1
|
Bilal A, Butt A, Kazam A, Ali S, Isha, Chang YC. Investigating the Influence of Anthropogenic Activities on Behavioral Changes of an Orb Web Spider ( Neoscona vigilans). INSECTS 2024; 15:609. [PMID: 39194814 DOI: 10.3390/insects15080609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
Orb web spiders are common and highly diversified animals found in almost all habitats. They have remarkable plasticity against biotic and abiotic factors, making them excellent indicators of environmental health. The web creation behavior of spiders is influenced by disturbances in the environment. The aim of this research was to observe the alteration in the web-building behavior of Neoscona vigilans caused by human activities, specifically traffic disturbances. Spider webs were located and photographed at nighttime along the roadside, and their web characteristics were calculated. Spiders were captured from webs for their body measurements. Spider fourth leg length, carapace width, and body length had a significant association with web size and diameter, CTL, capture area, and mesh size. The quantity of trapped prey, the height of the plant, and the foliage radius increased with the distance from the road. Conversely, anchor points and web elevation from the ground dropped. The highest and lowest proportions of anomalies (modifications/defects) were recorded as holes (52.7%) in 105 webs (100%) and supernumerary (0.7%) in 55 webs (52.4%), respectively. Road disturbance had a negative influence on the spider's behavior as the webs formed in close proximity to the road had a higher frequency of anomalies, with a gradual decrease distantly. We can gain further insight into how different environmental changes, disruptions, and pollutants lead to this imperfection in the otherwise flawless perfect structure of spider webs.
Collapse
Affiliation(s)
- Ahmad Bilal
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Abida Butt
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Adeel Kazam
- Institute of Zoology, University of the Punjab, Lahore 54590, Pakistan
| | - Shakir Ali
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Isha
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Young-Cheol Chang
- Course of Chemical and Biological Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan
| |
Collapse
|
2
|
Yang Y, Lu X, Yu B, Wang Z, Wang L, Lei K, Zuo L, Fan P, Liang T. Exploring the environmental risks and seasonal variations of potentially toxic elements (PTEs) in fine road dust in resource-based cities based on Monte Carlo simulation, geo-detector and random forest model. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134708. [PMID: 38795490 DOI: 10.1016/j.jhazmat.2024.134708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The environmental pollution caused by mineral exploitation and energy consumption poses a serious threat to ecological security and human health, particularly in resource-based cities. To address this issue, a comprehensive investigation was conducted on potentially toxic elements (PTEs) in road dust from different seasons to assess the environmental risks and influencing factors faced by Datong City. Multivariate statistical analysis and absolute principal component score were employed for source identification and quantitative allocation. The geo-accumulation index and improved Nemerow index were utilized to evaluate the pollution levels of PTEs. Monte Carlo simulation was employed to assess the ecological-health risks associated with PTEs content and source orientation. Furthermore, geo-detector and random forest analysis were conducted to examine the key environmental variables and driving factors contributing to the spatiotemporal variation in PTEs content. In all PTEs, Cd, Hg, and Zn exhibited higher levels of content, with an average content/background value of 3.65 to 4.91, 2.53 to 3.34, and 2.15 to 2.89 times, respectively. Seasonal disparities were evident in PTEs contents, with average levels generally showing a pattern of spring (winter) > summer (autumn). PTEs in fine road dust (FRD) were primarily influenced by traffic, natural factors, coal-related industrial activities, and metallurgical activities, contributing 14.9-33.9 %, 41.4-47.5 %, 4.4-8.3 %, and 14.2-29.4 % to the total contents, respectively. The overall pollution and ecological risk of PTEs were categorized as moderate and high, respectively, with the winter season exhibiting the most severe conditions, primarily driven by Hg emissions from coal-related industries. Non-carcinogenic risk of PTEs for adults was within the safe limit, yet children still faced a probability of 4.1 %-16.4 % of unacceptable risks, particularly in summer. Carcinogenic risks were evident across all demographics, with children at the highest risk, mainly due to Cr and smelting industrial sources. Geo-detector and random forest model indicated that spatial disparities in prioritized control elements (Cr and Hg) were primarily influenced by particulate matter (PM10) and anthropogenic activities (industrial and socio-economic factors); variations in particulate matter (PM10 and PM2.5) and meteorological factors (wind speed and precipitation) were the primary controllers of seasonal disparities of Cr and Hg.
Collapse
Affiliation(s)
- Yufan Yang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xinwei Lu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China.
| | - Bo Yu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Zhenze Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Kai Lei
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ling Zuo
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Fan
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Ren Y, Hu Y, Cheng H. Sources, bioaccessibility and health risk of heavy metal(loid)s in the particulate matter of urban areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174303. [PMID: 38936720 DOI: 10.1016/j.scitotenv.2024.174303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/27/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Exposure to heavy metal(loid)s in airborne particulate matter (PM) could lead to various adverse health effects. The study investigated the total contents and the bioaccessibility of PM-bound heavy metal(loid)s (Cr, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb), identified their potential sources, and evaluated the associated health risk via inhalation in eight typical cities in China (Nanjing, Mianyang, Huangshi, Nanchang, Kunming, Xiamen, Guangzhou, and Wuzhishan). The results showed that PM-bound Cr (VI) and As of all eight cities exceeded the limits of World Health Organization. The bioaccessibility of PM-bound heavy metal(loid)s exhibited large variations, with their means following the order of Cd > Mn > Co > Ni > Cu > Cr > As > Zn > Pb. Traffic and industrial emissions were identified as primary sources in most urban areas. The emission sources have important effects on the bioaccessibility of PM-bound heavy metal(loid)s. In particular, atmospheric Cu has its bioaccessibility significantly correlated with the contributions from traffic emissions. The bioaccessibility-based health risk assessment obtained different results from those using total contents, showing that the non-carcinogenic risks posed by most metal(loid)s were acceptable except for As in Huangshi and Nanchang. These findings highlight the source dependence of bioaccessibility of heavy metal(loid)s in airborne PM, facilitate the identification of priority pollution sources and enhance effective risk-oriented source regulatory strategies in urban areas.
Collapse
Affiliation(s)
- Yuxuan Ren
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Vaccarella E, Piacentini D, Falasca G, Canepari S, Massimi L. In-vivo exposure of a plant model organism for the assessment of the ability of PM samples to induce oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165694. [PMID: 37516174 DOI: 10.1016/j.scitotenv.2023.165694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
This study aims to propose an innovative, simple, rapid, and cost-effective method to study oxidative stress induced by PM through in-vivo exposure of the plant model organism Arabidopsis thaliana. A. thaliana seedlings were exposed to urban dust certified for its elemental content and to PM2.5 samples collected in an urban-industrial area of Northern Italy. An innovative technique for the detachment and suspension in water of the whole intact dust from membrane filters was applied to expose the model organism to both the soluble and insoluble fractions of PM2.5, which were analyzed for 34 elements by ICP-MS. Oxidative stress induced by PM on A. thaliana was assessed by light microscopic localization and UV-Vis spectrophotometric determination of superoxide anion (O2-) content on the exposed seedlings by using the nitro blue tetrazole (NBT) assay. The results showed a good efficiency and sensitivity of the method for PM mass concentrations >20 μg m-3 and an increase in O2- content in all exposed seedlings, which mainly depends on the concentration, chemical composition, and sources of the PM administered to the model organism. Particles released by biomass burning appeared to contribute more to the overall toxicity of PM. This method was found to be cost-effective and easy to apply to PM collected on membrane filters in intensive monitoring campaigns in order to obtain valuable information on the ability of PM to generate oxidative stress in living organisms.
Collapse
Affiliation(s)
- Emanuele Vaccarella
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy
| | - Silvia Canepari
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy
| | - Lorenzo Massimi
- Department of Environmental Biology, Sapienza University of Rome, P. le Aldo Moro, 5, Rome 00185, Italy; C.N.R. Institute of Atmospheric Pollution Research, Via Salaria, Km 29,300, Monterotondo St., Rome 00015, Italy.
| |
Collapse
|
5
|
Aldekheel M, Farahani VJ, Sioutas C. Assessing Lifetime Cancer Risk Associated with Population Exposure to PM-Bound PAHs and Carcinogenic Metals in Three Mid-Latitude Metropolitan Cities. TOXICS 2023; 11:697. [PMID: 37624202 PMCID: PMC10457896 DOI: 10.3390/toxics11080697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Lifetime cancer risk characterization of ambient PM-bound carcinogenic metals and polycyclic aromatic hydrocarbons (PAHs) were examined in the cities of Los Angeles (USA), Thessaloniki (Greece) and Milan (Italy), which share similar Mediterranean climates but are different in their urban emission sources and governing air quality regulations. The samples in Milan and Thessaloniki were mostly dominated by biomass burning activities whereas the particles collected in Los Angeles were primary impacted by traffic emissions. We analyzed the ambient PM2.5 mass concentration of Cadmium (Cd), Hexavalent Chromium (Cr(VI)), Nickel (Ni), Lead (Pb), as well as 13 PAH compounds in the PM samples, collected during both cold and warm periods at each location. Pb exhibited the highest annual average concentration in all three cities, followed by Ni, As, Cr(VI), Cd and PAHs, respectively. The cancer risk assessment based on outdoor pollutants was performed based on three different scenarios, with each scenario corresponding to a different level of infiltration of outdoor pollutants into the indoor environment. Thessaloniki exhibited a high risk associated with lifetime inhalation of As, Cr(VI), and PAHs, with values in the range of (0.97-1.57) × 10-6, (1.80-2.91) × 10-6, and (0.77-1.25) × 10-6, respectively. The highest cancer risk values were calculated in Milan, exceeding the US EPA standard by a considerable margin, where the lifetime risk values of exposure to As, Cr(VI), and PAHs were in the range of (1.29-2.08) × 10-6, (6.08-9.82) × 10-6, and (1.10-1.77) × 10-6, respectively. In contrast, the estimated risks associated with PAHs and metals, except Cr(VI), in Los Angeles were extremely lower than the guideline value, even when the infiltration factor was assumed to be at peak. The lifetime cancer risk values associated with As, Cd, Ni, Pb, and PAHs in Los Angeles were in the range of (0.04-0.33) × 10-6. This observation highlights the impact of local air quality measures in improving the air quality and lowering the cancer risks in Los Angeles compared to the other two cities.
Collapse
Affiliation(s)
- Mohammad Aldekheel
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.A.); (V.J.F.)
- Department of Civil Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Vahid Jalali Farahani
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.A.); (V.J.F.)
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA; (M.A.); (V.J.F.)
| |
Collapse
|
6
|
Alsalme A. CNTs intercalated graphene oxide with interspersed MoS 2 nanoparticles for selective preconcentration and determination of trace Hg(II) ions. Food Chem 2023; 428:136777. [PMID: 37423113 DOI: 10.1016/j.foodchem.2023.136777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
The carbon nanotubes (CNT) intercalated graphene oxide (GO) nanosheets was functionalized with molybdenum disulfide nanoparticles (MSNP). Intercalation of CNT in between GO nanosheets significantly enhances porosity and avail both surfaces of GO for MSNP decoration. High porosity and densely populated MSNP led to faster Hg(II) ions diffusion and sorption. The material shows high selectivity for Hg(II) sorption due to sulfur rich sites. The GO/CNT@MSNP packed column employed for trace Hg(II) preconcentration and determination in fish, rice, mushroom, sunflower seeds and river and ground water samples. No significant hindrances by co-existing matrices in the determination of Hg(II) was found. The method shows a preconcentration factor of 540 and a preconcentration limit of 0.37 μg L-1. The method detection limit was found to be 0.03 μg L-1 and a good precision (RSD 4.2%). The Student's t test score was lower than critical Student's t value of 4.303 at the 95% confidence level. ENVIRONMENTAL IMPLICATION: Metal ions toxicity is a global issue and their trace level analysis from complex matrices is remains challenging. SPE of trace Hg(II) by graphene oxide is challenging due to agglomeration and less selectivity, nevertheless of its high surface area. We prepared a Hg(II) selective nanocomposite of MoS2 quantum dots grows onto GO surface. The hybrid nanocomposite selectively adsorbed Hg(II) ions from complex sample matrices. Compared to a nascent GO membrane, it were more efficient to preconcentrate and determine Hg(II) from real samples and provide more accurate data for environmental monitoring and assessment of action plan to control the Hg(II) pollution.
Collapse
Affiliation(s)
- Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Xue Q, Liu X, Tian Y, Feng Y. Variations of inhalation risks during different heavy pollution episodes based on 3-year measurement of toxic components in size-segregated particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163234. [PMID: 37019225 DOI: 10.1016/j.scitotenv.2023.163234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Toxic metals (TMs) and polycyclic aromatic hydrocarbons (PAHs) in size-segregated particles during common days (CD) and different heavy pollution (HP) episodes were measured during 2018-2021 in a Chinese megacity. The Multiple Path Particle Dosimetry Model (MPPD) was performed to estimate deposition efficiency, and then inhalation risks in the human pulmonary region during different types of HP were assessed and compared. The higher pulmonary deposition efficiency of PAHs and TMs during all types of HP than those during CD was confirmed. The accumulative incremental lifetime cancer risk (ILCR) of different HP were 2.42 × 10-5, 1.52 × 10-5, 1.39 × 10-5, 1.30 × 10-5 and 2.94 × 10-6 for HP4 (combustion sources HP), HP1 (ammonium nitrate HP), HP5 (mixed sources HP), HP3 (resuspended dust HP) and HP2 (ammonium sulfate HP), respectively. The accumulative hazard quotient (HQ) during different HP episodes decreased in the order of HP4 (0.32) > HP3 (0.24) > HP1 (0.22) > HP5 (0.18) > HP2 (0.05). The inhalation risks were dominated by Ni and Cr, what's more, the HQ of Ni and ILCR of Cr during the five HP episodes shared a similar size distribution pattern. However, the characteristic components during different HP episodes and their size distributions of them were distinctive. The size distribution of inhalation risks of the related components (Ni, Cr, BaP, and As) from the combustion process during HP4 peaked at fine mode (0.65-2.1 μm). The size distribution of inhalation risks of the dust-related components (Mn and V) and the components (As and BaP) that are likely to volatilize and re-distribution peaked at coarse mode (2.1-3.3 μm) during HP3. Notably, Mn and Co as catalysts at fine mode could increase the degree of secondary formation and toxicity.
Collapse
Affiliation(s)
- Qianqian Xue
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Liu
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmos. Environ.-Health Research (CLAER/CMA-NKU), Tianjin 300350, China.
| | - Yinchang Feng
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmos. Environ.-Health Research (CLAER/CMA-NKU), Tianjin 300350, China
| |
Collapse
|
8
|
Shen YW, Zhao CX, Zhao H, Dong SF, Xie JJ, Lv ML, Yuan CG. Decryption analysis of antimony pollution sources in PM 2.5 through a multi-source isotope mixing model based on lead isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121600. [PMID: 37068649 DOI: 10.1016/j.envpol.2023.121600] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Antimony (Sb) in PM2.5 has attracted close attention as a new air pollutant due to its extensive use in daily life. The identification of antimony sources in PM2.5 by scientific methods is important to control its pollution. In this study, the Sb and other elements concentrations and Pb isotopic compositions in PM2.5 and possible pollution sources (soil, road dust, traffic emission, coal-fired fly ash, local factory emission dust and cement dust) were analyzed. The results showed that the Sb in the PM2.5 samples had seasonal change. The enrichment factors of Sb in PM2.5 samples were all above 100 in four seasons, which indicated anthropogenic pollution. The average value of potential ecological risk index was at extremely high-risk level greater than 320. Based on Pearson correlation coefficient and hierarchical cluster analysis results, the pollution sources of antimony and lead in PM2.5 samples were highly consistent which means that Pb isotopes might be a new and feasible tracer for Sb pollution in air. The sources analysis results based on Pb isotopes indicated that the proportion of Pb and Sb from coal-fired fly ash was the highest in winter (47.7%) and inclined to road dust in spring (34.5%), but it was mainly from traffic emissions in summer and autumn (34.2% and 32.8%). This study showed that Pb isotope tracing can be applied to predict the potential pollution sources, and it was also a feasible substitute for tracing Sb pollution in PM2.5.
Collapse
Affiliation(s)
- Yi-Wen Shen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Chang-Xian Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Hao Zhao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Shuo-Fei Dong
- Agilent Technologies Co. Ltd (China), Beijing, 100102, China
| | - Jiao-Jiao Xie
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China
| | - Mei-Ling Lv
- Agilent Technologies Co. Ltd (China), Beijing, 100102, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding, 071000, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
9
|
Azizi M, Faz A, Zornoza R, Martinez-Martinez S, Acosta JA. Phytoremediation Potential of Native Plant Species in Mine Soils Polluted by Metal(loid)s and Rare Earth Elements. PLANTS (BASEL, SWITZERLAND) 2023; 12:1219. [PMID: 36986908 PMCID: PMC10058974 DOI: 10.3390/plants12061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Mining activity has an adverse impact on the surrounding ecosystem, especially via the release of potentially toxic elements (PTEs); therefore, there is an urgent need to develop efficient technologies to remediate these ecosystems, especially soils. Phytoremediation can be potentially used to remediate contaminated areas by potentially toxic elements. However, in soils affected by polymetallic contamination, including metals, metalloids, and rare earth elements (REEs), it is necessary to evaluate the behavior of these toxic elements in the soil-plant system, which will allow the selection of the most appropriate native plants with phytoremediation potential to be used in phytoremediation programs. This study was conducted to evaluate the level of contamination of 29 metal(loid)s and REEs in two natural soils and four native plant species (Salsola oppositifolia, Stipa tenacissima, Piptatherum miliaceum, and Artemisia herba-alba) growing in the vicinity of a Pb-(Ag)-Zn mine and asses their phytoextraction and phytostabilization potential. The results indicated that very high soil contamination was found for Zn, Fe, Al, Pb, Cd, As, Se, and Th, considerable to moderate contamination for Cu, Sb, Cs, Ge Ni, Cr, and Co, and low contamination for Rb, V, Sr, Zr, Sn, Y, Bi and U in the study area, dependent of sampling place. Available fraction of PTEs and REEs in comparison to total concentration showed a wide range from 0% for Sn to more than 10% for Pb, Cd, and Mn. Soil properties such as pH, electrical conductivity, and clay content affect the total, available, and water-soluble concentrations of different PTEs and REEs. The results obtained from plant analysis showed that the concentration of PTEs in shoots could be at a toxicity level (Zn, Pb, and Cr), lower than toxic but more than sufficient or natural concentration accepted in plants (Cd, Ni, and Cu) or at an acceptable level (e.g., V, As, Co, and Mn). Accumulation of PTEs and REEs in plants and the translocation from root to shoot varied between plant species and sampling soils. A. herba-alba is the least efficient plant in the phytoremediation process; P. miliaceum was a good candidate for phytostabilization of Pb, Cd, Cu, V, and As, and S. oppositifolia for phytoextraction of Zn, Cd, Mn, and Mo. All plant species except A. herba-alba could be potential candidates for phytostabilization of REEs, while none of the plant species has the potential to be used in the phytoextraction of REEs.
Collapse
|
10
|
Alriksson S, Voxberg E, Karlsson H, Ljunggren S, Augustsson A. Temporal risk assessment - 20th century Pb emissions to air and exposure via inhalation in the Swedish glass district. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159843. [PMID: 36461567 DOI: 10.1016/j.scitotenv.2022.159843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/09/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
The objective of the present study was to assess historical emissions of Pb to air around a number of glassworks sites in southeastern Sweden, and the possible implications for human exposure. To do so, a four-step method was applied. First, emissions of Pb to air around 10 glassworks were modelled for the 20th century. Second, an assessment of the resulting exposure was made for a number of scenarios. Third, the number of people potentially exposed at different times was estimated, and fourth, measurements of "current" Pb concentrations in PM10 material from four sites were conducted in 2019. The results show that the highest emissions, and exposures, occurred from 1970 to1980. It coincides with the time period when the highest number of people resided in the villages. At this time, the average Pb concentration in air around the six largest factories was about 2.4 μg Pb/m3, i.e. 16 times the present US national ambient air quality standard (NAAQS) of 0.15 μg Pb/m3. By year 2000 the modelled average concentration had dropped to 0.05 μg Pb/m3, a level that is normal for urban regions today. The PM10 measurements from 2019 indicate a further decline, now with a mean value of about 0.02 μg Pb/m3. Over the entire study period, inhalation hazard quotients (HQs) exceeded the dietary HQ by many orders of magnitude, indicating that inhalation has been the most prevalent exposure pathway in the past. At present, both pathways are judged to be associated with low exposures. Even if only roughly approximated, a picture of the historical exposure can increase our understanding of the connection between exposure and disease, and can be valuable when risks are to be communicated to residents near contaminated areas.
Collapse
Affiliation(s)
- Stina Alriksson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Elin Voxberg
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anna Augustsson
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
11
|
Shetaya WH, Bailey EH, Young SD, Mohamed EF, Antoniadis V, Rinklebe J, Shaheen SM, Marzouk ER. Soil and plant contamination by potentially toxic and emerging elements and the associated human health risk in some Egyptian environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:359-379. [PMID: 34676511 DOI: 10.1007/s10653-021-01097-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The aim of this work was to assess the origins, mobility, bioavailability and potential health risks of V, Cr, Co, As, Se, Mo, Cd, Sn and Sb, which are not sufficiently studied in the terrestrial environment of Egypt. This has been carried out by employing a combination of chemical fractionation, plants uptake, mathematical modeling and risk assessment approaches on a wide range of soils and plants sampled from industrial, urban and agricultural locations across Egypt. The contents of As, Cd, Sn and Sb were elevated in the soils of some urban and industrial locations within Cairo, although their soil geo-accumulation (Igeo) indices remained ≤ 2, indicating only moderate contamination. Selenium showed moderate to heavy contamination levels (Igeo up to 4.7) in all sampling locations, and Sb was highly elevated (Igeo = 7.1; extreme contamination) in one industrial location. Therefore, Se was the most important contributor to the pollution load followed by Sb and Cd. Both principle component analysis (of total content) and geochemical fractionation (by sequential extraction) suggested that V, Cr and Co are mostly of geogenic origin, while Se and Sb contents appear to be highly influenced by anthropogenic inputs. The most mobile and bioavailable element was Cd with a large non-residual fraction in all soils (76% of total Cd). The bio-concentration factors of Cd in leafy and fruiting plants were 50 times larger than other elements (except Mo) indicating preferential systematic plant uptake of Cd. Risk assessment models showed an overall low noncarcinogenic and carcinogenic risks to the population of Egypt due to the studied elements with only a few anomalies.
Collapse
Affiliation(s)
- Waleed H Shetaya
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Elizabeth H Bailey
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Scott D Young
- Division of Agricultural and Environmental Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK
| | - Elham F Mohamed
- Air Pollution Research Department, Environmental Research Division, National Research Centre, 33 El-Bohouth St., Dokki, 12622, Giza, Egypt
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Jörg Rinklebe
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany
- Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Sabry M Shaheen
- School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, University of Wuppertal, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
- Faculty of Meteorology, Environment and Arid Land Agriculture, Department of Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
- Faculty of Agriculture, Department of Soil and Water Sciences, University of Kafrelsheikh, Kafr El-Sheikh, 33 516, Egypt.
| | - Ezzat R Marzouk
- Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Arish University, North Sinai, 45516, Egypt.
| |
Collapse
|
12
|
Mensah MK, Drebenstedt C, Hoth N, Ola IM, Okoroafor PU, Wiafe ED. Artisanal gold mine spoil types within a common geological area and their variations in contaminant loads and human health risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:312. [PMID: 36658416 PMCID: PMC9852104 DOI: 10.1007/s10661-023-10932-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 06/01/2023]
Abstract
This study answered the question of whether mine spoils occurring in a common geological location had similarities in their contaminant load and associated health risks. Using inductively coupled plasma mass spectrometry, the total contents of Cd, Pb, As, Hg, Zn, Fe, and Al were determined for 110 digested soil samples obtained from underground rock ore (URS), oxide ore (OXS), and alluvial ore (AVS) mine spoils. Independent sample Kruskal-Wallis test and pairwise comparisons of sources were used to ascertain the variation in elemental load between the mine spoil investigated. The results showed that mine spoil contaminations and their ecological and health risk significantly varied (p < 0.01) from each other and fell in the order OXS > URS > AVS > forest soils because of their geochemistry. Determined enrichment and geo-accumulation indices revealed that OXS and URS sites were severely-extremely polluted with Cd, Hg, and As, while AVS mine spoils were only moderately contaminated by Cd and As contents. Children had the highest tendency for developing noncarcinogenic health defects largely due to toxic contents of As, Cd, and Hg in soil materials near them than adult men and women would after obtaining a hazard index of 73.5 and 67.7 (unitless) at both OXS and URS sites. Mine spoils especially where hard rocks and oxide ores were processed are not fit for agricultural use or human habitation. The restriction of human access and sustainable remediation approaches are required to avert health defects. Even so, area-specific potentially toxic elements must be targeted during soil cleaning due to the significant variations in contaminant load between mined sites.
Collapse
Affiliation(s)
- Martin Kofi Mensah
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Carsten Drebenstedt
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Nils Hoth
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Ibukun Momoriola Ola
- Institute of Surface Mining and Special Civil Engineering, Freiberg Technical University of Mining, Gustav-Zeuner Street 1A, Freiberg, 09599 Germany
| | - Precious Uchenna Okoroafor
- Institute of Biosciences/Interdisciplinary Environmental Research Centre, Freiberg Technical University of Mining, Leipziger Street 29, Freiberg, 09599 Germany
| | - Edward Debrah Wiafe
- School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB Somanya, Ghana
| |
Collapse
|
13
|
Mbazima SJ. Health risk assessment of particulate matter 2.5 in an academic metallurgy workshop. INDOOR AIR 2022; 32:e13111. [PMID: 36168227 PMCID: PMC9825944 DOI: 10.1111/ina.13111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Exposure to indoor PM2.5 is associated with allergies, eye and skin irritation, lung cancer, and cardiopulmonary diseases. To control indoor PM2.5 and protect the health of occupants, exposure and health studies are necessary. In this study, exposure to PM2.5 released in an academic metallurgy workshop was assessed and a health risk assessment was conducted for male and female students and technicians. Polycarbonate membrane filters and an active pump operating at a flow rate of 2.5 L/min were used to collect PM2.5 from Monday to Friday for 3 months (August-October 2020) from 08:00-16:00. PM2.5 mass concentrations were obtained gravimetrically, and the Multiple-Path Particle Dosimetry model was used to predict the deposition, retention, and clearance of PM2.5 in the respiratory tract system. The risk of developing carcinogenic and non-carcinogenic effects among students and technicians was determined. The average PM2.5 mass concentration for August was 32.6 μg/m3 32.8 μg/m3 for September, and 32.2 μg/m3 for October. The head region accounted for the highest deposition fraction (49.02%), followed by the pulmonary (35.75%) and tracheobronchial regions (15.26%). Approximately 0.55 mg of PM2.5 was still retained in the alveolar region 7 days after exposure. The HQ for male and female students was <1 while that of male and female technicians was >1, suggesting that technicians are at risk of developing non-carcinogenic health effects compared with students. The results showed a risk of developing carcinogenic health effects among male and female technicians (>1 × 10-5 ); however, there was no excess cancer risk for students (<1 × 10-6 ). This study highlights the importance of exposure and health studies in academic micro-environments such as metallurgy workshops which are often less researched, and exposure is underestimated. The results also indicated the need to implement control measures to protect the health of the occupants and ensure that the workshop rules are adhered to.
Collapse
Affiliation(s)
- Setlamorago Jackson Mbazima
- School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
- Department of Environmental Sciences, College of Agriculture and Environmental SciencesUniversity of South AfricaJohannesburgSouth Africa
- Department of Toxicology and BiochemistryNational Institute for Occupational HealthDivision of the National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
14
|
Impacts of the COVID-19 on all aircraft emissions of international routes in South America. iScience 2022; 25:104865. [PMID: 35959473 PMCID: PMC9356760 DOI: 10.1016/j.isci.2022.104865] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/28/2022] [Accepted: 07/27/2022] [Indexed: 11/24/2022] Open
Abstract
The COVID-19 pandemic has had a significant impact on South America’s economic development, as well as its international civil aviation industry. This paper seeks to calculate the emissions of six pollutions (CO2, CO, HC, NOx, SO2, and PM2.5) from the international routes in South America during 2019–2021 and discusses the impacts of COVID-19 on the emission change. The modified BFFM2-FOA-FPM method is proposed to unify the CO2 and non-CO2 calculations. The calculated results' average error rate is about 5.12%. The results showed that COVID-19 affected all emissions, including the number of routes, average flight distance, aircraft configuration, the proportion of CCD phase emissions, average emissions, etc. In addition, some airlines increased the number of flights and aircraft types during the pandemic, increasing emissions. The results give a reasonable data basis for the aviation industry in South America to formulate emission reduction policies. Calculated the overall emissions of the international routes in South America The modified BFFM2-FOA-FPM method is proposed to unify the CO2 and non-CO2 calculations Affected by the epidemic, some regional aircrafts were widely used in 2020 The average emissions of the routes and airlines decreased significantly
Collapse
|
15
|
Jeong H, Ra K. Source apportionment and health risk assessment for potentially toxic elements in size-fractionated road dust in Busan Metropolitan City, Korea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:350. [PMID: 35394204 DOI: 10.1007/s10661-022-10008-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Potentially toxic elements' (PTEs; V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg) pollution level was investigated in size-fractionated road dust in Busan Metropolitan City. Health risks to humans (adult and children) were also evaluated in fine particle fraction (< 63 μm) of road dust. PTE concentrations in the fine particles (< 63 μm) were ranked as follows (unit: mg/kg): Zn (2511) > Cu (559) > Cr (531) > Pb (385) > Ni (139) > V (83.8) > Sb (31.6) > Co (21.6) > As (17.2) > Cd (4.1) > Hg (0.38). The PTE concentrations in fine particles (< 63 μm) were significantly higher than those in coarse particles except for V, Co, and As. The mean PTE loadings of fine particle fraction (< 63 μm; 233 mg/m2) in road dust were up to 4.5 times higher than other particle fractions. Igeo values of Sb were higher than 5 except for > 1000-μm fraction, indicating extremely polluted status. PCA results and elemental ratios indicated that most of the PTEs in road dust were derived from non-exhaust traffic-related sources such as brake pads and tires. Cr, Pb, and Sb had higher HI values than other metals for both adults and children. Sampling sites of heavy traffic and industrial areas showed that the carcinogenic risk exceeded the maximum threshold level (10 - 4). Especially in children, the mean carcinogenic risk (ingestion pathway) of As (6.8 × 10 - 4) Cd (2.0 × 10 - 4), and Ni (4.1 × 10 - 4) exceeded the maximum threshold level, indicating that continuous exposure to road dust may pose a high cancer risk to children. Therefore, continuous monitoring and management of these metals are needed to protect human health and the urban environment.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
- Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea.
- Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
16
|
Zhi M, Zhang K, Zhang X, Herrmann H, Gao J, Fomba KW, Tang W, Luo Y, Li H, Meng F. A statistic comparison of multi-element analysis of low atmospheric fine particles (PM 2.5) using different spectroscopy techniques. J Environ Sci (China) 2022; 114:194-203. [PMID: 35459484 DOI: 10.1016/j.jes.2021.08.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 06/14/2023]
Abstract
Over the past few decades, the metal elements (MEs) in atmospheric particles have aroused great attention. Some well-established techniques have been used to measure particle-bound MEs. However, each method has its own advantages and disadvantages in terms of complexity, accuracy, and specific elements of interest. In this study, the performances of inductively coupled plasma-optical emission spectrometry (ICP-OES) and total reflection X-ray fluorescence spectroscopy (TXRF) were evaluated for quality control to analyze data accuracy and precision. The statistic methods (Deming regression and significance testing) were applied for intercomparison between ICP-OES and TXRF measurements for same low-loading PM2.5 samples in Weizhou Island. The results from the replicate analysis of standard filters (SRM 2783) and field filters samples indicated that 10 MEs (K, Ca, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) showed good accuracies and precision for both techniques. The higher accuracy tended to the higher precision in the MEs analysis process. In addition, the interlab comparisons illustrated that V and Mn all had good agreements between ICP-OES and TXRF. The measurements of K, Cu and Zn were more reliable by TXRF analysis for low-loading PM2.5. ICP-OES was more accurate for the determinations for Ca, Cr, Ni and Pb, owing to the overlapping spectral lines and low sensitivity during TXRF analysis. The measurements of Fe, influenced by low-loading PM2.5, were not able to determine which instrument could obtain more reliable results. These conclusions could provide reference information to choose suitable instrument for the determination of MEs in low-loading PM2.5 samples.
Collapse
Affiliation(s)
- Minkang Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Wei Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuqian Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huanhuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
17
|
Nag R, Cummins E. Human health risk assessment of lead (Pb) through the environmental-food pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151168. [PMID: 34710405 DOI: 10.1016/j.scitotenv.2021.151168] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Drinking water and farm-to-fork pathways have been identified as the predominant environmental pathways associated with human exposure (HE) to Pb. This study integrates a GIS-based survey of metal concentrations in soil and a probabilistic quantitative risk assessment of Pb through the food chain. The case study area was selected in the east of Ireland. A step-wise exposure assessment collated the data for Pb concentration in soil and water media, bioaccumulation of Pb in unprocessed food products, such as potatoes, carrots, green vegetables, and salad vegetables. The daily mean HE to Pb through selected food products was found to be 0.073 mg day-1, where a mean weekly exposure was estimated as 0.0065 mg kg body weight-1 week-1. Multiple risk estimates were used. Hazard Quotient (HQ), Daily Dietary Index (DDI), Daily Intake of Metal (DIM), Health Risk Index (HRI), Target Hazard Quotient (THQ) and Cancer Risk (CR) were found as 0.234 to 0.669, 0.002, 0.0002, 0.020 to 0.057, 0.234 to 0.669, and 0.00001, respectively which signify a low to moderate risk. A sensitivity analysis revealed that intake of potato is the most sensitive parameter of the model, which is positively correlated (coeff. + 0.66) followed by concentration of Pb in the arable soil (+0.49), bioaccumulation in tubers (+0.37), consumption of salad vegetables (+0.20), and consumption of green vegetables (+0.13) (top 5). A back-calculated limit of Pb in the soil (51 mg kg-1) justifies the lower threshold limit of Pb (50-300 mg kg-1) in agricultural soil set by the European Union to mitigate potential bio-transfer into food products. The study concludes there is a low to moderate risk posed by Pb, within the system boundary of the probabilistic model, and highlights the significance of limiting Pb concentrations in the vegetable producing agricultural soil.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland
| |
Collapse
|
18
|
Nag R, O'Rourke SM, Cummins E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s - A focus on Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149839. [PMID: 34455276 DOI: 10.1016/j.scitotenv.2021.149839] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Elevated human exposure to metals and metalloids (metal(loid)s) may lead to acute sickness and pose a severe threat to human health. The human body is exposed to metal(loid)s principally through food, water, supplements, and (occasionally) air. There are inherent background levels of many metal(loid)s in regional soils as a consequence of geological sources. Baseline levels coupled with anthropogenic sources such as regional application of biosolids may lead to increased levels of certain metal(loid)s in soil, leading to potential transfer to water sources and potential uptake by plants. The latter could potentially transfer into the feed-to-food chain, viz. grazing animals, and bio-transfer to food products resulting in human exposure. This study addresses health concerns due to excessive intake of metal(loid)s by conducting a traditional review of peer-reviewed journals between 2015 and 2019, secondary references and relevant websites. The review identified the most researched metal(loid)s as Cu, Zn, Pb, Cd, Ni, Cr, As, Hg, Mn, Fe in the environment. The potential uptake of metal(loid)s by plants (phytoavailability) is a function of the mobility/retainability of metal(loid)s in the soil, influenced by soil geochemistry. The most critical parameters (including soil pH, soil organic matter, clay content, cation exchange capacity, the capability of decomposition of organic matter by microbes, redox potential, ionic strength) influencing metal(loid)s in soil are reviewed and used as a foundation to build a framework model for ranking metal(loid)s of concern. A robust quantitative risk assessment model is recommended for evaluating risk from individual metal(loid)s based on health-based indices (Daily Dietary Index (DDI), No Observed Adverse Effect Level (NOAEL), and Lowest Observed Adverse Effect Level (LOAEL)). This research proposes a risk assessment framework for potentially harmful metal(loid)s in the environment and highlights where regulation and intervention may be required.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Sharon Mary O'Rourke
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
19
|
Mensah AK, Marschner B, Antoniadis V, Stemn E, Shaheen SM, Rinklebe J. Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149272. [PMID: 34333437 DOI: 10.1016/j.scitotenv.2021.149272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Integrated studies about potentially toxic elements (PTEs) in sites near gold mining spoils, their contamination and human health risk, as well as remediation potential of native plants are limited. Therefore, our aim was to assess the human health risk of PTEs (Al, As, Cd, Cr, Cu, Fe, Ni, Pb, Ti, V, and Zn) in sites near an abandoned gold mine spoil in Ghana. We collected 52 soil samples near the mine spoil and from a natural forest, determined their total element contents, and calculated the soil contamination factor (CF), enrichment factor (EF), geo-accumulation index (Igeo) and the pollution load index (PLI). In addition, we calculated the human health risk of soil ingestion for adult males, females, and children using the hazard quotient (HQ) and hazard index (HI). We also assessed the phytoremediation potential of five native plants (Alchornea cordifolia, Chromolaena odorata, Lantana camara, Pityrogramma calomelanos- fern, and Pueraria montana) growing near the mine spoil, and calculated their transfer coefficient (TC) and translocation factor (TF). Total content of As (maximum: 3144.0 mg/kg) surpassed the trigger action value of 65 mg/kg. Total Zn content at 90th percentile in the Pueraria field (197 mg/kg) and maximum value at mine surrounding (76.7 mg/kg) were above the world soil average (70 mg/kg). Pollution load index and EF values indicated severe levels of soil contamination particularly with As and Ti. Hazard index (HI) values for all sites for children (0.7-134.56), adult males (0.05-10.6), and adult females (0.13-12.77) were above 1 and indicated high human health risk especially on children and women. Translocation factor shows that native plant species such as Chromolaena odorata and fern accumulated As, Cu, Ti, and Zn into their shoots and may thus have the potential to reduce the high soil contamination and its associated human health risk.
Collapse
Affiliation(s)
- Albert Kobina Mensah
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universität Strasse 150, 44801 Bochum, Germany..
| | - Bernd Marschner
- Department of Soil Science and Soil Ecology, Institute of Geography, Ruhr-Universität Bochum, Universität Strasse 150, 44801 Bochum, Germany..
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Eric Stemn
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33 516 Kafr El-Sheikh, Egypt.
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
20
|
Wiseman CLS, Levesque C, Rasmussen PE. Characterizing the sources, concentrations and resuspension potential of metals and metalloids in the thoracic fraction of urban road dust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147467. [PMID: 33971596 DOI: 10.1016/j.scitotenv.2021.147467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 05/22/2023]
Abstract
Road dust is a sink and source of metals and metalloids of human health concern. To date, many studies have examined the composition of road dust but there remain critical knowledge gaps on the chemistry of thoracic fractions (< 10 μm) and their patterns of deposition and resuspension. The goal of this study is to characterize the elemental concentrations and sources of thoracic fractions of road dust and their resuspension potential for Toronto, Ontario, Canada. Bulk and thoracic road sweepings were acid digested (HF, HClO4, HNO3 and HCl) and the elemental concentrations measured using ICP-MS. Principal component analysis (PCA) was applied to infer source emissions. Annual elemental loadings to roads were estimated using data on total sweepings collected by the City of Toronto. The mass amounts of metals and metalloids (< 10 μm) available for resuspension were calculated assuming a contribution of 10% to total loadings for this fraction. The median trace element concentrations in city sweepings (n = 64) ranged from highest to lowest as follows: Mn > Zn > Ba > Cr > Cu > Pb > V > Ni > Sn > Mo > Co > As > Sb > Cd. Iron, Cr, Ni, Co, Mo and Cu levels were significantly associated with road class, with the highest concentrations measured for the expressway. Most elements, especially Sb and Zn, were enriched in thoracic sweepings. The PCA results demonstrate the importance of non-fossil fuel, traffic-related elemental emissions. Difficulties in identifying sources, given uncertainties regarding overlapping chemical profiles, are also highlighted. Significant elemental loadings to roads were estimated to occur, with the largest amounts identified for Fe, Al, Mn, Zn, Cr and Cu. Road dust resuspension is predicted to be the most important source of emissions for Fe, Al, Mn, Cr, V, Sn, Mo, Co and Sb.
Collapse
Affiliation(s)
- Clare L S Wiseman
- School of the Environment, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Department of Physical and Environmental Sciences, University of Toronto (Scarborough), Toronto, Ontario, Canada.
| | - Christine Levesque
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, ON, Canada
| | - Pat E Rasmussen
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, HECSB, Health Canada, Ottawa, ON, Canada; Earth and Environmental Sciences Department, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Spatial Distribution and Chemical Composition of Road Dust in Two High-Altitude Latin American Cities. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Road dust (RD) resuspension is one of the main sources of particulate matter in cities with adverse impacts on air quality, health, and climate. Studies on the variability of the deposited PM10 fraction of RD (RD10) have been limited in Latin America, whereby our understanding of the central factors that control this pollutant remains incomplete. In this study, forty-one RD10 samples were collected in two Andean cities (Bogotá and Manizales) and analyzed for ions, minerals, and trace elements. RD10 levels varied between 1.8–45.7 mg/m2, with an average of 11.8 mg/m2, in Bogotá and between 0.8–26.7 mg/m2, with an average of 5.7 mg/m2, in Manizales. Minerals were the most abundant species in both cities, with a fraction significantly larger in Manizales (38%) than Bogotá (9%). The difference could be explained mainly by the complex topography and the composition of soil derived from volcanic ash in Manizales. The volcanic activity was also associated with SO4−2 and Cl−. Enrichment factors and principal component analysis were conducted to explore potential factors associated to sources of RD10. Elements such as Cu, Pb, Cr, Ni, V, Sb, and Mo were mainly associated with exhaust and non-exhaust traffic emissions.
Collapse
|
22
|
Ren Y, Luo Q, Zhuo S, Hu Y, Shen G, Cheng H, Tao S. Bioaccessibility and public health risk of heavy Metal(loid)s in the airborne particulate matter of four cities in northern China. CHEMOSPHERE 2021; 277:130312. [PMID: 33774239 DOI: 10.1016/j.chemosphere.2021.130312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 05/24/2023]
Abstract
Atmospheric coarse particulate matter (PM10) enriched with heavy metal(loid)s could pose potentially significant health risk to humans, while accurate health risk assessment calls for characterization of their bioaccessibility, besides the total contents. The health risk of major toxic heavy metal(loid)s in the PM10 from four large cities in northern China via inhalation was investigated based on their total contents and bioaccessibility. The annual mean concentrations of PM-bound Zn, As, Pb, and Mn in the atmosphere of the four cities were 650, 305, 227, and 177 ng⋅m-3, respectively. The levels of heavy metal(loid)s in the PM10 were generally higher in winter but lower in summer in all four cities, which resulted primarily from the emissions associated with coal combustion for district and household heating and the unfavorable meteorological conditions in winter. The bioaccessibility of heavy metal(loid)s in the PM10 ranged from 0.9 to 48.7%, following the general order of Mn > Co > Ni > Cd > Cu > As > Cr > Zn > Pb. Based on their total contents in the PM10, most heavy metal(loid)s posed significant public health risk via inhalation exposure in the four cities. However, after accounting for the bioaccessibility of metal(loid)s, the non-carcinogenic risk of most metal(loid)s was negligible, except for As in the PM10 of Jinzhong, while only the carcinogenic risk posed by Cr and As in the PM10 exceeded the acceptable level. These findings demonstrate the importance of characterizing the bioaccessibility of airborne PM-bound heavy metal(loid)s in health risk assessment and could guide the on-going efforts on reducing the public health risk of PM10 in northern China.
Collapse
Affiliation(s)
- Yuxuan Ren
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qing Luo
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shaojie Zhuo
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Pini F, Piras G, Astiaso Garcia D, Di Girolamo P. Impact of the different vehicle fleets on PM10 pollution: Comparison between the ten most populous Italian metropolitan cities for the year 2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145524. [PMID: 33592474 DOI: 10.1016/j.scitotenv.2021.145524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The main aim of this research effort is to assess the impact of the different circulating vehicle fleets on PM10 pollution, comparing the results from the ten most populated metropolitan cities in Italy. Circulating diesel vehicles have been categorized in different groups depending on the vehicle type (car or Light Commercial Vehicle - LCV) and European emission standard. The annual mileage and the total PM10 emission for each category has been determined based on several data sources. Estimated overall annual emissions of PM10 particles have been compared with PM10 concentration measurements from distributed ground monitoring stations. A new index, named SoP (Strength of Pollution), has been defined in order to quantify the contribution of each fleet category to the overall PM10 pollution. The index has been computed for the ten most populated Italian metropolitan cities, i.e. all cities with more than 300.000 inhabits: Rome, Milan, Naples, Turin, Palermo, Genoa, Bologna, Florence, Bari and Catania. Results in terms of SoP estimates for year 2018 reveal the presence in these Italian cities of emission clusters with heterogeneous characteristics, which impose the adoption of different PM10 pollution mitigation approaches in the different cities. For example, in Naples, Catania and Palermo, Euro 0 car fleets emit a total PM10 mass which is respectively 19, 10 and 5 times the mass emitted by Euro 6 vehicles, and consequently a reduction of this fleet is desirable for pollution mitigation purposes. Conversely, in Rome, Genoa and Bari, Euro 3 and 4 car fleets emit a total PM10 mass which is 3-6 times the one emitted by Euro 6 vehicles, which calls for a reduction of these fleets. Thus, the extension to the entire national territory of the results obtained in a specific metropolitan city may be strongly misleading and produce limited effects in terms of pollution mitigation.
Collapse
Affiliation(s)
- Fabrizio Pini
- Interdepartmental Centre for Landscape, Building, Conservation, Environment (CITERA), Sapienza University of Rome, Via A. Gramsci, 53, 00197 Rome, Italy.
| | - Giuseppe Piras
- Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy.
| | - Davide Astiaso Garcia
- Department of Astronautics, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Via Eudossiana, 18, 00184 Rome, Italy; Department of Planning, Design, and Technology of Architecture (PDTA), Sapienza University of Rome, Via Flaminia 72, 00196, Rome, Italy.
| | - Paolo Di Girolamo
- Scuola di Ingegneria, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano, 10, 85100 Potenza, Italy.
| |
Collapse
|
24
|
Chemical Characterization of Particulate Matter in the Renaissance City of Ferrara. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11060227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atmospheric aerosols are today a key issue in air pollution, mostly related to public health. Two test areas in Ferrara, one in the city center (urban location) and one in the industrial area (industrial location), were studied in June–July 2016 using the SEM technique to identify the environmental impact of some potential pollutant sources. Collection was performed using adhesive tapes applied on the surface of road signs, which allows to select particulate matter moving on air with diffusion movement and to exclude the particles usually deposed by the gravitational process. Dimensional characterization has shown that, usually, smaller particles tend to aggregate themselves in bigger polycrystalline particles with the geometric diameter of up to 10 μm. Micro-analytical data have revealed a wide heterogeneous range of compositions: more abundant silicate followed by carbonate, chlorine, sulphate, carbon, and organic. This preliminary study has highlighted that the Renaissance city of Ferrara is affected by an environmental problem linked to the presence of particulate matter induced by industrial activities, as is the case with some of the most polluted cities in the world. The observations and analytical data pointed out the need for further investigation to better define the features of the fine particulate matter. This will be useful to preserve the cultural heritage of this Medieval-Renaissance city.
Collapse
|
25
|
Men C, Wang Y, Liu R, Wang Q, Miao Y, Jiao L, Shoaib M, Shen Z. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. CHEMOSPHERE 2021; 270:129434. [PMID: 33388498 DOI: 10.1016/j.chemosphere.2020.129434] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 05/15/2023]
Abstract
To analyze the temporal variations of heavy metals, health risk, and source-specific health risk, 24 road dust samples were collected from Beijing in each month in two years. The temporal variations of Hg, Pb, and Ni were higher than other heavy metals. Most heavy metals reached their highest concentrations either in winter or in spring, then the concentrations decreased and reached the lowest values in autumn. Human health risk assessment (HHRA) model showed that As, Cr, and Ni might pose cautionary carcinogenic risk (CR) to children (CR > 10-6). CR for adults were only 0.15 to 0.19 times of that for children. Four sources were identified based on positive matrix factorization model and HHRA model, they were traffic exhaust, fuel combustion, construction, and use of pesticides and fertilizers. Influenced by the difference of carcinogenicity of heavy metals, traffic exhaust contributed the largest to heavy metals (36.02%, over 42.24% higher than other sources), while contributions of fuel combustion to CR (36.95%) was similar to traffic exhaust (37.17%). Monte-Carlo simulation showed that the 95th percentile of probability density functions of CR posed by Cr and Ni from each source were 9.90 × 10-5 to 2.64 × 10-4, posing cautionary carcinogenic risk to children. The seasonal change of CR varied among different sources. CR from use of pesticides and fertilizers in spring was 35.06 times of that in winter, and that from fuel combustion in winter was 1.15-2.40 times of that in other seasons. CR from each source was sensitive to ingestion rate and skin adherence factor.
Collapse
Affiliation(s)
- Cong Men
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yifan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Ruimin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - Qingrui Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yuexi Miao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Lijun Jiao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Muhammad Shoaib
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, China
| |
Collapse
|
26
|
Zhi M, Zhang X, Zhang K, Ussher SJ, Lv W, Li J, Gao J, Luo Y, Meng F. The characteristics of atmospheric particles and metal elements during winter in Beijing: Size distribution, source analysis, and environmental risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111937. [PMID: 33476848 DOI: 10.1016/j.ecoenv.2021.111937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
In order to investigate the pollution characteristics of size-segregated particles and metal elements (MEs) after the Chinese Air Pollution Prevention Action Plan was released in 2013, an intensive field campaign was conducted in the suburban area of Chaoyang District, Beijing in winter 2016. The size distributions of particle mass concentrations were bimodal, with the first peak in the fine fraction (0.4-2.1 µm) and the second peak in the coarse fraction (3.3-5.8 µm). Moreover, the proportion of fine particles increased and the proportion of coarse particles decreased as the pollution level was more elevated. It was found that the composition of coarse particles is as important as that of fine particles when pollution of aerosol metals in the atmosphere in 2016 were compared to 2013. In addition, according to the size distribution characteristics, 23 MEs were divided into three groups: (a) Fe, Co, Sr, Al, Ti, Ba, and U, which concentrated in coarse mode; (b) Zn, As, Cd, Tl, and Pb, which concentrated in fine mode; and (c) Na, K, Be, V, Cr, Mn, Ni, Cu, Mo, Ag, and Sn, showing bimodal distribution. Under clean air, slight pollution and moderate pollution conditions, most elements maintained their original size distributions, while under severe pollution, the unimodal distributions of most MEs became bimodal distributions. The factors analysis combined with size distributions indicated that Na, Zn, Mo, Ag, Cd, and Tl, showing the moderate to severe contamination on environment, were significantly influenced by diffuse regional emissions or anthropogenic source emissions (vehicle exhaust emissions and combustion process). The environmental risk assessment revealed that the heavy metal loading in the atmospheric particles collected had a high potential for ecological risk to the environment during sampling period because of the high contribution of Cd, Tl, Zn and Pb.
Collapse
Affiliation(s)
- Minkang Zhi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xi Zhang
- Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Simon J Ussher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Wenli Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jie Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuqian Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fan Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
27
|
Wang Z, Chen X, Yu D, Zhang L, Wang J, Lv J. Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143428. [PMID: 33168250 DOI: 10.1016/j.scitotenv.2020.143428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 05/27/2023]
Abstract
Potentially toxic element (PTE) pollution is considered as the main soil environmental problem in the world. Source apportionment and spatial pattern of soil PTEs are essential for soil management. US-EPA positive matrix factorization (EPAPMF) and sequential Gaussian simulation (SGS) are general modeling tools for source apportionment and spatial distribution, respectively. Factor analysis with nonnegative constraints (FA-NNC) and stochastic partial derivative equations (SPDE) provided potential tools for this issue. We compared the performance of FA-NNC with PMF and the performance of SPDE with SGS, based on a dataset containing 9 PTEs in 285 topsoil samples. Three factors were determined by the two receptor models, and the source contributions were similar, suggesting that FA-NNC can validly identify quantitative sources of soil PTEs. The average source contributions were calculated based on the PMF and FA-NNC. Natural sources dominated the contents of As, Co, Cr, Cu, Ni, and Zn and affected 56.0%, 38.7%, and 84.8% of the Cd, Hg, and Pb concentrations, respectively. A total of 59.8% of Hg and 12.0% of Pb were associated with atmospheric deposition from coal combustion, industrial and traffic emissions, respectively. Agricultural and industrial activities contributed 37.2% of Cd concentration. SPDE proved to be an effective geostatistical technique to simulate the spatial patterns of soil PTEs with higher prediction accuracy than SGS. Co, Cr, Cu, and Ni had similar spatial patterns with hotspots randomly distributed across the study area. The common hotspots of As, Cd, Hg, Pb, and Zn in central parts inherited their high geochemical background in mudstone, while intensive human inputs in these areas also contributed to the accumulation of Cd, Hg, and Pb.
Collapse
Affiliation(s)
- Zheng Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Xiaomei Chen
- Natural Resources and Planning Bureau of Linyi, Linyi 276000, China
| | - Deqin Yu
- Shandong Institute of Geological Survey, Jinan 250013, China
| | - Lixia Zhang
- Shandong Geo-Environmental Monitoring Station, Jinan 250014, China
| | - Jining Wang
- Shandong Geo-Environmental Monitoring Station, Jinan 250014, China
| | - Jianshu Lv
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
28
|
Osorio-Martinez J, Silva LFO, Flores EMM, Nascimento MS, Picoloto RS, Olivero-Verbel J. Environmental and human health risks associated with exposure to hazardous elements present in urban dust from Barranquilla, Colombian Caribbean. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:350-363. [PMID: 33480042 DOI: 10.1002/jeq2.20200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Urban dust is a mixture of deposited particles from different sources usually linked to potentially toxic elements (PTEs). Despite the industrialization of many South American countries, little is known about the impact of particulate matter in large cities; these data are necessary to promote environmental policies aiming to protect human health. The main objective of this work was to evaluate the particle size distribution, composition, and environmental and human health risks of settled dust particles from Barranquilla, a Colombian Caribbean industrialized area. Trace elements were analyzed by inductively coupled plasma-mass spectrometry from 35 different sites, covering all city areas. Dust was mostly composed of 10-to-70-μm particles. The average concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sn, Sb, Pb, and Bi were above background. High spatial heterogeneity was observed for Cu, Zn, As, Se, Mo, Ag, Sn, Sb, and Bi. Concentration factors suggest that urban dusts are extremely contaminated by Zn and Cu. The ecological risk associated with specific elements decreased in the order Cd > Cu > As > Hg > Pb > Ni > Co ≈ Zn ≈ Cr, and the contamination load index showed that 91% of the samples are polluted by PTEs. Although the carcinogenic risks of Cr, Ni, As, Co, and Cd were low, chronic exposure to several PTEs may affect quality of life. Educational programs, as well as monitoring and greater control on traffic, industry, and construction activities are needed to protect environmental and human health.
Collapse
Affiliation(s)
- Jorge Osorio-Martinez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, Univ. of Cartagena, Cartagena, 130014, Colombia
| | - Luis F O Silva
- Civil Engineering Dep., Univ. of La Costa, Street 58 # 55-66, Barranquilla, Colombia
| | - Erico M M Flores
- Chemistry Dep., Federal Univ. of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Mariele S Nascimento
- Chemistry Dep., Federal Univ. of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Rochele S Picoloto
- Chemistry Dep., Federal Univ. of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, Univ. of Cartagena, Cartagena, 130014, Colombia
| |
Collapse
|
29
|
Edlund KK, Killman F, Molnár P, Boman J, Stockfelt L, Wichmann J. Health Risk Assessment of PM 2.5 and PM 2.5-Bound Trace Elements in Thohoyandou, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18031359. [PMID: 33540914 PMCID: PMC7908426 DOI: 10.3390/ijerph18031359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
We assessed the health risks of fine particulate matter (PM2.5) ambient air pollution and its trace elemental components in a rural South African community. Air pollution is the largest environmental cause of disease and disproportionately affects low- and middle-income countries. PM2.5 samples were previously collected, April 2017 to April 2018, and PM2.5 mass determined. The filters were analyzed for chemical composition. The United States Environmental Protection Agency’s (US EPA) health risk assessment method was applied. Reference doses were calculated from the World Health Organization (WHO) guidelines, South African National Ambient Air Quality Standards (NAAQS), and US EPA reference concentrations. Despite relatively moderate levels of PM2.5 the health risks were substantial, especially for infants and children. The average annual PM2.5 concentration was 11 µg/m3, which is above WHO guidelines, but below South African NAAQS. Adults were exposed to health risks from PM2.5 during May to October, whereas infants and children were exposed to risk throughout the year. Particle-bound nickel posed both non-cancer and cancer risks. We conclude that PM2.5 poses health risks in Thohoyandou, despite levels being compliant with yearly South African NAAQS. The results indicate that air quality standards need to be tightened and PM2.5 levels lowered in South Africa.
Collapse
Affiliation(s)
- Karl Kilbo Edlund
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
- Correspondence:
| | - Felicia Killman
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
| | - Peter Molnár
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
| | - Johan Boman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden;
| | - Leo Stockfelt
- Department of Occupational and Environmental Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden; (F.K.); (P.M.); (L.S.)
| | - Janine Wichmann
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Gezina 0031, South Africa;
| |
Collapse
|
30
|
Mendez-Espinosa JF, Rojas NY, Vargas J, Pachón JE, Belalcazar LC, Ramírez O. Air quality variations in Northern South America during the COVID-19 lockdown. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141621. [PMID: 32822915 PMCID: PMC7418784 DOI: 10.1016/j.scitotenv.2020.141621] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 05/20/2023]
Abstract
Lockdown measures led to air pollution decrease in several countries around the world such as China and India, whereas other regions experimented an increase in pollutant concentrations. Northern South America (NSA) was one of those areas where pollution changed during lockdown due to high fire activity. This study aims to analyze, for the first time in NSA, the behavior of selected criteria air pollutants during the implementation of the SARS-CoV-2 lockdown in two high populated cities of the region: Bogotá and Medellín in Colombia. A set of tools including surface measurements, as well as satellite and modeled data were used. 24-hour average concentrations of PM10, PM2.5, and NO2 were collected from air quality stations for the lockdown period ranging from February 21 to June 30, 2020. The Copernicus Atmosphere Monitoring Service (CAMS) was used to analyze the fire flux OC as a biomass burning (BB) indicator, and tropospheric NO2 concentrations were retrieved from TROPOMI. The HYSPLIT model was used to analyze back trajectories and fire data were obtained from MODIS sensor measurements. Our analysis shows short-term background NO2, PM10, and PM2.5 concentration reductions of 60%, 44%, and 40%, respectively, for the strict lockdown; and 62%, 58%, and 69% for the relaxed lockdown. Corresponding long-term reductions were of 50%, 32%, and 9% for the strict lockdown; and 37%, 29%, and 19% for the relaxed lockdown. Regional BB increased PM2.5 concentrations by 20 μg/m3 during the strict lockdown, and the Saharan dust event increased PM10 concentrations up to 168 μg/m3 in Bogotá, and 104 μg/m3 in Medellín, bringing an additional risk of morbidity and mortality for population. Regional BB has several causes that need to be properly managed to benefit local air quality improvement plans. Future cleaner transport policies equivalent to reduced lockdown mobility could bring pollution close to WHO guidelines.
Collapse
Affiliation(s)
- Juan F Mendez-Espinosa
- Ingeniería Ambiental, Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente - ECAPMA, Universidad Nacional Abierta y a Distancia - UNAD, Transversal 31 # 12 - 38 sur, Bogotá, Colombia
| | - Nestor Y Rojas
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Vargas
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge E Pachón
- Centro Lasallista de Investigación y Modelación Ambiental - CLIMA, Universidad de la Salle, 111711 Bogotá, Colombia
| | - Luis C Belalcazar
- Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Omar Ramírez
- Faculty of Engineering, Environmental Engineering, Universidad Militar Nueva Granada, Km 2 Cajicá, Zipaquirá, Colombia.
| |
Collapse
|
31
|
de Oliveira Alves N, Martins Pereira G, Di Domenico M, Costanzo G, Benevenuto S, de Oliveira Fonoff AM, de Souza Xavier Costa N, Ribeiro Júnior G, Satoru Kajitani G, Cestari Moreno N, Fotoran W, Iannicelli Torres J, de Andrade JB, Matera Veras M, Artaxo P, Menck CFM, de Castro Vasconcellos P, Saldiva P. Inflammation response, oxidative stress and DNA damage caused by urban air pollution exposure increase in the lack of DNA repair XPC protein. ENVIRONMENT INTERNATIONAL 2020; 145:106150. [PMID: 33039876 DOI: 10.1016/j.envint.2020.106150] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Air pollution represents a considerable threat to health worldwide. The São Paulo Metropolitan area, in Brazil, has a unique composition of atmospheric pollutants with a population of nearly 20 million people and 9 million passenger cars. It is long known that exposure to particulate matter less than 2.5 µm (PM2.5) can cause various health effects such as DNA damage. One of the most versatile defense mechanisms against the accumulation of DNA damage is the nucleotide excision repair (NER), which includes XPC protein. However, the mechanisms by which NER protects against adverse health effects related to air pollution are largely unknown. We hypothesized that reduction of XPC activity may contribute to inflammation response, oxidative stress and DNA damage after PM2.5 exposure. To address these important questions, XPC knockout and wild type mice were exposed to PM2.5 using the Harvard Ambient Particle concentrator. Results from one-single exposure have shown a significant increase in the levels of anti-ICAM, IL-1β, and TNF-α in the polluted group when compared to the filtered air group. Continued chronic PM2.5 exposure increased levels of carbonylated proteins, especially in the lung of XPC mice, probably as a consequence of oxidative stress. As a response to DNA damage, XPC mice lungs exhibit increased γ-H2AX, followed by severe atypical hyperplasia. Emissions from vehicles are composed of hazardous substances, with polycyclic aromatic hydrocarbons (PAHs) and metals being most frequently cited as the major contributors to negative health impacts. This analysis showed that benzo[b]fluoranthene, 2-nitrofluorene and 9,10-anthraquinone were the most abundant PAHs and derivatives. Taken together, these findings demonstrate the participation of XPC protein, and NER pathway, in the protection of mice against the carcinogenic potential of air pollution. This implicates that DNA is damaged directly (forming adducts) or indirectly (Reactive Oxygen Species) by the various compounds detected in urban PM2.5.
Collapse
Affiliation(s)
| | | | - Marlise Di Domenico
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Giovanna Costanzo
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Sarah Benevenuto
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | - Gustavo Satoru Kajitani
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Wesley Fotoran
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Mariana Matera Veras
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Paulo Artaxo
- Institute of Physics, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Paulo Saldiva
- Department of Pathology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
32
|
Jia H, Huo J, Fu Q, Duan Y, Lin Y, Jin X, Hu X, Cheng J. Insights into chemical composition, abatement mechanisms and regional transport of atmospheric pollutants in the Yangtze River Delta region, China during the COVID-19 outbreak control period. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115612. [PMID: 33254633 PMCID: PMC7480229 DOI: 10.1016/j.envpol.2020.115612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 05/20/2023]
Abstract
To investigate chemical characteristics, abatement mechanisms and regional transport of atmospheric pollutants during the COVID-19 outbreak control period in the Yangtze River Delta (YRD) region, China, the measurements of air pollutants including fine particulate matter (PM2.5) and volatile organic compounds (VOCs) on non-control period (NCP, 24 December 2019-23 January 2020) and control period (CP, 24 January-23 February 2020) were analyzed at the urban Pudong Supersite (PD) and the regional Dianshan Lake Supersite (DSL). Due to the stricter outbreak control, the levels of PM2.5 and VOCs, and the occurrence frequencies of haze-fog episodes decreased substantially from NCP to CP, with average reduction rates of 31.6%, 38.9% and 35.1% at PD, and 34.5%, 50.7% and 37.9% at DSL, respectively. The major source for PM2.5 was secondary sulfate & nitrate in both periods, and the emission control of primary sources such as coal burning and vehicle exhaust decreased the levels of precursors gas sulfur dioxide and nitrogen oxide, which highly contributed to the abatement of PM2.5 from NCP to CP. The higher levels of ozone at both PD and DSL on CP might be due to the weak nitrogen monoxide titration, low relative humidity and high visibility compared with NCP. Vehicle exhaust and fugitive emission from petrochemical industry were the major contributors of ambient VOCs and their decreasing activities mainly accounted for VOCs abatement. Moreover, the high frequency of haze-fog events was closely impacted by medium-scale regional transport within Anhui and Jiangsu provinces. Therefore, the decreasing regional transported air pollutants coincided with the emission control of local sources to cause the abatement of haze-fog events in YRD region on CP. This study could improve the understanding of the change of atmospheric pollutants during the outbreak control period, and provide scientific base for haze-fog pollution control in YRD region, China.
Collapse
Affiliation(s)
- Haohao Jia
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Huo
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Yusen Duan
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Yanfen Lin
- Shanghai Environmental Monitor Center, Shanghai, 200235, China
| | - Xiaodan Jin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue Hu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinping Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
33
|
Moryani HT, Kong S, Du J, Bao J. Health Risk Assessment of Heavy Metals Accumulated on PM 2.5 Fractioned Road Dust from Two Cities of Pakistan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7124. [PMID: 33003379 PMCID: PMC7579555 DOI: 10.3390/ijerph17197124] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
The aim of this study is to identify and investigate levels of toxic heavy metals in PM2.5 fractioned road dust to better understand the associated inhalation risk and potential health impacts. To achieve this aim, concentrations of seven traffic generated heavy metals (Cu, Pb, Zn, Cd, Ni, Sb, and Cr) were determined in the PM2.5 fraction of road dust samples from four different locations (offices, residential, hospital, and school) in two cities (Karachi and Shikarpur) of Pakistan using ICP-MS. The average concentration values of heavy metals in Karachi were as follows: 332.9 mg/kg Cu, 426.6 mg/kg Pb, 4254.4 mg/kg Zn, 62.3 mg/kg Cd, 389.7 mg/kg Ni, 70.4 mg/kg Sb, 148.1 mg/kg Cr, whereas the average concentration values of heavy metals in Shikarpur were 245.8 mg/kg Cu, 538.4 mg/kg Pb, 8351.0 mg/kg Zn, 57.6 mg/kg Cd, 131.7 mg/kg Ni, 314.5 mg/kg Sb, 346.6 mg/kg Cr. The pollution level was assessed through two pollution indices enrichment factor (EF) and geoaccumulation index (Igeo). These indices showed moderate to extreme level pollution in studied areas of both cities. The health risk assessment through inhalation contact was conducted according to the United States Environmental Protection Agency's (USEPA) model for children and adults. Both non-cancerous and cancerous risks were characterised in the road dust samples for each location. As yet, there is not a single study on the concentrations of heavy metals in PM2.5 fractions of road dust in Karachi and Shikarpur, findings of this research will facilitate researchers for further investigations in current field.
Collapse
Affiliation(s)
| | - Shuqiong Kong
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; (H.T.M.); (J.D.)
| | | | - Jianguo Bao
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; (H.T.M.); (J.D.)
| |
Collapse
|
34
|
Wang X, Liu E, Lin Q, Liu L, Yuan H, Li Z. Occurrence, sources and health risks of toxic metal(loid)s in road dust from a mega city (Nanjing) in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114518. [PMID: 32283466 DOI: 10.1016/j.envpol.2020.114518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 05/11/2023]
Abstract
Potential toxic metal(loid)s (PTMs) in road dust are a major concern in relation to urban environmental quality. Identifying pollution hotspots and sources of PTMs is an essential prerequisite for pollution control and management. Herein, the concentrations, pollution and potential health risks of 8 PTMs (As, Cd, Co, Cu, Hg, Mo, Pb and Zn) in road dust from the highly urbanized areas of Nanjing were studied. Spatial occurrences and sources of PTMs were explored using geostatistics, principal component analysis (PCA) and local Moran's index. The contamination factor (CF) results showed that Co was mainly natural in origin, while the other PTMs were polluted, with average CFs ranging from 1.4 to 11.0 as follows: Hg > Mo > Cd > Cu > Pb > Zn > As, indicating moderate to very high contamination. Except for Co and Hg, the other PTMs were heavily loaded on PC1, which explained 44.72% of the total variance. Combining the statistical results and distributions of potential sources, we deduced that industrial emissions dominated the spatial patterns of all polluted PTMs in road dust, which showed high levels in the northern parts of the study region and generally decreasing levels southwards. Moreover, Pb and Zn in the south-central area and Cd in the north-central area displayed hotspots, with maximum CFs of 5.5 (Pb), 4.2 (Zn) and 16.2 (Cd), which were related to additional automotive and railway braking emissions, respectively. The resuspension of legacy pesticides in soil is likely responsible for the As pollution hotspot in the southwestern part. Despite the high anthropogenic contributions (27% for As and 68-88% for the other metals) to the PTMs in road dust, their noncarcinogenic and carcinogenic health risks were rarely found for children and adults based on the values of the hazard index and carcinogenic risk index. However, attention still should be paid to the pollution hotspots in the northern region.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China
| | - Enfeng Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China.
| | - Qi Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, PR China
| | - Lin Liu
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China
| | - Hezhong Yuan
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, PR China
| | - Zijun Li
- College of Geography and Environment, Shandong Normal University, Ji'nan, PR China
| |
Collapse
|
35
|
Palmisani J, Di Gilio A, Franchini SA, Cotugno P, Miniero DV, D’Ambruoso P, de Gennaro G. Particle-Bound PAHs and Elements in a Highly Industrialized City in Southern Italy: PM 2.5 Chemical Characterization and Source Apportionment after the Implementation of Governmental Measures for Air Pollution Mitigation and Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17134843. [PMID: 32635676 PMCID: PMC7369798 DOI: 10.3390/ijerph17134843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022]
Abstract
The present study was aimed at determining airborne concentrations of PAHs, Nitro-/Oxy-PAHs and elements in industrial and urban areas of Taranto, a site of environmental risk in Southern Italy, after the issue of strategic measures for air pollution mitigation and control by the Italian Environment Ministry in 2012. A PM2.5 sampling campaign was carried out from 9 to 28 December 2014 at eight receptor sites, two placed in the urban settlement and five included in the high spatial resolution fence monitoring network of the biggest European steel plant. The integration of collected data with meteorological parameters and source apportionment analysis by Positive Matrix Factorization and bivariate polar plots allowed to discriminate among emission sources and estimate their contributions. Evidence on the effect of distinct processes (homogenization, sintering) occurring inside the steel plant on airborne concentrations of PAHs and selected elements was provided. The impact of emissions from the steel plant “core” on the surrounding area was observed at receptor sites downwind to it. Moreover, the extent of the effectiveness of mitigation measures, partially applied at the moment of study’s beginning, was demonstrated by mean and peak pollutant concentrations at all receptor sites up to one order of magnitude lower than those documented prior to 2012.
Collapse
Affiliation(s)
- Jolanda Palmisani
- Department of Biology, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (S.A.F.); (P.C.); (D.V.M.); (G.d.G.)
- Correspondence: (J.P.); (A.D.G.); Tel.: +39-805443343 (A.D.G.)
| | - Alessia Di Gilio
- Department of Biology, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (S.A.F.); (P.C.); (D.V.M.); (G.d.G.)
- Correspondence: (J.P.); (A.D.G.); Tel.: +39-805443343 (A.D.G.)
| | - Silvana Angela Franchini
- Department of Biology, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (S.A.F.); (P.C.); (D.V.M.); (G.d.G.)
| | - Pietro Cotugno
- Department of Biology, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (S.A.F.); (P.C.); (D.V.M.); (G.d.G.)
| | - Daniela Valeria Miniero
- Department of Biology, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (S.A.F.); (P.C.); (D.V.M.); (G.d.G.)
| | - Paolo D’Ambruoso
- Regional Agency for Environmental Prevention and Protection (ARPA Puglia), Corso Trieste 27, 70126 Bari, Italy;
| | - Gianluigi de Gennaro
- Department of Biology, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (S.A.F.); (P.C.); (D.V.M.); (G.d.G.)
| |
Collapse
|
36
|
Taira M, Sakakibara K, Saeki K, Ohira SI, Toda K. Determination of oxoanions and water-soluble species of arsenic, selenium, antimony, vanadium, and chromium eluted in water from airborne fine particles (PM 2.5): effect of acid and transition metal content of particles on heavy metal elution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1514-1524. [PMID: 32555872 DOI: 10.1039/d0em00135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heavy metals in particulate matter (PM) are of great concern, and their effects on the environment and human health depend on their solubilities and species present. In this study, the solubility of As, Se, Sb, V and Cr and their species eluted in water was investigated. As, Se, Sb, and V were present mostly in fine particles, and they were predominantly water-soluble in fine particles (<2.5 μm, PM2.5) but insoluble in coarse particles (>2.5 μm). Solubility of Cr was poor even in fine particles. It was found that for fine particles, solubilities of the heavy metals were related to the nitrate and sulfate contents. This suggests that the higher the acidity of the particles, the higher the solubility of the heavy metals. Oxoanions of the five kinds of heavy metals in water extracts of fine particles were determined by inductively coupled plasma mass spectrometry preceded by ion chromatography. The results suggested the presence of atmospheric oxidation during the aerosol transportation. Also, the As(iii)/As(v) (arsenite/arsenate) ratios for the fine particle extracts were related to the transition metal concentrations, which indicated that Fe, Cu, etc. in fine particles affected the As redox equilibrium. It was suggested that the heavy metals exist as complexes with iron hydroxide and dissolved organic matter in addition to the free oxoanions. These investigations were performed for PM samples collected in winter and summer in Kumamoto, west Japan, where the site is strongly exposed to westerly winds from continental East Asia. The obtained results improve our understanding of the behavior of the heavy metals in airborne PM after depositing on a wet environment and biota.
Collapse
Affiliation(s)
- Misaki Taira
- Department of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan.
| | | | | | | | | |
Collapse
|