1
|
Poblano-Bata J, Zaragoza-Ojeda M, De Vizcaya-Ruiz A, Arenas-Huertero F, Amador-Muñoz O. Toxicological effects of solvent-extracted organic matter associated with PM 2.5 on human bronchial epithelial cell line NL-20. CHEMOSPHERE 2024; 362:142622. [PMID: 38880264 DOI: 10.1016/j.chemosphere.2024.142622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
The heterogeneity and complexity of solvent-extracted organic matter associated with PM2.5 (SEOM-PM2.5) is well known; however, there is scarce information on its biological effects in human cells. This work aimed to evaluate the effect of SEOM-PM2.5 collected in northern Mexico City during the cold-dry season (November 2017) on NL-20 cells, a human bronchial epithelial cell line. The SEOM obtained accounted for 15.5% of the PM2.5 mass and contained 21 polycyclic aromatic hydrocarbons (PAHs). The cell viability decreased following exposure to SEOM-PM2.5, and there were noticeable morphological changes such as increased cell size and the presence of cytoplasmic vesicles in cells treated with 5-40 μg/mL SEOM-PM2.5. Exposure to 5 μg/mL SEOM-PM2.5 led to several alterations compared with the control cells, including the induction of double-stranded DNA breaks based (p < 0.001); nuclear fragmentation and an increased mitotic index (p < 0.05); 53BP1 staining, a marker of DNA repair by non-homologous end-joining (p < 0.001); increased BiP protein expression; and reduced ATF6, IRE1α, and PERK gene expression. Conversely, when exposed to 40 μg/mL SEOM-PM2.5, the cells showed an increase in reactive oxygen species formation (p < 0.001), BiP protein expression (p < 0.05), and PERK gene expression (p < 0.05), indicating endoplasmic reticulum stress. Our data suggest concentration-dependent toxicological effects of SEOM-PM2.5 on NL-20 cells, including genotoxicity, genomic instability, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Josefina Poblano-Bata
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico; Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Montserrat Zaragoza-Ojeda
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados-IPN, Ciudad de México, 07360, Mexico.
| | - Francisco Arenas-Huertero
- Centro de Investigación en Biomedicina y Bioseguridad, Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, 06720, Mexico.
| | - Omar Amador-Muñoz
- Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México. Investigación Científica s/n, C.U., Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
2
|
Craig NA, Scruggs AM, Berens JP, Deng F, Chen Y, Dvonch JT, Huang SK. Promotion of myofibroblast differentiation through repeated treatment of fibroblasts to low concentrations of PM 2.5. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104329. [PMID: 38036232 PMCID: PMC11010492 DOI: 10.1016/j.etap.2023.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Exposure to particulate matter ≤ 2.5 µm (PM2.5) is a risk factor for many lung diseases. Although the toxicologic effects of PM2.5 on airway epithelium are well-described, the effects of PM2.5 on fibroblasts in the lung are less studied. Here, we sought to examine the effects of PM2.5 on the differentiation of fibroblasts into myofibroblasts. Although a single treatment of fibroblasts did not result in a change in collagen or the myofibroblast marker α-SMA, exposing fibroblasts to sequential treatments with PM2.5 at low concentrations caused a robust increase in these proteins. Treatment of fibroblasts with IMD0354, an inhibitor to nuclear factor κB, but not with an antagonist to aryl hydrocarbon receptor, abolished the ability of PM2.5 to induce myofibroblast differentiation. These data demonstrate that potential impact of PM2.5 to fibroblast activation and fibrosis and support the importance of utilizing low concentrations and varying exposure protocols to toxicologic studies.
Collapse
Affiliation(s)
- Nathan A Craig
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jack P Berens
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, China
| | - J Timothy Dvonch
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
de Lagarde VM, Chevalier L, Méausoone C, Cazier F, Dewaele D, Cazier-Dennin F, Janona M, Logie C, Achard S, André V, Rogez-Florent T, Monteil C, Corbiere C. Acute and repeated exposures of normal human bronchial epithelial (NHBE) cells culture to particles from a coloured pyrotechnic smoke. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104327. [PMID: 38006978 DOI: 10.1016/j.etap.2023.104327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Coloured pyrotechnic smokes are frequently used in the military field and occasionally by civilians, but their health hazards have been little studied. The main concern could rise from inhalation of smoke particles. Our previous study showed that acute exposure to particles from a red signalling smoke (RSS) induced an antioxidant and inflammatory responses in small airway epithelial cells. The aim of this study was to further explore the toxicity of RSS particles at a more proximal level of the respiratory tract, using normal human bronchial epithelial cells grown at the Air-Liquid Interface. Acute exposure (24 h) induced an oxidative stress that persisted 24 h post-exposure, associated with particle internalization and epithelium morphological changes (cuboidal appearance and loss of cilia). Repeated exposures (4×16h) to RSS particles did not trigger oxidative stress but cell morphological changes occurred. Overall, this study provides a better overview of the toxic effects of coloured smoke particles.
Collapse
Affiliation(s)
| | - Laurence Chevalier
- Université de Rouen Normandie, UNIROUEN, INSA Rouen, CNRS, GPM-UMR6634, 76000 Rouen, France
| | - Clémence Méausoone
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Fabrice Cazier
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Dorothée Dewaele
- Université du Littoral Côte d'Opale, CCM - Centre Commun de Mesures, 59 375 Dunkerque, France
| | - Francine Cazier-Dennin
- Université du Littoral Côte d'Opale, EA 4492 - UCEIV - Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 417, 59 375 Dunkerque, France
| | - Marion Janona
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cathy Logie
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Sophie Achard
- Université de Paris, Faculté de Pharmacie, Inserm UMR1153 - CRESS, HERA " Health Environmental Risk Assessment ", 75005 Paris, France
| | - Véronique André
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Tiphaine Rogez-Florent
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Christelle Monteil
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France
| | - Cécile Corbiere
- Univ Rouen Normandie, Université Caen Normandie, Normandie Univ, ABTEUR 4651, F-76000 Rouen, France.
| |
Collapse
|
4
|
Zarcone G, Lenski M, Martinez T, Talahari S, Simonin O, Garçon G, Allorge D, Nesslany F, Lo-Guidice JM, Platel A, Anthérieu S. Impact of Electronic Cigarettes, Heated Tobacco Products and Conventional Cigarettes on the Generation of Oxidative Stress and Genetic and Epigenetic Lesions in Human Bronchial Epithelial BEAS-2B Cells. TOXICS 2023; 11:847. [PMID: 37888697 PMCID: PMC10611330 DOI: 10.3390/toxics11100847] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023]
Abstract
Electronic cigarettes (e-cig) and heated tobacco products (HTP) are often used as smoking cessation aids, while the harm reduction effects of these alternatives to cigarettes are still the subject of controversial debate, in particular regarding their carcinogenic potential. The objective of this study is to compare the effects of e-cig, HTP and conventional cigarette emissions on the generation of oxidative stress and genetic and epigenetic lesions in human bronchial epithelial BEAS-2B cells. Our results show that HTP were less cytotoxic than conventional cigarettes while e-cig were not substantially cytotoxic in BEAS-2B cells. E-cig had no significant effect on the Nrf2 pathway, whereas HTP and cigarettes increased the binding activity of Nrf2 to antioxidant response elements and the expression of its downstream targets HMOX1 and NQO1. Concordantly, only HTP and cigarettes induced oxidative DNA damage and significantly increased DNA strand breaks and chromosomal aberrations. Neither histone modulations nor global DNA methylation changes were found after acute exposure, regardless of the type of emissions. In conclusion, this study reveals that HTP, unlike e-cig, elicit a biological response very similar to that of cigarettes, but only after a more intensive exposure: both tobacco products induce cytotoxicity, Nrf2-dependent oxidative stress and genetic lesions in human epithelial pulmonary cells. Therefore, the health risk of HTP should not be underestimated and animal studies are required in order to determine the tumorigenic potential of these emerging products.
Collapse
|
5
|
Ryu J, Lee SH, Kim S, Jeong JW, Kim KS, Nam S, Kim JE. Urban dust particles disrupt mitotic progression by dysregulating Aurora kinase B-related functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132238. [PMID: 37586242 DOI: 10.1016/j.jhazmat.2023.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Particulate matter (PM), a major component of outdoor air pollution, damages DNA and increases the risk of cancer. Although the harmful effects of PM at the genomic level are known, the detailed mechanism by which PM affects chromosomal stability remains unclear. In this study, we investigated the novel effects of PM on mitotic progression and identified the underlying mechanisms. Gene set enrichment analysis of lung cancer patients residing in countries with high PM concentrations revealed the downregulation of genes associated with mitosis and mitotic structures. We also showed that exposure of lung cancer cells in vitro to urban dust particles (UDPs) inhibits cell proliferation through a prolonged M phase. The mitotic spindles in UDP-treated cells were hyperstabilized, and the number of centrioles increased. The rate of ingression of the cleavage furrow and actin clearance from the polar cortex was reduced significantly. The defects in mitotic progression were attributed to inactivation of Aurora B at kinetochore during early mitosis, and spindle midzone and midbody during late mitosis. While previous studies demonstrated possible links between PM and mitosis, they did not specifically identify the dysregulation of spatiotemporal dynamics of mitotic proteins and structures (e.g., microtubules, centrosomes, cleavage furrow, and equatorial and polar cortex), which results in the accumulation of chromosomal instability, ultimately contributing to carcinogenicity. The data highlight the novel scientific problem of PM-induced mitotic disruption. Additionally, we introduce a practical visual method for assessing the genotoxic outcomes of airborne pollutants, which has implications for future environmental and public health research.
Collapse
Affiliation(s)
- Jaewook Ryu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, the Republic of Korea
| | - Joo-Won Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, the Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, the Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Pharmacology, College of Medicine, Kyung Hee University, Seoul 02447, the Republic of Korea; Department of Precision Medicine, Graduate School, Kyung Hee University, Seoul 02447, the Republic of Korea.
| |
Collapse
|
6
|
Elje E, Mariussen E, McFadden E, Dusinska M, Rundén-Pran E. Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:407. [PMID: 36770370 PMCID: PMC9921680 DOI: 10.3390/nano13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.
Collapse
Affiliation(s)
- Elisabeth Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Air Quality and Noise, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Erin McFadden
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| |
Collapse
|
7
|
Moufarrej L, Verdin A, Cazier F, Ledoux F, Courcot D. Oxidative stress response in pulmonary cells exposed to different fractions of PM 2.5-0.3 from urban, traffic and industrial sites. ENVIRONMENTAL RESEARCH 2023; 216:114572. [PMID: 36244444 DOI: 10.1016/j.envres.2022.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this work was to study the relationship between oxidative stress damages and particulate matter (PM) chemical composition, sources, and PM fractions. PM2.5-0.3 (PM with equivalent aerodynamic diameter between 2.5 and 0.3 μm) were collected at urban, road traffic and industrial sites in the North of France, and were characterized for major and minor chemical species. Four different fractions (whole PM2.5-0.3, organic, water-soluble and non-extractable matter) were considered for each of the PM2.5-0.3 samples from the three sites. After exposure of BEAS-2B cells to the four different fractions, oxidative stress was studied in cells by quantifying reactive oxygen species (ROS) accumulation, oxidative damage to proteins (carbonylated proteins), membrane alteration (8-isoprostane) and DNA damages (8-OHdG). Whole PM2.5-0.3 was capable of inducing ROS overproduction and caused damage to proteins at higher levels than other fractions. Stronger cell membrane and DNA damages were found associated with PM and organic fractions from the urban site. ROS overproduction was correlated with level of expression of carbonylated proteins, DNA damages and membrane alteration markers. The PM2.5-0.3 collected under industrial influence appears to be the less linked to cell damages and ROS production in comparison with the other influences.
Collapse
Affiliation(s)
- Lamia Moufarrej
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Fabrice Cazier
- Centre Commun de Mesures, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France.
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR CNRS 3417, Univ. Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140, Dunkerque, France
| |
Collapse
|
8
|
Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Sci Rep 2022; 12:7664. [PMID: 35538131 PMCID: PMC9088729 DOI: 10.1038/s41598-022-11840-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Graphene and its derivative materials are manufactured by numerous companies and research laboratories, during which processes they can come into contact with their handlers' physiological barriers—for instance, their respiratory system. Despite their potential toxicity, these materials have even been used in face masks to prevent COVID-19 transmission. The increasingly widespread use of these materials requires the design and implementation of appropriate, versatile, and accurate toxicological screening methods to guarantee their safety. Murine models are adequate, though limited when exploring different doses and lengths of exposure—as this increases the number of animals required, contrary to the Three R's principle in animal experimentation. This article proposes an in vitro model using primary, non-transformed normal human bronchial epithelial (NHBE) cells as an alternative to the most widely used model to date, the human lung tumor cell line A549. The model has been tested with three graphene derivatives—graphene oxide (GO), few-layer graphene (FLG), and small FLG (sFLG). We observed a cytotoxic effect (necrosis and apoptosis) at early (6- and 24-h) exposures, which intensified after seven days of contact between cells and the graphene-related materials (GRMs)—with cell death reaching 90% after a 5 µg/mL dose. A549 cells are more resistant to necrosis and apoptosis, yielding values less than half of NHBE cells at low concentrations of GRMs (between 0.05 and 5 µg/mL). Indeed, GRM-induced cell death in NHBE cells is comparable to that induced by toxic compounds such as diesel exhaust particles on the same cell line. We propose NHBE as a suitable model to test GRM-induced toxicity, allowing refinement of the dose concentrations and exposure timings for better-designed in vivo mouse assays.
Collapse
|
9
|
The Nature and Size Fractions of Particulate Matter Deposited on Leaves of Four Tree Species in Beijing, China. FORESTS 2022. [DOI: 10.3390/f13020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Particulate matter (PM) in different size fractions (PM0.1–2.5, PM2.5–10 and PM>10) accumulation on four tree species (Populus tomentosa, Platanus acerifolia, Fraxinus chinensis, and Ginkgo biloba) at two sites with different pollution levels was examined in Beijing, China. Among the tested tree species, P. acerifolia was the most efficient species in capturing PM, followed by F. chinensis, G. biloba, and P. tomentosa. The heavily polluted site had higher PM accumulation on foliage and a higher percentage of PM0.1–2.5 and PM2.5–10. Encapsulation of PM within cuticles was observed on leaves of F. chinensis and G. biloba, which was further dominated by PM2.5. Leaf surface structure explains the considerable differences in PM accumulation among tree species. The amounts of accumulated PM (PM0.1–2.5, PM2.5–10, and PM>10) increased with the increase of stomatal aperture, stomatal width, leaf length, leaf width, and stomatal density, but decreases with contact angle. Considering PM accumulation ability, leaf area index, and tolerance to pollutants in urban areas, we suggest P. acerifolia should be used more frequently in urban areas, especially in “hotspots” in city centers (e.g., roads/streets with heavy traffic loads). However, G. biloba and P. tomentosa should be installed in less polluted areas.
Collapse
|
10
|
Platel A, Dusautoir R, Kervoaze G, Dourdin G, Gateau E, Talahari S, Huot L, Simar S, Ollivier A, Laine W, Kluza J, Gosset P, Garçon G, Anthérieu S, Guidice JML, Nesslany F. Comparison of the in vivo genotoxicity of electronic and conventional cigarettes aerosols after subacute, subchronic and chronic exposures. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127246. [PMID: 34844363 DOI: 10.1016/j.jhazmat.2021.127246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Tobacco smoking is classified as a human carcinogen. A wide variety of new products, in particular electronic cigarettes (e-cigs), have recently appeared on the market as an alternative to smoking. Although the in vitro toxicity of e-cigs is relatively well known, there is currently a lack of data on their long-term health effects. In this context, the aim of our study was to compare, on a mouse model and using a nose-only exposure system, the in vivo genotoxic and mutagenic potential of e-cig aerosols tested at two power settings (18 W and 30 W) and conventional cigarette (3R4F) smoke. The standard comet assay, micronucleus test and Pig-a gene mutation assay were performed after subacute (4 days), subchronic (3 months) and chronic (6 months) exposure. The generation of oxidative stress was also assessed by measuring the 8-hydroxy-2'-deoxyguanosine and by using the hOGG1-modified comet assay. Our results show that only the high-power e-cig and the 3R4F cigarette induced oxidative DNA damage in the lung and the liver of exposed mice. In return, no significant increase in chromosomal aberrations or gene mutations were noted whatever the type of product. This study demonstrates that e-cigs, at high-power setting, should be considered, contrary to popular belief, as hazardous products in terms of genotoxicity in mouse model.
Collapse
Affiliation(s)
- Anne Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Romain Dusautoir
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Gwenola Kervoaze
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - Gonzague Dourdin
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Eulalie Gateau
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Smaïl Talahari
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Ludovic Huot
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Sophie Simar
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Anaïs Ollivier
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - William Laine
- UMR 9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| | - Jérôme Kluza
- UMR 9020-UMR-S 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France.
| | - Philippe Gosset
- University of Lille, CNRS UMR9017, Inserm U1019, CHRU Lille, Institut Pasteur de Lille, CIIL - Center for Infection and Immunity of Lille, OpInfIELD, France.
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Sébastien Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| | - Fabrice Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPact de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
11
|
Wang J, Zhang Y, Zhang Z, Yu W, Li A, Gao X, Lv D, Zheng H, Kou X, Xue Z. Toxicology of respiratory system: Profiling chemicals in PM 10 for molecular targets and adverse outcomes. ENVIRONMENT INTERNATIONAL 2022; 159:107040. [PMID: 34922181 DOI: 10.1016/j.envint.2021.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Danyu Lv
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Huaize Zheng
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
12
|
Boudjema J, Lima B, Grare C, Alleman LY, Rousset D, Perdrix E, Achour D, Anthérieu S, Platel A, Nesslany F, Leroyer A, Nisse C, Lo Guidice JM, Garçon G. Metal enriched quasi-ultrafine particles from stainless steel gas metal arc welding induced genetic and epigenetic alterations in BEAS-2B cells. NANOIMPACT 2021; 23:100346. [PMID: 35559847 DOI: 10.1016/j.impact.2021.100346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/15/2023]
Abstract
Recent evidence has supported welding fume (WF)-derived ultrafine particles (UFP) could be the driving force of their adverse health effects. However, UFP have not yet been extensively studied and are currently not included in present air quality standards/guidelines. Here, attention was focused on the underlying genetic and epigenetic mechanisms by which the quasi-UFP (Q-UFP, i.e., ≤ 0.25 μm) of the WF emitted by gas metal arc welding-stainless steel (GMAW-SS) exert their toxicity in human bronchial epithelial BEAS-2B cells. The Q-UFP under study showed a monomodal size distribution in number centered on 104.4 ± 52.3 nm and a zeta potential of -13.8 ± 0.3 mV. They were enriched in Fe > Cr > Mn > Si, and displayed a relatively high intrinsic oxidative potential. Dose-dependent activation of nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B signaling pathway, glutathione alteration, and DNA, protein and lipid oxidative damage were reported in BEAS-2B cells acutely (1.5 and 9 μg/cm2, 24 h) or repeatedly (0.25 and 1.5 μg/cm2, 3 × 24 h) exposed to Q-UFP (p < 0.05). Alterations of the Histone H3 acetylation were reported for any exposure (p < 0.05). Differentially regulated miRNA and mRNA indicated the activation of some critical cell signaling pathways related to oxidative stress, inflammation, and cell cycle deregulation towards apoptosis. Taken together, these results highlighted the urgent need to better evaluate the respective toxicity of the different metals and to include the Q-UFP fraction of WF in current air quality standards/guidelines relevant to the occupational settings.
Collapse
Affiliation(s)
- J Boudjema
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Action Santé Travail, Aix-Noulette, France
| | - B Lima
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - L Y Alleman
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Rousset
- Institut National de Recherche et de Sécurité (INRS), Department of Pollutant Metrology, 54500 Vandœuvre-lès-Nancy, France
| | - E Perdrix
- IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Energy and Environment, F-59000 Lille, France
| | - D Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - S Anthérieu
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Platel
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - F Nesslany
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - A Leroyer
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - C Nisse
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - J-M Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - G Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|
13
|
Zani C, Donato F, Ceretti E, Pedrazzani R, Zerbini I, Gelatti U, Feretti D. Genotoxic Activity of Particulate Matter and In Vivo Tests in Children Exposed to Air Pollution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105345. [PMID: 34067860 PMCID: PMC8156021 DOI: 10.3390/ijerph18105345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 11/16/2022]
Abstract
The aim of this paper was to investigate the relationship between micronuclei and DNA damage in children's buccal mucosa cells and the genotoxicity and mutagenicity of the different sized fractions of particulate matter as well as the concentration of PAHs (polycyclic aromatic hydrocarbons) and metals in particulate matter. Air particulate matter was collected by high volume samplers located near the schools attended by the children on the same days of biological samplings. The mutagenic activity was assessed in different cells in in vitro tests (Ames test on bacteria and comet test on leukocytes). Our study showed weak positive correlations between (a) the mutagenicity of the PM0.5 fraction and PAHs and (b) the micronuclei test of children's buccal cells and PAHs detected in PM0.5 and PM0.5-3 fractions. A positive correlation was also found between in vitro comet test on leukocytes and PAHs in the PM3-10 fraction. No correlation was observed for metal concentrations in each PM fraction.
Collapse
Affiliation(s)
- Claudia Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Francesco Donato
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
- Correspondence: ; Tel.: +39-030-3717689
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Roberta Pedrazzani
- Department of Mechanical and Industrial Engineering, University of Brescia, 38 via Branze, 25123 Brescia, Italy;
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Umberto Gelatti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, Italy; (C.Z.); (E.C.); (I.Z.); (U.G.); (D.F.)
| |
Collapse
|
14
|
Arndt J, Healy RM, Setyan A, Flament P, Deboudt K, Riffault V, Alleman LY, Mbengue S, Wenger JC. Characterization and source apportionment of single particles from metalworking activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116078. [PMID: 33243539 DOI: 10.1016/j.envpol.2020.116078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Industrial metalworking facilities emit a variety of air toxics including volatile organic compounds, polycyclic aromatic hydrocarbons (PAHs) and heavy metals. In order to investigate these emissions, a 1-month multi-instrument field campaign was undertaken at an industrial site in Grande-Synthe, Dunkirk (France), in May and June 2012. One of the main objectives of the study was to provide new information on the chemical composition of particulate matter with aerodynamic diameters smaller than 2.5 μm (PM2.5) in the vicinity of metalworking facilities. An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed to provide size-resolved chemical mixing state measurements of ambient single particles at high temporal resolution. This mixing state information was then used to apportion PM2.5 to local metalworking facilities influencing the receptor site. Periods when the site was influenced by metalworking sources were characterised by a pronounced increase in particles containing toxic metals (manganese, iron, lead) and polycyclic aromatic hydrocarbons (PAHs) with a variety of chemical mixing states. The association of specific particle classes with a nearby ferromanganese alloy manufacturing plant was confirmed through comparison with previous analysis of raw materials (ores) and chimney filter particle samples collected at the facility. Particles associated with emissions from a nearby steelworks were also identified. The contribution of local metalworking activities to PM2.5 at the receptor site for the period when the ATOFMS was deployed ranged from 1 to 65% with an average contribution of 17%, while the remaining mass was attributed to other local and regional sources. These findings demonstrate the impact of metalworking facilities on air quality downwind and provide useful single particle signatures for future source apportionment studies in communities impacted by metalworking emissions.
Collapse
Affiliation(s)
- Jovanna Arndt
- Department of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Robert M Healy
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada.
| | - Ari Setyan
- Laboratoire de Physico-Chimie de L'Atmosphère, Université Du Littoral Côte D'Opale, EA 4493-CNRS, 59140, Dunkerque, France
| | - Pascal Flament
- Laboratoire de Physico-Chimie de L'Atmosphère, Université Du Littoral Côte D'Opale, EA 4493-CNRS, 59140, Dunkerque, France
| | - Karine Deboudt
- Laboratoire de Physico-Chimie de L'Atmosphère, Université Du Littoral Côte D'Opale, EA 4493-CNRS, 59140, Dunkerque, France
| | - Véronique Riffault
- IMT Lille Douai, Univ. Lille, SAGE - Sciences de L'Atmosphère et Génie de L'Environnement, F-59000, Lille, France
| | - Laurent Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Sciences de L'Atmosphère et Génie de L'Environnement, F-59000, Lille, France
| | - Saliou Mbengue
- IMT Lille Douai, Univ. Lille, SAGE - Sciences de L'Atmosphère et Génie de L'Environnement, F-59000, Lille, France
| | - John C Wenger
- Department of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Huang SK, Tripathi P, Koneva LA, Cavalcante RG, Craig N, Scruggs AM, Sartor MA, Deng F, Chen Y. Effect of concentration and duration of particulate matter exposure on the transcriptome and DNA methylome of bronchial epithelial cells. ENVIRONMENTAL EPIGENETICS 2021; 7:dvaa022. [PMID: 33692908 PMCID: PMC7928203 DOI: 10.1093/eep/dvaa022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 05/04/2023]
Abstract
Exposure to particulate matter (PM) from ambient air pollution is a well-known risk factor for many lung diseases, but the mechanism(s) for this is not completely understood. Bronchial epithelial cells, which line the airway of the respiratory tract, undergo genome-wide level changes in gene expression and DNA methylation particularly when exposed to fine (<2.5 µm) PM (PM2.5). Although some of these changes have been reported in other studies, a comparison of how different concentrations and duration of exposure affect both the gene transcriptome and DNA methylome has not been done. Here, we exposed BEAS-2B, a bronchial epithelial cell line, to different concentrations of PM2.5, and compared how single or repeated doses of PM2.5 affect both the transcriptome and methylome of cells. Widespread changes in gene expression occurred after cells were exposed to a single treatment of high-concentration (30 µg/cm2) PM2.5 for 24 h. These genes were enriched in pathways regulating cytokine-cytokine interactions, Mitogen-Activated Protein Kinase (MAPK) signaling, PI3K-Akt signaling, IL6, and P53. DNA methylomic analysis showed that nearly half of the differentially expressed genes were found to also have DNA methylation changes, with just a slightly greater trend toward overall hypomethylation across the genome. Cells exposed to a lower concentration (1 µg/cm2) of PM2.5 demonstrated a comparable, but more attenuated change in gene expression compared to cells exposed to higher concentrations. There were also many genes affected by lower concentrations of PM2.5, but not higher concentrations. Additionally, repeated exposure to PM2.5 (1 µg/cm2) for seven days resulted in transcriptomic and DNA methylomic changes that were distinct from cells treated with PM2.5 for only one day. Compared to single exposure, repeated exposure to PM2.5 caused a more notable degree of hypomethylation across the genome, though certain genes and regions demonstrated increased DNA methylation. The overall increase in hypomethylation, especially with repeated exposure to PM2.5, was associated with an increase in expression of ten-eleven translocation enzymes. These data demonstrate how variations in concentration and duration of PM2.5 exposure induce distinct differences in the transcriptomic and DNA methylomic profile of bronchial epithelial cells, which may have important implications in the development of both acute and chronic lung disease.
Collapse
Affiliation(s)
- Steven K Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
- Correspondence address: Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: +1-734-647-6477; Fax: +1-734-764-4556; E-mail:
| | - Priya Tripathi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Lada A Koneva
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Room 2017, Palmer Commons 100 Washtenaw Avenue Ann Arbor, MI 48109-2218, USA
| | - Raymond G Cavalcante
- Epigenomics Core, University of Michigan, Ann Arbor, Medical Science Research Building II Rm C568 1150 W. Medical Center Dr Ann Arbor, MI 48109, USA
| | - Nathan Craig
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Anne M Scruggs
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Room 2017, Palmer Commons 100 Washtenaw Avenue Ann Arbor, MI 48109-2218, USA
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Xueyuan Road 38, Haidian District, Beijing, China
| | - Yahong Chen
- Department of Respiratory Medicine, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, Beijing, China
| |
Collapse
|
16
|
Sotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman LY, Canivet L, Perdrix E, Loyens A, Marchetti P, Lo Guidice JM, Garçon G. Mitochondrial alterations triggered by repeated exposure to fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) fractions of ambient particulate matter. ENVIRONMENT INTERNATIONAL 2020; 142:105830. [PMID: 32585499 DOI: 10.1016/j.envint.2020.105830] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive. Mitochondria are major endogenous sources of reactive oxygen species (ROS) through oxidative metabolism, and coordinate many critical cellular signaling processes. Mitochondria have been often studied in the context of PM toxicity and generally associated with apoptosis activation. However, little is known about the underlying adaptation mechanisms that could occur following exposure at sub-apoptotic doses of ambient PM. Here, normal human bronchial epithelial BEAS-2B cells were acutely or repeatedly exposed to relatively low doses (5 µg.cm-2) of FP (PM2.5-0.18) or quasi-UFP (Q-UFP; PM0.18) to better access the critical changes in mitochondrial morphology, functions, and dynamics. No significant cytotoxicity nor increase of apoptotic events were reported for any exposure. Mitochondrial membrane potential (ΔΨm) and intracellular ATP content were also not significantly impaired. After cell exposure to sub-apoptotic doses of FP and notably Q-UFP, oxidative phosphorylation was increased as well as mitochondrial mass, resulting in increased production of mitochondrial superoxide anion. Given this oxidative boost, the NRF2-ARE signaling pathway was significantly activated. However, mitochondrial dynamic alterations in favor of accentuated fission process were observed, in particular after Q-UFP vs FP, and repeated vs acute exposure. Taken together, these results supported mitochondrial quality control and metabolism dysfunction as an early lung underlying mechanism of toxicity, thereby leading to accumulation of defective mitochondria and enhanced endogenous ROS generation. Therefore, these features might play a key role in maintaining PM-induced oxidative stress and inflammation within lung cells, which could dramatically contribute to the exacerbation of inflammatory chronic lung diseases. The prospective findings of this work could also offer new insights into the physiopathology of lung toxicity, arguably initiate and/or exacerbate by acutely and rather repeated exposure to ambient FP and mostly Q-UFP.
Collapse
Affiliation(s)
- J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - C De Sousa
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - M Tardivel
- Univ. Lille, BioImaging Centre Lille-Nord de France (BICeL), 59000, Lille, France
| | - S Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - L Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - A Loyens
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - Lille Neuroscience & Cognition, 59000 Lille, France
| | - P Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France.
| |
Collapse
|
17
|
Badran G, Verdin A, Grare C, Abbas I, Achour D, Ledoux F, Roumie M, Cazier F, Courcot D, Lo Guidice JM, Garçon G. Toxicological appraisal of the chemical fractions of ambient fine (PM 2.5-0.3) and quasi-ultrafine (PM 0.3) particles in human bronchial epithelial BEAS-2B cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114620. [PMID: 33618464 DOI: 10.1016/j.envpol.2020.114620] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/12/2023]
Abstract
New toxicological research is still urgently needed to improve the current knowledge about the induction of some underlying mechanisms of toxicity by the different chemical fractions of ambient particulate matter (PM). This in vitro study sought also to better evaluate and compare the respective toxicities of fine particles (PM2.5-0.3) and their inorganic and organic chemical fractions, and the respective toxicities of the organic chemical fractions of PM2.5-0.3 and quasi-ultrafine particles (PM0.3). Human bronchial epithelial BEAS-2B cells were also exposed for 6-48 h to relatively low doses of PM2.5-0.3 and their organic extractable (OEM2.5-0.3) and non-extractable (NEM2.5-0.3) fractions, and the organic extractable fraction (OEM0.3) of PM0.3. We reported that not only PM2.5-0.3, but also, to a lesser extent, its inorganic chemical fraction, NEM2.5-0.3, and organic chemical fraction, OEM2.5-0.3, were able to significantly induce ROS overproduction and oxidative damage notwithstanding the early activation of NRF2 signaling pathway. Moreover, for any exposure, inflammatory and apoptotic events were noticed. Similar results were observed in BEAS-2B cells exposed to OEM0.3, rich of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. In BEAS-2B cells exposed for 24 and 48 h to OEM2.5-0.3 and OEM0.3, to a higher extent, there was an alteration of the levels of some critical proteins even though crucial for the autophagy rather than a real reduction of autophagy. It is noteworthy that the toxicological effects were equal or mostly higher in BEAS-2B cells exposed for 6 and/or 24 h to PM2.5-0.3 from those exposed to NEM2.5-0.3 or OEM2.5-0.3, and in BEAS-2B cells exposed for 6 and/or mostly 24 h to OEM0.3 from those exposed to OEM2.5-0.3. Taken together, these results revealed the higher potentials for toxicity, closely linked to their respective physical and chemical characteristics, of PM2.5-0.3 vs NEM2.5-0.3 and/or OEM2.5-0.3, and OEM0.3 vs OEM2.5-0.3.
Collapse
Affiliation(s)
- Ghidaa Badran
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV-EA 4492, FR CNRS, 3417, Univ. Littoral Côte d'Opale, Dunkerque, France; CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France; Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Anthony Verdin
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV-EA 4492, FR CNRS, 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Céline Grare
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Imane Abbas
- Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Djamal Achour
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV-EA 4492, FR CNRS, 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Mohamad Roumie
- Lebanese Atomic Energy Commission, NCSR, Beirut, Lebanon
| | - Fabrice Cazier
- Centre Commun de Mesures, Maison de la Recherche en Environnement Industriel, Univ. du Littoral Côte d'Opale, Dunkerque, France
| | - Dominique Courcot
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV-EA 4492, FR CNRS, 3417, Univ. Littoral Côte d'Opale, Dunkerque, France
| | - Jean-Marc Lo Guidice
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France
| | - Guillaume Garçon
- CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de l'Environnement Chimique sur la Santé (IMPECS), Univ. Lille, Lille, France.
| |
Collapse
|