content initially increased but then decreased. Furthermore, the nutrient levels of wheat seedlings were also affected; dietary fiber content decreased, while the contents of the microelements Fe, Mn, and Zn increased. In sum, this study provides new insight into the phytotoxic effects of IM and raises new questions on the role of secondary metabolites and nutrients in mediating enantioselective effects.
Collapse
Affiliation(s)
- Manxin Bao
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Chen
- College of Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, United States
| | - Dongmei Xu
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Wang H, Fan H, Liu H, Jin M, Du S, Li D, Zhang P, Ruan S, Qiu J. Oxidative stress response mechanism of Scenedesmus obliquus to ionic liquids with different number of methyl-substituents. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122847. [PMID: 32531673 DOI: 10.1016/j.jhazmat.2020.122847] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Ionic liquids (ILs) have become persistent contaminants in water because of their good solubility and low biodegradability. The oxidative stress responses of Scenedesmus obliquus to three imidazole ILs with different number of methyl-substituents, i.e., 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were studied. There was a positive correlation between ROS level and IL concentration. The activities of antioxidant enzymes, i.e., superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, and glutathione peroxidase, and the content of antioxidants, i.e., ascorbic acid and glutathione, changed in IL treatment with a concentration-dependent effect. Proline accumulation increased with increasing IL concentration. Integrated biomarker response (IBR) index analysis, based on the eight oxidative stress response indicators, revealed that the toxicity order was: [C10IM]Cl < [C10DMIM]Cl < [C10MIM]Cl. Proteomic analysis showed that IL affect the type and distribution of proteins in S. obliquus. Chloroplast and photosystem II were affected as cellular component, and the proteins related to oxidative stress are annotated in GO categories. IBR index and proteomic analysis indicate that oxidative stress response is one of the main biomarkers of IL stress.
Collapse
Affiliation(s)
- Huan Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huiyang Fan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| | - Mingkang Jin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Shaoting Du
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Dexiao Li
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Songlin Ruan
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jieren Qiu
- Laboratory of Plant Molecular Biology & Proteomics, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| |
Collapse
|
28
|
Yao C, Sheng J, Yan S, Tian S, Meng Z, Zhou Z, Zhu W. Enantioselectivity effects of imazethapyr enantiomers to metabolic responses in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 168:104619. [PMID: 32711760 DOI: 10.1016/j.pestbp.2020.104619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Imazethapyr (IMZT) is a typical chiral pesticide with two enantiomers with the R-IMZT having the main herbicidal activity. However, the enantioselectivity of the effects of IMZT enantiomers on human and animals is still unclear. In this study, a nuclear magnetic resonance (NMR)-based metabolomics method and determination of oxidative stress were used to evaluate the enantioselectivity of IMZT enantiomers in mice. The results showed that the R-IMZT caused larger disturbances of endogenous metabolites and the S-IMZT had stronger interferences to oxidation defense system. The significantly perturbed metabolic pathways in mice exposed to the R-enantiomer were the valine, leucine and isoleucine biosynthesis pathway as well as the phenylalanine, tyrosine and tryptophan biosynthesis pathway. However, exposure of mice to the S-enantiomer did not significantly affect the metabolic pathways, but exposure led to an increase of catalase (CAT) activity and an increase in malondialdehyde (MDA) content in the liver. These results indicate that we need to conduct a more comprehensive assessment of the health risks of pesticide monomers in the future. In a word, these results provide more evidence for assessing the differences in health risks of IMZT enantiomers to mammals as well as provide more references for the promotion and use of pesticide monomers in the future.
Collapse
Affiliation(s)
- Chenyang Yao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jing Sheng
- College of Science, China Agricultural University, Beijing 100193, China
| | - Sen Yan
- College of Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- College of Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiyuan Meng
- College of Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhou
- College of Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China
| | - Wentao Zhu
- College of Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
29
|
Zhao Q, Liu W, Li Y, Ke M, Qu Q, Yuan W, Pan X, Qian H. Enantioselective effects of imazethapyr residues on Arabidopsis thaliana metabolic profile and phyllosphere microbial communities. J Environ Sci (China) 2020; 93:57-65. [PMID: 32446460 DOI: 10.1016/j.jes.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Imazethapyr (IM) is a widely used acetolactate synthase-inhibiting chiral herbicide. It has long-term residuals that may be absorbed by the human body through the edible parts of plants, such as vegetable leaves or fruits. Here, we selected a model plant, Arabidopsis thaliana, to determine the effects of R-IM and S-IM on its leaf structure, photosynthetic efficiency, and metabolites, as well as the structures of microorganisms in the phyllosphere, after 7 days of exposure. Our results indicated enantiomeric differences in plant growth between R-IM and S-IM; 133 µg/kg R-IM showed heavier inhibition of photosynthetic efficiency and greater changes to subcellular structure than S-IM. R-IM and S-IM also had different effects on metabolism and leaf microorganisms. S-IM mainly increased lipid compounds and decreased amino acids, while R-IM increased sugar accumulation. The relative abundance of Moraxellaceae human pathogenic bacteria was increased by R-IM treatment, indicating that R-IM treatment may increase leaf surface pathogenic bacteria. Our research provides a new perspective for evaluating the harmfulness of pesticide residues in soil, phyllosphere microbiome changes via the regulation of plant metabolism, and induced pathogenic bacterial accumulation risks.
Collapse
Affiliation(s)
- Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyue Liu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wenting Yuan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiangliang Pan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
30
|
Liu N, Zhu L. Metabolomic and Transcriptomic Investigation of Metabolic Perturbations in Oryza sativa L. Triggered by Three Pesticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6115-6124. [PMID: 32227873 DOI: 10.1021/acs.est.0c00425] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inappropriate application of pesticides often triggers molecular alterations in crops, which inadvertently disturbs metabolites and finally affects crop quality. Therefore, understanding the mechanism of action of pesticides on crops is essential for evaluating the potential environmental impact of pesticides. Our findings indicated that three typical pesticides, including herbicide butachlor, insecticide chlorpyrifos, and fungicide tricyclazole, induced the expression regulation of different key genes, exhibiting considerable distinction on metabolic responses in rice (Oryza sativa L.). Butachlor mainly affected five carbohydrate metabolism pathways (38.5%), and more than 48.0% of differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism as well as photosynthesis, thereby disturbing the distribution of starch-sucrose. Chlorpyrifos dramatically affected six amino acid metabolism pathways (60.0%), and key DEGs mainly enriched in the aspartate and glutamate metabolism, inducing an increase in free amino acid contents (up to 29.02% of the control) and degradation of soluble proteins (down to 48.72% of the control). Tricyclazole remarkably affected six fatty acid metabolism pathways (53.9%) and significantly upregulated DEGs which primarily code oil-body membrane proteins, which resulted in the decline of saturated fatty acids (palmitic acid and stearic acid) and the increase of unsaturated fatty acids (linolenic acid and octadecadienoic acid). These findings provide a molecular-scale perspective on the response of crops to pesticides.
Collapse
Affiliation(s)
- Na Liu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
31
|
Liu W, Zhao Q, Zhang Z, Li Y, Xu N, Qu Q, Lu T, Pan X, Qian H. Enantioselective effects of imazethapyr on Arabidopsis thaliana root exudates and rhizosphere microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137121. [PMID: 32059308 DOI: 10.1016/j.scitotenv.2020.137121] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Imazethapyr (IM) is a chiral herbicide with two enantiomers (R-IM and S-IM). Here, we determined the enantioselective effects of IM on Arabidopsis thaliana biomass and chlorophyll content, root exudates and rhizosphere microbes after 7 days of exposure. The results suggested that 133 μg/kg R-IM enantiomer in soil slightly inhibited plant biomass but S-IM did not exert significant inhibitory effects. The rhizosphere microorganism composition was also found to have enantiomeric differences between R- and S-IM. The relative abundance of beneficial rhizosphere microbes such as Bacillus and Ramlibacter increased much more with R-IM treatment than with S-IM treatment, indicating that the rhizosphere recruited some beneficial microbes to resist the herbicide stress. The IM enantiomers exerted a significant influence on root exudates with enantioselectivity. R-IM resulted in higher levels of most amino acids, organic acids, sugars and other metabolites after 7 days of exposure; few metabolites were increased by only the S-IM treatment. The correlation analyses between compounds (sugars, amino acids and organic acid) and microbes at the genus level revealed that the number of microbes was more positively correlated with organic acids than other compounds, indicating that organic acids can attract more microbes than amino acids and sugars. Some organic acids, such as 3-hydroxybutyric acid, may be a carbon source for the beneficial microbe Ramlibacter. This study increases the understanding of the differences in IM enantiomer toxicity with respect to plant physiological activity and soil microorganisms.
Collapse
Affiliation(s)
- Wanyue Liu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiangliang Pan
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|