1
|
Ye X, Chen T, Du Y, Zhao R, Chen L, Wu D, Hu J. Folic acid-based hydrogels co-assembled with protocatechuic acid for enhanced treatment of inflammatory bowel disease. Colloids Surf B Biointerfaces 2025; 246:114367. [PMID: 39541908 DOI: 10.1016/j.colsurfb.2024.114367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Inflammatory bowel disease (IBD) presents a significant therapeutic challenge due to the need for oral drug delivery systems that withstand acidic environment of stomach while effectively targeting intestinal inflammation. To address this issue, we created a novel hydrogel system based on a folic acid (FA)-dopamine (DA) conjugate, co-assembled with protocatechuic acid (PCA), to form F-DP hydrogels. These hydrogels demonstrated robust anti-gastric acid, mucosal adhesive, and injectable properties, enhancing their efficacy for targeted delivery. In DSS-induced colitis mouse models, treatment with F-DP hydrogels resulted in significant therapeutic improvements, including increased body weight, reduced disease activity index (DAI), and maintained colon length. Biochemical assays revealed that F-DP hydrogels significantly enhanced antioxidant enzyme activities (GSH and SOD) and reduced oxidative stress markers (NO and MDA). Histological assessments confirmed effective repair of the colonic mucosal barrier, restoration of tight junction protein ZO-1, and reduction of inflammatory lesions. Furthermore, immunofluorescence staining indicated that F-DP hydrogels facilitated macrophages polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, thereby reducing inflammation and promoting tissue repair. Our study demonstrates that F-DP hydrogels show significant potential for improving IBD treatment through enhanced gastric resistance, intestinal adhesion, and synergistic anti-inflammatory effects, warranting further investigation for clinical applications.
Collapse
Affiliation(s)
- Ximei Ye
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Runan Zhao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lihang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Nemes SA, Mitrea L, Teleky BE, Dulf EH, Călinoiu LF, Ranga F, Elekes DGA, Diaconeasa Z, Dulf FV, Vodnar DC. Integration of ultrasound and microwave pretreatments with solid-state fermentation enhances the release of sugars, organic acids, and phenolic compounds in wheat bran. Food Chem 2025; 463:141237. [PMID: 39305639 DOI: 10.1016/j.foodchem.2024.141237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 11/14/2024]
Abstract
Wheat bran (WB), a byproduct of milling, is rich in bioactive compounds with significant health benefits. This study aimed to enhance the release of phenolic compounds, sugars, and organic acids from WB by integrating ultrasound (UsP) and microwave (MWP) pretreatments with solid-state fermentation (SSF). UsP and MWP disrupted WB cell walls, followed by SSF with Aspergillus niger. UsP increased total phenolic content by 21.30 % on day 1 of SSF. UsP and MWP boosted the availability of bound phenolic compounds like vanillic acid and dihydroxybenzoic acid. Both pretreatments enhanced antioxidant activity compared to untreated fermented WB, with peak activity on day 5 of fermentation at 1411 ± 5.156 μM Trolox/100 g DW for UsP WB and 291.6 ± 1.092 μM Trolox/100 g DW for MWP WB. This integrated approach improved the extraction efficiency of fermentable monosaccharides, particularly glucose and xylose, offering a sustainable bioprocessing strategy for WB valorization and supporting the circular bioeconomy.
Collapse
Affiliation(s)
- Silvia Amalia Nemes
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| | - Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| | - Bernadette-Emoke Teleky
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| | - Eva H Dulf
- Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania; Physiological Controls Research Center, University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary.
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania
| | - Deborah-Gertrude-Alice Elekes
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| | - Francisc Vasile Dulf
- Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca 400372, Manastur 3-5, Romania.
| |
Collapse
|
3
|
Deabes DAH, El-Abd EAW, Baraka SM, El-Gendy ZA, Korany RMS, Elbatanony MM. Metabolomics analyses and comparative insight to neuroprotective potential of unripe fruits and leaves of Citrus aurantium ethanolic extracts against cadmium-induced rat brain dysfunction: involvement of oxidative stress and akt-mediated CREB/BDNF and GSK3β/NF-κB signaling pathways. Metab Brain Dis 2025; 40:89. [PMID: 39760898 DOI: 10.1007/s11011-024-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025]
Abstract
Serious neurological disorders were associated with cadmium toxicity. Hence, this research aimed to investigate the potential neuroprotective impacts of the ethanolic extracts of Citrus aurantium unripe fruits and leaves (CAF and CAL, respectively) at doses 100 and 200 mg/kg against cadmium chloride-provoked brain dysfunction in rats for 30 consecutive days. HPLC for natural pigment content revealed that CAF implied higher contents of Chlorophyll B, while the CAL has a high yield of chlorophyll A and total carotenoid. Fifty-seven chromatographic peaks were identified by UPLC/MS/MS; 49 and 29 were recognized from CAF or CAL, respectively. Four compounds were isolated from CAF: 3',4',7 -trihydroxyflavone, isorhainetin, vitexin, and apigenin. In vitro studies outlined the antioxidant capacity of studied extracts where CAF showed better scavenging radical DPPH activity. Results clarified that both extracts with a superior function of CAF at the high adopted dose significantly ameliorated CdCl2-induced neuro-oxidative stress and neuro-inflammatory response via restoring antioxidant status and hindering nuclear factor kappa B (NF-κB) stimulation. Moreover, it up-regulated the levels of phospho-protein kinase B (p-Akt), phospho- cAMP-response element binding protein (p-CREB), and brain-derived neurotropic factor (BDNF) levels, and elicited a marked decrease in the content of glycogen synthase kinase 3 beta (GSK3β), besides amending Caspase-3 and hyperphosphorylation of tau protein in brain tissues. Moreover, a significant improvement in the rats' behavioral tasks of the CAL and CAF-treated groups has been recorded, as indicated by marked preservation in locomotion, exploratory, and memory functions of the experimental rats. In conclusion, the reported neuroprotective impacts of C. aurantium extracts may be through modulating p-AKT/p-CREB/BDNF and / or p-Akt/ GSK3β/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Doaa A H Deabes
- Pharmacognosy Department, National Research Centre (NRC), El Behouth St., P.O. 12622, Cairo, Egypt
| | - Eman A W El-Abd
- Pharmacognosy Department, National Research Centre (NRC), El Behouth St., P.O. 12622, Cairo, Egypt
| | - Sara M Baraka
- Chemistry of Natural Compounds Department, National Research Centre, Giza, 12622, Egypt.
| | - Zeinab A El-Gendy
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Reda M S Korany
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa M Elbatanony
- Pharmacognosy Department, National Research Centre (NRC), El Behouth St., P.O. 12622, Cairo, Egypt
| |
Collapse
|
4
|
Li S, You M, Chen C, Fu J, Xu Y, Pi J, Wang Y. Direct engulfment of synapses by overactivated microglia due to cadmium exposure and the protective role of Nrf2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117620. [PMID: 39732062 DOI: 10.1016/j.ecoenv.2024.117620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Cadmium (Cd), a notorious environmental pollutant, has been linked to neurological disorders, but the underlying mechanism remains elusive. We aimed to explore the role of microglia in Cd-induced synaptic damages at environmentally relevant doses and whether microglia directly engulf synaptic structures. Nrf2 is deeply implicated in the status of microglial activation; therefore, we also investigated whether it is involved in the above process. Nrf2 knockout mice and wild-type mice were used to explore prolonged Cd exposure-induced synaptic damages, learning-memory impairments, and microglial activation. We also created Nrf2 knockdown (KD) BV2 microglia to investigate the role of cell-specific Nrf2 in Cd-induced microglial activation. Finally, we developed co-culture systems of either Nrf2-KD or Scramble microglia and primary neurons or HT22 neurons to study the effects of Nrf2-regulated microglial activation on synaptic damages induced by Cd. Moreover, the direct engulfment, a main avenue in microglia that may be responsible for Cd-induced synaptic damages and regulated by Nrf2, was specifically studied in vivo and in vitro, along with underlying specific mechanisms. We found that Cd exposure induced microglial overactivation, and Cd-overactivated microglia impaired synapses through direct engulfment of synaptic structures, which may contribute to learning-memory impairments. Both fractalkine and complement pathways underlay microglial engulfment of synapses due to Cd exposure. Nrf2 was essential in preventing microglial overactivation and subsequent direct engulfment, thus preventing the consequent synaptic damages due to Cd exposure. Overall, the findings suggest that Cd-overactivated microglia damage synapses through direct engulfment, resulting from the activation of fractalkine and complement pathways.
Collapse
Affiliation(s)
- Siyao Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China; Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education (Guizhou Medical University), Guiyang, Guizhou 550025, China
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingqi Fu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning 110122, China; Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Qin Z, Chen Y, Zhao X, Yu S. [Research progress on metal pollutants inducing neurotoxicity through ferroptosis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:699-707. [PMID: 39686702 DOI: 10.3724/zdxbyxb-2024-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
It has been confirmed that exposure to various metal pollutants can induce neurotoxicity, which is closely associated with the occurrence and development of neurological disorders. Ferroptosis is a form of cell death in response to metal pollutant exposure and it is closely related to oxidative stress, iron metabolism and lipid peroxidation. Recent studies have revealed that ferroptosis plays a significant role in the neurotoxicity induced by metals such as lead, cadmium, manganese, nickel, and antimony. Lead exposure triggers ferroptosis through oxidative stress, iron metabolism disorder and inflammation. Cadmium can induce ferroptosis through iron metabolism, oxidative stress and ferroptosis related signaling pathways. Manganese can promote ferroptosis through mitochondrial dysfunction, iron metabolism disorder and oxidative stress. Nickel can promote ferroptosis by influencing mitochondrial function, disrupting iron homeostasis and facilitating lipid peroxidation in the central nervous system. Antimony exposure can induce glutathione depletion by activating iron autophagy, resulting in excessive intracellular iron deposition and ultimately causing ferroptosis. This article reviews the effects of metal pollutants on ferroptosis-related indicators and discusses the specific mechanisms by which each metal triggers ferroptosis. It provides a reference for identifying targets for preventing neurotoxicity and for developing treatment strategies for neurological disorders.
Collapse
Affiliation(s)
- Ziyu Qin
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China.
| | - Yuqing Chen
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nantong University, Nantong Municipal Key Laboratory of Environmental Toxicology, Nantong 226019, Jiangsu Province, China.
| |
Collapse
|
6
|
Zhang S, Wang Q, Yao X, Dong J, Li G, Zang Y, Jiang S, Wang Y. Transcriptomic and proteomic analysis of the jejunum revealed the effects and mechanism of protocatechuic acid on alleviating Salmonella typhimurium infection in chickens. Poult Sci 2024; 104:104606. [PMID: 39631287 DOI: 10.1016/j.psj.2024.104606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Salmonella typhimurium is a common cause of gastroenteritis, which infects animals and human. Protocatechuic acid has anti-inflammatory, immunoregulatory and anti-pathogenic effects, and is expected to be an effective choice for alleviating Salmonella infection and intestinal injury. A total of 180 1-d female, yellow-feathered chickens were randomly allocated into 3 treatment groups, the controls (Ctr), the Salmonella-challenged treatment (Sal) and the protocatechuic acid treatment (PA). Birds were fed a basal diet for 18 d, with birds in PA supplemented with 600 mg/kg protocatechuic acid. On 14 and 16 d, birds in Sal and PA were orally challenged with 109 CFU S. typhimurium, while birds in Ctr received an equal amount of PBS. The results showed that protocatechuic acid improved growth performance and jejunal structure in Salmonella-infected chickens (P < 0.05). In addition, protocatechuic acid suppressed (P < 0.05) the secretion of plasmal IgG, IL-1β, and IFN-β, and jejunal mucosal IL-6, IFN-β, complement protein 3 and 4. Mechanistically, the transcriptomic results showed that dietary protocatechuic acid inhibited acute inflammatory response and activated the signaling pathways of cytokine-cytokine receptor interaction, complement and coagulation cascades. Results of proteomic showed that protocatechuic acid inhibited the positive regulation of dendritic cell cytokine production and I-κB kinase/NF-κB signaling, as well as cytokine-cytokine receptor interaction and MAPK signaling pathways, and activated the mTOR signaling pathways. These results were critical to both suppressing the secretion of inflammatory cytokines and restoring the intestinal function. Dietary protocatechuic acid (600 mg/kg) was effective to alleviate Salmonella infection, as it suppressed the levels of cytokines and complement protein by inhibiting MAPK, I-κB kinase/NF-κB and enhancing the mTOR signaling pathway, thus offset the decline in weight loss and intestinal injury caused by infection.
Collapse
Affiliation(s)
- Sheng Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China
| | - Qin Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China
| | - Xiangtian Yao
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China; Zhongkai University of Agriculture and Engineering, 510225, Guangdong, China
| | - Jingjing Dong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China
| | - Guanhuo Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China; Zhongkai University of Agriculture and Engineering, 510225, Guangdong, China
| | - Yingan Zang
- Zhongkai University of Agriculture and Engineering, 510225, Guangdong, China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China.
| | - Yibing Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
7
|
Sengul E, Yildirim S, Cinar İ, Tekin S, Dag Y, Bolat M, Gok M, Warda M. Mitigation of Acute Hepatotoxicity Induced by Cadmium Through Morin: Modulation of Oxidative and Pro-apoptotic Endoplasmic Reticulum Stress and Inflammatory Responses in Rats. Biol Trace Elem Res 2024; 202:5106-5117. [PMID: 38238535 PMCID: PMC11442647 DOI: 10.1007/s12011-024-04064-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 10/01/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal with significant environmental health hazards. It enters the body through various routes with tissue accumulation. The relatively longer half-life with slow body clearance significantly results in hepatotoxicity during its liver detoxification. Therefore, researchers are exploring the potential use of herbal-derived phytocomponents to mitigate their toxicity. Here, we investigated, for the first time, the possible ameliorative effect of the phytochemical Morin (3,5,7,29,49-pentahydroxyflavone) against acute Cd-induced hepatotoxicity while resolving its underlying cellular mechanisms in a rat animal model. The study involved 50 adult male Sprague-Dawley rats weighing 200-250 g. The animals were divided into five equal groups: control, Cd, Morin100 + Cd, Morin200 + Cd, and Morin200. The 2nd, 3rd, and 4th groups were intraperitoneally treated with Cd (6.5 mg/kg), while the 3rd, 4th, and 5th groups were orally treated with Morin (100 and 200 mg/kg) for 5 consecutive days. On the 6th day, hepatic function (serum ALT, AST, ALP, LDH enzyme activities, and total bilirubin level) testing, transcriptome analysis, and immunohistochemistry were performed to elucidate the ameliorative effect of Morin on hepatotoxicity. In addition to restoring liver function and tissue injury, Morin alleviated Cd-induced hepatic oxidative/endoplasmic reticulum stress in a dose-dependent manner, as revealed by upregulating the expression of antioxidants (SOD, GSH, Gpx, CAT, and Nrf2) and decreasing the expression of ER stress markers. The expression of the proinflammatory mediators (TNF-α, IL-1-β, and IL-6) was also downregulated while improving the anti-inflammatory (IL-10 and IL-4) expression levels. Morin further slowed the apoptotic cascades by deregulating the expression of pro-apoptotic Bax and Caspase 12 markers concomitant with an increase in anti-apoptotic Blc2 mRNA expression. Furthermore, Morin restored Cd-induced tissue damage and markedly suppressed the cytoplasmic expression of JNK and p-PERK immunostained proteins. This study demonstrated the dose-dependent antioxidant hepatoprotective effect of Morin against acute hepatic Cd intoxication. This effect is likely linked with the modulation of upstream p-GRP78/PERK/ATF6 pro-apoptotic oxidative/ER stress and the downstream JNK/BAX/caspase 12 apoptotic signaling pathways.
Collapse
Affiliation(s)
- Emin Sengul
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - İrfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Samet Tekin
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Yusuf Dag
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Merve Bolat
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Melahat Gok
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Mohamad Warda
- Department of Physiology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
- Department of Biochemistry, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Nong X, Zhong S, Huang L, Xiao J, Hu Y, Xie Y. Nontargeted metabonomics analysis of Scorias spongiosa fruiting bodies at different growth stages. Front Microbiol 2024; 15:1478887. [PMID: 39539701 PMCID: PMC11557477 DOI: 10.3389/fmicb.2024.1478887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Scorias spongiosa is an edible fungus. Methods In this study, a nontargeted metabonomic analysis was conducted on the fruiting bodies of this fungus at five growth stages, and the differences in metabolites and the related metabolic pathways during growth and development were analysed. Results This study revealed that the five growth stages of S. spongiosa fruiting bodies were associated with 15 pathways. These 15 metabolic pathways are speculated to play important roles in the growth of S. spongiosa fruiting bodies. Eleven bioactive substances were identified among the differentially expressed compounds. The content of six bioactive substances was highest at the S1 growth stage among all the growth stages. The metabolites related to sugar metabolism were enriched in three main pathways: pentose and gluconate interconversions, the pentose phosphate pathway, and the citrate cycle (TCA cycle). Discussion These results suggested that the S1 growth stage can be selected as the harvest period of S. spongiosa in fruiting bodies to retain most of the bioactive substances. Pentose and gluconate interconversions, the pentose phosphate pathway, and the TCA cycle are related to changes in polysaccharide content during the growth of S. spongiosa fruiting bodies.
Collapse
Affiliation(s)
- Xiang Nong
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Shengnan Zhong
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Lanying Huang
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Jie Xiao
- School of Life Science, Leshan Normal University, Leshan, China
| | - Ye Hu
- Forestry and Bamboo Industry Science and Technology Innovation Research Institute, Leshan Normal University, Leshan, China
- Provincial Engineering and Technology Research Center for Innovative Development of Bamboo Fiber Nutrition, Leshan Normal University, Leshan, China
- Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province, Leshan, China
- School of Life Science, Leshan Normal University, Leshan, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
9
|
Liu Y, Chen C, Hao Z, Shen J, Tang S, Dai C. Ellagic Acid Reduces Cadmium Exposure-Induced Apoptosis in HT22 Cells via Inhibiting Oxidative Stress and Mitochondrial Dysfunction and Activating Nrf2/HO-1 Pathway. Antioxidants (Basel) 2024; 13:1296. [PMID: 39594438 PMCID: PMC11590970 DOI: 10.3390/antiox13111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Exposure to cadmium sulfate (CdSO4) can lead to neurotoxicity. Nevertheless, the precise molecular mechanisms underlying this phenomenon remain unclear, and effective treatment strategies are scarce. This study explored the protective effects of ellagic acid (EA), a natural polyphenolic compound, against CdSO4 exposure-induced neurotoxicity in HT22 cells and the underlying molecular mechanisms. Our findings demonstrated that exposure of HT22 cells to CdSO4 resulted in apoptosis, which was effectively reversed by EA in a dose-dependent manner. EA supplementation also decreased reactive oxygen species (ROS) and mitochondrial ROS production, reduced malondialdehyde (MDA) levels, and restored the activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, EA supplementation at 5-20 μM significantly counteracted Cd-induced the loss of mitochondrial membrane potential and the decrease of ATP and reduced the ratio of Bax/Bcl-2 and cleaved-caspase-3 protein expression. Furthermore, EA supplementation resulted in the upregulation of Nrf2 and HO-1 protein and mRNAs while simultaneously downregulating the phosphorylation of JNK and p38 proteins. The pharmacological inhibition of c-Jun N-terminal kinase (JNK) partially attenuated the activation of the Nrf2/HO-1 pathway induced by CdSO4 and exacerbated its cytotoxic effects. In conclusion, our findings suggest that ethyl acetate (EA) supplementation offers protective effects against CdSO4-induced apoptosis in HT22 cells by inhibiting oxidative stress and activating the Nrf2 signaling pathway. Furthermore, the activation of the JNK pathway appears to play a protective role in CdSO4-induced apoptosis in HT22 cells.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chunhong Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
| | - Zhihui Hao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (Y.L.); (C.C.); (Z.H.); (J.S.)
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
10
|
Bahar R, Chegeni MJ, Tahvildari A, Sani M, Khakpour Y, Hashemabady M, Sagharichi M, Balaghirad N, Taghizadeh M, Mehranpour M, Bayat AH, Fathi M, Vakili K, Roustaee S, Nourirad SN, Babaei MR, Aliaghaei A, Eskandari N, Lahiji H. Bromelain decreases oxidative stress and Neuroinflammation and improves motor function in adult male rats with cerebellar Ataxia induced by 3-acetylpyridine. Neuropeptides 2024; 107:102455. [PMID: 39094391 DOI: 10.1016/j.npep.2024.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Bromelain is a plant-based molecule with antioxidant, antithrombotic, anticancer, and anti-inflammatory properties. Bromelain has been shown to reduce the release of inflammatory cytokines. This study aimed to determine whether bromelain can prevent ataxia in rats caused by 3-acetylpyridine (3-AP). Thirty-six albino rats were divided into the control, 3-AP, and 3-AP + Brom groups. In the 3-AP + Brom group, bromelain was injected intraperitoneally at 40 mg/kg daily for 30 days. Various techniques such as rotarod, electromyography (EMG), elevated plus maze, IHC, and Sholl analysis were used to evaluate the possible effects of bromelain on cerebellar neurons and glial cells. The results demonstrated significant improvements in most of the 3-AP + Brom, including motor coordination, neuromuscular response, anxiety, oxidative capacity, microgliosis, astrogliosis, cell death, and morphological variables compared to the 3-AP group. The mechanism of action of bromelain in restoring cerebellar ataxia needs further investigation, but it may be a candidate to help restore degeneration in animals with ataxia.
Collapse
Affiliation(s)
- Reza Bahar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Jahani Chegeni
- Medical Radiation Research Center, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azin Tahvildari
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Sani
- Integrative Brain Health and Wellness, Neuroscience, Neuronutrition, Psychology, Rehabilitation and Physiotherapy, Neurocognitive, Cognitive Enhancement, Brain Health Optimization, SNSI-Sanineurosapiens Institute, Hanover, Germany
| | - Yaser Khakpour
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hashemabady
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - Mastooreh Sagharichi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nika Balaghirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghizadeh
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mehranpour
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Amir-Hossein Bayat
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran,Iran
| | - Kimia Vakili
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Susan Roustaee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Naghmeh Nourirad
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Babaei
- Department of Interventional Radiology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Eskandari
- Department of Anatomical Sciences, Faculty of Medicine, AJA University of Medical Sciences, Tehran,Iran.
| | - Hormoz Lahiji
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
12
|
Luo KH, Tu HP, Chang HC, Yang CC, Weng WC, Chen TH, Yang CH, Chuang HY. Mediation analysis for TNF-α as a mediator between multiple metal exposure and kidney function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116837. [PMID: 39121655 DOI: 10.1016/j.ecoenv.2024.116837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
The association between metal mixtures and kidney function has been reported. However, reports on the mechanism of metal toxicity were limited. Oxidative stress was reported as a possible cause. This study aimed to determine the association between of kidney function and metals, such as arsenic (As), cadmium (Cd), cobalt (Co), copper (Cu), lead (Pb), selenium (Se), and zinc (Zn), and to explore the possible mediating role of tumor necrosis factor alpha (TNF-α) between metal toxicity and kidney function. In this study, we recruited 421 adults from a health examination. The concentration of blood metals was analyzed using inductively coupled plasma mass spectrometry. We used linear regression models to assess the association between metals and TNF-α. Then, mediation analysis was applied to investigate the relationship between metal exposure, TNF-α, and kidney function. In univariate linear regression, blood As, Cd, Co, Cu, Pb, and Zn levels significantly increased TNF-α and decreased kidney function. Higher blood As and Pb levels significantly increased TNF-α in multivariable linear regressions after adjusting for covariates. We found that blood levels of As (coefficients = -0.021, p = 0.011), Pb (coefficients = -0.060, p < 0.001), and Zn (coefficients = -0.230, p < 0.001) showed a significant negative association with eGFR in the multiple-metal model. Furthermore, mediation analysis showed that TNF-α mediated 41.7 %, 38.8 %, and 20.8 % of blood Cd, As and Pb, respectively. Among the essential elements, TNF-α mediated 24.5 %, 21.5 % and 19.9 % in the effects of blood Co, Cu, and Zn on kidney function, respectively. TNF-α, acting as a mediator, accounted for 20.1 % of the contribution between the WQS score of metal mixtures and the eGFR (p < 0.001). This study suggested that TNF-α may be a persuasive pathway mediating the association between metals and kidney function. Inflammation and kidney injury could be the underlying mechanisms of metal exposure. However, there is still a need to clarify the biochemical mechanism in follow-up studies.
Collapse
Affiliation(s)
- Kuei-Hau Luo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huang-Chih Chang
- Divisions of Pulmonary & Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chen-Cheng Yang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan; Department of Occupational Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Wei-Chun Weng
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan
| | - Tzu-Hua Chen
- Department of Family Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Cheng-Hong Yang
- Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan; Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hung-Yi Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medicine University, Kaohsiung City 807, Taiwan; Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Occupational and Environmental Medicine, Kaohsiung Medicine University Hospital, Kaohsiung Medicine University, Kaohsiung 807, Taiwan; Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, and Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
13
|
Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, Zahed MA. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. CHEMOSPHERE 2024; 364:143180. [PMID: 39187026 DOI: 10.1016/j.chemosphere.2024.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated. There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
Collapse
Affiliation(s)
- Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ghazaleh Mastali
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center (MSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX, USA.
| | | |
Collapse
|
14
|
Kim Y, Cho M, Lee JS, Oh J, Lim J. Protocatechuic Acid from Euonymus alatus Mitigates Scopolamine-Induced Memory Impairment in Mice. Foods 2024; 13:2664. [PMID: 39272430 PMCID: PMC11394611 DOI: 10.3390/foods13172664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The increasing prevalence of age-related neurodegenerative disorders owing to the aging population worldwide poses substantial challenges. This study investigated the neuroprotective effects of protocatechuic acid (PCA), a compound found in various fruits, vegetables, and grains, using a scopolamine-induced hypomnesia mouse model. Six-week-old male C57BL/6J mice were orally administered PCA at doses of 10 and 100 mg/kg body weight per day for two weeks, along with intraperitoneal injections of scopolamine. Learning and memory abilities were assessed using the passive avoidance, Morris water maze, and Y-maze behavioral assays. Biochemical analyses evaluated the levels of oxidative stress markers, including 8-hydroxydeoxyguanosine (8-OHdG) in the blood and malondialdehyde (MDA) in the brain, as well as phase II antioxidant proteins in the hippocampus. Histological examination was conducted to determine hippocampal integrity. Our results demonstrated that PCA administration at 10 mg/kg body weight per day or higher for two weeks (i) significantly ameliorated scopolamine-induced learning and memory impairments, as evidenced by improved performance in behavioral tasks, (ii) reduced plasma 8-OHdG levels and cerebral MDA levels in a dose-dependent manner, (iii) increased antioxidant protein expressions in the hippocampal tissue, and (iv) mitigated histological damage in the hippocampal region of the brain. These findings suggest that oral administration of PCA provides neuroprotective effects against oxidative stress-induced learning and memory impairments, possibly through upregulating antioxidant machinery. Therefore, PCA may serve as a promising dietary supplement for mitigating cognitive deficits associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoonsu Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minjung Cho
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeong Soon Lee
- Forest Environment Research Institute of Gyeongsangbuk-do, Gyeongju 38174, Republic of Korea
| | - Jisun Oh
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Jinkyu Lim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Ma Q, Yang Z, Yang C, Lin M, Gong M, Deng P, He M, Lu Y, Zhang K, Pi H, Qu M, Yu Z, Zhou Z, Chen C. A single-cell transcriptomic landscape of cadmium-hindered brain development in mice. Commun Biol 2024; 7:997. [PMID: 39147853 PMCID: PMC11327346 DOI: 10.1038/s42003-024-06685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd. Typically, Cd exposure impeded the development and maturation of cells in the brain, especially progenitor cells such as neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). It also caused significant cell subpopulation shifts in almost all the types of cells in the brain. Additionally, Cd exposure reduced the dendritic sophistication of cortical neurons in the offspring. Importantly, these changes led to aberrant Ca2+ activity in the cortex and neural behavior changes in mature offspring. These data contribute to our understanding of the effects and mechanisms of Cd exposure on brain development and highlight the importance of controlling environmental neurotoxicant exposure at the population level.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqi Yang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuanyan Yang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Lin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingyue Gong
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Kuan Zhang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
16
|
Mohammed DM, Salem MB, Elzallat M, Hammam OA, Suliman AA. Moringa oleifera L. mediated zinc oxide nano-biofertilizer alleviates non-alcoholic steatohepatitis via modulating de novo lipogenesis pathway and miRNA-122 expression. FOOD BIOSCI 2024; 60:104286. [DOI: 10.1016/j.fbio.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2024]
|
17
|
Kelidari M, Abedi F, Hayes AW, Jomehzadeh V, Karimi G. The protective effects of protocatechuic acid against natural and chemical toxicants: cellular and molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5597-5616. [PMID: 38607443 DOI: 10.1007/s00210-024-03072-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Protocatechuic acid (PCA) is a water-soluble polyphenol compound that is extracted from certain fruits and plants or obtained from glucose fermentation. Several in vivo and in vitro studies have determined that PCA has protective effects against the toxicity of natural and chemical toxicants. We searched these articles in PubMed, Google Scholar, and Scopus with appropriate keywords from inception up to August 2023. Forty-nine studies were found about protective effects of PCA against drug toxicity, metal toxicity, toxins, chemical toxicants, and some other miscellaneous toxicants. PCA indicates these protective effects by suppression of oxidative stress, inflammation, and apoptosis. PCA reduces reactive oxygen/nitrogen species (RONS) and enhances the level of antioxidant parameters mainly through the activation of the Nrf-2 signaling pathway. PCA also decreases the levels of inflammatory mediators via downregulating the TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. In addition, PCA inhibits apoptosis by lowering the expression of Bax, caspase-3, and caspase-9 along with enhancing the level of the antiapoptotic protein Bcl-2. Further evaluation, especially in humans, is necessary to confirm PCA as a potential therapeutic approach to intervene in such toxicities.
Collapse
Affiliation(s)
- Mahdieh Kelidari
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Abedi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Vahid Jomehzadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Shi Y, Gao Z, Xu B, Mao J, Wang Y, Liu Z, Wang J. Protective effect of naringenin on cadmium chloride-induced renal injury via alleviating oxidative stress, endoplasmic reticulum stress, and autophagy in chickens. Front Pharmacol 2024; 15:1440877. [PMID: 39070780 PMCID: PMC11275578 DOI: 10.3389/fphar.2024.1440877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Cadmium (Cd) is a highly hazardous toxic substance that can cause serious harm to animals. Previous studies have indicated that cadmium chloride (CdCl2) can damage organs, such as the liver, ovaries, and testicles. Naringenin (Nar) represents a flavonoid with various properties that promote the alleviation of Cd-induced damage. In this experiment, 60 chickens were divided into the control group, 150 mg/kg CdCl2 treatment group, 250 mg/kg Nar treatment group, and 150 mg/kg CdCl2 + 250 mg/kg Nar co-treatment group, which were treated for 8 weeks. Kidney tissues samples were collected to investigate kidney function, including oxidative stress (OS), endoplasmic reticulum (ER) stress, and autophagy activity. Experimental results showed the decreased weight of chickens and increased relative weight of their kidneys after CdCl2 treatment. The increase in NAG, BUN, Cr, and UA activities, as well as the increase in MDA and GSH contents, and the decrease activities of T-AOC, SOD, and CAT in the kidney, manifested renal injury by OS in the chickens. TUNEL staining revealed that CdCl2 induced apoptosis in renal cells. CdCl2 upregulates the mRNA and protein expression levels of GRP78, PERK, eIF2α, ATF4, ATF6, CHOP, and LC3, and inhibited the mRNA and protein expression levels of P62 proteins, which leads to ER stress and autophagy. The CdCl2 + Nar co-treatment group exhibited alleviated CdCl2-induced kidney injury, OS, ER stress, and autophagy. Research has demonstrated that Nar reduces CdCl2-induced kidney injury through alleviation of OS, ER stress, and autophagy.
Collapse
Affiliation(s)
- Yaning Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhixin Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Bing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Junbing Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yue Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Liang A, Leonard W, Beasley JT, Fang Z, Zhang P, Ranadheera CS. Anthocyanins-gut microbiota-health axis: A review. Crit Rev Food Sci Nutr 2024; 64:7563-7588. [PMID: 36927343 DOI: 10.1080/10408398.2023.2187212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Anthocyanins are a subclass of flavonoids responsible for color in some fruits and vegetables with potent antioxidative capacity. During digestion, a larger proportion of dietary anthocyanins remains unabsorbed and reach the large intestine where they interact with the gut microbiota. Anthocyanins can modulate gut microbial populations to improve diversity and the proportion of beneficial populations, leading to alterations in short chain fatty acid and bile acid production. Some anthocyanins can be degraded into colonic metabolites, such as phenolic acids, which accumulate in the body and regulate a range of biological activities. Here we provide an overview of the effects of dietary anthocyanin consumption on gut microbial interactions, metabolism, and composition. Progression of chronic diseases has been strongly associated with imbalances in gut microbial populations. We therefore focus on the role of the gut microbiota as the 'mediator' that facilitates the therapeutic potential of anthocyanins against various chronic diseases, including obesity, type II diabetes, cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, cancer, fatty liver disease, chronic kidney disease and osteoarthritis.
Collapse
Affiliation(s)
- Anqi Liang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - William Leonard
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Jesse T Beasley
- School of BioSciences, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Chaminda Senaka Ranadheera
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Adedayo BC, Agunloye OM, Obawarrah RY, Oboh G. Caffeic acid attenuates memory dysfunction and restores the altered activity of cholinergic, monoaminergic and purinergic in brain of cadmium chloride exposure rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:230-238. [PMID: 38591965 DOI: 10.1515/jcim-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVES This study aims to evaluate the neuroprotective effect of caffeic acid (CAF) against cadmium chloride (CdCl2) in rats via its effect on memory index as well as on altered enzymatic activity in the brain of CdCl2-induced neurotoxicity. METHODS The experimental rats were divided into seven groups (n=6 rats per group) of healthy rats (group 1), CdCl2 -induced (CD) (3 mg/kg BW) rats (group 2), CD rats + Vitamin C (group 3), CD rats + CAF (10 and 20 mg/kg BW respectively) (group 4 & 5), and healthy rat + CAF (10 and 20 mg/kg BW respectively) (group 6 & 7). Thereafter, CdCl2 and CAF were administered orally to the experimental rats in group 2 to group 5 on daily basis for 14 days. Then, the Y-maze test was performed on the experimental rats to ascertain their memory index. RESULTS CdCl2 administration significantly altered cognitive function, the activity of cholinesterase, monoamine oxidase, arginase, purinergic enzymes, nitric oxide (NOx), and antioxidant status of Cd rats (untreated) when compared with healthy rats. Thereafter, CD rats treated with vitamin C and CAF (10 and 20 mg/kg BW) respectively exhibited an improved cognitive function, and the observed altered activity of cholinesterase, monoamine oxidase, arginase, purinergic were restored when compared with untreated CD rats. Also, the level of brain NOx and antioxidant status were significantly (p<0.05) enhanced when compared with untreated CD rats. In the same vein, CAF administration offers neuro-protective effect in healthy rats vis-à-vis improved cognitive function, reduction in the activity of some enzymes linked to the progression of cognitive dysfunction, and improved antioxidant status when compared to healthy rats devoid of CAF. CONCLUSIONS This study demonstrated the neuroprotective effect of CAF against CdCl2 exposure and in healthy rats.
Collapse
Affiliation(s)
- Bukola C Adedayo
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| | - Odunayo M Agunloye
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| | - Rasheedat Y Obawarrah
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| | - Ganiyu Oboh
- 107738 Functional Foods and Nutraceuticals Unit, Department of Biochemistry, The Federal University of Technology , Akure, Nigeria
| |
Collapse
|
21
|
Alrumaihi F, Almatroodi SA, Alharbi HOA, Alwanian WM, Alharbi FA, Almatroudi A, Rahmani AH. Pharmacological Potential of Kaempferol, a Flavonoid in the Management of Pathogenesis via Modulation of Inflammation and Other Biological Activities. Molecules 2024; 29:2007. [PMID: 38731498 PMCID: PMC11085411 DOI: 10.3390/molecules29092007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products and their bioactive compounds have been used for centuries to prevent and treat numerous diseases. Kaempferol, a flavonoid found in vegetables, fruits, and spices, is recognized for its various beneficial properties, including its antioxidant and anti-inflammatory potential. This molecule has been identified as a potential means of managing different pathogenesis due to its capability to manage various biological activities. Moreover, this compound has a wide range of health-promoting benefits, such as cardioprotective, neuroprotective, hepatoprotective, and anti-diabetic, and has a role in maintaining eye, skin, and respiratory system health. Furthermore, it can also inhibit tumor growth and modulate various cell-signaling pathways. In vivo and in vitro studies have demonstrated that this compound has been shown to increase efficacy when combined with other natural products or drugs. In addition, kaempferol-based nano-formulations are more effective than kaempferol treatment alone. This review aims to provide detailed information about the sources of this compound, its bioavailability, and its role in various pathogenesis. Although there is promising evidence for its ability to manage diseases, it is crucial to conduct further investigations to know its toxicity, safety aspects, and mechanism of action in health management.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hajed Obaid A. Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wanian M. Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fadiyah A. Alharbi
- Department of Obstetrics/Gynecology, Maternity and Children’s Hospital, Buraydah 52384, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
22
|
Hashim AR, Bashir DW, Rashad E, Galal MK, Rashad MM, Khalil HMA, Deraz NM, S M EG. Neuroprotective Assessment of Betaine against Copper Oxide Nanoparticle-Induced Neurotoxicity in the Brains of Albino Rats: A Histopathological, Neurochemical, and Molecular Investigation. ACS Chem Neurosci 2024; 15:1684-1701. [PMID: 38564598 DOI: 10.1021/acschemneuro.3c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1β and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1β, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1β and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.
Collapse
Affiliation(s)
- Asmaa R Hashim
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Mona K Galal
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Maha M Rashad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Heba M A Khalil
- Veterinary Hygiene and Management Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Nasrallah M Deraz
- Physical Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - El-Gharbawy S M
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
23
|
Murumulla L, Bandaru LJM, Challa S. Heavy Metal Mediated Progressive Degeneration and Its Noxious Effects on Brain Microenvironment. Biol Trace Elem Res 2024; 202:1411-1427. [PMID: 37462849 DOI: 10.1007/s12011-023-03778-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 02/13/2024]
Abstract
Heavy metals, including lead (Pb), cadmium (Cd), arsenic (As), cobalt (Co), copper (Cu), manganese (Mn), zinc (Zn), and others, have a significant impact on the development and progression of neurodegenerative diseases in the human brain. This comprehensive review aims to consolidate the recent research on the harmful effects of different metals on specific brain cells such as neurons, microglia, astrocytes, and oligodendrocytes. Understanding the potential influence of these metals in neurodegeneration is crucial for effectively combating the ongoing advancement of these diseases. Metal-induced neurodegeneration involves molecular mechanisms such as apoptosis induction, dysregulation of metabolic and signaling pathways, metal imbalance, oxidative stress, loss of synaptic transmission, pathogenic peptide aggregation, and neuroinflammation. This review provides valuable insights by compiling the supportive evidence from recent research findings. Additionally, we briefly discuss the modes of action of natural neuroprotective compounds. While this comprehensive review aims to consolidate the recent research on the harmful effects of various metals on specific brain cells, it may not cover all studies and findings related to metal-induced neurodegeneration. Studies that are done using bioinformatics tools, microRNAs, long non-coding RNAs, emerging disease models, and studies based on the modes of exposure to toxic metals are a future prospect to be explored.
Collapse
Affiliation(s)
- Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Lakshmi Jaya Madhuri Bandaru
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad-500007, Hyderabad, Telangana, India.
| |
Collapse
|
24
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
25
|
Gao S, Zheng F, Yue L, Chen B. Chronic cadmium exposure impairs flight behavior by dampening flight muscle carbon metabolism in bumblebees. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133628. [PMID: 38301442 DOI: 10.1016/j.jhazmat.2024.133628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Cadmium pollution affects the global ecosystem because cadmium can be transferred up the food chain. The bumblebee, Bombus terrestris, is an important insect pollinator. Their foraging activity on flowers exposes them to harmful heavy metals, which damages their health and leads to massive population declines. However, the effects of chronic exposure to heavy metals on the flight performance of bumblebees have not yet been characterized. Here, we studied variation in the flight capacity of bumblebees induced by chronic cadmium exposure at field-realistic concentrations using behavioral, physiological, and molecular approaches. Chronic cadmium exposure caused a significant reduction in the duration, distance, and mean velocity of bumblebee flight. Transcriptome analysis showed that the impairment of carbon metabolism and mitochondrial dysfunction in the flight muscle were the primary causes. Physiological, biochemical, and metabolomic analyses validated disruptions in energy metabolism, and impairments in mitochondrial respiratory chain complexes activities. Histological analysis revealed muscle fiber damage and mitochondrial loss. Exogenous decanoic acid or citric acid partially restored sustained flight ability of bumblebees by mitigating muscle fiber damage and increasing energy generation. These findings provide insights into how long-term cadmium stress affects the flight ability of insects and will aid human muscle or exercise-related disease research.
Collapse
Affiliation(s)
- Shen Gao
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fei Zheng
- College of Life Sciences, Hebei University, Baoding 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Yue
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
26
|
Zhang Z, Li Y, Feng H, Li S, Qin Z, Li J, Chen Y, Zhang Y, Zhao Y, Yin X, Huang B, Gao Y, Shi Y, Shi H. Effects of postweaning cadmium exposure on socioemotional behaviors in adolescent male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116089. [PMID: 38354436 DOI: 10.1016/j.ecoenv.2024.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Exposure to cadmium (Cd), a toxic heavy metal classified as an environmental endocrine disruptor, can exert significant toxicity in both animals and humans. However, the potential effects of Cd exposure on socioemotional behaviors are still poorly understood, as are the underlying mechanisms. In the present study, employing a series of behavioral tests as well as 16 S rRNA sequencing analysis, we investigated the long-term effects of Cd exposure on socioemotional behaviors and their associated mechanisms in mice based on the brain-gut interaction theory. The results showed that postweaning exposure to Cd reduced the ability to resist depression, decreased social interaction, subtly altered sexual preference, and changed the composition of the gut microbiota in male mice during adolescence. These findings provided direct evidence for the deleterious effects of exposure to Cd in the postweaning period on socioemotional behaviors later in adolescence, and suggested that these effects of Cd exposure may be linked to changes in the gut microbiota.
Collapse
Affiliation(s)
- Zhengxin Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yuxin Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Shijun Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Zihan Qin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Jiabo Li
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yifei Chen
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Yue Zhang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xueyong Yin
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Boya Huang
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang 050017, China; Nursing School, Hebei Medical University, Shijiazhuang 050031, China; Hebei Key Laboratory of Forensic Medicine, Hebei Province, Shijiazhuang 050017, China.
| |
Collapse
|
27
|
Chen C, Song J, Pu Q, Liu X, Yan J, Wang X, Wang H, Qian Q. Azithromycin induces neurotoxicity in zebrafish by interfering with the VEGF/Notch signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166505. [PMID: 37625730 DOI: 10.1016/j.scitotenv.2023.166505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Azithromycin (AZM) is a widely used antibiotic in both human and veterinary medicine, and its use has significantly increased during the COVID-19 pandemic. However, potential adverse effects of AZM on aquatic organisms have not been well studied. In this study, we explored the neurotoxicity of AZM in zebrafish and delved into its underlying mechanisms. Our results showed that AZM exposure resulted in a spectrum of detrimental effects in zebrafish, encompassing abnormal behaviors, damaged neuronal development, aberrant lateral line nervous system development, vascular malformations and perturbed expression of genes related to neural development. Moreover, we observed a concentration-dependent exacerbation of these neurotoxic manifestations with increasing AZM concentrations. Notably, AZM induced excessive cell apoptosis and oxidative stress damage. In addition, alterations in the expression levels of the genes involved in the VEGF/Notch signaling pathway were evident in AZM-exposed zebrafish. Consequently, we hypothesize that AZM may induce neurotoxicity by influencing the VEGF/Notch signaling pathway. To validate this hypothesis, we introduced a VEGF signaling inhibitor, axitinib, and a Notch signaling agonist, valproic acid, alongside AZM exposure. Remarkably, the administration of these rescue compounds significantly mitigated the neurotoxic effects induced by AZM. This dual verification provides compelling evidence that AZM indeed induces neurotoxicity during the early developmental stages of zebrafish, primarily through its interference with the VEGF/Notch pathway. Innovatively, our study reveals the molecular mechanism of AZM-induced neurotoxicity from the perspective of the close connection between blood vessels and nervous system. These findings provide new insights into the potential mechanisms underlying the neurotoxic effect of antibiotics and highlight the need for further investigation into the ecotoxicological effects of antibiotics on aquatic organisms and the potential risks to human health.
Collapse
Affiliation(s)
- Chen Chen
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qian Pu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xingcheng Liu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
28
|
Xu Y, Hong H, Lin X, Tong T, Zhang J, He H, Yang L, Mao G, Hao R, Deng P, Yu Z, Pi H, Cheng Y, Zhou Z. Chronic cadmium exposure induces Parkinson-like syndrome by eliciting sphingolipid disturbance and neuroinflammation in the midbrain of C57BL/6J mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122606. [PMID: 37742865 DOI: 10.1016/j.envpol.2023.122606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Cadmium (Cd) is known as a widespread environmental neurotoxic pollutant. Cd exposure is recently recognized as an etiological factor of Parkinson's disease (PD) in humans. However, the mechanism underlying Cd neurotoxicity in relation to Parkinsonism pathogenesis is unclear. In our present study, C57BL/6 J mice were exposed to 100 mg/L CdCl2 in drinking water for 8 weeks. It was found Cd exposure caused motor deficits, decreased DA neurons and induced neuropathological changes in the midbrain. Non-targeted lipidomic analysis uncovered that Cd exposure altered lipid profile, increased the content of proinflammatory sphingolipid ceramides (Cer), sphingomyelin (SM) and ganglioside (GM3) in the midbrain. In consistency with increased proinflammatory lipids, the mRNA levels of genes encoding sphingolipids biosynthesis in the midbrain were dysregulated by Cd exposure. Neuroinflammation in the midbrain was evinced by the up-regulation of proinflammatory cytokines at mRNA and protein levels. Blood Cd contents and lipid metabolites in Parkinsonism patients by ICP-MS and LC-MS/MS analyses demonstrated that elevated blood Cd concentration and proinflammatory lipid metabolites were positively associated with the score of Unified Parkinson's Disease Rating Scale (UPDRS). 3 ceramide metabolites in the blood showed good specificity as the candidate biomarkers to predict and monitor Parkinsonism and Cd neurotoxicity (AUC>0.7, p < 0.01). In summary, our present study uncovered that perturbed sphingomyelin lipid metabolism is related to the Parkinsonism pathogenesis and Cd neurotoxicity, partially compensated for the deficiency in particular metabolic biomarkers for Parkinsonism in relation to Cd exposure, and emphasized the necessity of reducing Cd exposure at population level.
Collapse
Affiliation(s)
- Yudong Xu
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Hong
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Xiqin Lin
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Tong
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Zhang
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haotian He
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Gaofeng Mao
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Rongrong Hao
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yong Cheng
- Neurology Department, General Hospital of Center Theater Command, Wuhan, China
| | - Zhou Zhou
- Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China; Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
29
|
Ramadan SS, El Zaiat FA, Habashy EA, Montaser MM, Hassan HE, Tharwat SS, El-khadragy M, Abdel Moneim AE, Elshopakey GE, Akabawy AMA. Coenzyme Q10-Loaded Albumin Nanoparticles Protect against Redox Imbalance and Inflammatory, Apoptotic, and Histopathological Alterations in Mercuric Chloride-Induced Hepatorenal Toxicity in Rats. Biomedicines 2023; 11:3054. [PMID: 38002054 PMCID: PMC10669886 DOI: 10.3390/biomedicines11113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Exposure to mercuric chloride (HgCl2), either accidental or occupational, induces substantial liver and kidney damage. Coenzyme Q10 (CoQ10) is a natural antioxidant that also has anti-inflammatory and anti-apoptotic activities. Herein, our study aimed to investigate the possible protective effects of CoQ10 alone or loaded with albumin nanoparticles (CoQ10NPs) against HgCl2-induced hepatorenal toxicity in rats. Experimental animals received CoQ10 (10 mg/kg/oral) or CoQ10NPs (10 mg/kg/oral) and were injected intraperitoneally with HgCl2 (5 mg/kg; three times/week) for two weeks. The results indicated that CoQ10NP pretreatment caused a significant decrease in serum liver and kidney function markers. Moreover, lowered MDA and NO levels were associated with an increase in antioxidant enzyme activities (SOD, GPx, GR, and CAT), along with higher GSH contents, in both the liver and kidneys of intoxicated rats treated with CoQ10NPs. Moreover, HgCl2-intoxicated rats that received CoQ10NPs revealed a significant reduction in the hepatorenal levels of TNF-α, IL-1β, NF-κB, and TGF-β, as well as an increase in the hepatic level of the fibrotic marker (α-SMA). Notably, CoQ10NPs counteracted hepatorenal apoptosis by diminishing the levels of Bax and caspase-3 and boosting the level of Bcl-2. The hepatic and renal histopathological findings supported the abovementioned changes. In conclusion, these data suggest that CoQ10, alone or loaded with albumin nanoparticles, has great power in reversing the hepatic and renal tissue impairment induced by HgCl2 via the modulation of hepatorenal oxidative damage, inflammation, and apoptosis. Therefore, this study provides a valuable therapeutic agent (CoQ10NPs) for preventing and treating several HgCl2-induced hepatorenal disorders.
Collapse
Affiliation(s)
- Shimaa S. Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Farah A. El Zaiat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Engy A. Habashy
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Mostafa M. Montaser
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Habeba E. Hassan
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shahinaz S. Tharwat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal El-khadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Gehad E. Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
30
|
Zheng L, Jing X, Zhang X, Zhong C, Qiu D, Yan Q, Gao Z. Mediation analysis of urinary metals and stroke risk by inflammatory markers. CHEMOSPHERE 2023; 341:140084. [PMID: 37689152 DOI: 10.1016/j.chemosphere.2023.140084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND The association between metals and stroke has been reported, but the mediating role of inflammation between metals and stroke remains unclear. METHODS We included 9326 adults from the National Health and Nutrition Examination Survey in this study. Through least absolute selection and shrinkage operator (LASSO) regression, weighted quantile sum (WQS) regression, logistic regression, linear regression, restricted cubic spline analysis, and mediation analysis, we explored the association between metals and stroke, as well as the association between metals and inflammatory indicators, and further evaluated the mediating effect of inflammatory indicators on the association between selected metals and stroke risk. RESULTS The results of the present study suggested positive associations between mixed metals, cadmium and uranium and stroke risk. There is a positive correlation and dose‒response relationship between cadmium and C-reactive protein (CRP). Moreover, CRP mediates 10.1% of the association between cadmium and stroke. CONCLUSIONS At the epidemiological level, CRP mediates the association between cadmium and stroke risk, suggesting that inflammation may be a potential mechanism for metal-induced stroke.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Xi Jing
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dezhi Qiu
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
31
|
Mannino F, Pallio G, Imbesi C, Scarfone A, Puzzolo D, Micali A, Freni J, Squadrito F, Bitto A, Minutoli L, Irrera N. Beta-Caryophyllene, a Plant-Derived CB2 Receptor Agonist, Protects SH-SY5Y Cells from Cadmium-Induced Toxicity. Int J Mol Sci 2023; 24:15487. [PMID: 37895166 PMCID: PMC10607613 DOI: 10.3390/ijms242015487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cadmium (Cd) is a transition heavy metal that is able to accumulate in the central nervous system and may induce cell death through reactive oxygen species (ROS)-mediated mechanisms and inactivating the antioxidant processes, becoming an important risk factor for neurodegenerative diseases. The antioxidant effects of cannabinoid receptor modulation have been extensively described, and, in particular, β-Caryophyllene (BCP), a plant-derived cannabinoid 2 receptor (CB2R) agonist, not only showed significant antioxidant properties but also anti-inflammatory, analgesic, and neuroprotective effects. Therefore, the aim of the present study was to evaluate BCP effects in a model of Cd-induced toxicity in the neuroblastoma SH-SY5Y cell line used to reproduce Cd intoxication in humans. SH-SY5Y cells were pre-treated with BCP (25, 50, and 100 μM) for 24 h. The day after, cells were challenged with cadmium chloride (CdCl2; 10 μM) for 24 h to induce neuronal toxicity. CdCl2 increased ROS accumulation, and BCP treatment significantly reduced ROS production at concentrations of 50 and 100 μM. In addition, CdCl2 significantly decreased the protein level of nuclear factor erythroid 2-related factor 2 (Nrf2) compared to unstimulated cells; the treatment with BCP at a concentration of 50 μM markedly increased Nrf2 expression, thus confirming the BCP anti-oxidant effect. Moreover, BCP treatment preserved cells from death, regulated the apoptosis pathway, and showed a significant anti-inflammatory effect, thus reducing the pro-inflammatory cytokines increased by the CdCl2 challenge. The results indicated that BCP preserved neuronal damage induced by Cd and might represent a future candidate for protection in neurotoxic conditions.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Giovanni Pallio
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Alessandro Scarfone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Antonio Micali
- Department of Adult and Childhood Pathology “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (G.P.); (D.P.); (J.F.)
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (F.M.); (C.I.); (A.S.); (F.S.); (A.B.); (N.I.)
| |
Collapse
|
32
|
Liu X, Sun J, Du J, An J, Li Y, Hu Y, Xiong Y, Yu Y, Tian H, Mei X, Wu C. Encapsulation of Selenium Nanoparticles and Metformin in Macrophage-Derived Cell Membranes for the Treatment of Spinal Cord Injury. ACS Biomater Sci Eng 2023; 9:5709-5723. [PMID: 37713674 DOI: 10.1021/acsbiomaterials.3c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Spinal cord injury is an impact-induced disabling condition. A series of pathological changes after spinal cord injury (SCI) are usually associated with oxidative stress, inflammation, and apoptosis. These pathological changes eventually lead to paralysis. The short half-life and low bioavailability of many drugs also limit the use of many drugs in SCI. In this study, we designed nanovesicles derived from macrophages encapsulating selenium nanoparticles (SeNPs) and metformin (SeNPs-Met-MVs) to be used in the treatment of SCI. These nanovesicles can cross the blood-spinal cord barrier (BSCB) and deliver SeNPs and Met to the site of injury to exert anti-inflammatory and reactive oxygen species scavenging effects. Transmission electron microscopy (TEM) images showed that the SeNPs-Met-MVs particle size was approximately 125 ± 5 nm. Drug release assays showed that Met exhibited sustained release after encapsulation by the macrophage cell membrane. The cumulative release was approximately 80% over 36 h. In vitro cellular experiments and in vivo animal experiments demonstrated that SeNPs-Met-MVs decreased reactive oxygen species (ROS) and malondialdehyde (MDA) levels, increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, and reduced the expression of inflammatory (TNF-α, IL-1β, and IL-6) and apoptotic (cleaved caspase-3) cytokines in spinal cord tissue after SCI. In addition, motor function in mice was significantly improved after SeNPs-Met-MVs treatment. Therefore, SeNPs-Met-MVs have a promising future in the treatment of SCI.
Collapse
Affiliation(s)
- Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jiaqun Du
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Jinyu An
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yingqiao Li
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Yu Hu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Ying Xiong
- Laboratoire Catalyse et Spectrochimie (LCS), Normandie Université, ENSICAEN, UNICAEN, CNRS, Caen 14050, France
| | - Yanan Yu
- Medical College of Jinzhou Medical University, Jinzhou Medical University, Jinzhou, Liaoning 121010, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Xifan Mei
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Chao Wu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
- Key Laboratory of Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| |
Collapse
|
33
|
Almeer R, Alyami NM. The protective effect of apigenin against inorganic arsenic salt-induced toxicity in PC12 cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106625-106635. [PMID: 37730986 DOI: 10.1007/s11356-023-29884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Poisoning by arsenic affects people worldwide, and many human illnesses and health issues, including neurotoxicity, have been linked to chronic exposure to arsenic. When exposed to arsenic, the body produces intracellular reactive oxygen species (ROS), which influence a variety of alterations in cellular activity and directly harm molecules through oxidation. Arsenic-induced lesions are improved by antioxidants with the ability to lower ROS levels. Therefore, the current research aimed to assess how well apigenin protected PC12 cells from the toxicity caused by inorganic arsenic salt (iAs). For 24 and 48 h, iAs and/or apigenin were applied to PC12 cells. Then, oxidative stress indicators like malondialdehyde (MDA), nitric oxide (NO), and ROS in addition to the enzymatic and non-enzymatic antioxidant molecules such as catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD) were assessed. Moreover, after exposure to iAs, PC12 was examined for nuclear factor erythroid 2-related factor 2 (Nrf2) expression to clarify how apigenin manifests its neuroprotection. Furthermore, NF-kB p65 concentration and IL-1B, IL-6, and TNF-α mRNA expression were measured to assess neuroinflammation. Bax, caspase-3, and Bcl-2 levels were measured to investigate apigenin's potential to protect PC12 cells from iAs poisoning. The obtained results revealed that, the cell survival rate in the iAs group was significantly lower (P < 0.05), and the number of viable cells steadily increased after apigenin treatment. Furthermore, the study found that iAs decreased GSH, CAT, and SOD in the PC12 cells while increasing ROS, MDA, and NO levels. In PC12 cells, the capacity of iAs to cause oxidative stress was linked to the induction of neuroinflammation and apoptosis. Interestingly, apigenin pre-treatment of PC12 cells resulted in exceptional protection against iAs-induced neuroinflammation, oxidative stress, and apoptotic cell death. Nrf2 upregulation in PC12 cells may explain the neuroprotection effect of apigenin against iAs toxicity. In conclusion, the obtained results of the present study have clinical significance and indicate that apigenin is a promising candidate for shielding the nervous system from toxic effects caused by arsenic. These findings require further investigation using in vivo experimental models.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Li XW, Qiu F, Liu Y, Chen LJ, Li JH, Liu JL, Yang JZ, Hsu C, Chen L, Zeng JH, Xie XL, Wang Q. Inulin alleviates neuroinflammation and oxidative stress induced by perinatal 2-ethylhexyl diphenyl phosphate (EHDPHP) exposure in female mice and offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115396. [PMID: 37625336 DOI: 10.1016/j.ecoenv.2023.115396] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023]
Abstract
Organophosphorus flame retardants (OPFRs), including 2-ethylhexyl diphenyl phosphate (EHDPHP), are prevalent in everyday life due to their broad usage in fields such as healthcare, electronics, industry, and sports. These compounds, added to polymers through physical mixing, can leach into the environment, posing a risk to humans through direct contact or the food chain. Despite known associations with health issues like endocrine disruption, neurotoxicity, and reproductive toxicity, the implications of perinatal EHDPHP exposure on both mothers and offspring are still unclear. This study aimed to investigate the neuroinflammatory effects of EHDPHP and the potential mitigating role of inulin. Pregnant C57 mice were administered either a corn oil control or an EHDPHP solution (300 μg/kg bw/d) from gestation day 7 (GD7) to postnatal day 21 (PND21). Concurrently, mice were provided either regular drinking water or water supplemented with 1% inulin. We found that EHDPHP significantly increased the serum levels of IL-1β, IL-6, and MDA, but decreased SOD levels in both mothers and pups. These effects were reversed by inulin supplementation. RNA-sequencing revealed that EHDPHP induced inflammation and oxidative stress through the TLR4/NF-κB pathway, which was mitigated by inulin. In conclusion, inulin ameliorated EHDPHP-induced neuroinflammation and oxidative stress in both mothers and offspring, highlighting its potential therapeutic role.
Collapse
Affiliation(s)
- Xiu-Wen Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong 528244, China.
| | - Yi Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Li-Jian Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Li Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jian-Zheng Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Clare Hsu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Long Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jia-Hao Zeng
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, Guangdong 510515, China.
| | - Qi Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
35
|
Talukder M, Bi SS, Lv MW, Ge J, Zhang C, Li JL. Involvement of the heat shock response (HSR) regulatory pathway in cadmium-elicited cerebral damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106648-106659. [PMID: 37730984 DOI: 10.1007/s11356-023-29880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/10/2023] [Indexed: 09/22/2023]
Abstract
The heat shock response (HSR) is a cellular protective mechanism that is characterized by the induction of heat shock transcription factors (HSFs) and heat shock proteins (HSPs) in response to diverse cellular and environmental stressors, including cadmium (Cd). However, little is known about the relationship between the damaging effects of Cd and the HSR pathway in the chicken cerebrum following Cd exposure. To explore whether Cd exposure elicits cerebral damage and triggers the HSR pathway, chicks were exposed to Cd in the daily diet at different concentrations (35, 70, or 140 mg/kg feed) for 90 days, while a control group was fed the standard diet without Cd. Histopathological examination of cerebral tissue from Cd-exposed chickens showed neuronal damage, as evidenced by swelling and degeneration of neurons, loss of neurons, and capillary damage. Cd exposure significantly increased mRNA expression of HSF1, HSF2, and HSF3, and mRNA and protein expression of three major stress-inducible HSPs (HSP60, HSP70, and HSP90). Moreover, Cd exposure differentially modulated mRNA expression of small HSP (sHSPs), most notably reducing expression of HSP27 (HSPB1). Furthermore, Cd exposure increased TUNEL-positive neuronal apoptotic cells and up-regulated protein expression of caspase-1, caspase-8, caspase-3, and p53, leading to apoptosis. Taken together, these data demonstrate that activation of the HSR and apoptotic pathways by Cd exposure is involved in Cd-elicited cerebral damage in the chicken. Synopsis for the graphical abstract Cadmium (Cd)-induced neuronal damage triggers the heat shock response (HSR) by activating heat shock transcription factors (HSFs) and subsequent induction of major heat shock proteins (notably, HSP60, HSP70, and HSP90). Moreover, Cd exposure activates caspase-1, caspase-8, caspase-3, and p53 protein, thereby resulting in neuronal apoptosis in the chicken brain.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, 237012, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
36
|
Montero-Atalaya M, Expósito S, Muñoz-Arnaiz R, Makarova J, Bartolomé B, Martín E, Moreno-Arribas MV, Herreras O. A dietary polyphenol metabolite alters CA1 excitability ex vivo and mildly affects cortico-hippocampal field potential generators in anesthetized animals. Cereb Cortex 2023; 33:10411-10425. [PMID: 37550066 PMCID: PMC10545443 DOI: 10.1093/cercor/bhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
Dietary polyphenols have beneficial effects in situations of impaired cognition in acute models of neurodegeneration. The possibility that they may have a direct effect on the electrical activity of neuronal populations has not been tested. We explored the electrophysiological action of protocatechuic acid (PCA) on CA1 pyramidal cells ex vivo and network activity in anesthetized female rats using pathway-specific field potential (FP) generators obtained from laminar FPs in cortex and hippocampus. Whole-cell recordings from CA1 pyramidal cells revealed increased synaptic potentials, particularly in response to basal dendritic excitation, while the associated evoked firing was significantly reduced. This counterintuitive result was attributed to a marked increase of the rheobase and voltage threshold, indicating a decreased ability to generate spikes in response to depolarizing current. Systemic administration of PCA only slightly altered the ongoing activity of some FP generators, although it produced a striking disengagement of infraslow activities between the cortex and hippocampus on a scale of minutes. To our knowledge, this is the first report showing the direct action of a dietary polyphenol on electrical activity, performing neuromodulatory roles at both the cellular and network levels.
Collapse
Affiliation(s)
- Marta Montero-Atalaya
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Sara Expósito
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Ricardo Muñoz-Arnaiz
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Julia Makarova
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Begoña Bartolomé
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Eduardo Martín
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| | - María Victoria Moreno-Arribas
- Dept Biotecnología y Microbiología de Alimentos, Institute of Food Science Research (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Oscar Herreras
- Dept Neurociencia Translacional, Cajal Institute, CSIC, Av Doctor Arce 37, 28002 Madrid, Spain
| |
Collapse
|
37
|
Dai Z, Li G, Wang X, Gao B, Gao X, Strappe P, Zhou Z. Mapping the metabolic characteristics of probiotic-fermented Ganoderma lucidum and its protective mechanism against Cd-induced nephrotoxicity. Food Funct 2023; 14:8615-8630. [PMID: 37668611 DOI: 10.1039/d3fo01587d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
An animal model of Cd-induced kidney damage was designed to investigate the nephroprotective potential of the probiotic-fermented Ganoderma lucidum (FGL) via metabonomic analysis. The results showed that FGL enhanced sugar and amino acid metabolism. The interaction of Ganoderma lucidum (GL) and probiotics efficiently elevated short-chain fatty acid production following gut microbiota fermentation. The current data revealed that the FGL intervention alleviated Cd-induced nephrotoxicity via elevating the activity of antioxidant enzymes and decreasing the levels of pro-inflammatory and apoptotic factors. Based on transcriptome analysis, FGL intervention mediated renal dysfunction via decreasing the expressions of Nos2, Tnfsf14, S100a9, Map3k6 and Hk3, which were involved in oxidative stress, inflammatory response and the apoptosis process. The current study highlights a new approach for achieving positive nephroprotection via natural product intervention.
Collapse
Affiliation(s)
- Zhen Dai
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Bo Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiuwei Gao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia
| | - Zhongkai Zhou
- Key Laboratory for Processing and Quality Safety Control of Characteristic Agricultural Products, the Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi 832003, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Gulbali Institute-Agriculture Water Environment, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
38
|
Hu B, Liu S, Luo Y, Pu J, Deng X, Zhou W, Dong Y, Ma Y, Wang G, Yang F, Zhu T, Zhan J. Procyanidin B2 alleviates uterine toxicity induced by cadmium exposure in rats: The effect of oxidative stress, inflammation, and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115290. [PMID: 37515969 DOI: 10.1016/j.ecoenv.2023.115290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
Environmental exposure to hazardous materials causes enormous socioeconomic problems due to its deleterious impacts on human beings, agriculture and animal husbandry. As an important hazardous material, cadmium can promote uterine oxidative stress and inflammation, leading to reproductive toxicity. Antioxidants have been reported to attenuate the reproductive toxicity associated with cadmium exposure. In this study, we investigated the potential protective effect of procyanidin oligosaccharide B2 (PC-B2) and gut microbiota on uterine toxicity induced by cadmium exposure in rats. The results showed that the expression levels of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were reduced in utero. Proinflammatory cytokines (including tumor necrosis factor-α, interleukin-1β and interleukin-6), the NLRP3 inflammasome, Caspase-1 and pro-IL-1β were all involved in inflammatory-mediated uterine injury. PC-B2 prevented CdCl2-induced oxidative stress and inflammation in uterine tissue by increasing antioxidant enzymes and reducing proinflammatory cytokines. Additionally, PC-B2 significantly reduced cadmium deposition in the uterus, possibly through its significant increase in MT1, MT2, and MT3 mRNA expression. Interestingly, PC-B2 protected the uterus from CdCl2 damage by increasing the abundance of intestinal microbiota, promoting beneficial microbiota, and inhibiting harmful microbiota. This study provides novel mechanistic insights into the toxicity of environmental cadmium exposure and indicates that PC-B2 could be used in the prevention of cadmium exposure-induced uterine toxicity.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China; Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China; Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China; Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yuanyue Luo
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyu Pu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Wenjing Zhou
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yuqing Dong
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yichuan Ma
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Gang Wang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China; Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Fan Yang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China.
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
39
|
Cengiz M, Gür B, Sezer CV, Cengiz BP, Gür F, Bayrakdar A, Ayhancı A. Alternations in interleukin-1β and nuclear factor kappa beta activity (NF-kB) in rat liver due to the co-exposure of Cadmium and Arsenic: Protective role of curcumin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104218. [PMID: 37451528 DOI: 10.1016/j.etap.2023.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Cadmium chloride (Cd) and sodium arsenite (As) are two prominent examples of non-biodegradable substances that accumulate in ecosystems, pose a serious risk to human health and are not biodegradable. Although the toxicity caused by individual use of Cd and As is known, the toxicity of combined use (Cd+As) to mammals is poorly understood. The present study aims to investigate the hepatoprotective effect of curcumin (CUR), a naturally occurring bioactive component isolated from the root stem of Curcuma longa Linn., in preventing liver damage caused by a Cd+As mixture. A group of 30 Sprague-Dawley rats were subjected to intraperitoneal administration of Cd+As (0.44 mg/kg+5.55 mg/kg i.p.) and CUR (100 or 200 mg/kg) for a period of 14 days. The experimental results showed that the animals treated with Cd+As exhibited changes in liver biochemical parameters, inflammation and oxidative stress at the end of the experiment. Administration of CUR significantly reduced inflammation, oxidative stress and lipid peroxidation in the Cd+As plus CUR groups compared to the Cd+As group. Furthermore, histological examination of the liver tissue showed that administration of CUR had led to a significant reduction in the liver damage observed in the Cd+As group. The present study provides scientific evidence for the protective effects of CUR against lipid peroxidation, inflammation, oxidative stress and liver damage induced by Cd+As in the liver of rats. The results of our in vivo experiments were confirmed by those of our molecular modelling studies, which showed that CUR can enhance the diminished antioxidant capacity caused by Cd+As.
Collapse
Affiliation(s)
- Mustafa Cengiz
- Department of Elementary Education, Faculty of Education, Siirt University, Siirt, Turkey.
| | - Bahri Gür
- Department of Biochemistry, Faculty of Sciences and Arts, Iğdır University, Iğdır, Turkey.
| | - Canan Vejselova Sezer
- Department of Biology, Faculty of Science, Eskişehir Technical University, 26470 Eskişehir, Turkey
| | - Betül Peker Cengiz
- Department of Pathology, Eskişehir Yunus Emre State Hospital, Eskişehir, Turkey
| | - Fatma Gür
- Department of Dental Prosthesis Technology, Vocational School of Health Services, Ataturk University, Erzurum, Turkey
| | - Alpaslan Bayrakdar
- Vocational School of Higher Education for Healthcare Services, Iğdır University, Iğdır, Turkey
| | - Adnan Ayhancı
- Department of Biology, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
40
|
Li Z, Shi Y, Wang Y, Qi H, Chen H, Li J, Li L. Cadmium-induced pyroptosis is mediated by PERK/TXNIP/NLRP3 signaling in SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2219-2227. [PMID: 37300869 DOI: 10.1002/tox.23861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a hypertoxic heavy metal that may be exposed to environmental pollutants by humans and animals. It can lead to cognitive disfunction, and is linked to neurodegenerative diseases. Cadmium reportedly can induce endoplasmic reticulum (ER) stress, but few studies have concentrated on it in nerve cells, and the connection between ER stress and neuroinflammation. In this study, in vitro experiments on SH-SY5Y neuroblastoma cells were carried out. We aimed at exploring whether Cd attributed to the cell pyroptosis and the role of PERK in promoting this form of cell damage which can induce strong inflammatory responses. Our results demonstrated that CdCl2 treatment induced excess reactive oxygen species (ROS) production, caused significant modifications in the expression of PERK and increased TXNIP, NLRP3, IL-1β, IL-18, and caspase1 in SH-SY5Y cells. In addition, scavenging ROS with N-acetylcysteine or inhibiting the expression of PERK by using GSK2606414, rescued the SH-SY5Y cells from cadmium-induced pyroptosis. In conclusion, the results suggest that Cd induces pyroptotic death of SH-SY5Y cells through ER stress, and this may be the potential mechanism of Cd incurring neurological diseases.
Collapse
Affiliation(s)
- Zhihui Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, China
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Shi
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yougang Wang
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haomin Qi
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Haiyu Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, School of Life Science, Hubei University, Wuhan, China
| |
Collapse
|
41
|
El-Zeftawy M, Ghareeb D. Pharmacological bioactivity of Ceratonia siliqua pulp extract: in vitro screening and molecular docking analysis, implication of Keap-1/Nrf2/NF-ĸB pathway. Sci Rep 2023; 13:12209. [PMID: 37500735 PMCID: PMC10374561 DOI: 10.1038/s41598-023-39034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Inflammation is interfaced with various metabolic disorders. Ceratonia siliqua (CS) has a higher pharmaceutical purpose. The research aimed to investigate the biofunction of CS pulp aqueous extract (CS-PAE) with an emphasis on its integrated computational approaches as opposed to different specific receptors contributing to inflammation. The extract was assessed for its chemical and phenolic components via GC-MS, LC-MS, HPLC, and total phenolic and flavonoid content. In vitro, bioactivities and molecular docking were analyzed. Findings indicate that CS-PAE demonstrated higher scavenging activities of nitric oxide, 1,1-diphenyl-2-picrylhydrazyl radical, superoxide anion, hydrogen peroxide, and anti-lipid peroxidation (IC50 values were 5.29, 3.04, 0.63, 7.35 and 9.6 mg/dl, respectively). The extract revealed potent inhibition of RBCs hemolysis, acetylcholine esterase, monoamine oxidase-B, and α-glucosidase enzymes (IC50 was 13.44, 9.31, 2.45, and 1.5 mg/dl, respectively). The extract exhibited a cytotoxic effect against prostate cancer Pc3, liver cancer HepG2, colon cancer Caco2, and lung cancer A549 cell lines. Moreover, CS-PAE owned higher antiviral activity against virus A and some bacteria. When contrasting data from molecular docking, it was reported that both apigenin-7-glucoside and rutin in CS-PAE have a good affinity toward the Keap-1/Nrf2/ NF-ĸB pathway. In conclusion, CS-PAE showed promise in therapeutic activity in metabolic conditions.
Collapse
Affiliation(s)
- Marwa El-Zeftawy
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, New Valley University, El-Kharga, New Valley, Egypt.
| | - Doaa Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
42
|
Hu P, Li K, Peng XX, Kan Y, Yao TJ, Wang ZY, Li Z, Liu HY, Cai D. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis. Front Immunol 2023; 14:1233652. [PMID: 37497225 PMCID: PMC10368479 DOI: 10.3389/fimmu.2023.1233652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
It has been for thousands of years in China known medicinal homologous foods that can be employed both as foods and medicines to benefit human and animal health. These edible herbal materials perform divert roles in the regulation of metabolic disorders, cancers, and immune-related diseases. Curcumin, the primary component derived from medicinal homologous foods like curcuma longa rhizome, is reported to play vital actions in organic activities, such as the numerous pharmacological functions including anti-oxidative stress, anti-inflammation and anti/pro-apoptosis in treating various diseases. However, the potential mechanisms of curcumin-derived modulation still need to be developed and attract more attention worldwide. Given that these signal pathways are enrolled in important bioactive reactions, we collected curcumin's last achievements predominantly on the immune-regulation signals with the underlying targetable strategies in the last 10 years. This mini-review will be helpful to accelerate curcumin and other extracts from medicinal homologous foods use in future human clinical applications.
Collapse
Affiliation(s)
- Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yufei Kan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaojian Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
43
|
Sola E, Moyano P, Flores A, García JM, García J, Anadon MJ, Frejo MT, Pelayo A, de la Cabeza Fernandez M, Del Pino J. Cadmium-promoted thyroid hormones disruption mediates ROS, inflammation, Aβ and Tau proteins production, gliosis, spongiosis and neurodegeneration in rat basal forebrain. Chem Biol Interact 2023; 375:110428. [PMID: 36868496 DOI: 10.1016/j.cbi.2023.110428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Cadmium (Cd) produces cognition decline following single and repeated treatment, although the complete mechanisms are still unrevealed. Basal forebrain (BF) cholinergic neurons innervate the cortex and hippocampus, regulating cognition. Cd single and repeated exposure induced BF cholinergic neuronal loss, partly through thyroid hormones (THs) disruption, which may cause the cognition decline observed following Cd exposure. However, the mechanisms through which THs disruption mediate this effect remain unknown. To research the possible mechanisms through which Cd-induced THs deficiency may mediate BF neurodegeneration, Wistar male rats were treated with Cd for 1- (1 mg/kg) or 28-days (0.1 mg/kg) with or without triiodothyronine (T3, 40 μg/kg/day). Cd exposure promoted neurodegeneration, spongiosis, gliosis and several mechanisms related to these alterations (increased H202, malondialdehyde, TNF-α, IL-1β, IL-6, BACE1, Aβ and phosphorylated-Tau levels, and decreased phosphorylated-AKT and phosphorylated-GSK-3β levels). T3 supplementation partially reversed the effects observed. Our results show that Cd induces several mechanisms that may be responsible for the neurodegeneration, spongiosis and gliosis observed in the rats' BF, which are partially mediated by a reduction in THs levels. These data may help to explain the mechanisms through which Cd induces BF neurodegeneration, possibly leading to the cognitive decline observed, providing new therapeutic tools to prevent and treat these damages.
Collapse
Affiliation(s)
- Emma Sola
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Andrea Flores
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Maria de la Cabeza Fernandez
- Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
44
|
Shayan M, Mehri S, Razavi BM, Hosseinzadeh H. Minocycline Protects PC12 Cells Against Cadmium-Induced Neurotoxicity by Modulating Apoptosis. Biol Trace Elem Res 2023; 201:1946-1954. [PMID: 35661325 DOI: 10.1007/s12011-022-03305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
Abstract
Cadmium (Cd) is a well-known heavy metal and a neurotoxic agent. Minocycline (Mino) is an anti-microbial agent with a lipophilic structure that crosses the blood-brain barrier and enters the cerebral tissue. In recent studies, Mino has been introduced as an antioxidant and anti-apoptotic chemical compound, and therefore, it was examined as a protective candidate against Cd-induced neurotoxicity. In this study, PC12 cells were exposed to Cd alone, or after being pre-treated with Mino. Initially, the cell viability and oxidative stress were analyzed using the MTT assay and fluorimetry, respectively. Then, Cd-induced apoptosis and Mino anti-apoptotic effect were evaluated in both intrinsic and extrinsic pathways using western blot analysis. Exposing PC12 cells to Cd for 24 h decreased cell viability and increased production of reactive oxygen species in comparison with the control group. Cd (35 μM) also elevated the level of caspase-8, Bax/Bcl-2, and caspase-3 proteins in the cells. Mino pre-treatment for 2 h (100 nM) increased the number of viable cells and decreased the production of reactive oxygen species, and the level of all apoptotic markers in comparison to Cd-treated cells. Considering all the evidence, it appears that Mino holds promising antioxidant and anti-apoptotic activity and can protect cells against Cd-induced oxidative stress and prevent apoptotic cell death.
Collapse
Affiliation(s)
- Mersedeh Shayan
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Li L, Ma H, Zhang Y, Jiang H, Xia B, Sberi HA, Elhefny MA, Lokman MS, Kassab RB. Protocatechuic acid reverses myocardial infarction mediated by β-adrenergic agonist via regulation of Nrf2/HO-1 pathway, inflammatory, apoptotic, and fibrotic events. J Biochem Mol Toxicol 2023; 37:e23270. [PMID: 36593721 DOI: 10.1002/jbt.23270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
Myocardial infarction (MI) is an instant ischemic death of cardiomyocytes that remains a major global cause of mortalities. MI is accompanied by oxidative, inflammatory, apoptotic, and fibrotic insults. Protocatechuic acid (PCA) is a polyphenolic compound with various potent biological activities. In this study, we explored the possible cardioprotective role of PCA against isoproterenol (ISO)-mediated MI. Rats were either injected with ISO (85 mg/kg, subcutaneously) or pretreated with PCA (100 or 200 mg/kg, orally). PCA supplementation markedly normalized ISO-induced disturbed cardiac function markers (creatine kinase-MB, lactate dehydrogenase, and troponin T). Notably, PCA administration exerted remarkable increases in glutathione and its derived enzymes, superoxide dismutase, and catalase, as well as decreases in malondialdehyde and nitric oxide levels in the injured cardiac tissue. The molecular findings validated the augmented cellular antioxidative capacity by PCA via increasing the gene expressions of nuclear factor erythroid 2-related factor 2 and heme oxygenase-1. The cardioprotective efficacy of PCA extended to suppress cardiac inflammation as demonstrated by the decreased levels of tumor necrosis factor-alpha, interleukin-1 beta, and nuclear factor kappa B. Additionally, PCA prevented cardiomyocyte loss and fibrosis by decreasing Bax, caspase-3, transforming growth factor-β1 and matrix metalloproteinase-9, and enhancing B-cell lymphoma 2 and tissue inhibitors of metalloproteinase-3. The cardiac histological screening further confirmed the PCA's protective action. The obtained data recommend PCA as an alternative therapeutic agent to attenuate the molecular, biochemical, and histological alterations associated with MI development.
Collapse
Affiliation(s)
- Li Li
- Department of Cardiology, HenanProvincial Chest Hospital, Zhengzhou University, Zhengzhou City, Henan Province, 450000, China
| | - Hua Ma
- Department of Vasculocardiology, Xianyang Central Hospital, Xianyang, China
| | - Yichong Zhang
- Department of Internal Medicine, The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang City, Henan Province, China
| | - Haitao Jiang
- Department of Cardiology, Chifeng Municipal Hospital, Chifeng City, China
| | - Bihua Xia
- The First Department of Cardiology, The Second Affiliated Hospital of GuiZhou Medical University, Kaili City, Guizhou Province, China
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt.,Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Mohamed A Elhefny
- Department of Cancer and Molecular Biology, National Cancer Institute, Cairo University, Cairo, Egypt.,Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Alqunfudah, Saudi Arabia
| | - Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| |
Collapse
|
46
|
Bee Pollen as Functional Food: Insights into Its Composition and Therapeutic Properties. Antioxidants (Basel) 2023; 12:antiox12030557. [PMID: 36978805 PMCID: PMC10045447 DOI: 10.3390/antiox12030557] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Bee pollen is a hive product made up of flower pollen grains, nectar, and bee salivary secretions that beekeepers can collect without damaging the hive. Bee pollen, also called bee-collected pollen, contains a wide range of nutritious elements, including proteins, carbs, lipids, and dietary fibers, as well as bioactive micronutrients including vitamins, minerals, phenolic, and volatile compounds. Because of this composition of high quality, this product has been gaining prominence as a functional food, and studies have been conducted to show and establish its therapeutic potential for medical and food applications. In this context, this work aimed to provide a meticulous summary of the most relevant data about bee pollen, its composition—especially the phenolic compounds—and its biological and/or therapeutic properties as well as the involved molecular pathways.
Collapse
|
47
|
Sun W, Shahrajabian MH. Therapeutic Potential of Phenolic Compounds in Medicinal Plants-Natural Health Products for Human Health. Molecules 2023; 28:1845. [PMID: 36838831 PMCID: PMC9960276 DOI: 10.3390/molecules28041845] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Phenolic compounds and flavonoids are potential substitutes for bioactive agents in pharmaceutical and medicinal sections to promote human health and prevent and cure different diseases. The most common flavonoids found in nature are anthocyanins, flavones, flavanones, flavonols, flavanonols, isoflavones, and other sub-classes. The impacts of plant flavonoids and other phenolics on human health promoting and diseases curing and preventing are antioxidant effects, antibacterial impacts, cardioprotective effects, anticancer impacts, immune system promoting, anti-inflammatory effects, and skin protective effects from UV radiation. This work aims to provide an overview of phenolic compounds and flavonoids as potential and important sources of pharmaceutical and medical application according to recently published studies, as well as some interesting directions for future research. The keyword searches for flavonoids, phenolics, isoflavones, tannins, coumarins, lignans, quinones, xanthones, curcuminoids, stilbenes, cucurmin, phenylethanoids, and secoiridoids medicinal plant were performed by using Web of Science, Scopus, Google scholar, and PubMed. Phenolic acids contain a carboxylic acid group in addition to the basic phenolic structure and are mainly divided into hydroxybenzoic and hydroxycinnamic acids. Hydroxybenzoic acids are based on a C6-C1 skeleton and are often found bound to small organic acids, glycosyl moieties, or cell structural components. Common hydroxybenzoic acids include gallic, syringic, protocatechuic, p-hydroxybenzoic, vanillic, gentistic, and salicylic acids. Hydroxycinnamic acids are based on a C6-C3 skeleton and are also often bound to other molecules such as quinic acid and glucose. The main hydroxycinnamic acids are caffeic, p-coumaric, ferulic, and sinapic acids.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-13-4260-83836
| | | |
Collapse
|
48
|
Bi SS, Talukder M, Sun XT, Lv MW, Ge J, Zhang C, Li JL. Cerebellar injury induced by cadmium via disrupting the heat-shock response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22550-22559. [PMID: 36301385 DOI: 10.1007/s11356-022-23771-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a food contaminant that poses serious threats to animal health, including birds. It is also an air pollutant with well-known neurotoxic effects on humans. However, knowledge on the neurotoxic effects of chronic Cd exposure on chicken is limited. Thus, this study assessed the neurotoxic effects of chronic Cd on chicken cerebellum. Chicks were exposed to 0 (control), 35 (low), and 70 (high) mg/kg of Cd for 90 days, and the expression of genes related to the heat-shock response was investigated. The chickens showed clinical symptoms of ataxia, and histopathology revealed that Cd exposure decreased the number of Purkinje cells and induced degeneration of Purkinje cells with pyknosis, and some dendrites were missing. Moreover, Cd exposure increased the expression of heat-shock factors, HSF1, HSF2, and HSF3, and heat-shock proteins, HSP60, HSP70, HSP90, and HSP110. These changes indicate that HSPs improve the tolerance of the cerebellum to Cd. Conversely, the expressions of HSP10, HSP25, and HSP40 were decreased significantly, which indicated that Cd inhibits the expression of small heat-shock proteins. However, HSP27 and HSP47 were upregulated following low-dose Cd exposure, but downregulated under high-dose Cd exposure. This work sheds light on the toxic effects of Cd on the cerebellum, and it may provide evidence for health risks posed by Cd. Additionally, this work also identified a novel target of Cd exposure in that Cd induces cerebellar injury by disrupting the heat-shock response. Cd can be absorbed into chicken's cerebellum through the food chain, which eventually caused cerebellar injury. This study provided a new insight that chronic Cd-induced neurotoxicity in the cerebellum is associated with alterations in heat-shock response-related genes, which indicated that Cd through disturbing heat-shock response induced cerebellar injury.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, People's Republic of China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
49
|
Albrakati A. Monosodium glutamate induces cortical oxidative, apoptotic, and inflammatory challenges in rats: the potential neuroprotective role of apigenin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24143-24153. [PMID: 36334201 DOI: 10.1007/s11356-022-23954-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Monosodium glutamate (MSG) is used as a flavor, and a taste enhancer was reported to evoke marked neuronal impairments. This study investigated the neuroprotective ability of flavonoid apigenin against neural damage in MSG-administered rats. Adult male rats were allocated into four groups: control, apigenin (20 mg/kg b.wt, orally), MSG (4 g/kg b.wt, orally), and apigenin + MSG at the aforementioned doses for 30 days. Regarding the levels of neurotransmitters, our results revealed that apigenin augmented the activity of acetylcholinesterase (AChE) markedly, and levels of brain monoamines (dopamine, norepinephrine, and serotonin) accompanied by lessening the activity of monoamine oxidase (MAO) as compared to MSG treatment. Moreover, apigenin counteracted the MSG-mediated oxidative stress by decreasing the malondialdehyde (MDA) levels together with elevating the glutathione (GSH) levels. In addition, pretreatment with apigenin induced notable increases in the activities of cortical superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Furthermore, apigenin attenuated the cortical inflammatory stress as indicated by lower levels of pro-inflammatory mediators such as interleukin-1 b (IL-1b), tumor necrosis factor-α (TNF-α), and nitric oxide (NO) as well as downregulated inducible nitric oxide synthase (iNOS) expression levels. Histopathological screening validated the abovementioned results and revealed that apigenin restored the distorted cytoarchitecture of the brain cortex. Thus, the present findings collectively suggest that apigenin exerted significant protection against MSG-induced neurotoxicity by enhancing the cellular antioxidant response and attenuating inflammatory machineries in the rat brain cortex.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
50
|
Araujo JRDS, de Barros Arcoverde JV, de Farias Silva MG, Barros de Santana ER, da Silva PA, de Sousa S, Araujo, Santos N, de Almeida PM, de Andrade Lima CS, Benko-Iseppon AM, Aracati Padilha RJS, Alves M, Brasileiro-Vidal AC. Antioxidant and in vitro cytogenotoxic properties of Amburana cearensis (Allemão) A.C.Sm. leaf extract. Drug Chem Toxicol 2023; 46:104-112. [PMID: 34906022 DOI: 10.1080/01480545.2021.2011313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Amburana cearensis leaves have been used in folk medicine to treat respiratory diseases and inflammations. This study aimed to evaluate the biological potential of A. cearensis leaves by antioxidant and in vitro cytogenotoxic analyses of ethanolic crude extract (EE) and its fractions in healthy human cells. The EE was obtained by percolation, followed by fractionation using dichloromethane, cyclohexane, ethyl acetate (EtOAc), and methanol (MeOH) as organic solvents. Extract and all fractions were evaluated for their antioxidant potential by DPPH and reducing power tests. In vitro cytotoxic activity was determined in human peripheral blood mononuclear cells by MTT assay for the extract, EtOAc and MeOH fractions. In turn, the genotoxic activity was determined in human lymphocytes by the Cytokinesis Block Micronucleus assay only for the EtOAc fraction. Only EtOAc fraction was analyzed via gas chromatography coupled to mass spectrometry due to its higher biological activity. Considering the antioxidant potential, the EtOAc fraction was most effective in DPPH (EC50 43.37 µg/mL) and reducing power (EC50 89.80 µg/mL) assays. GC-MS analysis of the EtOAc fraction led to the identification of guaiacol, 2,3-dihydro-benzofuran, 2-methoxy-4-vinylphenol, isovanillic acid methyl ester, 4-hydroxybenzaldehyde, and 4-(ethoxymethyl)-phenol. The EE (400-1000 µg/mL), EtOAc (≤150 µg/mL) and MeOH (50 and 150-600 µg/mL) fractions were not cytotoxic by MTT test. Additionally, the EtOAc fraction (100-400 µg/mL) did not induce significant genotoxic damage. Concentrations of the EtOAc fraction with antioxidant activity showed no cytotoxicity, nor genotoxicity potential, indicating them as a nontoxic natural antioxidant source.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Araujo
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | - Neide Santos
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | - Marccus Alves
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | | |
Collapse
|