1
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Zoppé H, Xavier J, Dupuis A, Migeot V, Bioulac S, Hary R, Bonnet-Brilhault F, Albouy M. Is exposure to Bisphenol A associated with Attention-deficit hyperactivity disorder (ADHD) and associated executive or behavioral problems in children? A comprehensive systematic review. Neurosci Biobehav Rev 2024; 167:105938. [PMID: 39551456 DOI: 10.1016/j.neubiorev.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Numerous studies have investigated environmental risk factors in ADHD, and Bisphenol A (BPA), an endocrine disruptor, is suspected by several reviews. However, the quality of the studies has never been carefully assessed, leading us to rigorously examine associations between BPA exposure and ADHD and associated symptoms in children. Using PRISMA criteria, we conducted a systematic review on the MEDLINE/PubMed, Web of Science, EBSCOhost, PsycINFO, PsycARTICLES and Cochrane databases. We used the ROBINS-E tool to assess the quality, and the GRADE Approach. This study was registered with PROSPERO, CRD42023377150. Out of 10446 screened articles, 46 were included. Unlike pre-existing reviews, most studies failed to find clear links with ADHD or associated symptoms, with a high risk of bias and a very low level of certainty. Our systematic review reveals insufficient evidence regarding the impact of BPA on ADHD, despite some behavioral results that cannot be generalized. Future studies will require improved consideration of confounding factors and more precise sampling methods. This study did not receive specific funding.
Collapse
Affiliation(s)
- Hugo Zoppé
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France.
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France; CNRS UMR 7295, Cognition and Learning Research Center, Poitiers, France
| | - Antoine Dupuis
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| | - Virginie Migeot
- Public Health Department, CHU Rennes, University of Rennes 1, Rennes 35000, France; INSERM UMR-S 1085, EHESP, Irset, F-35000 Rennes, France
| | - Stéphanie Bioulac
- Service de psychiatrie de l'enfant et l'adolescent, CHU Grenoble Alpes, Grenoble 38000, France; LPNC, UMR 5105 CNRS, Université Grenoble Alpes, France
| | - Richard Hary
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France
| | - Marion Albouy
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| |
Collapse
|
3
|
Dai Y, Ding J, Wang Z, Zhang B, Guo Q, Guo J, Qi X, Lu D, Chang X, Wu C, Zhang J, Zhou Z. Associations of prenatal and concurrent exposure to phenols mixture with anthropometric measures and blood pressure during childhood: A time-varying mixture approach. ENVIRONMENTAL RESEARCH 2024; 261:119766. [PMID: 39127330 DOI: 10.1016/j.envres.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Environmental phenols were recognized as endocrine disrupting chemicals (EDCs). However, their impact on childhood anthropometric measures and blood pressure (BP) is still inconclusive. Limited studies have simultaneously considered prenatal and childhood exposures in analyzing mixtures of phenols. OBJECTIVE We investigated the relationships between combined prenatal and childhood exposures (two periodic exposures) to phenol mixtures and anthropometric measure and BP, to further identify the vulnerable periods of phenol exposure and to explore the important individual contribution of each phenol. METHODS We analyzed 434 mother-child dyads from the Sheyang Mini Birth Cohort Study (SMBCS). The urinary concentrations of 11 phenolic compounds were measured using gas chromatography tandem mass spectrometry. Generalized linear regression models (GLMs) and hierarchical Bayesian Kernel Machine Regression (hBKMR) were used to examine the effects of individual phenolic compounds at each period and of two periodic exposures. RESULTS In the single-chemical analysis, prenatal or childhood exposure to specific phenols, especially Benzopheone-3 (BP3), 4-tert-Octylphenol (4-tOP), and Benzyl paraben (BePB) were associated with BMI z-scores (BAZ), Waist-to-height ratio (WHtR), and BP. In the hBKMR models, two periodic exposures to phenol mixtures had a U-shaped association with WHtR, primarily driven by childhood BePB exposure. Moreover, among the phenol mixtures analysis, childhood 4-tOP exposure was identified as the primary contributor to the positive association with diastolic BP. Concurrent exposure to phenol mixtures resulted in greater susceptibility. CONCLUSIONS We found that prenatal and childhood exposure to phenol mixtures might influence childhood obesity and elevate blood pressure levels. Concurrent exposure to 4-tOP may be the primary driver of the positive associations with BP.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Qin Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
4
|
Ding J, Dai Y, Zhang L, Wang Z, Zhang B, Guo J, Qi X, Lu D, Chang X, Wu C, Zhang J, Zhou Z. Identifying childhood pesticide exposure trajectories and critical window associated with behavioral problems at 10 years of age: Findings from SMBCS. ENVIRONMENT INTERNATIONAL 2024; 193:109079. [PMID: 39442318 DOI: 10.1016/j.envint.2024.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Pesticides may impact children's neurodevelopment. As children's metabolic function and neural plasticity change throughout their growth and development, the effects of pesticide exposure may also vary. OBJECTIVES We aimed to identify the trajectories of combined pesticide exposure during childhood, and to examine the associations of the exposure trajectories with children's neurobehavior at the age of 10. METHODS We involved repeated measurements of three pesticide metabolites [Pentachlorophenol (PCP), 3,5,6-Trichloro-2-pyridinol (TCPy), and Carbofuran phenol (CFP)], in urine samples collected from children in a cohort study at ages 1, 2, 3, 6, 7, 8, 9, and 10 years. The group-based multi-trajectory model (GBMT) and latent class analysis (LCA) were separately utilized to describe the distinct trajectories and patterns of pesticide mixture exposure during childhood. Meanwhile, the Strengths and Difficulties Questionnaire (SDQ) and attention deficit hyperactivity disorder (ADHD) Criteria of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) list were applied to assess behavioral disorders in children. The associations between exposure trajectories and behavioral problem scores were then examined. RESULTS The GBMT model delineated three distinct trajectories of combined pesticide exposure among children: consistently low, higher levels in early childhood transitioning to lower levels during pre-school age, and lower levels in early childhood followed by higher levels in the middle childhood. The LCA model identified three similar longitudinal exposure patterns. Further, the children in the second trajectory group identified by GBMT, characterized by higher early childhood exposure levels, exhibited significantly elevated hyperactivity/inattention scores of the SDQ compared to the other two groups (β = 0.46, 95 %CI: 0.11, 0.81; β = 0.44, 95 %CI: 0.02, 0.86). CONCLUSIONS Our study revealed that exposure to pesticides during early childhood (especially before the age of two), rather than other age periods, was linked to hyperactivity/inattention problems in children aged 10 years. We also provided a novel perspective on characterizing the fluctuation in repeated measurements of multiple environmental chemicals and identifying the potential critical windows.
Collapse
Affiliation(s)
- Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Lei Zhang
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Zhu Y, Liu K, Guo J, Yang J, Su Y. Bisphenol A exposure and thyroid dysfunction during pregnancy: A systematic review. Reprod Toxicol 2024; 129:108680. [PMID: 39134212 DOI: 10.1016/j.reprotox.2024.108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/25/2024]
Abstract
Bisphenol A (BPA) is a phenolic chemical that has been found to be associated with human health outcomes. It is one of the risk factors for thyroid function. Pregnancy is a vulnerable window for thyroid problems, because of the fluctuations in hormone levels. This review aimed to evaluate the association between BPA exposure and thyroid function during pregnancy. We conducted a comprehensive search of relevant databases, including PubMed, Scopus, Embase, Web of Science, and the Cochrane Library, for original studies published in English that reported data on BPA levels and thyroid-related hormone levels in pregnant women. We used the Newcastle-Ottawa Scale (NOS) to assess the methodological quality of the studies and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method to evaluate the quality of evidence. In total, 11 studies involving 6526 individuals were included in this systematic review. These studies explored fluctuations in thyroid-related hormones, including TSH, TT3, TT4, FT3, and FT4 levels, as well as the TT4/TT3 and FT4/FT3 ratios. The systematic review is to evaluate the evidences between bisphenol A exposure and thyroid-related hormones in pregnant women. We found that BPA exposure in pregnancy might disturb the homeostasis of maternal thyroid-related hormones and suggest an increased risk of hyperthyroidism. Further studies based on the findings are required to explore the underlying mechanisms and determine the potential effects of BPA exposure on thyroid function during pregnancy.
Collapse
Affiliation(s)
- Yaqi Zhu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Keqin Liu
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jinjin Guo
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixin Yang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanwei Su
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
6
|
Luo N, Chen J, Chen X, Wang M, Niu X, Chen G, Deng C, Gao Y, Li G, An T. Toxicity evolution of triclosan during environmental transformation and human metabolism: Misgivings in the post-pandemic era. ENVIRONMENT INTERNATIONAL 2024; 190:108927. [PMID: 39121826 DOI: 10.1016/j.envint.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
In the context of pandemic viruses and pathogenic bacteria, triclosan (TCS), as a typical antibacterial agent, is widely used around the world. However, the health risks from TCS increase with exposure, and it is widespread in environmental and human samples. Notably, environmental transformation and human metabolism could induce potentially undesirable risks to humans, rather than simple decontamination or detoxification. This review summarizes the environmental and human exposure to TCS covering from 2004 to 2023. Particularly, health impacts from the environmental and metabolic transformation of TCS are emphasized. Environmental transformations aimed at decontamination are recognized to form carcinogenic products such as dioxins, and ultraviolet light and excessive active chlorine can promote the formation of these dioxin congeners, potentially threatening environmental and human health. Although TCS can be rapidly metabolized for detoxification, these processes can induce the formation of lipophilic ether metabolic analogs via cytochrome P450 catalysis, causing possible adverse cross-talk reactions in human metabolic disorders. Accordingly, TCS may be more harmful in environmental transformation and human metabolism. In particular, TCS can stimulate the transmission of antibiotic resistance even at trace levels, threatening public health. Considering these accruing epidemiological and toxicological studies indicating the multiple adverse health outcomes of TCS, we call on environmental toxicologists to pay more attention to the toxicity evolution of TCS during environmental transformation and human metabolism.
Collapse
Affiliation(s)
- Na Luo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Mei Wang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaolin Niu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanhui Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuyue Deng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Lei X, Ao J, Li J, Gao Y, Zhang J, Tian Y. Maternal concentrations of environmental phenols during early pregnancy and behavioral problems in children aged 4 years from the Shanghai Birth Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172985. [PMID: 38705299 DOI: 10.1016/j.scitotenv.2024.172985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Prenatal exposure to environmental phenols such as bisphenol (BPs), paraben (PBs), benzophenone (BzPs), and triclosan (TCS) is ubiquitous and occurs in mixtures. Although some of them have been suspected to impact child behavioral development, evidence is still insufficient, and their mixed effects remain unclear. OBJECTIVES To explore the association of prenatal exposure to multiple phenols with child behavioral problems. METHOD In a sample of 600 mother-child pairs from the Shanghai Birth Cohort, we quantified 18 phenols (6 PBs, 7 BPs, 4 BzPs, and TCS) in urine samples collected during early pregnancy. Parent-reported Strengths and Difficulties Questionnaires were utilized to evaluate child behavioral difficulties across four subscales, namely conduct, hyperactivity/inattention, emotion, and peer relationship problems, at 4 years of age. Multivariable linear regression was conducted to estimate the relationships between single phenolic compounds and behavioral problems. Additionally, weighted quantile sum (WQS) regression was employed to examine the overall effects of the phenol mixture. Sex-stratified analyses were also performed. RESULTS Our population was extensively exposed to 10 phenols (direction rates >50 %), with low median concentrations (1.00 × 10-3-6.89 ng/mL). Among them, single chemical analyses revealed that 2,4-dihydroxy benzophenone (BP1), TCS, and methyl 4-hydroxybenzoate (MeP) were associated with increased behavior problems, including hyperactivity/inattention (BP1: β = 0.16; 95 % confidence interval [CI]: 0.04, 0.30), emotional problems (BP1: β = 0.11; 95 % CI: 0.02, 0.20; TCS: β = 0.08; 95 % CI: 0.02, 0.14), and peer problems (MeP: β = 0.10; 95 % CI: 0.02, 0.18); however, we did not identify any significant association with conduct problems. Further phenol mixture analyses in the WQS model yielded similar results. Stratification for child sex showed stronger positive associations in boys. CONCLUSION Our findings indicated that maternal phenol levels during early pregnancy, specifically BP1, TCS, and MeP, are associated with high behavioral problem scores in 4-year-old children.
Collapse
Affiliation(s)
- Xiaoning Lei
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| | - Junjie Ao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Jingjing Li
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
8
|
Fu J, Yao Y, Huang Z, Huang J, Zhang D, Li X, Xu J, Xiao Q, Lu S. Prenatal exposure to benzophenone-type UV filters and the associations with neonatal birth outcomes and maternal health in south China. ENVIRONMENT INTERNATIONAL 2024; 189:108797. [PMID: 38838486 DOI: 10.1016/j.envint.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Benzophenone (BP)-type UV filters are commonly added to sunscreens and cosmetics to protect against UV radiation for human skin and hair. As a result, BPs are ubiquitous in the environment and human body, and their endocrine-disrupting characteristics have been a hot topic of discussion. However, our knowledge regarding the detrimental effects of prenatal exposure to BPs on pregnant women and their offspring remains limited. To fill this gap, we determined five BP derivatives in 600 serum samples obtained from pregnant women. All the target analytes, except 2,4-dihydroxybenzophenone (BP-1), have achieved a 100 % detection rate. The most prevalent compound was 2-hydroxy-4-methoxybenzophenone (BP-3), with a median concentration of 0.545 ng/mL. Significant and positive correlations were observed among BP derivatives, indicating both endogenous metabolism and common external sources. Utilizing Bayesian kernel machine regression (BKMR) and quantile-based g-computation (QGC) models, we found relationships between BP exposure and reduced neonatal birth weight (BW) and birth chest circumference (BC) during the third trimester. Notably, the adverse effect of BPs on birth size was sex-specific. Moreover, triglyceride (TG) was identified as a potential mediator of the effect of BPs on blood pressure, and co-exposure to BPs was linked to disruptions in thyroid hormone levels and glucose regulation. Further research is warranted to unravel the toxicity of BPs and their detrimental effects on pregnant women and fetuses.
Collapse
Affiliation(s)
- Jinfeng Fu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao Yao
- Genetics Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, Guangdong, China
| | - Zhihong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
9
|
Han B, Wang L, Wang X, Huang K, Shen Y, Wang Z, Jing T. Association between multipollutant exposure and thyroid hormones in elderly people: A cross-sectional study in China. ENVIRONMENTAL RESEARCH 2024; 252:118781. [PMID: 38552824 DOI: 10.1016/j.envres.2024.118781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Environmental chemicals have been indicated to cause disruption of thyroid homeostasis in human populations. However, previous studies mostly focused on single group of chemicals. Herein, we investigate the independent and combined effects of multiple pollutants on thyroid homeostasis, including thyroid-stimulating hormone (TSH), total and free thyroxine (tT4 and fT4) and total and free triiodothyronine (tT3 and fT3) in elderly people. These environmental pollutants (n = 144) are from ten categories, including phenols, parabens, perfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), synthetic pyrethroids (SPs), herbicides, and metals. Few studies have evaluated the health risks of these 144 chemicals, especially their joint effects. In single-pollutant evaluations, multiple linear regression (MLR) models were used to estimate the independent associations between multiple exposures and thyroid biomarkers. In multi-pollutant evaluations, elastic net regression and Bayesian kernel machine regression (BKMR) models were used to estimate the combined associations. The MLR models showed that 41 chemicals were significantly related to THs levels. BKMR models revealed the most important chemical groups: metals for TSH, PAHs, SPs and PCBs for tT4, herbicides and SPs for tT3. This study will contribute to the understanding of multipollutant exposure and help prioritize specific chemical groups related to thyroid hormone disruption.
Collapse
Affiliation(s)
- Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiu Wang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, Zhejiang, 310003, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
10
|
Liu J, Tian M, Qin H, Chen D, Mzava SM, Wang X, Bigambo FM. Maternal bisphenols exposure and thyroid function in children: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1420540. [PMID: 39010904 PMCID: PMC11246848 DOI: 10.3389/fendo.2024.1420540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Background Evidence from animal experiments and epidemiological studies has reported controversial results about the effects of prenatal bisphenols (BPs) exposure on childhood thyroid function. This study aims to explore the associations of prenatal exposure to BPs with thyroid-related hormones (THs) in newborns and early childhood, with a particular focus on the sex-dependent and exposure level effects. Methods Correlated studies were systematically searched from PubMed, Web of Science, Medline, Cochrane, and Embase until February 21, 2024. The exposures assessed include bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF), and tetrachlorobisphenol A (TCBPA). THs measured were thyroid stimulating hormone (TSH), total tri-iodothyronine (TT3), total thyroxine (TT4), free tri-iothyronine (FT3), and free thyroxine (FT4). Effect estimates were quantified using coefficients from multivariable regression models. Statistical analyses were completed using Stata 16.0. The methodological quality of the included studies was evaluated using the Newcastle-Ottawa Scale (NOS). Results Eleven cohort studies comprising 5,363 children were included in our meta-analysis. Prenatal bisphenol concentrations were statistically significant related to alterations in thyroid hormones in children, exclusively in female offspring, including reduced TSH (β = -0.020, 95% CI: -0.036, -0.005) and increased TT3 levels (β = 0.011, 95% CI: 0.001, 0.021), and exposure to high concentration of bisphenols (>1.5 ug/g creatinine) significantly reduced FT3 levels in children (β = -0.011, 95% CI: -0.020, -0.003). Conclusion Prenatal bisphenol exposure is linked to alterations in thyroid hormone levels in girls, necessitating enhanced measures to control bisphenol exposure levels during pregnancy for child health protection. Systematic Review Registration https://inplasy.com, identifier INPLASY202450129.
Collapse
Affiliation(s)
- Jiani Liu
- JC School of Public Health and Primary Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Tian
- Department of Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyue Qin
- Nanjing Foreign Language School, Nanjing, China
| | - Danrong Chen
- School of Public Health, Nanjing Medical University, Nanjing, China
| | | | - Xu Wang
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Francis Manyori Bigambo
- Clinical Medical Research Center, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Xiong C, Chen K, Xu LL, Zhang YM, Liu H, Guo ML, Xia ZG, Wang YJ, Mu XF, Fan XX, Chen JQ, Liu YR, Li YY, Xia W, Wang YJ, Zhou AF. Associations of prenatal exposure to bisphenols with BMI growth trajectories in offspring within the first two years: evidence from a birth cohort study in China. World J Pediatr 2024; 20:701-711. [PMID: 38019382 DOI: 10.1007/s12519-023-00767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Prenatal bisphenol exposure has been reported to be associated with lower birth weight and obesity-related indicators in early childhood. These findings warrant an investigation of the relationship between prenatal bisphenol exposure and the dynamic growth of offspring. This study aimed to evaluate the relationship of maternal bisphenol concentration in urine with the body mass index (BMI) growth trajectory of children aged up to two years and to identify the critical exposure periods. METHODS A total of 826 mother-offspring pairs were recruited from Wuhan Children's Hospital between November 2013 and March 2015. Maternal urine samples collected during the first, second, and third trimesters were analyzed for bisphenol A (BPA), bisphenol S, and bisphenol F (BPF) concentrations. Measurements of length and weight were taken at 0, 1, 3, 6, 8, 12, 18, and 24 months. Children's BMI was standardized using the World Health Organization reference, and group-based trajectory modeling was used to identify BMI growth trajectories. The associations between prenatal bisphenol exposure and BMI growth trajectory patterns were assessed using multinomial logistic regression models. RESULTS The BMI growth trajectories of the 826 children were categorized into four patterns: low-stable (n = 134, 16.2%), low-increasing (n = 142, 17.2%), moderate-stable (n = 350, 42.4%), and moderate-increasing (n = 200, 24.2%). After adjusting for potential confounders, we observed that prenatal exposure to BPA during the second trimester [odds ratio (OR) = 2.20, 95% confidence interval (CI) = 1.09-4.43] and BPF during the third trimester (OR = 3.28, 95% CI = 1.55-6.95) at the highest quartile concentration were associated with an increased likelihood of the low-increasing BMI trajectory. Furthermore, in the subgroup analysis by infant sex, the positive association between the highest quartile of prenatal average urinary BPF concentration during the whole pregnancy and the low-increasing BMI trajectory was found only in girls (OR = 2.82, 95% CI = 1.04-7.68). CONCLUSION Our study findings suggest that prenatal exposure to BPA and BPF (a commonly used substitute for BPA) is associated with BMI growth trajectories in offspring during the first two years, increasing the likelihood of the low-increasing pattern. Video Abstract (MP4 120033 kb).
Collapse
Affiliation(s)
- Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Kai Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Lu-Li Xu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yi-Ming Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Hua Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Meng-Lan Guo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Zhi-Guo Xia
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yu-Ji Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiao-Feng Mu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Xiao-Xuan Fan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Jing-Quan Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yu-Ru Liu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
| | - Yuan-Yuan Li
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You-Jie Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ai-Fen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430016, China.
| |
Collapse
|
12
|
Street ME, Shulhai AM, Petraroli M, Patianna V, Donini V, Giudice A, Gnocchi M, Masetti M, Montani AG, Rotondo R, Bernasconi S, Iughetti L, Esposito SM, Predieri B. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: current evidence and future directions. Front Endocrinol (Lausanne) 2024; 15:1429884. [PMID: 38962683 PMCID: PMC11219579 DOI: 10.3389/fendo.2024.1429884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
The thyroid gland regulates most of the physiological processes. Environmental factors, including climate change, pollution, nutritional changes, and exposure to chemicals, have been recognized to impact thyroid function and health. Thyroid disorders and cancer have increased in the last decade, the latter increasing by 1.1% annually, suggesting that environmental contaminants must play a role. This narrative review explores current knowledge on the relationships among environmental factors and thyroid gland anatomy and function, reporting recent data, mechanisms, and gaps through which environmental factors act. Global warming changes thyroid function, and living in both iodine-poor areas and volcanic regions can represent a threat to thyroid function and can favor cancers because of low iodine intake and exposure to heavy metals and radon. Areas with high nitrate and nitrite concentrations in water and soil also negatively affect thyroid function. Air pollution, particularly particulate matter in outdoor air, can worsen thyroid function and can be carcinogenic. Environmental exposure to endocrine-disrupting chemicals can alter thyroid function in many ways, as some chemicals can mimic and/or disrupt thyroid hormone synthesis, release, and action on target tissues, such as bisphenols, phthalates, perchlorate, and per- and poly-fluoroalkyl substances. When discussing diet and nutrition, there is recent evidence of microbiome-associated changes, and an elevated consumption of animal fat would be associated with an increased production of thyroid autoantibodies. There is some evidence of negative effects of microplastics. Finally, infectious diseases can significantly affect thyroid function; recently, lessons have been learned from the SARS-CoV-2 pandemic. Understanding how environmental factors and contaminants influence thyroid function is crucial for developing preventive strategies and policies to guarantee appropriate development and healthy metabolism in the new generations and for preventing thyroid disease and cancer in adults and the elderly. However, there are many gaps in understanding that warrant further research.
Collapse
Affiliation(s)
- Maria E. Street
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Maddalena Petraroli
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Viviana Patianna
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Valentina Donini
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Antonella Giudice
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Margherita Gnocchi
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Marco Masetti
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Anna G. Montani
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Roberta Rotondo
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | | | - Lorenzo Iughetti
- Unit of Pediatrics, University Hospital of Modena, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Susanna M. Esposito
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Barbara Predieri
- Unit of Pediatrics, University Hospital of Modena, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
13
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. Environ Health 2024; 23:27. [PMID: 38486233 PMCID: PMC10938747 DOI: 10.1186/s12940-024-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND A growing body of literature investigated childhood exposure to environmental chemicals in association with attention-deficit/hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay (DD), and typical development (TD). METHODS A total of 549 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study were administered the Aberrant Behavior Checklist (ABC). This study focused on the ADHD/noncompliance subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in > 70% samples were used to investigate their associations with ADHD symptoms. Negative binomial regression was used for single-chemical analysis, and weighted quantile sum regression with repeated holdout validation was applied for mixture analysis for each chemical class and all chemicals. The mixture analyses were further stratified by diagnostic group. RESULTS A phthalate metabolite mixture was associated with higher ADHD/noncompliance scores (median count ratio [CR] = 1.10; 2.5th, 97.5th percentile: 1.00, 1.21), especially hyperactivity/impulsivity (median CR = 1.09; 2.5th, 97.5th percentile: 1.00, 1.25). The possible contributors to these mixture effects were di-2-ethylhexyl phthalate (DEHP) metabolites and mono-2-heptyl phthalate (MHPP). These associations were likely driven by children with ASD as these were observed among children with ASD, but not among TD or those with DD. Additionally, among children with ASD, a mixture of all chemicals was associated with ADHD/noncompliance and hyperactivity/impulsivity, and possible contributors were 3,4-dihydroxy benzoic acid, DEHP metabolites, MHPP, mono-n-butyl phthalate, and cadmium. CONCLUSIONS Early childhood exposure to a phthalate mixture was associated with ADHD symptoms, particularly among children with ASD. While the diverse diagnostic profiles limited generalizability, our findings suggest a potential link between phthalate exposure and the comorbidity of ASD and ADHD.
Collapse
Affiliation(s)
- Jiwon Oh
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA.
| | - Kyoungmi Kim
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Patrick J Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Agnieszka Mlodnicka
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Julie B Schweitzer
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California at Davis (UC Davis), Davis, CA, USA
| |
Collapse
|
14
|
Li L, Li K, Zhou X, Knowles RL. Maximising the potential of Chinese birth cohort studies: a systematic review of mother-baby cohorts in mainland China. Public Health 2024; 227:119-130. [PMID: 38168592 DOI: 10.1016/j.puhe.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVES There is now a growing interest in early-life influences on adult diseases in China. A number of birth cohorts have been established. This systematic review provided a better understanding of the development of mother-baby cohorts in China. STUDY DESIGN Systematic review. METHODS We conducted a systematic review for research or profile papers in English/Chinese that reported data from mother-baby cohorts in mainland China, with ≥1y follow-up after birth. We identified 315 papers, corresponding to 31 cohorts from 19 provinces/megacities. RESULTS All cohorts started in 1999-2017 (21 after 2010) and were set up with broad objectives or specific scientific focus. The baseline sample size varied, from <500 to >300,000 mothers. A majority of cohorts were initiated during pregnancy and followed children to <10y, only six to adolescence and none into adulthood. These cohorts mostly collected samples from mothers and babies, in addition to using interviews/questionnaires to collect information about pregnancy, birth and child health. Most cohorts were recruited from a single province/city. The large western region was understudied. CONCLUSIONS Mother-baby cohorts have developed rapidly in China, but usually with a short follow-up duration. Extending the follow-up of children and developing cross-cohort collaboration will increase the diversity, size and coverage of the sample, allow studying early influences on life-course health and identify targets for early intervention in the Chinese population.
Collapse
Affiliation(s)
- L Li
- Population, Policy and Practice Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, UK.
| | - K Li
- UCL Institute of Epidemiology and Health Care, UK.
| | - X Zhou
- Institute of Social Medicine, Zhejiang University School of Medicine, China; Second Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - R L Knowles
- Population, Policy and Practice Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, UK.
| |
Collapse
|
15
|
Xia Z, Lv C, Zhang Y, Shi R, Lu Q, Tian Y, Lei X, Gao Y. Associations of exposure to bisphenol A and its substitutes with neurodevelopmental outcomes among infants at 12 months of age: A cross-sectional study. CHEMOSPHERE 2023; 341:139973. [PMID: 37640215 DOI: 10.1016/j.chemosphere.2023.139973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to adverse childhood neurodevelopment, but little is known about whether BPA substitutes exposures are also related to childhood neurodevelopment. OBJECTIVES To investigate the associations of exposure to BPA and its substitutes with infant neurodevelopment at 12 months. METHODS A total of 420 infants at 12 months were included from the Laizhou Wan (Bay) Birth Cohort in Shandong, China. Urinary concentrations of BPA and its substitutes including bisphenol S (BPS), bisphenol B (BPB), bisphenol AF (BPAF), bisphenol AP (BPAP), bisphenol P (BPP) and bisphenol Z (BPZ) were measured. Developmental quotient (DQ) scores based on the Gesell Development Schedules (GDS) were used to evaluate infant neurodevelopment. The multivariable linear regression and weighted quantile sum (WQS) regression were applied to estimate the associations of exposure to individual bisphenols and their mixtures with DQ scores, respectively. Sex-stratified analyses were also performed. RESULTS BPA was detected in most infants (89.05%) and had the highest median concentration (0.709 ng/mL) among all bisphenols. BPA substitutes except BPZ were ubiquitous in infants' urine samples (>70%), and BPS showed the highest median concentration (0.064 ng/mL) followed by BPAP (0.036 ng/mL), BPAF (0.028 ng/mL), BPP (0.015 ng/mL) and BPB (0.013 ng/mL). In multivariable linear regression, only BPAF exposure was inversely associated with social DQ scores among all infants (β = -0.334; 95% CI: -0.650, -0.019). After sex stratification, this inverse association was significant in girls (β = -0.605; 95% CI: -1.030, -0.180). Besides, BPA exposure was negatively related to gross motor DQ scores in boys (β = -1.061; 95% CI: -2.078, -0.045). WQS analyses confirmed these results. CONCLUSIONS Our study suggests that bisphenol exposure during infancy may be associated with poor infant neurodevelopment, and BPAF as a commonly used BPA substitute contributing the most to this adverse association deserves more attention.
Collapse
Affiliation(s)
- Zhuanning Xia
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cheng Lv
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoning Lei
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
16
|
Hu Y, Lai S, Li Y, Wu X, Xing M, Li X, Xu D, Chen Y, Xiang J, Cheng P, Wang X, Chen Z, Ding H, Xu P, Lou X. Association of urinary bisphenols with thyroid function in the general population: a cross-sectional study of an industrial park in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107517-107532. [PMID: 37735335 DOI: 10.1007/s11356-023-29932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Bisphenols (BPs) are potential thyroid disruptors that are widely used in many consumer products, leading to their widespread exposure in the general population. Current cross-sectional and case-control studies have found associations between exposure to BPs and serum thyroid function, but the results were contradictory. The objectives of this study are to describe demographic characteristics, BP exposure levels, and thyroid function measurements in potentially exposed and control districts and to investigate the association of urinary BPs with thyroid function. Data were collected from a general population aged 3-79 years (N = 281) recruited by the Zhejiang Human Biomonitoring Program (ZJHBP). The concentrations of 10 kinds of BPs in urine and serum free triiodothyronine (FT3), total triiodothyronine (TT3), free thyroxine (FT4), total thyroxine (TT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroglobulin antibodies (TgAb), thyroid peroxidase antibodies (TPOAb), and thyrotropin receptor antibody (TRAb) in serum were measured. Multiple linear regression and weighted quantile sum (WQS) regression were used to estimate the relationship between single and mixed exposure of BPs and thyroid function. Bisphenol A (BPA), bisphenol S (BPS), and bisphenol P (BPP) were detected, respectively, in 82.73%, 94.24%, and 55.40% of the population in the exposed area and 81.69%, 61.27%, and 43.66% of the population in the control area. Among adult females, serum TT3 was negatively associated with urinary BPA (β = -0.033, 95% CI = -0.071, -0.008, P = 0.021). Among minor females, FT4 and Tg levels were negatively associated with the urinary BPA (β = -0.026, 95% CI = -0.051, -0.002, P = 0.032 for FT4; β = -0.129, 95% CI = -0.248, -0.009, P = 0.035 for Tg), and TPOAb was positively associated with urinary BPA (β = 0.104, 95% CI = 0.006, 0.203, P = 0.039). In WQS models, BPs mixture was positively associated with FT3 (βWQS = 0.022, 95% CI = 0.002, 0.042) and TT3 (βWQS = 0.033, 95% CI = 0.004, 0.062), and negatively associated with FT4 (βWQS = -0.024, 95% CI = -0.044, 0.004). We found widespread exposure to BPA, BPS, and BPP in the general population of Zhejiang province and found an association between BPA and thyroid hormones. This association is gender- and age-dependent and needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Ke Cheng District, Quzhou, 324000, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Hao Ding
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
17
|
Dai Y, Zhang J, Wang Z, Ding J, Xu S, Zhang B, Guo J, Qi X, Chang X, Wu C, Zhou Z. Per- and polyfluoroalkyl substances in umbilical cord serum and body mass index trajectories from birth to age 10 years: Findings from a longitudinal birth cohort (SMBCS). ENVIRONMENT INTERNATIONAL 2023; 180:108238. [PMID: 37783122 DOI: 10.1016/j.envint.2023.108238] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to low birth weight but higher childhood weight and obesity. However, little is known regarding the associations between PFAS exposure and dynamic body mass index (BMI) trajectories, particularly from birth through preadolescence. OBJECTIVE To evaluate the associations of cord serum PFAS concentrations with BMI trajectories from birth to age 10 years and longitudinal BMI in different periods. METHODS Based on 887 mother-child pairs in the longitudinal prospective birth cohort, we measured 12 PFAS congeners in cord serum and calculated BMI with anthropometric indicators at 9 follow-up time points from birth to age 10 years. The BMI trajectories were identified using group-based trajectory model (GBTM). To estimate the associations of cord serum PFAS levels with BMI trajectories and longitudinal changes in BMI, logistic regression models, linear mixed models, Bayesian kernel machine regression, and quantile-based g-computation models (QGC) were used. RESULTS The median concentrations of 10 PFAS congeners included in statistical analysis ranged from 0.047 to 3.623 μg/L. Two BMI trajectory classes were identified by GBTM, characterized by high group and low group. In logistic regression models, five PFAS congeners (PFBA, PFHpA, PFHxS, PFHpS, and PFDoDA) were associated with the higher probability of being in high BMI trajectory group (odds ratio, OR: 1.21 to 1.74, p < 0.05). Meanwhile, higher PFAS mixture were related to elevated odds for the high group in both BKMR models and QGC models, with PFHpA and PFHpS being the two most important drivers jointly. In the sex-stratified analysis, the positive associations remained significant exclusively among males. In the longitudinal analysis, PFUnDA and PFDoDA were associated with increased BMI from birth to age 10 years. Furthermore, PFBS and PFHpA were negatively related to BMI throughout infancy and toddlerhood (from birth to age 3 years), whereas PFDoDA confirmed a positive association with mid-childhood (from age 6 to 10 years) BMI. CONCLUSIONS Prenatal PFAS exposure was positively associated with BMI trajectories from birth to preadolescence and longitudinal BMI in various periods. Future research could use better trajectory modeling strategies to shape more complete growth trajectories and explore the relationship between BMI trajectories and adulthood health.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
18
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
19
|
Xiong C, Xu L, Dong X, Cao Z, Wang Y, Chen K, Guo M, Xu S, Li Y, Xia W, Zhou A. Trimester-specific associations of maternal exposure to bisphenols with neonatal thyroid stimulating hormone levels: A birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163354. [PMID: 37023811 DOI: 10.1016/j.scitotenv.2023.163354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Growing evidence suggests that exposure to bisphenol A (BPA) during pregnancy could interfere with neonatal thyroid function. Bisphenol F (BPF) and bisphenol S (BPS) are increasingly used as the substitutes of BPA. However, little is known about the effects of maternal exposure to BPS and BPF on neonatal thyroid function. The current study was aimed to investigate the trimester-specific associations of maternal exposure to BPA, BPS, and BPF with neonatal thyroid stimulating hormone (TSH) levels. METHODS Between November 2013 and March 2015, a total of 904 mother-newborn pairs were recruited from the Wuhan Healthy Baby Cohort Study, providing maternal urine samples in the first, second, and third trimesters for bisphenol exposure assessment, and neonatal heel prick blood samples for TSH measurement. Multiple informant model and quantile g-computation were used to evaluate the trimester-specific associations of bisphenols individually and mixture with TSH, respectively. RESULTS Each doubling concentration increase of maternal urinary BPA in the first trimester was significantly related to a 3.64 % (95% CI: 0.84 %, 6.51 %) increment in neonatal TSH. Each doubling concentration increase of BPS in the first, second and third trimesters were associated with 5.81 % (95 % CI: 2.27 %, 9.46 %), 5.70 % (95 % CI: 1.99 %, 9.55 %), 4.36 % (95 % CI: 0.75 %, 8.11 %) higher neonatal blood TSH, respectively. No significant association between trimester-specific BPF concentration and TSH was observed. The relationships between exposures to BPA/BPS and neonatal TSH were more evident in female infants. Quantile g-computation indicated that maternal co-exposure to bisphenols in the first trimester was significantly associated with neonatal TSH levels in a non-linear fashion. CONCLUSION Maternal exposure to BPA and BPS were positively associated with neonatal TSH levels. The results indicated the endocrine disrupting effect of prenatal exposure to BPS and BPA, which should be of particular concern.
Collapse
Affiliation(s)
- Chao Xiong
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Luli Xu
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohan Dong
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuji Wang
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Menglan Guo
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; School of Life Science, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Li
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Aifen Zhou
- Wuhan Children's Hospital, Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Ma J, Wang Z, Qin C, Wang T, Hu X, Ling W. Safety of benzophenone-type UV filters: A mini review focusing on carcinogenicity, reproductive and developmental toxicity. CHEMOSPHERE 2023; 326:138455. [PMID: 36944403 DOI: 10.1016/j.chemosphere.2023.138455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Consumer products containing benzophenone-type ultraviolet (UV) filters (BPs) have been widely accepted by the public, resulting in the widely existence of various BPs in the human body and environment. In recent years, more and more evidences show that BPs are endocrine disruptors. In view of the continuous exposure risk of BPs and their endocrine disrupting characteristics, the carcinogenicity of BPs and their effects on reproduction and development are of particular concern. However, due to the wide varieties of BPs and the scattered toxicity studies on BPs, people have a limited understanding on the safety of BPs. Therefore, this paper systematically reviews the carcinogenicity, reproductive and developmental toxicity of BPs in order to expand people's knowledge on the health risks of BPs and screen for more safe BPs. Although existing toxicological studies are insufficient, it can be determined that BPs have different potentials for carcinogenicity, and reproductive and developmental toxicity. Among those BPs, 2-hydroxyl-4-methoxyl benzophenone needs to be used with caution due to its adverse effects on cancer cell proliferation and migration, reproductive ability, sex differentiation, neurodevelopment, and so on. It is worth noting that functional group substitutions significantly affect the interaction between BPs and biomolecules such as DNA, cancer cells, and seminal fluid, resulting in different levels of toxicity. In short, it is very necessary to evaluate the carcinogenicity, reproductive and developmental toxicity of BPs, which is of great significance for establishing reasonable BPs content standards in cosmetics, water quality treatment standards for BPs, and so on.
Collapse
Affiliation(s)
- Junchao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zeming Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Xi J, Su X, Wang Z, Ji H, Chen Y, Liu X, Miao M, Liang H, Yuan W. The associations between concentrations of gestational bisphenol analogues and thyroid related hormones in cord blood: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114838. [PMID: 36989560 DOI: 10.1016/j.ecoenv.2023.114838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Animal studies indicated that Bisphenol analogues (BPs) exhibited potential thyroid toxicity. However, little is known of the associations between maternal BPs exposure and offspring's thyroid related hormones in humans. On the basis of Shanghai-Minhang Birth Cohort study, we analyzed BPs in maternal urine collected at the third trimester of pregnancy. Thyroid related hormones (THs), including total triiodothyronine (TT3), free triiodothyronine (FT3), total thyroxine (TT4), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) were measured in cord blood samples. We performed multiple linear regression and Bayesian kernel machine regression (BKMR) models to explore the single and joint effects of gestational BPs exposure on thyroid related hormones in cord blood among 258 mother-child pairs. Statistically significant inverse associations of categorized BPA with FT3 and TT4 concentrations were observed. We also found a significant association between the mixture of BPs in maternal urine and increased concentration of TT3 in cord blood and a marginally significant association between BPs mixture and increased FT3 concentrations. Further associations of BPA with lower TT4/FT4 and of Bisphenol AF (BPAF) with higher TT3/FT3 were also suggestive, by BKMR model, when other BPs were fixed at 25th percentiles. It was concluded that prenatal BPs exposure was associated with THs in cord blood. Exposure to BPA and BPAF might have large contributions to the effects on thyroid function than other bisphenols.
Collapse
Affiliation(s)
- Jianya Xi
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Xiujuan Su
- Clinical Research center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ziliang Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Honglei Ji
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Yao Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Xiaofang Liu
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, #35 Zhuo Daoquan North Road, Wuhan 430079, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China.
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, 779 Old Humin Road, Shanghai 200237, China
| |
Collapse
|
22
|
Li Q, Qiao Y, Wang F, Zhao J, Wu L, Ge H, Xu S. Prenatal triclosan exposure impairs mammalian lung branching morphogenesis through activating Bmp4 signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114896. [PMID: 37054474 DOI: 10.1016/j.ecoenv.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Triclosan (TCS) is a commonly used antibacterial agent present in personal care and household products. Recently, there have been increasing concerns about the association between children's health and TCS exposure during gestation, but the toxicological effects of TCS exposure on embryonic lung development remain undetermined. In this study, through using an ex vivo lung explant culture system, we found that prenatal exposure to TCS resulted in impaired lung branching morphogenesis and altered proximal-distal airway patterning. These TCS-induced dysplasias are accompanied by significantly reduced proliferation and increased apoptosis within the developing lung, as a consequence of activated Bmp4 signaling. Inhibition of Bmp4 signaling by Noggin partially rescues the lung branching morphogenesis and cellular defects in TCS-exposed lung explants. In addition, we provided in vivo evidence that administration of TCS during gestation leads to compromised branching formation and enlarged airspace in the lung of offspring. Thus, this study provides novel toxicological information on TCS and indicated a strong/possible association between TCS exposure during pregnancy and lung dysplasia in offspring.
Collapse
Affiliation(s)
- Qiuling Li
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Yulong Qiao
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Feifei Wang
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jian Zhao
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Honghua Ge
- Institute of Department of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
23
|
Coiffier O, Nakiwala D, Rolland M, Malatesta A, Lyon-Caen S, Chovelon B, Faure P, Sophie Gauchez A, Guergour D, Sakhi AK, Sabaredzovic A, Thomsen C, Pin I, Slama R, Corne C, Philippat C. Exposure to a mixture of non-persistent environmental chemicals and neonatal thyroid function in a cohort with improved exposure assessment. ENVIRONMENT INTERNATIONAL 2023; 173:107840. [PMID: 36857904 DOI: 10.1016/j.envint.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In vitro and toxicological studies have shown that non-persistent environmental chemicals can perturb thyroid hormone homeostasis. Epidemiological studies with improved exposure assessment (i.e., repeated urine samples) are needed to evaluate effects of these compounds, individually or as a mixture, in humans. We studied the associations between prenatal exposure to non-persistent environmental chemicals and neonatal thyroid hormones. METHODS The study population consisted of 442 mother-child pairs from the French SEPAGES mother-child cohort recruited between July 2014 and July 2017. For each participant, four parabens, five bisphenols, triclosan, triclocarban, benzophenone-3 as well as metabolites of phthalates and of di(isononyl)cyclohexane-1,2-dicarboxylate were assessed in two pools of repeated urine samples (median: 21 spot urines per pool), collected in the 2nd and 3rd trimesters of pregnancy, respectively. Thyroid stimulating hormone (TSH) and total thyroxine (T4) levels were determined in newborns from a heel-prick blood spot. Maternal iodine and selenium were assessed in urine and serum, respectively. Adjusted linear regression (uni-pollutant model) and Bayesian Kernel Machine Regression (BKMR, mixture model) were applied to study overall and sex-stratified associations between chemicals and hormone concentrations. RESULTS Interaction with child sex was detected for several compounds. Triclosan, three parabens, and one phthalate metabolite (OH-MPHP) were negatively associated with T4 among girls in the uni-pollutant model. BKMR also suggested a negative association between the mixture and T4 in girls, whereas in boys the association was positive. The mixture was not linked to TSH levels, and for this hormone the uni-pollutant model revealed associations with only a few compounds. CONCLUSION Our study, based on repeated urine samples to assess exposure, showed that prenatal exposure to some phenols and phthalates disturb thyroid hormone homeostasis at birth. Furthermore, both uni-pollutant and mixture models, suggested effect modification by child sex, while, to date underlying mechanisms for such sex-differences are not well understood.
Collapse
Affiliation(s)
- Ophélie Coiffier
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Dorothy Nakiwala
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Andres Malatesta
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Benoît Chovelon
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, CNRS, UMR 5063, F-38041 Grenoble, France; Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Patrice Faure
- Département de Pharmacochimie Moléculaire, Université Grenoble Alpes, CNRS, UMR 5063, F-38041 Grenoble, France; Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Anne Sophie Gauchez
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Dorra Guergour
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | | | | | | | - Isabelle Pin
- Pediatric Department, Grenoble University Hospital, 38700 La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Christelle Corne
- Service de Biochimie SB2TE, Institut de Biologie et Pathologie CHU Grenoble Alpes, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France.
| |
Collapse
|
24
|
Mustieles V, Balogh RK, Axelstad M, Montazeri P, Márquez S, Vrijheid M, Draskau MK, Taxvig C, Peinado FM, Berman T, Frederiksen H, Fernández MF, Marie Vinggaard A, Andersson AM. Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 173:107739. [PMID: 36805158 DOI: 10.1016/j.envint.2023.107739] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Benzophenone-3 (BP-3) and its major metabolite benzophenone-1 (BP-1) are widely used as UV filters in sunscreens and cosmetics to prevent sunburn and skin damage, or as stabilizers to prevent photodegradation in many commercial products. As a result, their presence is ubiquitous in the environment, wildlife and humans. Based on endocrine disruption concerns, international regulatory agencies are performing a closer evaluation. OBJECTIVE AND METHODS This work aimed to comprehensively review the available human relevant evidence for safety issues in MEDLINE/PubMed in order to create a structured database of studies, as well as to conduct an integrative analysis as part of the Human Biomonitoring for Europe (HBM4EU) Initiative. RESULTS A total of 1,635 titles and abstracts were screened and 254 references were evaluated and tabulated in detail, and classified in different categories: i) exposure sources and predictors; ii) human biomonitoring (HBM) exposure levels to perform a meta-analysis; iii) toxicokinetic data in both experimental animals and humans; iv) in vitro and in vivo rodent toxicity studies; and v) human data on effect biomarkers and health outcomes. Our integrative analysis showed that internal peak BP-3 concentrations achieved after a single whole-body application of a commercially available sunscreen (4% w/w) may overlap with concentrations eliciting endocrine disrupting effects in vitro, and with internal concentrations causing in vivo adverse female reproductive effects in rodents that were supported by still limited human data. The adverse effects in rodents included prolonged estrous cycle, altered uterine estrogen receptor gene expression, endometrium hyperplasia and altered proliferation and histology of the mammary gland, while human data indicated menstrual cycle hormonal alterations and increased risk of uterine fibroids and endometriosis. Among the modes of action reported (estrogenic, anti-androgenic, thyroid, etc.), BP-3 and especially BP-1 showed estrogenic activity at human-relevant concentrations, in agreement with the observed alterations in female reproductive endpoints. The meta-analysis of HBM studies identified a higher concern for North Americans, showing urinary BP-3 concentrations on average 10 and 20 times higher than European and Asian populations, respectively. DISCUSSION AND CONCLUSIONS Our work supports that these benzophenones present endocrine disrupting properties, endorsing recent European regulatory efforts to limit human exposure. The reproducible and comprehensive database generated may constitute a point of departure in future risk assessments to support regulatory initiatives. Meanwhile, individuals should not refrain from sunscreen use. Commercially available formulations using inorganic UV filters that are practically not absorbed into systemic circulation may be recommended to susceptible populations.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Ria K Balogh
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Marta Axelstad
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Parisa Montazeri
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sandra Márquez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martine Vrijheid
- CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Monica K Draskau
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Camilla Taxvig
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Francisco M Peinado
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Jerusalem 9101002, Israel
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mariana F Fernández
- University of Granada, Biomedical Research Center (CIBM), Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | | | - Anna-Maria Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark; International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Oh J, Kim K, Kannan K, Parsons PJ, Mlodnicka A, Schmidt RJ, Schweitzer JB, Hertz-Picciotto I, Bennett DH. Early childhood exposure to environmental phenols and parabens, phthalates, organophosphate pesticides, and trace elements in association with attention deficit hyperactivity disorder (ADHD) symptoms in the CHARGE study. RESEARCH SQUARE 2023:rs.3.rs-2565914. [PMID: 36798220 PMCID: PMC9934759 DOI: 10.21203/rs.3.rs-2565914/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background Agrowing body of literature investigated childhood exposure to environmental chemicals in association with attention deficit hyperactivity disorder (ADHD) symptoms, but limited studies considered urinary mixtures of multiple chemical classes. This study examined associations of concurrent exposure to non-persistent chemicals with ADHD symptoms in children diagnosed with autism spectrum disorder (ASD), developmental delay, and typical development. Methods A total of 574 children aged 2-5 years from the Childhood Autism Risks from Genetics and Environment (CHARGE) case-control study was administered the Aberrant Behavior Checklist (ABC). This study focused on the Hyperactivity subscale and its two subdomains (hyperactivity/impulsivity, inattention). Sixty-two chemicals from four classes (phenols/parabens, phthalates, organophosphate pesticides, trace elements) were quantified in child urine samples, and 43 chemicals detected in >70% samples were used in statistical analyses. Weighted quantile sum regression for negative binomial outcomes with repeated holdout validation was performed to investigate covariate-adjusted associations between mixtures and ABC scores in 574 children. The mixture analyses were further restricted to 232 children with ASD. Results Phthalate metabolite mixtures, weighted for mono-n-butylphthalate (MNBP), mono-2-heptyl phthalate, and mono-carboxy isononyl phthalate, were associated with the Hyperactivity subscale (mean incidence rate ratio [mIRR] = 1.11; 2.5th, 97.5th percentile: 1.00, 1.23), especially the hyperactivity/impulsivity subdomain (mIRR = 1.14; 2.5th, 97.5th percentile: 1.06, 1.26). These associations remained similar after restricting to children with ASD. The inattention subdomain was associated with a phenols/parabens mixture, weighted for several parabens and bisphenols (mIRR = 1.13; 2.5th, 97.5th percentile: 1.00, 1.28) and a total mixture, weighted for 3,4-dihydroxy benzoic acid, MNBR and mono-(2-ethyl-5-carboxypentyl) phthalate (mIRR = 1.11; 2.5th, 97.5th percentile: 1.01,1.25) only among children with ASD. Conclusions Concurrent exposure to phthalate mixtures was associated with hyperactivity in early childhood. Though causal inference cannot be made based on our cross-sectional findings, this study warrants further research on mixtures of larger number of chemicals from multiple classes in association with ADHD-related behaviors in young children.
Collapse
|
26
|
Bai C, Dong H, Tao J, Chen Y, Xu H, Lin J, Huang C, Dong Q. Lifetime exposure to benzophenone-3 at an environmentally relevant concentration leads to female-biased social behavior and cognition deficits in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159733. [PMID: 36306848 DOI: 10.1016/j.scitotenv.2022.159733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Benzophenone-3 (BP3) is an organic UV filter widely used in the commercial formulations of various personal care products. It has been detected ubiquitously in the environment and human tissues. Recently, BP3-induced neurotoxicity has been identified as the main health risk to humans and aquatic organisms. However, most research has been focused on embryonic development, and few studies explore chronic lifetime exposure. In the present study, we evaluated the neurotoxicity of lifetime exposure to an environmentally relevant concentration of BP3 in zebrafish. Our findings revealed that continuous BP3 exposure at 10 μg/L (0.04 μM) from 6 h post fertilization (hpf) to adulthood at 5 months led to female-biased social behavioral deficits and learning and memory impairment. These neurobehavioral effects were characterized by decreased prosocial activities in the social preference test and mirror biting assay, and reduced learning and memory in a T-maze test. Furthermore, these effects were accompanied by female-specific decreases in brain weight and brain dopamine concentration, female-biased decrease of neurogenesis in the telencephalon as well as female-specific increases in apoptotic cells and expression levels of genes and proteins related to the apoptosis pathway in the brain. Our results suggest that BP3-induced social behavior and learning/memory deficits are correlated to the cell loss in the telencephalon region of the zebrafish brain.
Collapse
Affiliation(s)
- Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haojia Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junyan Tao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jian Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
27
|
Li R, Zhan W, Ren J, Zhang F, Huang X, Ma Y. Temporal trends in risk of bisphenol A, benzophenone-3 and triclosan exposure among U.S. children and adolescents aged 6-19 years: Findings from the National Health and Nutrition Examination Survey 2005-2016. ENVIRONMENTAL RESEARCH 2023; 216:114474. [PMID: 36202243 DOI: 10.1016/j.envres.2022.114474] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phenolic compounds with potential adverse health effects are gradually being replaced. Little is known about the potential health risks of BPA, BP3, and TCS exposure in children and adolescents aged 6-19 years in the United States. OBJECTIVES To determine trends and rates of change in hazard indices (HI) for three phenolics in U.S. children and adolescents for BPA, BP3, TCS, and to assess changes in gender, race/ethnicity, age, and potential health risks. METHODS Metabolic biomonitoring data from field-collected urine samples from the National Health and Nutrition Examination Survey (NHANES) were utilized. Daily intake of three phenols (bisphenol A, benzophenone-3, and triclosan) between 2005 and 2016 in children and adolescents were obtained. Cumulative risk indicators, including hazard quotient (HQ), hazard index (HI), and maximum cumulative ratio (MCR), were used for the health risk assessment of the three phenols. RESULTS During this period, the change in LSGM HI was -2.9% per cycle [95% Cl: (-3.7%, -2.2%)], and the percentage of participants with HI > 0.1 decreased from 15.6% to 10.5%. Children (6-11 years) had higher mean HI values than adolescents (12-19 years), while female had higher LSGM HI values than male. MCR values were generally low and negatively correlated with HI. However, the average value of MCR increased from 1.722 to 2.107 during this period. CONCLUSION Exposure to phenolics among U.S. children and adolescents has changed in recent decades. However, gaps in data limit the interpretation of trends but legislative activity and advocacy campaigns by nongovernmental organizations may play a role in changing trends. Moreover, there are growing concerns about the potential health risks associated with exposure to multiple phenols in children and adolescents.
Collapse
Affiliation(s)
- Ruiqiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenqiang Zhan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Fan Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xin Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
28
|
Mao JF, Li W, Ong CN, He Y, Jong MC, Gin KYH. Assessment of human exposure to benzophenone-type UV filters: A review. ENVIRONMENT INTERNATIONAL 2022; 167:107405. [PMID: 35843073 DOI: 10.1016/j.envint.2022.107405] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
To avoid the harmful effects of UV radiation, benzophenone-type UV filters (BPs) are widely used in personal care products and other synthetic products. Biomonitoring studies have shown the presence of BPs in various human biological samples, raising health concerns. However, there is a paucity of data on the global human exposure to this group of contaminants. In this study, we compiled data on the body burden of BPs along with the possible exposure routes and biotransformation pathways. BPs can easily penetrate the skin barrier and thus, they can be absorbed through the skin. In the human body, BPs can undergo Phase I (mainly demethylation and hydroxylation) and Phase II (mainly glucuronidation and sulfation) biotransformations. From a total of 158 studies, most of the studies are related to urine (concentration up to 92.7 mg L-1), followed by those reported in blood (up to 0.9 mg L-1) and milk (up to 0.8 mg L-1). Among BPs, benzophenone-1 and benzophenone-3 are the most commonly detected congeners. The body burden of BPs is associated with various factors, including the country of residence, lifestyle, income, education level, and ethnicity. The presence of BPs in maternal urine (up to 1.1 mg L-1), placenta (up to 9.8 ng g-1), and amniotic fluid (up to 15.7 μg L-1) suggests potential risks of prenatal exposure. In addition, transplacental transfer of BPs is possible, as demonstrated by their presence in maternal serum and cord serum. The possible association of BPs exposure and health effects was discussed. Future human biomonitoring studies and studies on the potential health effects are warranted. Overall, this review provides a summary of the global human exposure to BPs and can serve as supporting evidence to guide usage in order to protect humans from being exposed to BPs.
Collapse
Affiliation(s)
- Jason Feijian Mao
- Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing, 210098, China; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenxuan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, 117549, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mui-Choo Jong
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|
29
|
Gao L, Luo D, Wu D, Sun Q, Liu Y, Wen D, Jia L. Effects of mammalian target of rapamycin and aryl hydrocarbon receptor-mediating autophagy signaling on the balance of Th17/Treg cells during perinatal bisphenol A exposure in female offspring mice. ENVIRONMENTAL TOXICOLOGY 2022; 37:1781-1789. [PMID: 35357751 DOI: 10.1002/tox.23525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/07/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol A (BPA)'s immunotoxic properties have received increasing interest, which can lead to immune dysfunction and related disease development. However, the mechanism is not completely clear. A growing body of evidence suggests that autophagy has important roles in innate immunity, inflammatory response, and adaptive immunity. This study aimed to investigate the possible mechanisms of mammalian target of rapamycin (mTOR), aryl hydrocarbon receptor (AhR), and autophagy in Treg/Th17 imbalance induced by perinatal BPA exposure. Our results showed that the number of Th17 cells in the spleen of offspring female mice significantly increased, while the number of Treg cells decreased significantly, which was consistent with the expression levels of up-regulation of RORγt protein and a down-regulation Foxp3 protein. The levels of mTOR, p-mTOR, P62, and AhR protein expression increased, and LC3 protein decreased in spleen. However, in the thymus, we found that RORγt and Foxp3 proteins changed most significantly in the low-dose BPA group, and the same as p-mTOR and P62 protein levels. We conjectured that the potential mechanism of the imbalance of Th17/Treg upon perinatal exposure to BPA was probably associated with autophagy dysfunction. Proper autophagy plays an important role in maintaining the homeostasis of the thymic and spleen immune system.
Collapse
Affiliation(s)
- Liang Gao
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
- School of Public Health, Jinzhou medical university, Jinzhou, Liaoning, China
| | - Dan Luo
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Dan Wu
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Qi Sun
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
| | - Yang Liu
- Institute of Health Science, China Medical University, Shenyang, Liaoning, China
| | - Deliang Wen
- School of Public Health, Jinzhou medical university, Jinzhou, Liaoning, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, Liaoning, China
| | - Lihong Jia
- Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Obesity and Glucose/Lipid Associated Metabolic Diseases, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Fan D, Liang M, Guo M, Gu W, Gu J, Liu M, Shi L, Ji G. Exposure of preschool-aged children to highly-concerned bisphenol analogues in Nanjing, East China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113397. [PMID: 35286960 DOI: 10.1016/j.ecoenv.2022.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Bisphenol analogues (BPs) have already attracted wide concern owing to the environmental and health risks they pose. The exposure pathways and health risk of preschool-aged children to BPs, however, are still poorly understood. In this study, we choose population survey with 184 preschool-age children from a suburb of Nanjing, eastern China, further reveal the internal and external exposures concentrations, distribution profiles, potential sources and eventually assess health risk of preschool-age children to eight kinds of BPs. The results verify that the 95th percentile (P95) concentrations of Ʃ8BPs ranged from 0.27 to 41.6 ng/mL, with a median concentration of 7.83 ng/mL in the urine samples. BPA, and BPF were the predominant BPs in urine, accounting for 67.3%, and 18.0% of Ʃ8BPs. The urine-based estimated daily intake (EDI) of Ʃ8BPs was 187 ng/kg body weight/day. Similarly, BPA, and BPF were the main BPs in the environmental exposure sources, accounting for 80.8%, and 11.7% of the total BPs. Moreover, the total external exposure dose of Ʃ8BPs via the environmental sources was 68.1 ng/kg body weight/day, including BPA (56 ng/kg body weight/day), BPF (7.68 ng/kg body weight/day) and BPB (2.62 ng/kg body weight/day). The oral intake of drinking water and food (vegetables and rice) was the main exposure pathways of BPs in preschool-age children. Furthermore, the hazard quotient (HQ) of BPs have been evaluated and the results show no occurrence of high risk. Additionally, the urine-based EDI was significantly higher than the total external exposure dose, suggesting the existence of other pathways of BP exposure to be further explored. To the best of our knowledge, this is the first study to conduct both an internal and external exposure assessment of BPs.
Collapse
Affiliation(s)
- Deling Fan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Mengyuan Liang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Min Guo
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Wen Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Jie Gu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Mingqing Liu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Lili Shi
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, PR China.
| |
Collapse
|
31
|
Matouskova K, Vandenberg LN. Towards a paradigm shift in environmental health decision-making: a case study of oxybenzone. Environ Health 2022; 21:6. [PMID: 34998398 PMCID: PMC8742442 DOI: 10.1186/s12940-021-00806-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Technological advancements make lives safer and more convenient. Unfortunately, many of these advances come with costs to susceptible individuals and public health, the environment, and other species and ecosystems. Synthetic chemicals in consumer products represent a quintessential example of the complexity of both the benefits and burdens of modern living. How we navigate this complexity is a matter of a society's values and corresponding principles. OBJECTIVES We aimed to develop a series of ethical principles to guide decision-making within the landscape of environmental health, and then apply these principles to a specific environmental chemical, oxybenzone. Oxybenzone is a widely used ultraviolet (UV) filter added to personal care products and other consumer goods to prevent UV damage, but potentially poses harm to humans, wildlife, and ecosystems. It provides an excellent example of a chemical that is widely used for the alleged purpose of protecting human health and product safety, but with costs to human health and the environment that are often ignored by stakeholders. DISCUSSION We propose six ethical principles to guide environmental health decision-making: principles of sustainability, beneficence, non-maleficence, justice, community, and precautionary substitution. We apply these principles to the case of oxybenzone to demonstrate the complex but imperative decision-making required if we are to address the limits of the biosphere's regenerative rates. We conclude that both ethical and practical considerations should be included in decisions about the commercial, pervasive application of synthetic compounds and that the current flawed practice of cost-benefit analysis be recognized for what it is: a technocratic approach to support corporate interests.
Collapse
Affiliation(s)
- Klara Matouskova
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts – Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA 01003 USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts – Amherst, 171C Goessmann, 686 N. Pleasant Street, Amherst, MA 01003 USA
| |
Collapse
|
32
|
Huang Z, Fu W, Dou L, Bao H, Wu W, Su P, Huang K, Zhu P, Sheng J, Xu Y, Tao F, Hao J. Prenatal Bisphenol A Exposure and Early Childhood Behavior and Cognitive Function: A Chinese Birth Cohort Study. Neuroendocrinology 2022; 112:311-323. [PMID: 33910209 DOI: 10.1159/000516881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Biomonitoring of bisphenol A (BPA) in human blood is still scarce, although already noticeable. We aimed to examine the associations between prenatal serum BPA concentrations and behavior and cognitive function in preschool children. METHODS A total of 1,782 mother-child pairs with complete demographic information, blood samples, and psychological measurements were included from the China-Anhui Birth Cohort (C-ABCS). We detected serum BPA concentrations and assessed children's neurodevelopment using a set of psychometric scales. RESULTS The median prenatal maternal serum BPA concentration was 0.23 (P25, P75: 0.07, 0.52) ng/mL, with a detection frequency of 85.19%. Compared with the girls with the lowest concentrations, those with highest BPA concentrations had increased risks of inhibitory self-control impairment [relative risk (RR) = 3.66, 95% confidence interval (CI): 1.53, 7.58], emergent metacognition impairment (RR = 1.70, 95% CI: 1.07, 2.78), conduct problem (RR = 1.68, 95% CI: 1.12, 2.39), peer relationship problem (RR = 2.57, 95% CI: 1.33, 4.47), higher total difficulties score (RR = 1.76, 95% CI: 1.12, 2.67), and higher impact factor score (RR = 1.52, 95% CI: 1.11, 2.05), while the boys with the highest prenatal BPA concentrations had an increased risk of conduct problem compared with those with the lowest concentrations (RR = 1.59, 95% CI: 1.09, 2.24) (P-interaction = 0.011). After stratification by age, high prenatal BPA concentrations were associated with increased ADHD (RR = 4.44, 95% CI: 1.54, 10.85) among children aged 3 years, not among children aged 4 years. CONCLUSION Our study revealed the sex-specific and age-specific impacts of prenatal BPA exposure on preschool children's cognitive and behavioral development.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Anhui Provincial Center for Women and Child Health, Hefei, China
| | - Weinan Fu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Lianjie Dou
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huihui Bao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Wanke Wu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Puyu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Kun Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jie Sheng
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
33
|
Homburg M, Rasmussen ÅK, Ramhøj L, Feldt-Rasmussen U. The Influence of Triclosan on the Thyroid Hormone System in Humans - A Systematic Review. Front Endocrinol (Lausanne) 2022; 13:883827. [PMID: 35721761 PMCID: PMC9202756 DOI: 10.3389/fendo.2022.883827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Triclosan is an antibacterial agent suspected to disrupt the endocrine system. The aim of this study was to investigate the influence of triclosan on the human thyroid system through a systematic literature review of human studies. METHODS Eligibility criteria and method of analysis were registered at Prospero (registration number: CRD42019120984) before a systematic search was conducted in Pubmed and Embase in October 2020. Seventeen articles were found eligible for inclusion. Thirteen studies were observational, while four had a triclosan intervention. Participants consisted of pregnant women in eight studies, of men and non-pregnant women in seven studies and of chord samples/newborns/children/adolescents in six studies. The outcomes were peripheral thyroid hormones and thyroid-stimulating hormone (TSH) in blood samples. RESULTS Several studies found a negative association between triclosan and triiodothyronine and thyroxine, and a positive association with TSH; however, the opposite associations or no associations were also found. In general, the studies had limited measurement timepoints of thyroid outcomes, and the interventional studies used low concentrations of triclosan. Thus, study design limitations influence the quality of the dataset and it is not yet possible to conclude whether triclosan at current human exposure levels adversely affects the thyroid hormone system. CONCLUSIONS Further larger studies with more continuity and more elaborate outcome measurements of thyroid function are needed to clarify whether triclosan, at current exposure levels, affects the human thyroid hormone system. SYSTEMATIC REVIEW REGISTRATION http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42019120984, identifier PROSPERO (CRD42019120984).
Collapse
Affiliation(s)
- Mai Homburg
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| | - Åse Krogh Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology and Metabolism, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Ulla Feldt-Rasmussen,
| |
Collapse
|
34
|
Koutaki D, Paltoglou G, Vourdoumpa A, Charmandari E. The Impact of Bisphenol A on Thyroid Function in Neonates and Children: A Systematic Review of the Literature. Nutrients 2021; 14:nu14010168. [PMID: 35011041 PMCID: PMC8746969 DOI: 10.3390/nu14010168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Bisphenol A (BPA) is an endocrine-disrupting chemical widely used in plastic products that may have an adverse effect on several physiologic functions in children. The aim of this systematic review is to summarize the current knowledge of the impact of BPA concentrations on thyroid function in neonates, children, and adolescents. Methods: A systematic search of Medline, Scopus, Clinical Trials.gov, Cochrane Central Register of Controlled Trials CENTRAL, and Google Scholar databases according to PRISMA guidelines was performed. Only case–control, cross-sectional, and cohort studies that assessed the relationship between Bisphenol A and thyroid function in neonates and children aged <18 years were included. Initially, 102 articles were assessed, which were restricted to 73 articles after exclusion of duplicates. A total of 73 articles were assessed by two independent researchers based on the title/abstract and the predetermined inclusion and exclusion criteria. According to the eligibility criteria, 18 full-text articles were selected for further assessment. Finally, 12 full-text articles were included in the present systematic review. Results: The presented studies offer data that suggest a negative correlation of BPA concentrations with TSH in children, a gender-specific manner of action, and a potential effect on proper neurodevelopment. However, the results are inconclusive with respect to specific thyroid hormone concentrations and the effect on thyroid autoimmunity. Conclusion: The potential negative effect of BPA in the developing thyroid gland of children that may affect proper neurodevelopment, suggesting the need to focus future research on designing studies that elucidate the underlying mechanisms and the effects of BPA in thyroid function in early life.
Collapse
Affiliation(s)
- Diamanto Koutaki
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - George Paltoglou
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - Aikaterini Vourdoumpa
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, ‘Aghia Sophia’ Children’s Hospital, 11527 Athens, Greece; (D.K.); (G.P.); (A.V.)
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence: ; Tel./Fax: +30-213-2013-384
| |
Collapse
|
35
|
Guilbert A, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Slama R, Guichardet K, Philippat C. Associations between a mixture of phenols and phthalates and child behaviour in a French mother-child cohort with repeated assessment of exposure. ENVIRONMENT INTERNATIONAL 2021; 156:106697. [PMID: 34147998 DOI: 10.1016/j.envint.2021.106697] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Synthetic phenols and phthalates can interfere with biological pathways involved in brain development. Despite the high within-subject temporal variability of urinary concentrations observed for their metabolites, studies investigating effects of phenols and phthalates on child behaviour often relied on a limited number of spot biospecimens to assess exposure. Besides, the majority did not consider mixture effects. OBJECTIVES To study the combined effect of prenatal exposure to synthetic phenols and phthalates on child behaviour using repeated exposure measurements. METHODS We assessed concentrations of 12 phenols, 13 phthalate and 2 non-phthalate plasticizer metabolites in within-subject pools of multiple urine samples (median = 21 samples per individual pool) collected at two distinct time points during pregnancy in 416 mother-child pairs from the French SEPAGES cohort. Child behaviour was evaluated at two years using the Child Behaviour Checklist 1.5-5 (CBCL). Associations between a mixture of biomarkers of exposure and externalizing and internalizing behaviour scores were studied using adjusted Weighted Quantile Sum (WQS) regressions with a repeated holdout validation (100 repetitions). RESULTS The positive WQS indexes were associated with both the externalizing and internalizing behaviour scores in the whole population, indicating greater risk of behavioural problems. Stratification for child sex suggested stronger associations in girls than boys. On average, girls externalizing and internalizing scores increased by 3.67 points (95% CI: 1.24, 6.10) and 2.47 points (95 %CI: 0.60, 4.33) respectively, for an increase of one tertile in the WQS index, compared with 1.70 points (95 %CI: -0.42, 3.81) and 1.17 points (95 %CI: -0.50, 2.84) in boys. Main contributors for the associations observed in girls were bisphenol A (weight of 18%), triclosan (17%) and monoethyl phthalate (MEP, 15%) for the externalizing score and MEP (19%), mono-benzyl phthalate (MBzP, 19%) and mono-n-butyl phthalate (MnBP, 16%) for the internalizing score. DISCUSSION Our results suggest adverse associations between in utero exposure to a mixture of phenols and phthalates and child behaviour, mainly in girls. Public health consequences may be substantial due to the widespread exposure of the population to these compounds.
Collapse
Affiliation(s)
- Ariane Guilbert
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Matthieu Rolland
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France; Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | | | | | | | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, 38700 La Tronche, France.
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| |
Collapse
|
36
|
Guo C, Ren F, Jin J, Zhang H, Wang L, Zhang H, Chen J. Internal exposure of Chinese children from a typical coastal city to bisphenols and possible association with thyroid hormone levels. ENVIRONMENT INTERNATIONAL 2021; 156:106759. [PMID: 34265627 DOI: 10.1016/j.envint.2021.106759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Bisphenols (BPs) are widely used in consumer products, and human exposure to BPs is nearly ubiquitous. However, human biomonitoring data are scarce, especially for children. In this study, we quantified eight BPs in the serum of 345 children from a typical coastal city in China. Bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS) were frequently detected (63% BPA, 68% BPF, 43% BPS), with geometric mean (GM) concentrations of 1.6, 0.08, and 0.04 ng/mL, respectively. The other five BPs had low detection frequencies (<5%). The distribution of BPA, BPF, and BPS in children's serum samples was independent of sex whereas the concentrations of BPS and BPF both significantly increased with age (P < 0.01). The GM values of estimated daily intake for BPA and BPS were 0.61 and 0.014 μg/kg body weight (bw)/day, respectively, indicating a relatively higher exposure risk of BPA in comparison with BPS. Compared with the population with euthyroid or nonhyperthyroid thyroid dysfunction, children with hyperthyroidism suffered higher exposure to BPA. By multiple linear regression analysis, thyroid-stimulating hormone showed a significantly negative relationship with log10-BPA concentration for euthyroid children (R2 = 0.477, P < 0.001), whereas a significantly positive correlation (R2 = 0.753, P = 0.033) was found for hyperthyroid children.
Collapse
Affiliation(s)
- Cuicui Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ren
- The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jing Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| | - He Zhang
- Dalian Women and Children's Medical Group, Dalian 116011, China
| | - Longxing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
37
|
Yang X, Ou W, Zhao S, Wang L, Chen J, Kusko R, Hong H, Liu H. Human transthyretin binding affinity of halogenated thiophenols and halogenated phenols: An in vitro and in silico study. CHEMOSPHERE 2021; 280:130627. [PMID: 33964751 DOI: 10.1016/j.chemosphere.2021.130627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Serious harmful effects have been reported for thiophenols, which are widely used industrial materials. To date, little information is available on whether such chemicals can elicit endocrine-related detrimental effects. Herein the potential binding affinity and underlying mechanism of action between human transthyretin (hTTR) and seven halogenated-thiophenols were examined experimentally and computationally. Experimental results indicated that the halogenated-thiophenols, except for pentafluorothiophenol, were powerful hTTR binders. The differentiated hTTR binding affinity of halogenated-thiophenols and halogenated-phenols were observed. The hTTR binding affinity of mono- and di-halo-thiophenols was higher than that of corresponding phenols; while the opposite relationship was observed for tri- and penta-halo-thiophenols and phenols. Our results also confirmed that the binding interactions were influenced by the degree of ligand dissociation. Molecular modeling results implied that the dominant noncovalent interactions in the molecular recognition processes between hTTR and halogenated-thiophenols were ionic pair, hydrogen bonds and hydrophobic interactions. Finally, a model with acceptable predictive ability was developed, which can be used to computationally predict the potential hTTR binding affinity of other halogenated-thiophenols and phenols. Taken together, our results highlighted that more research is needed to determine their potential endocrine-related harmful effects and appropriate management actions should be taken to promote their sustainable use.
Collapse
Affiliation(s)
- Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wang Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Songshan Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Rebeca Kusko
- Immuneering Corporation, Cambridge, MA, 02142, USA
| | - Huixiao Hong
- National Center for Toxicological Research US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
38
|
Guo C, Zhao X, Jin J, Wang L, Tan D, Chen J, Ni Y. The dose effect of dansyl chloride on the derivative products of bisphenols and its application for the determination of bisphenols in human serum by high-performance liquid chromatography-tandem mass spectrometry. J Sep Sci 2021; 44:3052-3060. [PMID: 34101988 DOI: 10.1002/jssc.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 11/10/2022]
Abstract
Human exposure to bisphenols has rarely been reported. The most important challenges in this regard are the sensitivity and accuracy of the analytical methods employed. Dansyl chloride derivatization prior to high-performance liquid chromatography-tandem mass spectrometry has been prevalently employed to improve sensitivity. However, the dose effect of the derivatization reagent on the reaction products is not well understood, especially for reactants with two or more active groups. This study investigated the mass ratio of dansyl chloride to bisphenols and found the mass ratio played a vital role in changing the composition of derivatives; further, the optimal ratio for obtaining di-substituted derivatives was confirmed. Under optimal conditions, solid-phase extraction followed by dansyl chloride derivatization coupled with high-performance liquid chromatography-tandem mass spectrometry was used to detect eight bisphenols in human serum samples. The method detection limits of the eight bisphenols were 0.025-0.28 ng/mL, and the recoveries were 72.9-121.7% by spiking bisphenols (2, 5, and 20 ng/mL) into bovine serum. The detection frequencies of bisphenol A and bisphenol F in 73 serum samples obtained from children from Guangzhou were 41.1% and 71.2%, respectively, while the detection frequencies of other bisphenols were below 20%. The concentrations of bisphenol A and bisphenol F were < 0.28-8.0 ng/mL and < 0.028-7.6 ng/mL, respectively.
Collapse
Affiliation(s)
- Cuicui Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xueqin Zhao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Jing Jin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| | - Longxing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| | - Dongqin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| | - Yuwen Ni
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, P. R. China
| |
Collapse
|
39
|
Martínez MÁ, González N, Martí A, Marquès M, Rovira J, Kumar V, Nadal M. Human biomonitoring of bisphenol A along pregnancy: An exposure reconstruction of the EXHES-Spain cohort. ENVIRONMENTAL RESEARCH 2021; 196:110941. [PMID: 33647302 DOI: 10.1016/j.envres.2021.110941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
This study was aimed at reconstructing the exposure to bisphenol (BPA) of 60 pregnant women from the EXHES-Spain cohort. A biomonitoring study was conducted by determining BPA levels in urine samples over the three trimesters of pregnancy. Moreover, the correlations between BPA levels and the role of different potential exposure sources, with special emphasis on the dietary intake, were also studied. Urine samples were subjected to dispersive liquid-liquid microextraction and the subsequent analysis via gas chromatography-mass spectrometry. BPA was detected in 76% of the urine samples. A significant decrease of urinary BPA levels was observed along pregnancy, as mean concentrations of creatinine-adjusted BPA were 4.64, 4.84 and 2.51 μg/g in the first, second and third trimester, respectively. This decrease was essentially associated with changes in the dietary habits of the pregnant women, including a lower intake of canned food and drinks. However, the potential role of other pregnancy-related biochemical or physiological factors should not be disregarded. Very interestingly, significant differences in urine BPA levels were found according to the fruit consumption pattern, as women who ate more citrus fruits showed lower BPA concentrations in urine. The reconstructed exposure to BPA was estimated in 0.072, 0.069 and 0.038 μg BPA/kg of body weight/day in the first, second and third trimesters, respectively. These values are far below the temporary tolerable daily intake (t-TDI) established by the EFSA.
Collapse
Affiliation(s)
- María Ángeles Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana. Hospital Sant Joan de Reus, Reus, Spain. Institut d'Investigació Pere Virgili (IISPV). Reus, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Anna Martí
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|