1
|
Liu Q, Chen Z, He D, Pan A, Yuan J, Liu Y, Huang L, Feng Y. Assembly of root-associated bacterial community and soil health in cadmium-contaminated soil affected by nano/bulk-biochar compost associations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124619. [PMID: 39067738 DOI: 10.1016/j.envpol.2024.124619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Biochar (BC) has been proven effective in promoting the production of safety food in cadmium (Cd)-polluted soil and the impact can be further enhanced through interaction with compost (CM). However, there existed unclear impacts of biochar with varying particle sizes in conjunction with compost on microbiome composition, rhizosphere functions, and soil health. Hence, in this study, two bulk-biochar derived from wood chips and pig manure were fabricated into nano-biochar using a ball-milling method. Subsequently, in a field experiment, the root-associated bacterial community and microbial functions of lettuce were evaluated in respond to Cd-contaminated soil remediated with nano/bulk-BCCM. The results showed that compared to bulk-BCCM, nano-BCCM significantly reduced the Cd concentration in the edible part of lettuce and the available Cd in the soil. Both nano-BCCM and bulk-BCCM strongly influenced the composition of bacterial communities in the four root-associated niches, and enhanced rhizosphere functions involved in nitrogen, phosphorus, and carbon cycling, as well as the relative abundance and biodiversity of keystone modules in rhizosphere soil. Furthermore, soil quality index analysis indicated that nano-BCCM exhibited greater potential than bulk-BCCM in maintaining soil health. The data revealed that nano-BCCM could regulate the Cd concentration in lettuce shoot by promoting microbial biodiversity of keystone modules in soil-root continuum and rhizosphere bacterial functions. These findings suggest that nano-biochar compost associations can be a superior strategy for enhancing microbial functions, maintaining soil health, and ensuring crop production safety in the Cd-contaminated soil compared to the mix of bulk-biochar and compost.
Collapse
Affiliation(s)
- Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhiqin Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Dan He
- Zhuji Economic Specialty Station, 311899, Zhuji, China
| | - Ancao Pan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jie Yuan
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
2
|
Guo N, Li X, Xie L, Hao S, Zhou X. A quantitative review of the effects of biochar application on the reduction of Cu concentration in plant: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34789-3. [PMID: 39392574 DOI: 10.1007/s11356-024-34789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024]
Abstract
Contamination and toxicity of copper (Cu) in soils are global issues, particularly in regions where Cu-based fungicides are utilized. Elevated Cu concentrations can lead to soil contamination and pose significant risks to the ecosystem, including plant life, wildlife, and human health. The application of biochar has been proposed as a viable strategy to mitigate Cu accumulation in plants. However, there is no quantitative and data-based consensus on the impact of biochar on plant Cu accumulation. In this meta-analysis, 624 data records from 65 published literature were collected and the effects of various factors, including biochar properties, experimental conditions, and soil properties on Cu accumulation in plants, were examined through meta-subgroup analysis and meta-regression models. The results obtained indicate a significant dose-dependent effect of biochar in decreasing Cu concentration in plants by an average of 23.45%. Soils with acidic pH values and medium textures were more conducive for biochar to mitigate Cu accumulation in plant tissues. In addition, manure biochar and green waste biochar were found to be more successful in decreasing Cu concentrations in plants compared to other biochar types. Biochar types with pyrolysis temperatures of > 600 °C and pH values of ≥ 10 resulted in greater decreases in plant Cu concentration. Regarding biochar application, biochar minimum range of 1% in potting experiments and 20 t/ha in field experiments have been recommended to effectively decrease Cu concentration in plants. Overall, these findings provide valuable insights into Cu transfer mitigation through food chain to human bodies and for policymakers to take preventive measures.
Collapse
Affiliation(s)
- Ningyu Guo
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xue Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Linzhi Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Shangyan Hao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinbin Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Zhang P, Zhang Y, Pang W, Alonazi MA, Alwathnani H, Rensing C, Xie R, Zhang T. Cenococcum geophilum impedes cadmium toxicity in Pinus massoniana by modulating nitrogen metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174296. [PMID: 38944303 DOI: 10.1016/j.scitotenv.2024.174296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Nitrogen (N) is of great significance to the absorption, distribution and detoxification of cadmium (Cd). Ectomycorrhizal fungi (EMF) are able to affect the key processes of plant N uptake to resist Cd stress, while the mechanism is still unclear. Therefore, we explored potential strategies of Cenococcum geophilum (C. geophilum) symbiosis to alleviate Cd stress in Pinus massoniana (P. massoniana) from the perspective of plant N metabolism and soil N transformation. The results showed that inoculation of C. geophilum significantly increased the activities of NR, NiR and GS in the shoots and roots of P. massoniana, thereby promoting the assimilation of NO3- and NH4+ into amino acids. Moreover, C. geophilum promoted soil urease and protease activities, but decreased soil NH4+ content, indicating that C. geophilum might increase plant uptake of soil inorganic N. qRT-PCR results showed that C3 symbiosis significantly up-regulated the expression of genes encoding functions involved in NH4+ uptake (AMT3;1), NO3- uptake (NRT2.1, NRT2.4, NRT2.9), as well as Cd resistance (ABCC1 and ABCC2), meanwhile down-regulated the expression of NRT7.3, Cd transporter genes (HMA2 and NRAMP3) in the roots of P. massoniana seedlings. These results demonstrated that C. geophilum was able to alleviate Cd stress by increasing the absorption and assimilation of inorganic N in plants and inhibiting the transport of Cd from roots to shoots, which provided new insights into how EMF improved host resistance to abiotic stress.
Collapse
Affiliation(s)
- Panpan Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhu Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Pang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Madeha A Alonazi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongzhang Xie
- Forestry Bureau, Sanyuan District, Sanming 365000, China
| | - Taoxiang Zhang
- International Joint Laboratory of Forest Symbiology, College of Juncao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
4
|
Yang L, Chen Y, Wang S, Lin S, Huang G, Wang Z, Yu Z, Zeng L. Arsenic-contaminated soil remediation with hyperthermophilic compost: Effects on arsenic bioavailability, soil fertility and bacterial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122774. [PMID: 39388821 DOI: 10.1016/j.jenvman.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Soil arsenic (As) contamination has posed a significant global environmental challenge seriously threatening human health. Compost has attracted broad interests as a kind of eco-friendly and versatile amendment. However, hyperthermophilic compost (HTC), which is newly-developed and more advantageous to environment, has not yet been widely utilized to remediate As-contaminated soil, and its effectiveness remains unclear. Herein, the effects of HTC amendment on soil fertility, As bioavailability, plant growth and soil bacterial community were investigated. After amended with HTC, soil nutrient content and enzyme activity were improved. Concurrently, the content of both total As and available As in soil was reduced, partially due to the formation of organo-As complex with the presence of humic acid and fulvic acid in HTC. Notably, Chinese white cabbage (Brassica campestris L. ssp. chinensis Makino) cultivated in HTC-treated soil exhibited better growth and less As uptake, but showed enhanced translocation of As from the below-ground part to the above-ground part. In particular, the lowest HTC addition ratio (HTC:Soil = 1:10, v:v) proved to be the most optimal, increasing the height, width and biomass of Chinese white cabbage from 9.92 ± 0.72 cm, 6.76 ± 0.31 cm and 4.43 ± 0.49 g, to 21.29 ± 0.48 cm, 19.3 ± 1.44 cm and 23.27 ± 2.45 g, respectively. The results of soil bacterial community analysis revealed that HTC amendment stimulated the growth and metabolism of soil microbes, augmenting the richness and diversity of bacteria related to the methylation and volatilization of As and plant growth. This work suggests that HTC can serve as an effective amendment for As-contaminated soil remediation, and a superior alternative to compound fertilizer for plant cultivation, displaying promising potential for agricultural applications.
Collapse
Affiliation(s)
- Liu Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Yingle Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Song Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shu Lin
- Guangzhou Rongxin Technology Development Co., Ltd., Guangzhou, 510507, China
| | - Guowen Huang
- Foshan Shunzhinong Machinery Equipment Co., Ltd., Foshan, 528399, China
| | - Zhihong Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Lei Zeng
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
5
|
Zhao K, Yin X, Wang N, Chen N, Jiang Y, Deng L, Xiao W, Zhou K, He Y, Zhao X, Yang Y, Zhang J, Chen A, Wu Z, He L. Optimizing the management of aerobic composting for antibiotic resistance genes elimination: A review of future strategy for livestock manure resource utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122766. [PMID: 39369531 DOI: 10.1016/j.jenvman.2024.122766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Aerobic composting technology is an efficient, safe and practical method to reduce the residues of antibiotics and antibiotic resistance genes (ARGs) due to unreasonable disposal of livestock manure. Nowadays, it remains unclear how aerobic composting works to minimize the level of remaining antibiotics and ARGs in manure. Moreover, aerobic composting techniques even have the potential to enhance ARGs level. Therefore, this study conducted a literature review on ARGs variation during the composting process to assess the fate, migration, and risk features of antibiotics and ARGs in different livestock manure and compost. The relationship between ARGs reduction and crucial factors (temperature, heavy metal, and microbial community structures) in the composting process was discussed. The merits and limitations of different technologies used in compost was summarized. The effects on ARGs reduction in the aerobic composting process with various strategies was examined. We attempt to provide a fresh and novel viewpoint on the advancement of global aerobic composting technology.
Collapse
Affiliation(s)
- Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xiaowei Yin
- POWERCHINA Zhongnan Engineering Corporation Limited, Changsha, Hunan, 410014, China
| | - Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Nianqiao Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Youming Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Linyan Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Wenbo Xiao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Kun Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Xichen Zhao
- Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China; National Center of Technology Innovation for Pigs, Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Yuan Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China.
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Zhibin Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Yuelushan Laboratory, Hunan Agricultural University area, Changsha, Hunan, 410128, China
| | - Liuqin He
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, 410000, Hunan, China.
| |
Collapse
|
6
|
Wang Y, Zhong W, Zhang X, Cao M, Ni Z, Zhang M, Li J, Duan Y, Wu L. Copper pyrazole addition regulates soil mineral nitrogen turnover by mediating microbial traits. Front Microbiol 2024; 15:1433816. [PMID: 39411444 PMCID: PMC11473427 DOI: 10.3389/fmicb.2024.1433816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
The huge amount of urea applied has necessitated best-developed practices to slow down the release of nitrogen (N) fertilizer while minimizing nitrate loss. However, the impact of nitrification inhibitors on mineral-N turnover and the associated microbial mechanisms at different stages remains unknown. A 60-day incubation experiment was conducted with four treatments: no fertilizer (CK), urea (U), urea with copper pyrazole (UC), and urea coated with copper pyrazole (SUC), to evaluate the changes about soil ammonia N (N H 4 + -N) and nitrate N ( NO 3 - -N) levels as well as in soil microbial community throughout the whole incubation period. The results showed that copper pyrazole exhibited significantly higher inhibition rates on urease compared to other metal-pyrazole coordination compounds. The soilN H 4 + -N content peaked on the 10th day and was significantly greater in UC compared to U, while the NO 3 - -N content was significantly greater in U compared to UC on the 60th day. Copper pyrazole mainly decreased the expression of nitrifying (AOB-amoA) and denitrifying (nirK) genes, impacting the soil microbial community. Co-occurrence network suggested that Mycobacterium and Cronobacter sakazakii-driven Cluster 4 community potentially affected the nitrification process in the initial phase, convertingN H 4 + -N to NO 3 - -N. Fusarium-driven Cluster 3 community likely facilitated the denitrification of NO 3 - -N and caused N loss to the atmosphere in the late stage. The application of copper pyrazole may influence the process of nitrification and denitrification by regulating soil microbial traits (module community and functional genes). Our research indicates that the addition of copper pyrazole alters the community function driven by keystone taxa, altering mineral-N turnover and supporting the use of nitrification inhibitors in sustainable agriculture.
Collapse
Affiliation(s)
- Yuming Wang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Wenling Zhong
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Xiwen Zhang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Minghui Cao
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Zheng Ni
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Science Island Branch, Graduate School of USTC, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Mengxia Zhang
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jiangye Li
- Institute of Agricultural Resources and Environment, Academy of Agricultural Sciences, Nanjing, China
| | - Yan Duan
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| | - Lifang Wu
- The Centre for Ion Beam Bioengineering Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Zhongke Taihe Experimental Station, Taihe, China
| |
Collapse
|
7
|
Ji Y, Zheng N, An Q, Wang S, Sun S, Li X, Chen C, Sun S, Jiang Y. Enhanced immobilization of cadmium and lead in contaminated soil using calcium alginate-modified HAP biochar: Improvements in soil health and microbial diversity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124445. [PMID: 38936794 DOI: 10.1016/j.envpol.2024.124445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
A novel adsorbent, calcium alginate-modified HAP (Hydroxyapatite)-wood ear mushroom sticks biochar (CA-HAPMB), was synthesized to enhance the immobilization of Cd and Pb in soil. Over 150 days, applying CA-HAPMB at concentrations of 0%-3% in contaminated soils from Chenzhou City in Hunan Province (CZ) and Shenyang City in Liaoning Province (SY) resulted in decreased effective concentrations of Cd and Pb. Specifically, in CZ soil, Cd and Pb decreased by 30.9%-69.3% and 31.9%-78.6%, respectively, while in SY soil, they decreased by 27.5%-53.7% and 26.4%-62.3%, respectively. Characterization results, obtained after separating CA-HAPMB from the soil, indicate that complexation, co-precipitation, and ion exchange play crucial roles in the efficient immobilization of Cd and Pb by CA-HAPMB. Additionally, adjusting the amount of CA-HAPMB added allows modulation of soil pH, leading to increased soil organic matter and nutrient content. Following treatment with CA-HAPMB for immobilizing Cd and Pb, soil bacteria abundance and diversity increased, further promoting heavy-metal immobilization.
Collapse
Affiliation(s)
- Yining Ji
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China.
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Changcheng Chen
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of New Energy and Environment, Jilin University, China
| | - Shuhai Sun
- Changchun Institute of Technology, China
| | - Yifu Jiang
- School of Criminal Investigation, People's Public Security University of China, China
| |
Collapse
|
8
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Malik I, Ashraf K, Hassan F, Ali Khan AA, Sultan K, Siddiqui MH, Zaman QU. Nano-selenium and compost vitalized morpho-physio-biochemical, antioxidants and osmolytes adjustment in soybean under tannery effluent polluted soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108807. [PMID: 38905730 DOI: 10.1016/j.plaphy.2024.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
The aim of this work was to investigate the impact of nano selenium (N-Se) and compost on the growth, photosynthesis, enzymes activity, compatible solutes and metals accumulation in soybean grown under tannery effluent polluted soil. The plants were exposed to compost application (no compost and compost addition) and foliar application of N-Se (0, 25, 50, and 75 mg L-1). The results showed the addition of compost in soil and foliar applied N-Se alleviated the toxic effect of tannery effluent polluted soil. Furthermore, foliar application of N-Se with basal compost supply significantly improved antoxidant enzymes activity in soybean grown in tannery effluent polluted soil. Addition of compost increased the root dry weight (46.43%) and shoot dry weight (33.50 %), relative water contents by (13.74 %), soluble sugars (15.99 %), stomatal conductance (gs) (83.33 %), intercellular CO2 concentration (Ci) (23.34 %), transpiration rate (E) (12.10 %) and decreased the electrolyte leakage (27.96 %) and proline contents by (20.34 %). The foliage application of N-Se at the rate of 75 mg L-1 showed the most promising results in control and compost amended tannery effluent polluted soil. The determined health risk index (HRI) values were recorded less than 1 for both adults and children under the application of compost and N-Se. In summary, the combined use of N-Se at 75 mg L⁻1 and basal supply of compost is an effective strategy for enhancing soybean productivity while minimizing the potential risks of metal accumulation in soybean grains grown in tannery effluent polluted soil.
Collapse
Affiliation(s)
- Iqra Malik
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Kamran Ashraf
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Faiza Hassan
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Aamir Amanat Ali Khan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan.
| |
Collapse
|
10
|
Hamid Y, Chen Y, Lin Q, Haris M, Usman M, Saqib Rashid M, Anastopoulos I, Hussain B, Ali HM, Hannan F, Yin X, Yang X. Functionality of wheat straw-derived biochar enhanced its efficiency for actively capping Cd and Pb in contaminated water and soil matrices: Insights through batch adsorption and flow-through experiments. CHEMOSPHERE 2024; 362:142770. [PMID: 38969230 DOI: 10.1016/j.chemosphere.2024.142770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/07/2024]
Abstract
The impact of functionality of biochar on pressing environmental issue of cadmium (Cd) and lead (Pb) co-contamination in simultaneous soil and water systems has not sufficiently reported. This study investigated the impact of Fe- and Mg-functionalized wheat straw biochar (Fe-WSBC and Mg-WSBC) on Cd and Pb adsorption/immobilization through batch sorption and column leaching trials. Importantly, Fe-WSBC was more effective in adsorbing Cd and Pb (82.84 and 111.24 mg g-1), regeneration ability (removal efficiency 94.32 and 92.365), and competitive ability under competing cations (83.15 and 84.36%) compared to other materials (WSBC and Mg-WSBC). The practical feasibility of Fe-WSBC for spiked river water verified the 92.57% removal of Cd and 85.73% for Pb in 50 mg L-1 and 100 mg L-1 contamination, respectively. Besides, the leaching of Cd and Pb with Fe-WSBC under flow-through conditions was lowered to (0.326 and 17.62 mg L-1), respectively as compared to control (CK) (0.836 and 40.40 mg L-1). In short, this study presents the applicable approach for simultaneous remediation of contaminated water and soil matrices, offering insights into environmentally friendly green remediation strategies for heavy metals co-contaminated matrices.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonglong Chen
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000, Rennes, France
| | - Muhammad Saqib Rashid
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47100, Arta, Greece
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fakhir Hannan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Xianyuan Yin
- Beautiful Village Construction Center of Quzhou Agriculture and Rural Affairs Bureau, Quzhou, 324002, China.
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ. Remediation and Ecol. Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Li X, Fan J, Zhu F, Yan Z, Hartley W, Yang X, Zhong X, Jiang Y, Xue S. Sb/As immobilization and soil function improvement under the combined remediation strategy of modified biochar and Sb-oxidizing bacteria at a smelting site. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134302. [PMID: 38640664 DOI: 10.1016/j.jhazmat.2024.134302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.
Collapse
Affiliation(s)
- Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiarong Fan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Zaolin Yan
- Hunan Bisenyuan energy saving and environmental protection Co., LTD, Yiyang 413000, PR China
| | - William Hartley
- Royal Agricultural University, Cirencester GL7 6JS, United Kingdom
| | - Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiaolin Zhong
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yifan Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
12
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal(loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6 to 38.6%) > shoots (31.1%, 29.3 to 32.8%) > roots (27.5%, 25.7 to 29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
13
|
Chakravarty P, Deka H, Chowdhury D. Green titanium dioxide (TiO 2) nanoparticles assisted biodegradation of anthracene employing Serratia quinivorans HP5. J Basic Microbiol 2024; 64:e2300680. [PMID: 38381060 DOI: 10.1002/jobm.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The anthracene biodegradation potential of Serratia quinivorans HP5 was studied under a controlled laboratory environment. The green TiO2 nanoparticles (NPs) synthesized from Paenibacillus sp. HD1PAH was used to accelerate the biodegradation process. The synergistic application of TiO2 NPs and S. quinivorans HP5 resulted in a reduction of anthracene concentration by 1.2 folds in liquid-medium and 1.5 folds in contaminated soil. Gas-chromatography and mass-spectrometric investigation showed the production of four anthracene derivatives, namely 1,2-anthracene dihydrodiol, 6,7-benzocoumarin, anthrone, and 9,10-anthraquinoneat the termination of experimental periods. Furthermore, bacterial biomass increased by 23.3 folds in the presence of TiO2 NPs, and overall soil enzyme activities were enhanced by 4.2 folds in the treated samples. In addition, there was a negative correlation observed between the biomass of S. quinivorans HP5 and the concentrations of anthracene, suggesting the involvement of bacterium in anthracene biodegradation processes. The degradation pathway of anthracene revealed its transformation into the less toxic compound 9,10-anthraquinone. Overall, this study elucidates a novel biodegradation pathway for anthracene and highlights the potential of nano-assisted bacterial remediation as a promising approach for environmental cleanup.
Collapse
Affiliation(s)
- Paramita Chakravarty
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam, India
| |
Collapse
|
14
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
15
|
Buates J, Sun Y, He M, Mohanty SK, Khan E, Tsang DCW. Performance of wood waste biochar and food waste compost in a pilot-scale sustainable drainage system for stormwater treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123767. [PMID: 38492753 DOI: 10.1016/j.envpol.2024.123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Sustainable drainage system (SuDS) for stormwater reclamation has the potential to alleviate the water scarcity and environmental pollution issues. Laboratory studies have demonstrated that the capacity of SuDS to treat stormwater can be improved by integrating biochar and compost in the filter media, whereas their performance in scaled-up applications is less reported. This study examines the effectiveness of a pilot-scale SuDS, bioswale followed by bioretention, amended with wood waste biochar (1, 2, and 4 wt.%) and food waste compost (2 and 4 wt.%) to simultaneously remove multiple pollutants including nutrients, heavy metals, and trace organics from the simulated stormwater. Our results confirmed that SuDS modified with both biochar (2 wt.%) and compost (2 wt.%) displayed superior water quality improvement. The system exhibited high removal efficiency (> 70%) for total phosphorus and major metal species including Ni, Pb, Cd, Cr, Cu, and Zn. Total suspended solids concentration was approaching the detection limit in the effluent, thereby confirming its capability to reduce turbidity and particle-associated pollutants from stormwater. Co-application of biochar and compost also moderately immobilized trace organic contaminants such as 2,4-dichlorophenoxyacetic acid, diuron, and atrazine at field-relevant concentrations. Moreover, the soil amendments amplified the activities of enzymes including β-D-cellobiosidase and urease, suggesting that the improved soil conditions and health of microbial communities could possibly increase phyto and bioremediation of contaminants accumulated in the filter media. Overall, our pilot-scale demonstration confirmed that the co-application of biochar and compost in SuDS can provide a variety of benefits for soil/plant health and water quality.
Collapse
Affiliation(s)
- Jittrera Buates
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuqing Sun
- School of Agriculture, Sun Yat-sen University, Guangdong, China
| | - Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California Los Angeles, United States
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 89154, United States
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
16
|
Dusíková A, Baranová T, Krahulec J, Dakošová O, Híveš J, Naumowicz M, Gál M. Electrochemical Impedance Spectroscopy for the Sensing of the Kinetic Parameters of Engineered Enzymes. SENSORS (BASEL, SWITZERLAND) 2024; 24:2643. [PMID: 38676260 PMCID: PMC11054234 DOI: 10.3390/s24082643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
The study presents a promising approach to enzymatic kinetics using Electrochemical Impedance Spectroscopy (EIS) to assess fundamental parameters of modified enteropeptidases. Traditional methods for determining these parameters, while effective, often lack versatility and convenience, especially under varying environmental conditions. The use of EIS provides a novel approach that overcomes these limitations. The enteropeptidase underwent genetic modification through the introduction of single amino acid modifications to assess their effect on enzyme kinetics. However, according to the one-sample t-test results, the difference between the engineered enzymes and hEKL was not statistically significant by conventional criteria. The kinetic parameters were analyzed using fluorescence spectroscopy and EIS, which was found to be an effective tool for the real-time measurement of enzyme kinetics. The results obtained through EIS were not significantly different from those obtained through traditional fluorescence spectroscopy methods (p value >> 0.05). The study validates the use of EIS for measuring enzyme kinetics and provides insight into the effects of specific amino acid changes on enteropeptidase function. These findings have potential applications in biotechnology and biochemical research, suggesting a new method for rapidly assessing enzymatic activity.
Collapse
Affiliation(s)
- Adriána Dusíková
- Department of Molecular Biology, Faculty of Natural Sciences, Commenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia; (A.D.); (J.K.)
| | - Timea Baranová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.B.); (O.D.); (J.H.)
| | - Ján Krahulec
- Department of Molecular Biology, Faculty of Natural Sciences, Commenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia; (A.D.); (J.K.)
| | - Olívia Dakošová
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.B.); (O.D.); (J.H.)
| | - Ján Híveš
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.B.); (O.D.); (J.H.)
| | - Monika Naumowicz
- Faculty of Chemistry, University of Białystok, ul. K. Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Miroslav Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology STU in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia; (T.B.); (O.D.); (J.H.)
| |
Collapse
|
17
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
18
|
Wang YW, Bai DS, Zhang Y, Luo XG. The role of afforestation with diverse woody species in enhancing and restructuring the soil microenvironment in polymetallic coal gangue dumps. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29916-29929. [PMID: 38594563 DOI: 10.1007/s11356-024-33164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
To elucidate the effects of long-term (20 years) afforestation with different woody plant species on the soil microenvironment in coal gangue polymetallic contaminated areas. This study analyzed the soil physicochemical properties, soil enzyme activities, soil ionophore, bacterial community structure, soil metabolite, and their interaction relationships at different vertical depths. Urease, sucrase, and acid phosphatase activities in the shallow soil layers increased by 4.70-7.45, 3.83-7.64, and 3.27-4.85 times, respectively, after the restoration by the four arboreal plant species compared to the plant-free control soil. Additionally, it reduced the content of available elements in the soil and alleviated the toxicity stress for Cd, Ni, Co, Cr, As, Fe, Cu, U, and Pb. After the long-term restoration of arboreal plants, the richness and Shannon indices of soil bacteria significantly increased by 4.77-23.81% and 2.93-7.93%, respectively, broadening the bacterial ecological niche. The bacterial community structure shaped by different arboreal plants exhibited high similarity, but the community similarity decreased with increasing vertical depth. Soils Zn, U, Sr, S, P, Mg, K, Fe, Cu, Ca, Ba, and pH were identified as important influencing factors for the community structure of Sphingomonas, Pseudarthrobacter, Nocardioides, and Thiobacillus. The metabolites such as sucrose, raffinose, L-valine, D-fructose 2, 6-bisphosphate, and oxoglutaric acid were found to have the greatest effect on the bacterial community in the rhizosphere soils for arboreal plants. The results of the study demonstrated that long-term planting for woody plants in gangue dumps could regulate microbial abundance and symbiotic patterns through the accumulation of rhizosphere metabolites in the soil, increase soil enzyme activity, reduce heavy metal levels, and improve the soil environment in coal gangue dumps.
Collapse
Affiliation(s)
- Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| | | | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
19
|
Li M, Kang Y, Kuang S, Wu H, Zhuang L, Hu Z, Zhang J, Guo Z. Efficient stabilization of arsenic migration and conversion in soil with surfactant-modified iron-manganese oxide: Environmental effects and mechanistic insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170526. [PMID: 38286296 DOI: 10.1016/j.scitotenv.2024.170526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The use of iron-manganese oxide (FMO) as a promising amendment for remediating arsenic (As) contamination in soils has gained attention, but its application is limited owing to agglomeration issues. This study aims to address agglomeration using surfactant-modified FMO and investigate their stabilization behavior towards As and resulting environmental changes upon amendments. The results confirmed the efficacy of surfactants and demonstrated that cetyltrimethylammonium-bromide-modified FMO significantly reduced the leaching concentration of As by 92.5 % and effectively suppressed the uptake of As by 85.8 % compared with the control groups. The ratio of the residual fraction increased from 30.5-41.6 % in unamended soil to 67.9-69.2 %. The number of active sites was through the introduction of surfactants and immobilized As via complexation, ion exchange, and redox reactions. The study also revealed that amendments and the concentration of As influenced the soil physicochemical properties and enriched bacteria associated with As and Fe reduction and changed the distribution of C, N, Fe, and As metabolism genes, which promoted the stabilization of As. The interactions among cetyltrimethylammonium bromide, FMO, and microorganisms were found to have the greatest effect on As immobilization.
Collapse
Affiliation(s)
- Mei Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
20
|
Zeinali M, Heshmati A, Mohammadi Y, Ahmadabadi MN, Nili-Ahmadabadi A. Distribution of nitrate/nitrite and toxic metals in the soil-potato system and its health risk assessment in Iran. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:131. [PMID: 38483704 DOI: 10.1007/s10653-024-01897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
Potato is one of the essential food products whose health quality is greatly influenced by soil contamination and properties. In the current study, we have investigated the physicochemical characteristics of agricultural areas and the accumulation of nitrite/nitrate and metals in potato products in Hamedan, Iran. After determining the physicochemical characteristics of soil samples from four agricultural regions of Hamedan, 48 potato samples were collected from these regions. The heavy metals and nitrate/nitrite content were determined by ICP-OES and calorimetric methods, respectively. A negative correlation was observed between soil pH changes with nitrite/nitrate content and the accumulation of some heavy elements in potatoes. Furthermore, a positive correlation was found between soil phosphorus content and lead accumulation in potato. In present study, the amounts of lead, nitrate, and nitrite in 83.3%, 56%, and 12% of the collected samples were higher than the permissible limit reported by the World Health Organization (WHO), respectively. The EDI range for nitrate and nitrite was determined to be 130-260 and 1.4-2.7 µg/kg/day, respectively, which is much lower than the RfD set by the US Environmental Protection Agency (USEPA) for nitrite and nitrate. Among metal pollutants, the toxic risk caused by lead in potato consumers was higher than the threshold limit. In conclusion, our findings showed that the physicochemical characteristics of the soil could effectively increase the availability of metal pollutants and nitrite/nitrate to the potato product and significantly reduce its health quality. Therefore, monitoring these pollutants in the soil-potato system, preventing the entry of industrial wastewater, and managing the use of agricultural fertilizers can effectively improve the health of this product for consumers.
Collapse
Affiliation(s)
- Milad Zeinali
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Department of Nutrition and Food Safety, School of Medicine, Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Younes Mohammadi
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Nili Ahmadabadi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
21
|
Iqbal A, Ligeng J, Mo Z, Adnan M, Lal R, Zaman M, Usman S, Hua T, Imran M, Pan SG, Qi JY, Duan M, Gu Q, Tang X. Substation of vermicompost mitigates Cd toxicity, improves rice yields and restores bacterial community in a Cd-contaminated soil in Southern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133118. [PMID: 38101017 DOI: 10.1016/j.jhazmat.2023.133118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.
Collapse
Affiliation(s)
- Anas Iqbal
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, Guangxi University, Nanning 530004, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China; CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, 210 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA; Departmetn of Entomology, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Jiang Ligeng
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Muhammad Adnan
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, 210 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, 210 Kottman Hall, 2021 Coffey Rd, Columbus, OH 43210, USA
| | - Maid Zaman
- Departmetn of Entomology, University of Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Sayed Usman
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Tian Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Sheng-Gang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Jian-Ying Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Qichang Gu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou 510642, China.
| |
Collapse
|
22
|
Wang N, He Y, Zhao K, Lin X, He X, Chen A, Wu G, Zhang J, Yan B, Luo L, Xu D. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120337. [PMID: 38417357 DOI: 10.1016/j.jenvman.2024.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xi He
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China.
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Daojun Xu
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Veterinary Medicine, Hunan Agricultural University, 410128, China.
| |
Collapse
|
23
|
Wu G, Wang B, Xiao C, Huang F, Long Q, Tu W, Chen S. Effect of montmorillonite modified straw biochar on transfer behavior of lead and copper in the historical mining areas of dry-hot valleys. CHEMOSPHERE 2024; 352:141344. [PMID: 38309600 DOI: 10.1016/j.chemosphere.2024.141344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Due to the rapid development of human beings, heavy metals are occurred in the Yunnan-Guizhou Plateau and Panxi Plateau, the special dry and hot climate areas. Pb and Cu can be quickly transferred through water-plant-animal, further harm to human health by food chain. Therefore, the study of heavy metal treatment is imminent. In this study, Biochar-montmorillonite composites were prepared by co-pyrolysis and characterized, and their ability to remove lead and copper from water-soil process were tracked. And their effectiveness in remediating soil contaminated by lead and copper was documented. The composite material has the rich pore structure, large specific surface area (81.5 m2/g) and a variety of surface functional groups such as C-C, CO, ester-metal and metal-oxygen bonds. Pb and Cu can be effectively adsorbed and fixed to the level of no harm to human health. The adsorption reaction of lead and copper on the Biochar-montmorillonite composites is more suitable to be described by Langmuir adsorption and pseudo-second-order kinetics models. The saturation adsorption capacity of the composite for Pb was measured as 212.5 mg/g. For Cu, it was 136.5 mg/g. The data were fitted by a two-compartment first-order kinetic model. ffast for Pb and Cu is estimated to be 0.81 and 0.78, respective. Fast adsorption is dominant and belongs to typical chemical adsorption, which is consistent with the second-order kinetic results. With 5 % of the composite, approximately 80 % of exchangeable heavy metals in those soils collected from the Yunnan-Guizhou Plateau and Panxi Plateau were reduced. The biochar-montmorillonite composites made Pb and Cu change to stable residual state, up to 35 %. Besides, it effectively restored the activity of urease and sucrase in soils. Results indicated that biochar-montmorillonite composites can be effectively used as an environment-friendly adsorbent or passivator to purify heavy metals in soils.
Collapse
Affiliation(s)
- Guangwei Wu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Bin Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China.
| | - Chang Xiao
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Fuyang Huang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Quan Long
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Sichuan Academy of Ecological and Environmental Sciences, Chengdu, Sichuan 610015, People's Republic of China
| | - Weiguo Tu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, Sichuan 610015, People's Republic of China
| | - Shu Chen
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| |
Collapse
|
24
|
Yasin MU, Hannan F, Munir R, Muhammad S, Iqbal M, Yasin I, Khan MSS, Kanwal F, Chunyan Y, Fan X, Gan Y. Interactive mode of biochar-based silicon and iron nanoparticles mitigated Cd-toxicity in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169288. [PMID: 38110103 DOI: 10.1016/j.scitotenv.2023.169288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Cadmium contamination poses severe environmental and health threats, necessitating effective mitigation strategies. Rice husk biochar (BC) and nanoparticle (NP) treatments are emerging strategies with limited research on their synergistic benefits. This study assesses BC, silicon NPs (nSi), and iron NPs (nFe) modifications (B-nSi, B-nFe, and B-nSi-nFe) to reduce Cd-bioavailability in soil and its toxicity in maize, not reported before. Characterization of amendments validated, nSi and nFe attachment to BC, forming new mineral crystals to adsorb Cd. We found that B-nSi-nFe induced Cd-immobilization in soil by the formation of Cd-ligand complexes with the effective retention of NPs within microporous structure of BC. B-nSi-nFe increased soil pH by 0.76 units while reducing bioavailable Cd by 49 %, than Ck-Cd. Resultantly, B-nSi-nFe reduced Cd concentrations in roots and shoots by 51 % and 75 %, respectively. Moreover, the application of B-nSi-nFe significantly enhanced plant biomass, antioxidant activities, and upregulated the expression of antioxidant genes [ZmAPX (3.28 FC), ZmCAT (3.20 FC), ZmPOD (2.58 FC), ZmSOD (3.08 FC), ZmGSH (3.17 FC), and ZmMDHAR (3.80 FC)] while downregulating Cd transporter genes [ZmNramp5 (3.65 FC), ZmHMA2 (2.92 FC), and ZmHMA3 (3.40 FC)] compared to Ck-Cd. Additionally, confocal microscopy confirmed the efficacy of B-nSi-nFe in maintaining cell integrity due to reduced oxidative stress. SEM and TEM observations revealed alleviation of Cd toxicity to stomata, guard cells, and ultracellular structures with B-nSi-nFe treatment. Overall, this study demonstrated the potential of B-nSi-nFe for reducing Cd mobility in soil-plant system, mitigating Cd-toxicity in plants and improving enzymatic activities in soil.
Collapse
Affiliation(s)
- Muhammad Umair Yasin
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fakhir Hannan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Raheel Munir
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sajid Muhammad
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Iqra Yasin
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Farah Kanwal
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Chunyan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Pajura R. Composting municipal solid waste and animal manure in response to the current fertilizer crisis - a recent review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169221. [PMID: 38101643 DOI: 10.1016/j.scitotenv.2023.169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The dynamic price increases of fertilizers and the generation of organic waste are currently global issues. The growth of the population has led to increased production of solid municipal waste and a higher demand for food. Food production is inherently related to agriculture and, to achieve higher yields, it is necessary to replenish the soil with essential minerals. A synergistic approach that addresses both problems is the implementation of the composting process, which aligns with the principles of a circular economy. Food waste, green waste, paper waste, cardboard waste, and animal manure are promising feedstock materials for the extraction of valuable compounds. This review discusses key factors that influence the composting process and compares them with the input materials' parameters. It also considers methods for optimizing the process, such as the use of biochar and inoculation, which result in the production of the final product in a significantly shorter time and at lower financial costs. The applications of composts produced from various materials are described along with associated risks. In addition, innovative composting technologies are presented.
Collapse
Affiliation(s)
- Rebeka Pajura
- Department of Chemistry and Environmental Engineering, Faculty of Civil and Environmental Engineering and Architecture Rzeszow University of Technology, 35-959 Rzeszów, Ave Powstańców Warszawy 6, Poland.
| |
Collapse
|
26
|
Yang X, Fan J, Jiang L, Zhu F, Yan Z, Li X, Jiang P, Li X, Xue S. Using Fe/H 2O 2-modified biochar to realize field-scale Sb/As stabilization and soil structure improvement in an Sb smelting site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168775. [PMID: 38016550 DOI: 10.1016/j.scitotenv.2023.168775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Antimony (Sb) and arsenic (As) released from the Sb smelting activities pose a major environmental risk and ecological degradation in Sb smelting sites. Here the effects of Fe/H2O2 modified biochar (Fe@H2O2-BC) on the synchronous stabilization of Sb/As and the improvement of soil structure in a typical Sb smelting site in Southern China based on a 1-year field experiment were studied. Application of ≥1 % (w/w) Fe@H2O2-BC could stably decrease the leaching concentrations of Sb and As of the polluted soils to Environmental quality standards for surface water Chinese Level III (GB3838-2002). Compared to the untreated soils, the stabilization efficiency of soil Sb and As treated by Fe@H2O2-BC reached 90.7 % ~ 95.7 % and 89.6 % ~ 90.8 %, respectively. The residue fractions of Sb/As in the soils increased obviously, and the bio-availability of Sb/As decreased by 65.0-95.6 % and 91.1-96.0 %, respectively. Moreover, Fe@H2O2-BC addition elevated soil organic carbon content, increased soil porosity, and improved water retention capacity, indicating the positive effects on soil structure and functions. Advanced mineral identification and characterization systems showed that Sb/As usually occurred in Fe-bearing minerals and stabilized by surface complexation and co-precipitation. The findings demonstrated that 1 % (w/w) Fe@H2O2-BC was appropriate to Sb/As stabilization and soil function recovery following field conditions, which provided potential application for ecological restoration in Sb smelting sites.
Collapse
Affiliation(s)
- Xingwang Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jiarong Fan
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lanying Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Zaolin Yan
- Hunan Bisenyuan energy saving and environmental protection Co., LTD, Yiyang 413000, PR China
| | - Xue Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Pinghong Jiang
- Hunan Research Academy of Environmental Sciences, Changsha 410018, PR China
| | - Xianghui Li
- Hunan Research Academy of Environmental Sciences, Changsha 410018, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|
27
|
Wang Z, Zhang M, Li J, Wang J, Sun G, Yang G, Li J. Effect of biochar with various pore characteristics on heavy metal passivation and microbiota development during pig manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120048. [PMID: 38246105 DOI: 10.1016/j.jenvman.2024.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Understanding the porosity of biochar (BC) that promotes the heavy metal (HM) passivation during composting can contribute to the sustainable management of pig manure (PM). The current work aimed to explore the influence of BC with varying pore sizes on the physicochemical properties and morphological changes of HMs (including Zn, Cu, Cr, As, and Hg), and microbiota development during PM composting. The various pore sizes of BC were generated by pyrolyzing pine wood at 400 (T1), 500 (T2), 600 (T3) and 700 (T4) °C, respectively. The results revealed a positive correlation between specific surface area of BC and pyrolysis temperature. BC addition contributed to a significantly extended compost warming rate and duration of high-temperature period, as well as HM passivation, reflected in the decrease in Exc-Zn (63-34%) and Red-Cu (28-13%) content, and the conversion of Oxi-Cr (29-21%) and Red-Hg (16-5%) to more stable forms. Moreover, BC at T4 exhibited the best effect on Zn and Cu passivation due to the highest specific surface area (380.03 m2/g). In addition to its impact on HM passivation, BC addition improved the microbial environment during PM composting, leading to enhanced microbial diversity and richness. Notably, Chloroflexi and Bacteroidota played key roles in promoting the transformation of Exc-Cu and Red-Hg into stable forms. This phenomenon further stimulated the enhanced decomposition of organic matter (OM) when BC prepared at 600-700 °C was added. Therefore, it can be concluded that the regulation of BC porosity is an effective strategy to improve HM passivation and the overall effectiveness of PM composting.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ju Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiamin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| | - Guotao Sun
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China.
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, China
| |
Collapse
|
28
|
Chen Y, Li S, Chen X, Li Y, Yan C, Wang C, Wang Y, Xu H. Enhanced Cd activation by Coprinus comatus endophyte Bacillus thuringiensis and the molecular mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123052. [PMID: 38040187 DOI: 10.1016/j.envpol.2023.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Fungal endophytes not only tolerate and activate Cd in soil but also promote host growth, yet its Cd activation capacity and mechanism remain unrevealed. Our previous study isolated a robust endophyte Bacillus thuringiensis L1 from Coprinus comatus fruiting body with splendid Cd resistance and activation abilities under laboratory conditions. In this study, those peculiarities were investigated in the actual soil environment. L1 could significantly increase the soil bioavailable Cd content and effectively compensate for alkali-hydro nitrogen losses and microbial inhibition caused by Cd. Furthermore, L1 inoculation improved the soil's bacterial community structure and increased the relative abundance of Cd-resistant bacteria, such as Actinobacteria, Chloroflexi, Acidobacter, and Firmicutes, closely associated with the soil enzyme activity shift. The genome sequencing analysis revealed the presence of genes related to growth promotion, resistance to Cd stress, and Cd activation, which were significantly up-regulated under Cd stress. Notably, L1 mainly activates Cd in soil by secreting citric acid, succinic acid, siderophore, and soluble phosphorus substances to chelate with Cd or dissolve bounded Cd. Meanwhile, the metal-responsive transcription repressor (CadC) and the Cd-translocating protein P-type ATPase (CadA) can help the L1 to suppress the toxicity of Cd. Those results help to unveil the possible mechanism of L1 in Cd-contaminated soil remediation, providing a clear strategy for Cd bio-extraction from soil.
Collapse
Affiliation(s)
- Yahui Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| | - Shiyao Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yongyun Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Can Wang
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Ying Wang
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
29
|
Sha H, Song X, Abdullah Al-Dhabi N, Zeng T, Mao Y, Fu Y, Liu Z, Wang G, Tang W. Effects of biochar layer position on treatment performance and microbial community in subsurface flow constructed wetlands for removal of cadmium and lead. BIORESOURCE TECHNOLOGY 2024; 394:130194. [PMID: 38086466 DOI: 10.1016/j.biortech.2023.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Levels of cadmium (Cd) and lead (Pb) correspond to common composition in acid mine wastewater of Hunan Province of China. The removal path of Cd and Pb and the structure of microbial community were investigated by developing constructed wetlands (CWs) with different layer positions of biochar. The biochar as a layer at the bottom of CW (BCW) system exhibited maximum Cd and Pb removal efficiencies of 96.6-98.6% and 97.2-98.9%, respectively. Compared with original soil, BCW increased the relative proportions of Proteobacteria, Firmicutes, Acidobacteriota, Verrucomicrobiota, Desulfobacterota, Armatimonadota, Bacteroidota, Patescibacteria, Basidiomycota (phylum level) and Burkholderia-Caballeronia-Paraburkholderia, Citrifermentans, Chthonomonadales, Cellulomonas, Geothrix, Terracidiphilus, Gallionellaceae, Microbacterium, Vanrija, Apiotrichum, Saitozyma, Fusarium (genus level). The concentrations of Cd and Pb were positively correlated with the abundance of Verrucomicrobiota, Basidiomycota (phylum level), and Methylacidiphilaceae, Meyerozyma, Vanrija (genus level). This study demonstrates that BCW system can improve removal performance toward Cd and Pb, as well as alter microbial community.
Collapse
Affiliation(s)
- Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Xin Song
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China.
| | - Yuemei Mao
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Yusong Fu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Zheng Liu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Guohua Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, Hunan, China
| |
Collapse
|
30
|
Yang D, Zuo M, Chen Y, Liu Y, He Y, Wang H, Liu X, Xu J, Zhao M, Shen Y, Liu Y, Tianpeng G. Effects of the promoting bacterium on growth of plant under cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:339-348. [PMID: 37553855 DOI: 10.1080/15226514.2023.2241925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Cadmium (Cd) pollution is a huge threat to ecosystem health. In the manuscript, pot experiments were conducted to investigate the changes in plant biomass and antioxidant indicators under different cadmium pollution levels (0, 25, 50, and 100 mg/kg) of inoculation of plant growth-promoting bacteria ZG7 on sugar beet. The results showed that the accumulation of excess Cd in sugar beet exhibited different symptoms, including reduced biomass (p < 0.05). Compared with the group treated with uninoculated strain ZG7, inoculation of strain ZG7 significantly reduced the toxicity of sugar beet to Cd and enhanced its antioxidant capacity, with no significant differences in root biomass and increases in leaf biomass of 15.71, 5.84, and 74.12 under different Cd concentration treatments (25, 50, and 100 mg/kg), respectively. The root enrichment of Cd was reduced by 49.13, 47.26, and 21.50%, respectively (p < 0.05). The leaf fraction was reduced by 59.35, 29.86, and 30.99%, respectively (p < 0.05). In addition, the enzymatic activities of sucrase, urease, catalase, and neutral phosphatase were significantly enhanced in the soil (p < 0.05). This study helps us to further investigate the mechanism of cadmium toxicity reduction by inoculated microorganisms and provides a theoretical reference for growing plants in cadmium-contaminated agricultural fields.
Collapse
Affiliation(s)
- Deng Yang
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Mingbo Zuo
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Yueli Chen
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yuan Liu
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Yueqing He
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Haoming Wang
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiaoxiao Liu
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Jing Xu
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Minjuan Zhao
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Yuanyuan Shen
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
| | - Ying Liu
- Shaaxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Gao Tianpeng
- School of Biology and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
- School of Biology and Environmental Engineering, Xi'an University, Xi'an, China
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| |
Collapse
|
31
|
Garau M, Pinna MV, Nieddu M, Castaldi P, Garau G. Mixing Compost and Biochar Can Enhance the Chemical and Biological Recovery of Soils Contaminated by Potentially Toxic Elements. PLANTS (BASEL, SWITZERLAND) 2024; 13:284. [PMID: 38256837 PMCID: PMC10818981 DOI: 10.3390/plants13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Biochar and compost are able to influence the mobility of potentially toxic elements (PTEs) in soil. As such, they can be useful in restoring the functionality of contaminated soils, albeit their effectiveness can vary substantially depending on the chemical and/or the (micro)biological endpoint that is targeted. To better explore the potential of the two amendments in the restoration of PTE-contaminated soils, biochar, compost (separately added at 3% w/w), and their mixtures (1:1, 3:1, and 1:3 biochar-to-compost ratios) were added to contaminated soil (i.e., 2362 mg kg-1 of Sb and 2801 mg kg-1 of Zn). Compost and its mixtures promoted an increase in soil fertility (e.g., total N; extractable P; and exchangeable K, Ca, and Mg), which was not found in the soil treated with biochar alone. All the tested amendments substantially reduced labile Zn in soil, while biochar alone was the most effective in reducing labile Sb in the treated soils (-11% vs. control), followed by compost (-4%) and biochar-compost mixtures (-8%). Compost (especially alone) increased soil biochemical activities (e.g., dehydrogenase, urease, and β-glucosidase), as well as soil respiration and the potential catabolic activity of soil microbial communities, while biochar alone (probably due to its high adsorptive capacity towards nutrients) mostly exhibited an inhibitory effect, which was partially mitigated in soils treated with both amendments. Overall, the biochar-compost combinations had a synergistic effect on both amendments, i.e., reducing PTE mobility and restoring soil biological functionality at the same time. This finding was supported by plant growth trials which showed increased Sb and Zn mineralomass values for rigid ryegrass (Lolium rigidum Gaud.) grown on biochar-compost mixtures, suggesting a potential use of rigid ryegrass in the compost-biochar-assisted phytoremediation of PTE-contaminated soils.
Collapse
Affiliation(s)
- Matteo Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Vittoria Pinna
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Maria Nieddu
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| | - Paola Castaldi
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
- Nucleo Ricerca Desertificazione, University of Sassari, 07100 Sassari, Italy
| | - Giovanni Garau
- Dipartimento di Agraria, University of Sassari, Viale Italia 39, 07100 Sassari, Italy; (M.G.); (M.V.P.); (M.N.); (P.C.)
| |
Collapse
|
32
|
Mao Q, Xie Z, Pinzon-Nuñez DA, Issaka S, Liu T, Zhang L, Irshad S. Leptolyngbya sp. XZMQ and Bacillus XZM co-inoculation reduced sunflower arsenic toxicity by regulating rhizosphere microbial structure and enzyme activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123001. [PMID: 38000723 DOI: 10.1016/j.envpol.2023.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Microorganisms are of great significance for arsenic (As) toxicity amelioration in plants as soil fertility is directly affected by microbes. In this study, we innovatively explored the effects of indigenous cyanobacteria (Leptolyngbya sp. XZMQ) and plant growth-promoting bacteria (PGPB) (Bacillus XZM) on the growth and As absorption of sunflower plants from As-contaminated soil. Results showed that single inoculation and co-inoculation stimulated the growth of sunflower plants (Helianthus annuus L.), enhanced enzyme activities, and reduced As contents. In comparison to the control group, single innoculation of microalgae and bacteria in the rhizosphere increased extracellular polymeric substances (EPS) by 21.99% and 14.36%, respectively, whereas co-inoculation increased them by 35%. Compared with the non-inoculated group, As concentration in the roots, stems and leaves of sunflower plants decreased by 38%, 70% and 41%, respectively, under co-inoculation conditions. Inoculation of Leptolyngbya sp. XZMQ significantly increased the abundance of nifH in soil, while co-inoculation of cyanobacteria and Bacillus XZM significantly increased the abundance of cbbL, indicating that the coupling of Leptolyngbya sp. XZMQ and Bacillus XZM could stimulate the activity of nitrogen-fixing and carbon-fixing microorganisms and increased soil fertility. Moreover, this co-inoculation increased the enzyme activities (catalase, sucrase, urease) in the rhizosphere soil of sunflower and reduced the toxic effect of As on plant. Among these, the activities of catalase, peroxidase, and superoxide dismutase decreased. Meanwhile, co-inoculation enables cyanobacteria and bacteria to attach and entangle in the root area of the plant and develop as symbiotic association, which reduced As toxicity. Co-inoculation increased the abundance of aioA, arrA, arsC, and arsM genes in soil, especially the abundance of microorganisms with aioA and arsM, which reduced the mobility and bioavailability of As in soil, hence, reduced the absorption of As by plants. This study provides a theoretical basis for soil microbial remediation in mining areas.
Collapse
Affiliation(s)
- Qing Mao
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zuoming Xie
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | | | - Sakinatu Issaka
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Taikun Liu
- Linyi Vocational University of Science and Technology, Linyi, 276000, China
| | - Lei Zhang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Sana Irshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 51806, China
| |
Collapse
|
33
|
Yan Z, Wang Z, Si G, Chen G, Feng T, Liu C, Chen J. Bacteria-loaded biochar for the immobilization of cadmium in an alkaline-polluted soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1941-1953. [PMID: 38044401 DOI: 10.1007/s11356-023-31299-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The combination of biochar and bacteria is a promising strategy for the remediation of Cd-polluted soils. However, the synergistic mechanisms of biochar and bacteria for Cd immobilization remain unclear. In this study, the experiments were conducted to evaluate the effects of the combination of biochar and Pseudomonas sp. AN-B15, on Cd immobilization, soil enzyme activity, and soil microbiome. The results showed that biochar could directly reduce the motility of Cd through adsorption and formation of CdCO3 precipitates, thereby protecting bacteria from Cd toxicity in the solution. In addition, bacterial growth further induces the formation of CdCO3 and CdS and enhances Cd adsorption by bacterial cells, resulting in a higher Cd removal rate. Thus, bacterial inoculation significantly enhances Cd removal in the presence of biochar in the solution. Moreover, soil incubation experiments showed that bacteria-loaded biochar significantly reduced soil exchangeable Cd in comparison with other treatments by impacting soil microbiome. In particular, bacteria-loaded biochar increased the relative abundance of Bacillus, Lysobacter, and Pontibacter, causing an increase in pH, urease, and arylsulfatase, thereby passivating soil exchangeable Cd and improving soil environmental quality in the natural alkaline Cd-contaminated soil. Overall, this study provides a systematic understanding of the synergistic mechanisms of biochar and bacteria for Cd immobilization in soil and new insights into the selection of functional strain for the efficient remediation of the contaminated environments by bacterial biochar composite.
Collapse
Affiliation(s)
- Zhengjian Yan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Zitong Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Guohui Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China.
- Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, 650091, Yunnan, China.
| |
Collapse
|
34
|
Tan Z, Dong B, Xing M, Sun X, Xi B, Dai W, He C, Luo Y, Huang Y. Electric field applications enhance the electron transfer capacity of dissolved organic matter in sludge compost. ENVIRONMENTAL TECHNOLOGY 2024; 45:283-293. [PMID: 35900008 DOI: 10.1080/09593330.2022.2107951] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in heavy metal passivation and organic pollutant degradation owing to its redox ability. The structure and composition of DOM are determinants of redox ability changes during composting. Electric field-assisted aerobic composting (EAAC) has been shown to promote the degradation and humification of organic matter in compost. However, how EAAC affects the redox ability of DOM remains unclear. Hence, electron transfer capacity (ETC) of DOM extracted from EAAC was studied using the electrochemical method. Various spectral methods, such as excitation-emission matrix and ultraviolet and visible spectrophotometry were used to study the relationship of ETC with the compositional and structural changes of DOM. Results indicated that EAAC enhanced ETC of DOM at the later stage of composting, and ETC of DOM extracted from the final EAAC product was 10.4% higher than that of the control group. Spectral and correlation analyses showed that EAAC resulted in structural and compositional changes of DOM, and humification degree, aromatic compounds, molecular weight, and fulvic- and humic-like substance contents were improved in EAAC. This conversion increased ETC of DOM. Results of this study will contribute to the understanding of the redox of DOM and in expanding the application of EAAC products.
Collapse
Affiliation(s)
- Zhihan Tan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Bin Dong
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Meiyan Xing
- School of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Beidou Xi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, People's Republic of China
| | - Wenfeng Dai
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Chaojie He
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yumu Luo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| | - Yanmei Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, People's Republic of China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, People's Republic of China
| |
Collapse
|
35
|
Wang B, Sun M, Wang Y, Yan T, Li Y, Wu X, Wang Y, Zhuang W. Cadmium-Tolerant Bacterium Strain Cdb8-1 Contributed to the Remediation of Cadmium Pollution through Increasing the Growth and Cadmium Uptake of Chinese Milk Vetch ( Astragalus sinicus L.) in Cadmium-Polluted Soils. PLANTS (BASEL, SWITZERLAND) 2023; 13:76. [PMID: 38202384 PMCID: PMC10781172 DOI: 10.3390/plants13010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Cadmium (Cd) pollution has attracted global attention because it not only jeopardizes soil microbial ecology and crop production, but also threatens human health. As of now, microbe-assisted phytoremediation has proven to be a promising approach for the revegetation of Cd-contaminated soil. Therefore, it is important to find such tolerant microorganisms. In the present study, we inoculated a bacteria strain tolerant to Cd, Cdb8-1, to Cd-contaminated soils and then explored the effects of Cdb8-1 inoculation on the performance of the Chinese milk vetch. The results showed plant height, root length, and fresh and dry weight of Chinese milk vetch grown in Cdb8-1-inoculated soils increased compared to the non-inoculated control group. The inoculation of Cd-contaminated soils with Cdb8-1 also enhanced their antioxidant defense system and decreased the H2O2 and malondialdehyde (MDA) contents, which alleviated the phytotoxicity of Cd. The inoculation of Cdb8-1 in Cd-contaminated soils attenuated the contents of total and available Cd in the soil and augmented the BCF and TF of Chinese milk vetch, indicating that the combined application of Cd-tolerant bacteria Cdb8-1 and Chinese milk vetch is a potential solution to Cd-contaminated soils.
Collapse
Affiliation(s)
- Bo Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Minghui Sun
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Yuekai Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China (Y.L.)
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China (Y.L.)
| | - Xinxin Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Youbao Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; (B.W.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China (Y.L.)
| |
Collapse
|
36
|
Luo L, Tao G, Qin F, Luo B, Liu J, Xu A, Li W, Hu Y, Yi Y. Phosphate-solubilizing fungi enhances the growth of Brassica chinensis L. and reduces arsenic uptake by reshaping the rhizosphere microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120805-120819. [PMID: 37945954 DOI: 10.1007/s11356-023-30359-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
High concentrations of arsenic in soil and plant systems are a threat to human health and ecosystems. The levels of phosphate ions in the soil strongly influence the soil efficacy and arsenic absorption by plants. This study investigated the effects of phosphate-solubilizing fungi (PSF) on environmental factors and structural changes in microbial community in soils contaminated with arsenic. Four experimental groups were created: control (CK), Penicillium GYAHH-CCT186 (W186), Aspergillus AHBB-CT196 (W196), and Penicillium GYAHH-CCT186 + Aspergillus AHBB-CT196 (W186 + W196), with Pakchoi (Brassica chinensis L.) as the test plant. Analysis of altered nutrient levels, enzyme activities and microbial community structure in the soil as well as the growth and physiological characteristics of Pakchoi, revealed a significant increase in the available phosphorus (AP), organic matter (OM), cation exchange capacity (CEC) and available arsenic (AAs) content of the soil following W186 + W196, W196 and W186 treatments. All experimental treatments enhanced the activity of soil β-glucosidase (β-GC) and soil catalase (S-CAT). W186 + W196 and W196 treatments significantly enhanced soil acid phosphatase (S-ACP) activity. Besides, W186 + W196 treatment significantly induced dehydrogenase (S-DHA) activity. Further, of the treatment with PSF increased the fresh weight, root length, plant height and chlorophyll levels while decreasing the arsenic accumulation in Pakchoi. Exposure to PSF also increased the activity of Ascomycota, Basidiomycota, Chytridiomycota, unclassified_Fungi, Mortierellomycota, Cryptomycota and Rozellomycota in the soil. The relative abundance of Ascomycota, Basidiomycota, and Mortierellomycota was positively correlated with the available nutrients (except iron) in the soil as well as enzyme activities. Consequently, the PSF improved the quality of soil and the safety of Pakchoi, suggesting that PSF can be utilized for the remediation of arsenic-contaminated soil.
Collapse
Affiliation(s)
- Lin Luo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Fanxin Qin
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China.
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China.
| | - Banglin Luo
- College of Resources and Environment/Key Laboratory of Eco-Environment in Three Gorges Region (Ministry of Education), Southwest University, Chongqing, 400716, China
| | - Jing Liu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Anqi Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Wanyu Li
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Yanjiao Hu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
- Guizhou Key Laboratory of Plant Physiology and Developmental Regulation, Guizhou Normal University, Huaxi District, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
37
|
Li X, Wang S, Zhao S, Chang H, Li Y, Zhao Y. Effects of an assistive electric field on heavy metal passivation during manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165909. [PMID: 37524182 DOI: 10.1016/j.scitotenv.2023.165909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Composting is one of main technologies for treating and thus utilizing livestock manure and sludge. However, heavy metals are major concerns in compost utilization due to their potential environmental hazards and health risks. This study aimed to investigate the effects of electric field-assisted composting on the variations of heavy metals and the affecting factors. The results showed that electric field significantly reduced the contents of bioavailable heavy metals including Mn, Zn, Cu, Ni, and Cd, with their bioavailable concentrations decreasing by 61.7, 63.8, 64.9, 83.7, and 63.8 %, respectively. The heavy metals being transformed into stable states were increased, indicating that the electric field also passivated these heavy metals and reduced their biological toxicity and stabilized their forms. Spearman's correlation analysis revealed that the changes in substances, temperature, and organic matter were the dominant environmental factors affecting the forms of heavy metals. Microbial community analysis indicated an increase in the abundance of metal-resistant bacteria such as Pseudomonas and Bacillus during electric field-assisted composting, with their relative abundances being increased to 2.66 % and 15.63 % in the pile of electric field-assisted composting, respectively, compared to the values of 1.88 % and 4.36 % respectively in the conventional composting. The current study suggests that electric field-assisted composting can significantly reduce the availability of heavy metals in the compost, and thus mitigate the health risks associated with its application.
Collapse
Affiliation(s)
- Xiang Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengwei Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Silan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huiming Chang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
38
|
Qiu J, Fernandes de Souza M, Edayilam N, Yang Y, Ok YS, Ronsse F, Morabito D, Meers E. Metal behavior and soil quality changes induced by the application of tailor-made combined biochar: An investigation at pore water scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165552. [PMID: 37454836 DOI: 10.1016/j.scitotenv.2023.165552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The remediation performance of biochar varies based on the biomass used for its production. Further innovation involves developing tailor-made biochar by combining different raw materials to compensate for the limitations of pure biochar. Therefore, tailor-made combined biochar produced from the co-pyrolysis of pig manure and invasive Japanese knotweed (P1J1), as well as biochars produced from these feedstocks separately, i.e., pure pig manure (PM) and pure Japanese knotweed (JK), were applied to Pb and As contaminated soil to evaluate the biochar-induced changes on soil properties, microbial activity, DOM, and metal and metalloids solubility at the soil pore water scale. Biochar application reduced soluble Pb, whereas enhanced the As mobility; the increased soil pH after biochar addition played a fundamental role in reducing the Pb solubility, as revealed by their significant negative correlation (r = -0.990, p < 0.01). In contrast, the release of dissolved P strongly influenced As mobilization (r = 0.949, p < 0.01), especially in P-rich PM and P1J1 treatments, while JK showed a marginal effect in mobilizing As. Soils treated with PM, P1J1, and JK mainly increased Gram-negative bacteria by 56 %, 52 %, and 50 %, respectively, compared to the control. Fluorescence excitation-emission matrix spectroscopy combined with parallel factor analysis identified three components in pore water DOM, C1 (long wavelength humic-like), C2 (short wavelength humic-like), and C3 (protein-like), which were dominant respectively in the P1J1, JK, and PM-added soil. A principal component analysis (PCA) confirmed that the PM and P1J1 had similar performance and were more associated with releasing P and Mg and specific DOM components (C1 and C3). Meanwhile, P1J1 supplemented soil OM/OC and K, similar to JK. The results of this study suggest that combined biochar P1J1 can comprehensively enhance soil quality, embodying the advantages of pure PM and JK biochar while overcoming their shortcomings.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Marcella Fernandes de Souza
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nimisha Edayilam
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Yongyuan Yang
- LIWET, Department of Green Chemistry and Technology, Ghent University, Campus Kortrijk, Graaf Karel De Goedelaan 5, B-8500 Kortrijk, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - Erik Meers
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
39
|
Batool M, Shah MH. Appraisal of contamination, source identification and health risk assessment of selected metals in the agricultural soil of Chakwal, Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8295-8316. [PMID: 37594606 DOI: 10.1007/s10653-023-01721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023]
Abstract
Contamination of metals in agricultural soil is a serious global threat but there are limited reports related to their risks in major agronomic areas. The current study is aimed to assess the distribution of selected macroelements and essential/toxic trace metals (Ca, Mg, Na, K, Sr, Li, Ag, Fe, Zn, Co, Cu, Mn, Cd, Cr, Pb and Ni) in the agricultural soil of Chakwal, Pakistan, in order to appraise their contamination status, source identification and probable human health risks. Quantification of the metals was performed by AAS employing aqua regia digestion method. Among the selected metals, dominant mean concentrations were observed for Ca (48,285 mg/kg) and Fe (30,120 mg/kg), followed by Mg (9171 mg/kg), K (973.3 mg/kg), Mn (399.0 mg/kg) and Na (368.9 mg/kg). The correlation study indicated strong mutual relationships among the metals as well as physicochemical properties. Multivariate analysis (PCA/CA) of the metal levels revealed their diverse anthropogenic sources in the soil. Various pollution indices indicated extremely high contamination/enrichment of Cd, followed by moderate enrichment/contamination of Ag in the soil. The HQ values for most of the metals manifested insignificant non-cancer risks. The average CR value of Cr was exceeding the safe limit (1.0E-06) for both ingestion and inhalation exposure, indicating a considerable lifelong cancer risk for the population. The results of this study will provide a better understanding related to the contamination of agricultural soil and its effects on human health and to promote effective actions to reduce the soil pollution.
Collapse
Affiliation(s)
- Maryam Batool
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Munir H Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
40
|
Borah G, Deka H. Vermiremediation of heavy metals (HMs)-contaminated agricultural land: synergistic changes in soil enzyme activities and earthworm's growth parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:115266-115278. [PMID: 37880396 DOI: 10.1007/s11356-023-30500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
In this investigation the heavy metals (Cu, Zn, Mn, Cr and Ni) remediation potential of Eisenia fetida was studied in the crude oil polluted soil. The potential of E. fetida was evaluated based on the decrease in concentrations of Cu, Zn, Mn, Cr and Ni, and improvement in the soil enzyme activities at the end of 90 days of experimental trials. Moreover, soil health quality, inter-relationship between the enzyme activities and the growth parameters of E. fetida and synergistic relation among the enzyme activities were also evaluated through G-Mean and T-QSI indices, chord plot analysis and principal component analysis (PCA) to confirm the performance of E. fetida during vermiremediation. The results revealed that the soil treated with E. fetida showed a reduction in the concentration of Cu, Zn, Mn, Cr and Ni by 17.4% 19.45%, 9.44%, 23.8% and 9.6% respectively by end of the experimental trials. The cellulase, amylase, polyphenol oxidase, peroxidase, urease, dehydrogenase and catalase activities in the E. fetida-treated soil were enhanced by 89.83%, 99.17%, 142%, 109.9%, 92.9%, 694.3% and 274.5% respectively. The results of SEM-EDS revealed enhancement in the O, K, Na, Mg and P content by 62.36%, 96.2%, 97.9%, 93.7% and 98.2% respectively by the end of the experimental trial. The G-Mean and T-QSI indices also confirmed the improvement in soil enzyme activities thereby indicating the positive influence of E. fetida on soil decontamination process. The chord plot indicated the interrelationship between the earthworm's growth parameters and enzyme activities of the soil as indicated by the high linkage between the nodes. Finally, the PCA confirmed the negative effect of the heavy metals on the soil enzyme activities and synergistic interrelationship between the enzyme activities during the vermiremediation process. Thus, this study demonstrated the changes in the soil enzyme activities and their interconnected influences during vermiremediation of crude oil sourced heavy metals from polluted soil.
Collapse
Affiliation(s)
- Glory Borah
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India.
| |
Collapse
|
41
|
Amoatey EA, Glover ET, Kpeglo DO, Otoo F, Adotey DK. Ecological and human health risk assessment of potentially toxic elements in water and soils within a crude oil waste management facility, Southwestern Ghana. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1371. [PMID: 37880424 DOI: 10.1007/s10661-023-11923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
Crude oil waste management is challenging due to the diverse constituents of the waste and its consequent impact on valued environmental receptors (water and soil). Characterization of the potentially toxic elements (PTEs) in soils and water within the surroundings of crude oil waste management facility is imperative, to aid evaluation of potential risks. The study assessed the potential environmental and human health risks posed by PTEs in soil and water from surroundings and adjoining settlement communities. A total of forty-four (44) samples were analyzed for PTEs (Cr, Pb, Zn, Co, Mn, Ni, Hg, Fe, As, Cu, Hg, and Cd) and physicochemical properties in both matrices. The total carcinogenic risk (TCR) for adults and children in the neighbouring community was 4.73 × 10-6 and 1.2 × 10-4, respectively, which was due to the high carcinogenic slope factor of arsenic. A strong correlation was observed between the PTEs and physicochemical properties, and their health risk was attributed to both geogenic and anthropogenic factors. The study indicated that the human health and ecological risk values obtained were within acceptable limits, with the waste management facility posing a higher risk in comparison to the nearby community. These risks may be attributed to the specific nature and intensity of the activities conducted at the facility. Hence, there is the need for continuous promotion of occupational and public awareness on the health and environmental impact of crude oil waste management.
Collapse
Affiliation(s)
- Edith A Amoatey
- Graduate School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Kwabenya, Accra, Ghana.
- Radiation Protection Institute, Ghana Atomic Energy Commission, P.O Box LG 80, Legon, Accra, Ghana.
| | - Eric T Glover
- Graduate School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Kwabenya, Accra, Ghana
- Radiation Protection Institute, Ghana Atomic Energy Commission, P.O Box LG 80, Legon, Accra, Ghana
| | - David O Kpeglo
- Graduate School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Kwabenya, Accra, Ghana
- Radiation Protection Institute, Ghana Atomic Energy Commission, P.O Box LG 80, Legon, Accra, Ghana
| | - Francis Otoo
- Graduate School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Kwabenya, Accra, Ghana
- Radiation Protection Institute, Ghana Atomic Energy Commission, P.O Box LG 80, Legon, Accra, Ghana
| | - Dennis K Adotey
- Graduate School of Nuclear and Allied Sciences, University of Ghana, P.O. Box AE 1, Kwabenya, Accra, Ghana
- National Nuclear Research Institute, Ghana Atomic Energy Commission, P.O Box LG 80, Legon, Accra, Ghana
| |
Collapse
|
42
|
Dede G, Banu Sasmaz Z, Ozdemir S, Caner C, Dede C. Investigation of heavy metal and micro-macro element speciation in biomass ash enriched sewage sludge compost. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118330. [PMID: 37327636 DOI: 10.1016/j.jenvman.2023.118330] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/18/2023]
Abstract
The objective of this study was to enrich the nutrient content of compost and to investigate the passivation and solubilization of plant micronutrients (Fe, Al, Cu, Ni, Zn, Na, Mn), macroelements (P, K, Mg, Ca), and heavy metals (Cr, Cd, Pb) during sewage sludge composting with nutrient-rich biomass ash additives. T0: 0%, T1: 3.5%, T2: 7.0%, and T3: 14.0% dry weight (DW), weight/weight (w/w) biomass ash was added to the sewage sludge + sawdust mixture (volume, 1:1) to obtain the final NPK content and monitored over a 45-day period. Sawdust was used as auxiliary material. The sequential extraction method was used to determine the elemental species. Cr, Cd and Pb showed higher affinity to the residual fraction and occluded in the oxide fraction, which decreased the bioavailability factor (BF) (<1% BF-Cr, 21% BF-Cd and 9% BF-Pb) compared to the control treatment (46% BF-Cr, 47% BF-Cd and 80% BF-Pb). As the amount of biomass ash increased (T1-T3), the percentages of residual Cr (Res-Cr) (10-65%), exchangeable Cd (Exc-Cd) and organically bound Cd (Org-Cd) (14% and 21%), and oxides-Pb (Oxi-Pb) (20-61%) increased. In all composts, Fe, Al, and Cu were associated with organically bound and oxides-entrapped fractions. More than 50% of total Mn and Mg were concentrated mainly in exchangeable fractions, suggesting high mobility and bioavailability (42% BF-Mn and 98% BF-Mg). Ni, Zn, and Na tended to be present in oxide-bound, organically bound, and residual fractions, while K and P were associated with exchangeable and organically bound fractions. The overall results suggest that composting sewage sludge with biomass ash may be the best strategy and technique to overcome soil application bottlenecks because it passivates heavy metals and improves the bioavailability of plant nutrients.
Collapse
Affiliation(s)
- Gulgun Dede
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, 54187, Esentepe, Sakarya, Turkey.
| | - Z Banu Sasmaz
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, 54187, Esentepe, Sakarya, Turkey
| | - Saim Ozdemir
- Department of Environmental Engineering, Faculty of Engineering, Sakarya University, 54187, Esentepe, Sakarya, Turkey
| | - Celal Caner
- Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, 54187, Esentepe, Sakarya, Turkey
| | - Cemile Dede
- Vocational School of Health Science, Sakarya University, 54187, Sakarya, Turkey
| |
Collapse
|
43
|
Jiang W, Chen R, Lyu J, Qin L, Wang G, Chen X, Wang Y, Yin C, Mao Z. Remediation of the microecological environment of heavy metal-contaminated soil with fulvic acid, improves the quality and yield of apple. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132399. [PMID: 37647659 DOI: 10.1016/j.jhazmat.2023.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.
Collapse
Affiliation(s)
- Weitao Jiang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Ran Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Jinhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Lei Qin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong 250000, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
44
|
Zhou Z, Xia L, Wang X, Wu C, Liu J, Li J, Lu Z, Song S, Zhu J, Montes ML, Benzaazoua M. Coal slime as a good modifier for the restoration of copper tailings with improved soil properties and microbial function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109266-109282. [PMID: 37759064 DOI: 10.1007/s11356-023-30008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
In recent years, the solid wastes from the coal industry have been widely used as soil amendments. Nevertheless, the impact of utilizing coal slime for copper tailing restoration in terms of plant growth, physicochemical characteristics of the tailing soil, and microbial succession remains uncertain.Herein, the coal slime was employed as a modifier into copper tailings. Their effect on the growth and physiological response of Ryegrass, and the soil physicochemical properties as well as the bacterial community structure were investigated. The results indicated that after a 30-day of restoration, the addition of coal slime at a ratio of 40% enhanced plant growth, with a 21.69% rise in chlorophyll content, and a 62.44% increase in peroxidase activity. The addition of 40% coal slime also increased the content of nutrient elements in copper tailings. Following a 20-day period of restoration, the concentrations of available copper and available zinc in the modified tailings decreased by 39.6% and 48.51%, respectively, with 40% of coal slime added. In the meantime, there was an observed augmentation in the species diversity of the bacterial community in the modified tailings. The alterations in both community structure and function were primarily influenced by variations in pH value, available nitrogen, phosphorus, potassium, and available copper. The addition of 40% coal slime makes the physicochemical properties and microbial community evolution of copper tailings reach a balance point. The utilization of coal slime has the potential to enhance the physicochemical characteristics of tailings and promote the proliferation of microbial communities, hence facilitating the soil evolution of two distinct solid waste materials. Consequently, the application of coal slime in the restoration of heavy metal tailings is a viable approach, offering both cost-effectiveness and efficacy as an enhancer.
Collapse
Affiliation(s)
- Zhou Zhou
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China.
| | - Xizhuo Wang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Chenyu Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiazhi Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jianbo Li
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
- Instituto de Física de la Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000, San Luis Potosí, Mexico
| | - Zijing Lu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, 430070, Hubei, China
| | - Jiang Zhu
- Hubei Sanxin Gold Copper Limited Company, Huangshi, Hubei, China
| | | | - Mostafa Benzaazoua
- Mohammed VI Polytechnic University (UM6P), Geology and Sustainable Mining, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| |
Collapse
|
45
|
Ahmed T, Noman M, Qi Y, Xu S, Yao Y, Masood HA, Manzoor N, Rizwan M, Li B, Qi X. Dynamic crosstalk between silicon nanomaterials and potentially toxic trace elements in plant-soil systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115422. [PMID: 37660529 DOI: 10.1016/j.ecoenv.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Agricultural soil pollution with potentially toxic trace elements (PTEs) has emerged as a significant environmental concern, jeopardizing food safety and human health. Although, conventional remediation approaches have been used for PTEs-contaminated soils treatment; however, these techniques are toxic, expensive, harmful to human health, and can lead to environmental contamination. Nano-enabled agriculture has gained significant attention as a sustainable approach to improve crop production and food security. Silicon nanomaterials (SiNMs) have emerged as a promising alternative for PTEs-contaminated soils remediation. SiNMs have unique characteristics, such as higher chemical reactivity, higher stability, greater surface area to volume ratio and smaller size that make them effective in removing PTEs from the environment. The review discusses the recent advancements and developments in SiNMs for the sustainable remediation of PTEs in agricultural soils. The article covers various synthesis methods, characterization techniques, and the potential mechanisms of SiNMs to alleviate PTEs toxicity in plant-soil systems. Additionally, we highlight the potential benefits and limitations of SiNMs and discusses future directions for research and development. Overall, the use of SiNMs for PTEs remediation offers a sustainable platform for the protection of agricultural soils and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China
| | | | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Natasha Manzoor
- Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | | |
Collapse
|
46
|
Yao S, Zhou B, Duan M, Cao T, Wen Z, Chen X, Wang H, Wang M, Cheng W, Zhu H, Yang Q, Li Y. Combination of Biochar and Trichoderma harzianum Can Improve the Phytoremediation Efficiency of Brassica juncea and the Rhizosphere Micro-Ecology in Cadmium and Arsenic Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:2939. [PMID: 37631151 PMCID: PMC10458205 DOI: 10.3390/plants12162939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Phytoremediation is an environment-friendly method for toxic elements remediation. The aim of this study was to improve the phytoremediation efficiency of Brassica juncea and the rhizosphere soil micro-ecology in cadmium (Cd) and arsenic (As) contaminated soil. A field experiment was conducted with six treatments, including a control treatment (CK), two treatments with two contents of Trichoderma harzianum (T1: 4.5 g m-2; T2: 9 g m-2), one biochar treatment (B: 750 g m-2), and two combined treatments of T1B and T2B. The results showed Trichoderma harzianum promoted the total chlorophyll and translocation factor of Brassica juncea, while biochar promoted plant biomass compared to CK. T2B treatment showed the best results, which significantly increased Cd accumulation by 187.49-308.92%, and As accumulation by 125.74-221.43%. As a result, the soil's total Cd content was reduced by 19.04% to 49.64% and total As contents by 38.76% to 53.77%. The combined amendment increased the contents of soil available potassium, phosphorus, nitrogen, and organic matter. Meanwhile, both the activity of glutathione and peroxidase enzymes in plants, together with urease and sucrase enzymes in soil, were increased. Firmicutes (dominant bacterial phylum) and Ascomycota (dominant fungal phylum) showed positive and close correlation with soil nutrients and plant potentially toxic elements contents. This study demonstrated that phytoremediation assisted by biochar and Trichoderma harzianum is an effective method of soil remediation and provides a new strategy for enhancing plant remediation efficiency.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Manli Duan
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Tao Cao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Zhaoquan Wen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Xiaopeng Chen
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hui Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Min Wang
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Wen Cheng
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Hongyan Zhu
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China; (S.Y.); (M.D.); (T.C.); (Z.W.); (X.C.); (H.W.); (M.W.); (W.C.); (H.Z.)
| | - Qiang Yang
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| | - Yujin Li
- PowerChina Northwest Engineering Corporation Limited, Xi’an 710065, China; (Q.Y.); (Y.L.)
| |
Collapse
|
47
|
Carnier R, de Abreu CA, de Andrade CA, Fernandes AO, Silveira APD, Coscione AR. Soil quality index as a tool to assess biochars soil quality improvement in a heavy metal-contaminated soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6027-6041. [PMID: 37210681 DOI: 10.1007/s10653-023-01602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/28/2023] [Indexed: 05/22/2023]
Abstract
The assessment of soil quality improvement provided by biochars is complex and rarely examined. In this work, soil quality indices (SQIs) were produced to evaluate coffee industry feedstock biochars improvement on soil quality samples of a heavy metal-multicontaminated soil. Therefore, a 90-day incubation experiment was carried out with the following treatments: contaminated soil (CT), contaminated soil with pH raised to 7.0 (CaCO3), contaminated soil + 5% (m/m) coffee ground biochar, and contaminated soil + 5% (m/m) coffee parchment biochar (PCM). After incubation, chemical and biological attributes were analyzed, and the data were subjected to principal component analysis and Pearson correlation to obtain a minimum dataset (MDS), which explain the majority of the variance of the data. The MDS-selected attributes were dehydrogenase and protease activity, exchangeable Ca content, phytoavailable content of Cu, and organic carbon, which composed the SQI. The resulting SQI ranged from 0.50 to 0.56, with the highest SQI obtained for the PCM treatment and the lowest for the CT. The phytoavailable content Cu was the determining factor for differentiating PCM from the other treatments, which was a biochar original attribute and helped to improve soil quality based on the SQI evaluation, further than heavy metal immobilization due to the soil sample pH increase. Longer-term experiments may illustrate clearer advantages of using biochar to improve heavy metal-contaminated soil quality, as physical attributes may also respond, and more significant contributions to biological attributes could be obtained as biochar ages.
Collapse
Affiliation(s)
- Ruan Carnier
- Instituto Agronômico (IAC), Centro de Solos e Recursos Ambientais, Campinas, SP, Brazil
| | | | | | - Ana Olivia Fernandes
- Instituto Agronômico (IAC), Centro de Solos e Recursos Ambientais, Campinas, SP, Brazil
| | | | - Aline Renée Coscione
- Instituto Agronômico (IAC), Centro de Solos e Recursos Ambientais, Campinas, SP, Brazil.
| |
Collapse
|
48
|
Sakin E, Yanardağ İH, Ramazanoğlu E, Yalçın H. Enzyme activities and heavy metal interactions in calcareous soils under different land uses. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:273-286. [PMID: 37480015 DOI: 10.1080/15226514.2023.2238818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
This study was carried out to examine the interaction of enzyme activities, microbial biomass carbon, and CO2 respiration with heavy metals under different land uses in terms of quality and sustainability of the soil. There is a statistically significant positive correlation between dehydrogenase enzyme activity and Mn, Pb, Cd, and Co, while it was negative between Cr. There was a positive correlation between catalase enzyme activity and Mn and Pb and between urease and Co. The higher interaction of dehydrogenase activity with heavy metals, which is included in the endo enzyme group, has been explained as a much stronger effect of heavy metals on living microorganisms and endoenzymes than extracellular enzymes stabilized on clay minerals and organic matter. The high clay content of the soil is thought to reduce some of the negative effects of heavy metals on enzymes. The results of this study may be good indicators of enzyme activities, especially dehydrogenase, catalase, and urease, for soil health and quality, chemical degradation and restoration processes, and ecosystem functioning in soils contaminated or to be contaminated with heavy metals. It shows that the activities of these enzymes are very sensitive and can decrease rapidly in case of high concentrations of heavy metals.
Collapse
Affiliation(s)
- Erdal Sakin
- Department of Soil Science and Plant Nutrition, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - İbrahim Halil Yanardağ
- Soil Science and Plant Nutrition Department, Malatya Turgut Özal University, Battalgazi, Malatya, Turkey
| | - Emrah Ramazanoğlu
- Department of Soil Science and Plant Nutrition, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| | - Hamza Yalçın
- Department of Soil Science and Plant Nutrition, Agriculture Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
49
|
Dawar K, Asif M, Irfan M, Mian IA, Khan B, Gul N, Fahad S, Jalal A, Danish S, Syed A, Elgorban AM, Eswaramoorthy R, Hussain MI. Evaluating the Efficacy of Activated Carbon in Minimizing the Risk of Heavy Metals Contamination in Spinach for Safe Consumption. ACS OMEGA 2023; 8:24323-24331. [PMID: 37457485 PMCID: PMC10339394 DOI: 10.1021/acsomega.3c01573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Toxicity induced by heavy metals is a major concern in agriculture as it decreases crops' growth and yield and leads to the deterioration of food quality. Recently, activated carbon has been identified as a possible solution. It can potentially improve crop nutrition and immobilize heavy metals in soil. That is why a glasshouse trial was conducted to investigate the effects of sugarcane bagasse-derived biochar on spinach growth and the availability of cadmium (Cd) and chromium (Cr) in artificially contaminated soil. The soil was placed in pots and contaminated with Cd and Cr at a rate of 10 mg kg-1. Biochar was added to the soil at concentrations of 0 (control), 0 (contaminated control), 100, 150, and 200 g, and 10-day-old nursery spinach plants were transplanted to the pots. The results showed that applying 200 g of biochar significantly increased shoot weight (235 g), soil pH, electrical conductivity, and organic matter. The highest levels of Cd (27.71 mg kg-1) and Cr (20.44 mg kg-1) were observed in the contaminated control pots, while the lowest levels of Cd (16.80 mg kg-1) and Cr (9.80 mg kg-1) were found in pots treated with 200 g of biochar (2%). Similarly, the highest levels of Cd (35.80 mg kg-1) and Cr (40.24 mg kg-1) in the roots were found in the contaminated control pots, while the lowest levels of Cd (19.26 mg kg-1) and Cr (21.34 mg kg-1) were observed in pots treated with 200 g of biochar. Biochar application at a rate of 2% can immobilize Cd and Cr in the soil and improve chlorophyll contents, carotenoids, photosynthetic rate, transpiration rate, and stomatal conductance in spinach in Cd- and Cr-contaminated soils. Further long-term field studies will be necessary to determine the feasibility of applying biochar as an organic amendment for enhancing spinach growth and reducing Cd and Cr bioavailability in contaminated soil.
Collapse
Affiliation(s)
- Khadim Dawar
- Department
of Soil and Environmental Science, The University
of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Muhammad Asif
- Department
of Soil and Environmental Science, The University
of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Muhammad Irfan
- Department
of Soil and Environmental Science, The University
of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Ishaq Ahmad Mian
- Department
of Soil and Environmental Science, The University
of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Bushra Khan
- Department
of Environmental Sciences, University of
Peshawar, Peshawar 25120, Pakistan
| | - Nida Gul
- Department
of Environmental Science, The University
of Swabi, Swabi, Khyber Pakhtunkhwa 23430, Pakistan
| | - Shah Fahad
- Department
of Agronomy, Abdul Wali Khan University
Mardan, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Abdullah Jalal
- Institute
of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Subhan Danish
- Department
of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab 60000, Pakistan
| | - Asad Syed
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Abdallah M. Elgorban
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Rajalakshmanan Eswaramoorthy
- Department
of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMMAND),
Saveetha Dental College and Hospitals, Saveetha
Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - Muhammad Iftikhar Hussain
- Department
of Plant Biology & Soil Science, Universidad
de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| |
Collapse
|
50
|
Huang K, Sun X, Sun J, Guo Y, Hu X, Hu C, Tan Q. The role of phosphorus speciation of biochar in reducing available Cd and phytoavailability in mining area soil: Effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164868. [PMID: 37343850 DOI: 10.1016/j.scitotenv.2023.164868] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
The effect of phosphorus (P) speciation in biochar on soil available Cd and its mechanism to alleviate plant Cd stress remain largely unknown. Here, ammonium polyphosphate (PABC)-, phosphoric acid (PHBC)-, potassium dihydrogen phosphate (PKBC)-, and ammonium dihydrogen phosphate (PNBC)-modified biochar were used to investigate P speciation. The Cd immobilization mechanism of biochar was analyzed by XPS and 31P NMR, and the soil quality and the mechanism for the biochar to alleviate Cd stress were also determined. The results demonstrated that PBC (pristine biochar), PABC, PHBC, PKBC, and PNBC reduced the content of soil DTPA-Cd by 14.96 % - 32.19 %, 40.44 % - 47.26 %, 17.52 % - 41.78 %, and 21.90 % - 36.64 %, respectively. The XPS and 31P NMR results demonstrated that the orthophosphate on the surface of PABC, PHBC, PKBC, and PNBC accounted for 82.06 %, 62.77 %, 33.1 %, and 54.46 %, respectively, indicating that PABC has the highest passivation efficiency on soil Cd, which was ascribed to the highest orthophosphate content on the biochar surface. Pot experiments revealed that PABC could reduce the Cd content by 4.18, 4.41, 4.43, 2.94, and 2.57 folds in roots, stems, leaves, pods, and grains, respectively, and at the same time increase the dry and fresh weight of soybean and decrease Cd toxicity to soybean by improving the antioxidant system. In addition, application of the P-modified biochars improved the enzyme activity and physicochemical properties of the soil. This study provides a new perspective for studying the effect of P-modified biochars on soil Cd immobilization.
Collapse
Affiliation(s)
- Kan Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Jingguo Sun
- Hubei Academy of Tobacco Science, Wuhan 430030, China
| | - Yali Guo
- Guizhou Provincial Tobacco Company Qianxinan Branch, Xingyi, Guizhou 562400, China
| | - Xiaoming Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|