1
|
Sarti C, Cincinelli A, Bresciani R, Rizzo A, Chelazzi D, Masi F. Microplastic removal and risk assessment framework in a constructed wetland for the treatment of combined sewer overflows. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175864. [PMID: 39216754 DOI: 10.1016/j.scitotenv.2024.175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Combined sewer overflows (CSOs) release a significant amount of pollutants, including microplastics (MPs), due to the discharge of untreated water into receiving water bodies. Constructed Wetlands (CWs) offer a promising strategy for CSO treatment and have recently attracted attention as a potential solution for MP mitigation. Nevertheless, limited research on MP dynamics within CSO events and MP removal performance in full-scale CW systems poses a barrier to this frontier of application. This research aims to address both these knowledge gaps, representing the first investigation of a multi-stage CSO-CW for MP removal. The study presents one year of seasonal data from the CSO-CW upstream of the WWTP in Carimate (Italy), evaluating the correlation of MP abundance with different water quality/quantity parameters and associated ecological risks. The results show a clear trend in MP abundance, which increases with rainfall intensity. The strong correlation between MP concentration, flow rate, and total suspended solids (TSS) validates the first flush phenomenon hypothesis and its impact on MP release during CSOs. Chemical characterization identifies acrylonitrile-butadiene-styrene (ABS), polyethylene (PE), and polypropylene (PP) as predominant polymers. The first vertical subsurface flow (VF) stage showed removal rates ranging from 40 % to 77 %. However, the unexpected increase in MP concentrations after the second free water surface (FWS) stage suggests the stochasticity of CSO events and the different hydraulic characteristics of the CW units have diverse effects on MP retention. These data confirm filtration as the main retention mechanism for MP within CW systems. The MP ecological risk assessment indicates a high-risk category for most of the water samples, mainly related to the frequent presence of ABS fragments. The results contribute to the current understanding of MPs released by CSOs and provide insights into the performance of different treatment units within a large-scale CSO-CW system, suggesting the requirement for further attention.
Collapse
Affiliation(s)
- Chiara Sarti
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Iridra Srl, Via La Marmora 51, 50121 Florence, Italy.
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Fabio Masi
- Iridra Srl, Via La Marmora 51, 50121 Florence, Italy
| |
Collapse
|
2
|
Hamman M, van Schyff V, Choong Kwet Yive RNS, Iordachescu L, Simon-Sánchez L, Bouwman H. Microplastics in coral from three Mascarene Islands, Western Indian Ocean. MARINE POLLUTION BULLETIN 2024; 208:116951. [PMID: 39276623 DOI: 10.1016/j.marpolbul.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024]
Abstract
Little is known about microplastics (MPs) in corals from the Indian Ocean. We compared MP concentrations, morphotypes, size, colours, and polymer compositions in six coral genera from three remote Mascarene islands (Rodrigues, St. Brandon's Atoll, and Agalega) of the Republic of Mauritius, on a 1200 km transect located in the South Equatorial Current (SEC). The mean MP concentration was 0.78 n/g (53 % fibres) with no significant differences between islands. Polymers were polypropylene (78 %) and polyethylene (18 %). We conclude that the SEC's MP concentrations and compositions have homogenized over thousands of kilometres across the Indian Ocean. We discuss the lack of hazardous polyurethane MPs in coral samples given obvious sources on St Brandon. To the best of our knowledge, this study is the first to report on MPs in coral from the Western Indian Ocean and the Mascarene Islands providing a baseline for further research, monitoring, mitigation, and policy development.
Collapse
Affiliation(s)
- Michelle Hamman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | - Veronica van Schyff
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; RECETOX, Masaryk University, Brno, Czech Republic
| | | | - Lucian Iordachescu
- Department of the Built Environment, Division of Civil and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Laura Simon-Sánchez
- Department of the Built Environment, Division of Civil and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
3
|
Axworthy JB, Lasdin KS, Padilla-Gamiño JL. Low incidence of microplastics in coral reefs of Kāne'ohe Bay, Hawai'i, USA. MARINE POLLUTION BULLETIN 2024; 208:116996. [PMID: 39326332 DOI: 10.1016/j.marpolbul.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
This study investigated microplastic and other micro-debris pollution in sediment, seawater, sea cucumbers, and corals from fringing and patch reefs in Kāne'ohe Bay, O'ahu, Hawai'i, USA. Microplastic pollution in Kāne'ohe Bay Bay was low compared to other tropical coral reefs. Microplastics were detected in sediments (29 %), sea cucumbers (9 %), and coral (0-2 %) samples but were not quantifiable. Seawater had quantifiable microplastic (< 0.5 mm) and macroplastic (> 0.5 mm) pollution, with mean concentrations ranging from 0.0061 to 0.081 particles m-3. Most particles detected in seawater samples were larger, floating plastic debris consisting mostly of polyethylene, polypropylene fragments, and fibers. Across the other matrices, the most detected particles were polyester, polypropylene, and cotton fibers. These results provide baseline data for this important coral reef ecosystem, and further monitoring is recommended to understand the seasonal and long-term trends in microplastic pollution and its potential future impacts.
Collapse
Affiliation(s)
- Jeremy B Axworthy
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St., Seattle, Washington 98105, USA.
| | - Katherine S Lasdin
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St., Seattle, Washington 98105, USA
| | - Jacqueline L Padilla-Gamiño
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St., Seattle, Washington 98105, USA
| |
Collapse
|
4
|
Foo SH, Mak NWJ, Todd PA. Singapore's urbanised coral reefs: Changes in heavy metal pollution between 1994 and 2021. MARINE POLLUTION BULLETIN 2024; 208:116959. [PMID: 39305841 DOI: 10.1016/j.marpolbul.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
The heavy metal load in coral reefs of Singapore has not been comprehensively assessed since 1994. Here, we repeated the surveys conducted 27 years ago to quantify the levels of Cd, Cu, Cr, Fe, Pb, Ti, Zn in sediment and the sea urchin Diadema setosum from seven reefs. Cu and Cd showed significant reductions, Pb and Cr remained stable, while Fe, Ti and Zn had increased significantly. Overall, based on the Pollution Load Index (PLI), Singapore's reefs would not be considered polluted. Nevertheless, elevated concentrations of Cu, Pb and Zn were detected in sediment, with Cu and Pb exceeding the Threshold Effect Level. The spatial distribution of metal loads between sediment and sea urchin tissues were decoupled, underscoring the complexity of metal uptake and bioavailability. We reveal a mixed temporal trend among the heavy metals examined, each presenting different toxicity potentials and hence risks to local marine assemblages.
Collapse
Affiliation(s)
- Sze Hui Foo
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Block S3, 16 Science Drive 4, 117558, Singapore
| | - Nicholas Wei Jie Mak
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Block S3, 16 Science Drive 4, 117558, Singapore
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Block S3, 16 Science Drive 4, 117558, Singapore.
| |
Collapse
|
5
|
Zhou T, Min R, Yang S, Zhang H, Zhang J, Song S, Zhang G. Distribution of microplastics in Lanzhou section of the Yellow River: Characteristics, ecological risk assessment, and factors analysis. MARINE POLLUTION BULLETIN 2024; 207:116900. [PMID: 39241367 DOI: 10.1016/j.marpolbul.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) is an emerging pollutant that has attracted attention in the environmental field, and the research of MPs in freshwater systems needs to be strengthened. To characterize the MPs in surface water and sediments of the western urban river network, water and sediment samples were collected. The results showed that the abundance of MPs in the water body of the river network ranged from 7 to 172 n/L, whereas the abundance of MPs in the sediments ranged from 7 to 144 n/kg, and the average abundance in the dry season was significantly higher than that in the rainy season. The majority of MPs (83.67 %) were < 1 mm and fibrous. The most commonly identified types of MPs were PET and PP, while the color blue was frequently observed. MPs have the potential to vertically migrate in sediments, with size, shape, density, and hydrodynamic forces being the main factors that contribute to this process. Correlation analysis results revealed that anthropogenic and meteorological factors, including precipitation, atmospheric conditions, and population density, had a discernible impact on the abundance, size, and shape of MPs. The ecological risk of MPs was assessed using the Polymer Hazardous Index (PHI), Pollution Load Index (PLI), and Potential Ecological Risk Index (PERI) methods, and the results showed that the overall ecological risk of the Lanzhou section of the Yellow River was low. This study can provide a scientific basis for monitoring and risk assessment of emerging contaminants such as MPs in the river environment.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Siyi Yang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaqian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shangjian Song
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
6
|
Jachimowicz P, Klik B, Osińska AD. Plastic Pollution in Paradise: Analyzing Plastic Litter on Malta's Beaches and Assessing the Release of Potentially Toxic Elements. TOXICS 2024; 12:568. [PMID: 39195670 PMCID: PMC11359196 DOI: 10.3390/toxics12080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
This study investigates plastic litter on two beaches in Malta, Golden Bay and Rivera Beach, with a focus on plastic abundance, characteristics, sources, and the influence of human activity on pollution levels. Conducted in March 2023 during the low-tourist season, 13 sediment samples were collected from a depth of 5 cm using a systematic square sampling method. Plastic litter was quantified and sorted by size, shape, color, and polymer type, and concentrations of potentially toxic elements (PTEs) were measured (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe via ICP-OES). Golden Bay exhibited significantly higher plastic quantities (53.9 ± 4.3 n/m2) compared to Rivera Beach (29.7 ± 4.0 n/m2). Microplastics were dominant on both beaches, with Golden Bay showing a higher proportion (57.0%) than Rivera Beach (50.6%). The plastic litter predominantly consisted of PE (59.6-68.0%) and PP (29.6-38.8%). Golden Bay plastics had PTE concentrations up to 4.9 times higher than those in Rivera Beach, notably for Mn (309.0 μg/g vs. 63.1 μg/g). This research contributes valuable insights into the dynamics of plastic pollution in coastal environments, particularly in areas influenced by tourism.
Collapse
Affiliation(s)
- Piotr Jachimowicz
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic
| | - Barbara Klik
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adriana Dorota Osińska
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Postboks 5003, 1432 Ås, Norway;
| |
Collapse
|
7
|
Rades M, Poschet G, Gegner H, Wilke T, Reichert J. Chronic effects of exposure to polyethylene microplastics may be mitigated at the expense of growth and photosynthesis in reef-building corals. MARINE POLLUTION BULLETIN 2024; 205:116631. [PMID: 38917503 DOI: 10.1016/j.marpolbul.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
The causes of the physiological effects of microplastic pollution, potentially harming reef-building corals, are unclear. Reasons might include increased energy demands for handling particles and immune reactions. This study is among the first assessing the effects of long-term microplastic exposure on coral physiology at realistic concentrations (200 polyethylene particles L-1). The coral species Acropora muricata, Pocillopora verrucosa, Porites lutea, and Heliopora coerulea were exposed to microplastics for 11 months, and energy reserves, metabolites, growth, and photosymbiont state were analyzed. Results showed an overall low impact on coral physiology, yet species-specific effects occurred. Specifically, H. coerulea exhibited reduced growth, P. lutea and A. muricata showed changes in photosynthetic efficiency, and A. muricata variations in taurine levels. These findings suggest that corals may possess compensatory mechanisms mitigating the effects of microplastics. However, realistic microplastic concentrations only occasionally affected corals. Yet, corals exposed to increasing pollution scenarios will likely experience more negative impacts.
Collapse
Affiliation(s)
- Marvin Rades
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Hagen Gegner
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| |
Collapse
|
8
|
Li B, Mao R, Chen Z, Zhang Y, Song J, Li N, Tang B, Feng J, Guan M. The competition of heavy metals between hyporheic sediments and microplastics of driving factors in the Beiluo River Basin. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134538. [PMID: 38761759 DOI: 10.1016/j.jhazmat.2024.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/20/2024]
Abstract
Both sediments and microplastics (MPs) are medias of heavy metals (HMs) in river ecosystems. This study investigated HMs (Mn, Cr, V, As, Cu, Co, Cd, Pb, and Ni) concentration and driving factors for competitive enrichment between hyporheic sediments versus MPs. The medias basic characteristics indicated that the sediments were mostly sand and rich in Fe2O3; three polymer types were identified, with blue, fragment, less than 500 µm being the main types of MPs. The results have shown that the average content of extracted HMs in MPs was much higher than that of the same metals accumulated in sediments. HMs in sediments and MPs reached heavily polluted at some points, among which As and Cd were ecological risks. Electrostatic adsorption and surface complexation, and biofilm-mediated and organic matter complexation were the interaction mechanism of HMs with sediments and MPs. Further, the driving factors affecting the distribution of HMs in the two carriers were analyzed by multivariate statistical analysis. The results demonstrated that carrier characteristics, hydrochemical factors, and the inherent metal load of MPs were the main causes of the high HMs content. These findings improved our understanding of HMs fate and environmental risks across multiple medias.
Collapse
Affiliation(s)
- Bingjie Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Ruichen Mao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zeyu Chen
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Yuting Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jinxi Song
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Yellow River Institute of Shaanxi Province, Northwest University, Xi'an 710127, China.
| | - Nan Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Bin Tang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiayuan Feng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Mingchang Guan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| |
Collapse
|
9
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R. Evidence of microplastics in the polychaete worm (capitellids-Capitella capitata) (Fabricicus, 1780) along Thoothukudi region. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:556. [PMID: 38760609 DOI: 10.1007/s10661-024-12688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
Research on the occurrence of microplastics in invertebrates of the Thoothukudi region is limited. Capitellids are non-selective suspension feeders and are usually used as bioindicator of water pollution. Hence, an investigation was carried out to identify the microplastic occurrence in the capitellids (Capitella capitata) (Fabricius, 1780) collected from the Vellapatti and Spic Nagar sites of the Thoothukudi region. Result from this investigation showed the occurrence of 0.21 ± 0.17 items/indiv and a mean abundance of 13.33% in Thoothukudi coast. The mean microplastic abundance in the capitellids was significantly higher in the Spic Nagar (0.26 ± 0.19 MPs/indiv), probably due to the dumping of plastic waste, fishing and recreational activities. However, no significant difference was observed between seasons. Only fragments (Vellapatti 66.66% and Spic Nagar 33.33%) and fibre-shaped microplastics (Vellapatti 50% and Spic Nagar 50%) were identified. The size and colour of the microplastics dominant in both sites were 1-2 mm (Vellapatti 77.77% and Spic Nagar 75%) and blue (Vellapatti 88.88% and Spic Nagar 87.5%), respectively. The results of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) analysis revealed the presence of polyethylene (PE) and polypropylene (PP) polymers in the capitellids. PE polymer is one of the most common sources of microplastics contamination globally and it is also frequently found in the coastal waters of Thoothukudi. This accounted for the high occurrence of PE polymers in the capitellids with the occurrence rate of 77% in Vellapatti and 58.52% in Spic Nagar. The present study provides baseline data on the occurrence, characterization (shapes, sizes and colours) and qualitative analysis of the microplastics in the capitellids, and their presence was influenced by their non-selective feeding habits. Further, future studies have to be conducted to identify the levels of microplastics in different polychaetes and other invertebrates to better understand the effects of microplastic pollution in invertebrate communities.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Dr. M.G.R Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thalainayeru, Tamil Nadu, India.
| | - Pandurangan Padmavathy
- Directorate of Sustainable Aquaculture, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Nagapattinam, Tamil Nadu, India
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thoothukudi, Tamil Nadu, India
| | - Robinson Jeyashakila
- Dr. M.G.R Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri, Tamil Nadu, India
| | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of fisheries, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
10
|
Kumara Sashidara P, Merline Sheela A, Selvakumar N. Impact of anthropogenic activities on the abundance of microplastics in copepods sampled from the southeast coast of India. MARINE POLLUTION BULLETIN 2024; 200:116070. [PMID: 38295482 DOI: 10.1016/j.marpolbul.2024.116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/02/2024]
Abstract
In recent year, the use of plastics has become inevitable due to its unique properties that allow for the production of durable and non-durable goods. Post use, plastics enter the waste stream and now can be found in all compartments of the biosphere as microplastics (MPs). This study presents the abundance of MPs in surface water and within copepods in the southwestern Bay of Bengal during dry (June 2022) and wet season (November 2022). The MPs in the surface water were found in all three regions [Chennai, Tuticorin and Nagapattinam (four locations in each region)] and maximum in wet season (53 particles/m3). Moreover, during dry season the mean ingestion of MPs by copepods in Chennai (0.103 ± 0.04 particles/individual), Tuticorin (0.11 ± 0.07 particles/individual) and Nagapattinam (0.036 ± 0.01 particles/individual) is high compared to the wet season. The maximum level of MPs found in both surface water and ingestion by copepods in Tuticorin and Chennai is subjective to the high maritime activities than Nagapattinam region. Whatever, the anthropogenic activities in the study region increase the bioavailability of MPs pollutant in the copepods and transported to higher trophic levels, endangering marine life and human health. Hence, further studies are needed to determine their potential impact on marine food chain in this alarming situation.
Collapse
Affiliation(s)
- P Kumara Sashidara
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai-600025, Tamil Nadu, India.
| | - A Merline Sheela
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai-600025, Tamil Nadu, India
| | - N Selvakumar
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai-600025, Tamil Nadu, India
| |
Collapse
|
11
|
Reichert J, Tirpitz V, Plaza K, Wörner E, Bösser L, Kühn S, Primpke S, Schubert P, Ziegler M, Wilke T. Common types of microdebris affect the physiology of reef-building corals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169276. [PMID: 38086480 DOI: 10.1016/j.scitotenv.2023.169276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Marine debris, particularly microdebris (< 1 mm) poses a potential threat to marine life, including reef-building corals. While previous research has mainly focused on the impact of single polymer microplastics, the effects of natural microdebris, composed of a mixture of materials, have not been explored. Therefore, this study aimed to assess the effects of different microdebris, originating from major sources of pollution, on reef-building corals. For this, we exposed two scleractinian coral species, Pocillopora verrucosa and Stylophora pistillata, known to frequently ingest microplastics, to four types of microdebris in an 8-week laboratory experiment: fragmented environmental plastic debris, artificial fibers from clothing, residues from the automobile sector consisting of tire wear, brake abrasion, and varnish flakes, a single polymer microplastic treatment consisting of polyethylene particles, and a microdebris-free control treatment. Specifically, we (I) compared the effects of the different microdebris on coral growth, necrosis, and photosynthesis, (II) investigated the difference between the microdebris mixtures and the exposure to the single polymer treatment, and (III) identified potential mechanisms causing species-specific effects by contrasting the feeding responses of the two coral species on microdebris and natural food. We show that the fibers and tire wear had the strongest effects on coral physiology, with P. verrucosa being more affected than S. pistillata. Both species showed increased volume growth in response to the microdebris treatments, accompanied by decreased calcification in P. verrucosa. Photosynthetic efficiency of the symbionts was enhanced in both species. The species-specific physiological responses might be attributed to feeding reactions, with P. verrucosa responding significantly more often to microdebris than S. pistillata. These findings highlight the effect of different microdebris on coral physiology and the need for future studies to use particle mixtures to better mimic naturally occurring microdebris and assess its effect on corals in more detail.
Collapse
Affiliation(s)
- Jessica Reichert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, HI, Kāne'ohe, USA.
| | - Vanessa Tirpitz
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Katherine Plaza
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Elisabeth Wörner
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Department of Geoscience, University of Oslo, Oslo, Norway
| | - Luisa Bösser
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Susanne Kühn
- Wageningen Marine Research, Den Helder, the Netherlands
| | - Sebastian Primpke
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Patrick Schubert
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany
| |
Collapse
|
12
|
Hu F, Zhao H, Ding J, Jing C, Zhang W, Chen X. Uptake and toxicity of micro-/nanoplastics derived from naturally weathered disposable face masks in developing zebrafish: Impact of COVID-19 pandemic on aquatic life. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123129. [PMID: 38092337 DOI: 10.1016/j.envpol.2023.123129] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The unprecedented proliferation of disposable face masks during the COVID-19 pandemic, coupled with their improper disposal, threatens to exacerbate the already concerning issue of plastic pollution. This study evaluates the role of environmentally weathered masks as potential sources of microplastics (MPs) and nanoplastics (NPs) and assesses their adverse impact on the early life stages of zebrafish. Experimental findings revealed that a single disposable mask could release approximately 1.79 × 109 particles, with nearly 70% measuring less than 1 μm, following 60 days of sunlight exposure and subsequent sand-induced physical abrasion. Remarkably, the MPs/NPs (MNPs) emanating from face masks have the potential to permeate the outer layer (chorion) of zebrafish embryos. Furthermore, due to their minute size, these particles can be consumed by the larvae's digestive system and subsequently circulated to other tissues, including the brain. Exposure to mask-derived MNPs at concentrations of 1 and 10 μg/L led to significant cases of developmental toxicity, incited oxidative stress, and prompted cell apoptosis. A subsequent metabolomics analysis indicated that the accumulation of these plastic particles perturbed metabolic functions in zebrafish larvae, primarily disrupting amino acid and lipid metabolism. The outcomes of this research underscore the accelerating possibility of environmental aging processes and physical abrasion in the release of MNPs from disposable face masks. Most importantly, these results shed light on the possible ecotoxicological risk posed by improperly disposed of face masks.
Collapse
Affiliation(s)
- Fengxiao Hu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haocheng Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chen Jing
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
13
|
Downie AT, Cramp RL, Franklin CE. The interactive impacts of a constant reef stressor, ultraviolet radiation, with environmental stressors on coral physiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168066. [PMID: 37890630 DOI: 10.1016/j.scitotenv.2023.168066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
Reef-building corals create one of the most biodiverse and economically important ecosystems on the planet. Unfortunately, global coral reef ecosystems experience threats from numerous natural stressors, which are amplified by human activities. One such threat is ultraviolet radiation (UVR) from the sun; a genotoxic stressor that is a double-edged sword for corals as they rely on sunlight for energy. More intense UVR has been shown to have greater direct impacts on animal physiology, and these may be exacerbated by co-occurring stressors. The aim of this systematic literature review was to examine if the same applies to corals; that is, if the co-exposure of a constant stressor (UVR) with other stressors has a greater impact on coral physiology than if these stressors occurred separately. We reviewed the biochemical and cellular processes impacted by UVR and the defenses corals have against UVR. The main stressors investigated with UVR were temperature, nitrate, nutrient, oil, water motion, and photosynthetically active radiation (PAR). UVR generally worsened the physiological impacts of other stressors (e.g., by decreasing zooxanthellae and chlorophyll densities). There were species-specific differences in their tolerance to UVR (differences in zooxanthellae populations, sunscreen production and depth) and environmental stress (e.g., resilience to some oils), and that ambient levels of UVR were often beneficial (i.e., nullifying impacts of nitrates). We highlight areas of future investigation including examining and assessing other interacting stressors and their impacts (e.g., ocean acidification, ocean deoxygenation, toxins and pollutants), investigating impacts of multiple stressors with UVR on the coral microbiome, and elucidating the effects of multi-stressors with UVR across early-life history stages (especially larvae). UVR is a pervasive stressor to corals and can interact with other environmental conditions to compromise the resilience of corals. This environmental driver needs to be more comprehensively examined alongside climate change stressors (e.g., temperature increases, ocean acidification and hypoxia) to better understand future climate scenarios on reefs.
Collapse
Affiliation(s)
- Adam T Downie
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
14
|
Xiong X, Wang J, Liu J, Xiao T. Microplastics and potentially toxic elements: A review of interactions, fate and bioavailability in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122754. [PMID: 37844862 DOI: 10.1016/j.envpol.2023.122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
In recent years, microplastics (MPs) have obtained growing public concern due to widespread distribution and harmful impacts. Their distinctive features including porous structure, small size, as well as large specific surface area render MPs to be carriers for transporting other pollutants in the environment, especially potentially toxic elements (PTEs). Considering the hot topic of MPs, it is of great significance to comb the reported literature on environmental behaviors of co-occurrence of MPs and PTEs, and systematically discuss their co-mobility, transportation and biotoxicity to different living organisms in diverse environmental media. Therefore, the aim of this work is to systematically review and summarize recent advances on interactions and co-toxicity of MPs and PTEs, in order to provide in-depth understanding on the transport behaviors as well as environmental impacts. Electrostatic attraction and surface complexation mainly govern the interactions between MPs and PTEs, which are subordinated by other physical sorption processes. Besides, the adsorption behaviors are mainly determined by physicochemical properties regarding to different MPs types and various condition factors (e.g., ageing and PTEs concentrations, presence of substances). Generally speaking, recently published papers make a great progress in elucidating the mechanisms, impact factors, as well as thermodynamic and kinetic studies. Bioavailability and bioaccumulation by plant, microbes, and other organisms in both aquatic and terrestrial environment have also been under investigation. This review will shed novel perspectives on future research to meet the sustainable development goals, and obtain critical insights on revealing comprehensive mechanisms. It is crucial to promote efficient approaches on environmental quality improvement as well as management strategies towards the challenge of MPs-PTEs.
Collapse
Affiliation(s)
- Xinni Xiong
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Tangfu Xiao
- Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
15
|
Ge Z, Lu X. Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122691. [PMID: 37797922 DOI: 10.1016/j.envpol.2023.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.
Collapse
Affiliation(s)
- Zaiming Ge
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Gao Z, Cizdziel JV, Wontor K, Olubusoye BS. Adsorption/desorption of mercury (II) by artificially weathered microplastics: Kinetics, isotherms, and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122621. [PMID: 37757936 DOI: 10.1016/j.envpol.2023.122621] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
While both mercury (Hg) and microplastics (MPs) are well-studied global pollutants, comparatively little is known about the interactions between them and the mobilization of Hg from MPs into organisms. We examined the affinity of Hg(II) to artificially weathered MPs, including polyamide (w-PA), polyethylene (w-PE), polyethylene terephthalate (w-PET), polyester fibers (w-PEST), polyvinyl chloride (w-PVC), and polylactic acid (w-PLA), along with crumb rubber (CR) and PE collected from a wastewater treatment plant (WWTP-PE). WWTP-PE, CR, and w-PEST had particularly high Hg(II) affinities, which can be attributed to electrostatic interaction and pore filling. The adsorption followed a pseudo-second-order kinetic process and fitted the Freundlich model, suggesting multi-step (mass transfer and intraparticle diffusion) and heterogeneous adsorptions. Hydrochemical conditions (pH, dissolved organic matter (DOM), salinity and co-existent metal ions) all impacted Hg-MP behavior. Changes in Hg speciation and MP surface properties contributed to the different Hg(II) adsorption capacities for the MPs. Weathering of MPs generally increased the adsorption of Hg(II) onto MPs, but CR, PET and PEST did not follow this trend. Less than 3% of adsorbed Hg(II) was mobilized from the MPs in freshwater, but that increased up to 73% under simulated avian digestive conditions, suggesting increased bioavailability of Hg(II) from ingested MPs. Overall, weathered MPs adsorb and retain Hg(II) under environmentally relevant conditions but desorb much of it in simulated avian digestion fluid, suggesting that birds that ingest MPs may have increased Hg(II) exposure.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - James V Cizdziel
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA.
| | - Kendall Wontor
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Boluwatife S Olubusoye
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
17
|
Chen CF, Ju YR, Chen CW, Albarico FPJB, Lim YC, Ke C, Cheng YR, Dong CD. Microplastics in coral reef sediments underestimated? They may hide in biominerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165708. [PMID: 37482351 DOI: 10.1016/j.scitotenv.2023.165708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Microplastics (MPs) may be underestimated in coral reef sediments. Current pretreatments for determining MPs in the sediments are mainly density separation and organic matter removal, ignoring MPs that may be embedded or encrusted in biominerals. This could lead to discrepancies in assessing the potential risk of MPs contamination. To confirm whether MPs in coral reef sediments are underestimated, a two-step sequential digestion, including organic matter removal (H2O2 digestion) and biomineral removal (HCl digestion), was performed on sediments from the coral reef area of the South Penghu Marine National Park (SPMNP, Taiwan). The MPs abundance and characteristics of the two steps were analyzed separately. The results showed that the average MPs abundance after HCl digestion (78 ± 42 MPs/kg) was significantly higher than that of H2O2 digestion (38 ± 25 MPs/kg). The MPs diversity integrated index (MPDII) in coral reef sediments was low (MPDII = 0.35), and MPs were mainly small (<2.0 mm, 91.3 %), fibrous (93.5 %), colored (60.9 %), and rayon polymers (73.9 %). Correlation analysis showed that MPs in biominerals mainly dominated MPs in the sediments. These results confirm that current assessments of MPs contamination levels in biomineral-rich sediments may be underestimated and uncertain. In addition, the mineralization of organisms in SPMNP reef regions was affected by MPs from moderate to high levels, depending on the proportion of MPs in biominerals.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36063, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Frank Paolo Jay B Albarico
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; College of Fisheries and Allied Sciences, Northern Negros State College of Science and Technology, Sagay City 6122, Philippines
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chongtai Ke
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yu-Rong Cheng
- Department of Fisheries Production and Management, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
18
|
Vrinda PK, Amal R, Abhirami N, Mini DA, Kumar VJR, Devipriya SP. Co-exposure of microplastics and heavy metals in the marine environment and remediation techniques: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114822-114843. [PMID: 37922080 DOI: 10.1007/s11356-023-30679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/21/2023] [Indexed: 11/05/2023]
Abstract
Microplastics (MPs) and heavy metals are significant pollutants in the marine environment, necessitating effective remediation strategies to prevent their release into the sea through sewage and industrial effluent. This comprehensive review explores the current understanding of the co-exposure of MPs and heavy metal-enriched MPs, highlighting the need for effective remediation methods. Various mechanisms, including surface ion complexation, hydrogen bonding, and electrostatic forces, contribute to the adsorption of heavy metals onto MPs, with factors like surface area and environmental exposure duration playing crucial roles. Additionally, biofilm formation on MPs alters their chemical properties, influencing metal adsorption behaviors. Different thermodynamic models are used to explain the adsorption mechanisms of heavy metals on MPs. The adsorption process is influenced by various factors, including the morphological characteristics of MPs, their adsorption capacity, and environmental conditions. Additionally, the desorption of heavy metals from MPs has implications for their bioavailability and poses risks to marine organisms, emphasizing the importance of source reduction and remedial measures. Hybrid approaches that combine both conventional and modern technologies show promise for the efficient removal of MPs and heavy metals from marine environments. This review identifies critical gaps in existing research that should be addressed in future studies including standardized sampling methods to ensure accurate data, further investigation into the specific interactions between MPs and metals, and the development of hybrid technologies at an industrial scale. Overall, this review sheds light on the adsorption and desorption mechanisms of heavy metal-enriched MPs, underscoring the necessity of implementing effective remediation strategies.
Collapse
Affiliation(s)
- Punmoth Kalyadan Vrinda
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, Andaman and Nicobar Islands, India
| | - Radhakrishnan Amal
- School of Environmental Studies, Cochin University of Science and Technology, Kochi, India, 682022
| | - Nandakumar Abhirami
- Department of Aquatic Environment Management, Central Institute of Fisheries Education, Versova, Mumbai, Maharashtra, 400061, India
| | - Divya Alex Mini
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682508, Kerala, India
| | | | | |
Collapse
|
19
|
Purushothaman A, Vishnudattan NK, Nehala SP, Meghamol MD, Neethu KV, Joseph J, Nandan SB, Padmakumar KB, Thomas LC. Patterns and variability in the microplastic contamination along the southwest coast of India with emphasis on submarine groundwater discharge sites. MARINE POLLUTION BULLETIN 2023; 194:115432. [PMID: 37639866 DOI: 10.1016/j.marpolbul.2023.115432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Beach sediments of the southwest coast of India were analysed to estimate the microplastic contamination with emphasis on the submarine groundwater discharge (SGD) zones. Both SGD and non-SGD sites were assessed for abundance, morphotype and polymer type of microplastics. Microplastic load was 230.429 ± 62.87 particles per 100 g. Fibre, mainly blue, was the abundant morphotype, followed by fragment, foam and film. The polymer types were POLYETHYLENE (PE) (30.77 %), POLYPROPYLENE (PP) (26.92 %), POLYAMIDE (PA) (19.23 %), POLYSTYRENE (PS) (11.54 %), ETHYLENE VINYL ACETATE (EVA) (7.692 %) and POLYVINYL CHLORIDE (PVC) (3.846 %). The SGD zones exhibited higher microplastic contamination with statistically significant variations from non SGD sites. The study accounts the levels of microplastic contamination along the southwest coast of India, a major fishery zone. The higher abundance of microplastic in the SGD zones indicates the significance of subterranean groundwater through flow as a pathway of anthropogenic contaminants towards marine ecosystems.
Collapse
Affiliation(s)
- Aishwarya Purushothaman
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - N K Vishnudattan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - S P Nehala
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - M D Meghamol
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - K V Neethu
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Jorphin Joseph
- Department of Chemical Oceanography, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - S Bijoy Nandan
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - K B Padmakumar
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India
| | - Lathika Cicily Thomas
- Department of Marine Biology, Microbiology & Biochemistry, School of Marine Sciences, Cochin University of Science and Technology, Kochi 16, Kerala, India.
| |
Collapse
|
20
|
Li K, Wang F. Global hotspots and trends in interactions of microplastics and heavy metals: a bibliometric analysis and literature review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93309-93322. [PMID: 37542698 DOI: 10.1007/s11356-023-29091-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Microplastics (MPs) are identified as emerging contaminants; however, their interactions with heavy metals in the environment have not been well elucidated. Here, the research progress, hotspots, and trends in the interactions of MPs and heavy metals were analyzed at a global scale using a bibliometric analysis combined with a literature review. We comprehensively searched the Web of Science Core Collection database from 2008 to July 5, 2022. A total of 552 articles published in 124 journals were selected, which came from 70 countries and 841 institutions. The most contributing journals, countries, institutions, and authors were identified. Visualization methods were used to identify high co-citation references and hot keywords in the 552 articles. Evolutionary and cluster analyses of hot keywords suggested several research hotspots in the co-contamination of MPs and heavy metals, including their toxicity and bioaccumulation, the adsorption and desorption behaviors, the environmental pollution and risk assessment, and their detection and characterization. Based on the current research status, several directions of priority are recommended to understand the interactions between MPs and heavy metals and their potential risks. This article can help recognize the current research status and future directions in this field.
Collapse
Affiliation(s)
- Kehan Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong Province, Qingdao, 266042, China.
| |
Collapse
|
21
|
Hansani KUDN, Thilakarathne EPDN, Koongolla JB, Gunathilaka WGIT, Perera BGDO, Weerasingha WMPU, Egodauyana KPUT. Contamination of microplastics in tropical coral reef ecosystems of Sri Lanka. MARINE POLLUTION BULLETIN 2023; 194:115299. [PMID: 37499569 DOI: 10.1016/j.marpolbul.2023.115299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) in different marine compartments are a global concern. This study investigated the abundance, distribution, and characteristics of microplastics from ten coral reef ecosystems in Sri Lanka, a non-quantified threat for some context. Microplastics were isolated and quantified in terms of abundance, shape, size, color, and polymer type with average abundances 546.7 ± 170.3 items kg-1, 9.8 ± 7.6 items m-3, and 46.3 ± 29.7 items kg-1 in corals, water, and sediments respectively. The most dominant microplastic type was blue, LDPE fibres. Acropora exhibited the highest amount. The significant differences in average microplastic abundances among corals suggest that they are capable of enriching microplastics depending on species-specific characteristics. Similar microplastic characteristics in corals and reef environment indicate that corals may have enriched microplastics from surface water and surface sediments. Microplastics being ubiquitous in selected reefs highlights the importance of coral reefs as a long-term microplastic sink in the ocean, contributing to the missing plastic phenomena.
Collapse
Affiliation(s)
- K U D N Hansani
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka.
| | - E P D N Thilakarathne
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - J Bimali Koongolla
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
| | - W G I T Gunathilaka
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - B G D O Perera
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - W M P U Weerasingha
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka
| | - K P U T Egodauyana
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
| |
Collapse
|
22
|
Khaleel R, Valsan G, Rangel-Buitrago N, Warrier AK. Microplastics in the marine environment of St. Mary's Island: implications for human health and conservation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1034. [PMID: 37568065 PMCID: PMC10421776 DOI: 10.1007/s10661-023-11651-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Microplastics have now been identified as a class of emerging pollutants and is considered as a threat to aquatic organisms. This baseline paper investigated the distribution, composition, and potential ecological risks of microplastic (MP) pollution on St. Mary's Island, revealing an average abundance of 0.218 particles/L in water samples. Blue fibres and white foams were the primary MPs identified, and fishing activities and packaging were the main sources of pollution. Six types of polymers were identified: low-density polyethylene (LDPE), polystyrene (PS), polyamide (PA), polypropylene (PP), polyethylene (PE), and high-density polyethylene (HDPE). The Polymer Hazard Index (PHI) and Potential Ecological Risk Index (PERI) indicated a medium environmental risk for the island. Additionally, it was discovered that MPs' surfaces contained dangerous substances that could endanger aquatic life. The research emphasizes the significance of implementing measures such as responsible disposal, management, elimination, regulatory policies, and local administration techniques to mitigate the impact of MP pollution on the island's shores and marine biota. This research provides a baseline for monitoring MP contamination and underscores the need for continuous investigation to assess their impacts on marine life.
Collapse
Affiliation(s)
- Rizwan Khaleel
- Department of Sciences, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia
| | - Anish Kumar Warrier
- Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
23
|
Li S, Yang Y, Yang S, Zheng H, Zheng Y, M J, Nagarajan D, Varjani S, Chang JS. Recent advances in biodegradation of emerging contaminants - microplastics (MPs): Feasibility, mechanism, and future prospects. CHEMOSPHERE 2023; 331:138776. [PMID: 37100247 DOI: 10.1016/j.chemosphere.2023.138776] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Plastics have become an essential part of life. When it enters the environment, it migrates and breaks down to form smaller size fragments, which are called microplastics (MPs). Compared with plastics, MPs are detrimental to the environment and pose a severe threat to human health. Bioremediation is being recognized as the most environmentally friendly and cost-effective degradation technology for MPs, but knowledge about the biodegradation of MPs is limited. This review explores the various sources of MPs and their migration behavior in terrestrial and aquatic environments. Among the existing MPs removal technologies, biodegradation is considered to be the best removal strategy to alleviate MPs pollution. The biodegradation potential of MPs by bacteria, fungi and algae is discussed. Biodegradation mechanisms such as colonization, fragmentation, assimilation, and mineralization are presented. The effects of MPs characteristics, microbial activity, environmental factors and chemical reagents on biodegradation are analyzed. The susceptibility of microorganisms to MPs toxicity might lead to decreased degradation efficiency, which is also elaborated. The prospects and challenges of biodegradation technologies are discussed. Eliminating prospective bottlenecks is necessary to achieve large-scale bioremediation of MPs-polluted environment. This review provides a comprehensive summary of the biodegradability of MPs, which is crucial for the prudent management of plastic waste.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yalun Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Yang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute Technology, Harbin, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun M
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
24
|
Contardi M, Fadda M, Isa V, Louis YD, Madaschi A, Vencato S, Montalbetti E, Bertolacci L, Ceseracciu L, Seveso D, Lavorano S, Galli P, Athanassiou A, Montano S. Biodegradable Zein-Based Biocomposite Films for Underwater Delivery of Curcumin Reduce Thermal Stress Effects in Corals. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37376819 PMCID: PMC10360034 DOI: 10.1021/acsami.3c01166] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Massive coral bleaching episodes induced by thermal stress are one of the first causes of coral death worldwide. Overproduction of reactive oxygen species (ROS) has been identified as one of the potential causes of symbiosis breakdown between polyps and algae in corals during extreme heat wave events. Here, we propose a new strategy for mitigating heat effects by delivering underwater an antioxidant to the corals. We fabricated zein/polyvinylpyrrolidone (PVP)-based biocomposite films laden with the strong and natural antioxidant curcumin as an advanced coral bleaching remediation tool. Biocomposites' mechanical, water contact angle (WCA), swelling, and release properties can be tuned thanks to different supramolecular rearrangements that occur by varying the zein/PVP weight ratio. Following immersion in seawater, the biocomposites became soft hydrogels that did not affect the coral's health in the short (24 h) and long periods (15 days). Laboratory bleaching experiments at 29 and 33 °C showed that coral colonies of Stylophora pistillata coated with the biocomposites had ameliorated conditions in terms of morphological aspects, chlorophyll content, and enzymatic activity compared to untreated colonies and did not bleach. Finally, biochemical oxygen demand (BOD) confirmed the full biodegradability of the biocomposites, showing a low potential environmental impact in the case of open-field application. These insights may pave the way for new frontiers in mitigating extreme coral bleaching events by combining natural antioxidants and biocomposites.
Collapse
Affiliation(s)
- Marco Contardi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Marta Fadda
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Valerio Isa
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Yohan D Louis
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Andrea Madaschi
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Sara Vencato
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Enrico Montalbetti
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Laura Bertolacci
- Smart Materials, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA - Acquario di Genova, Genova 16128, Italy
| | - Paolo Galli
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
- Dubai Business School, University of Dubai, Dubai 14143, United Arab Emirates
| | | | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milan - Bicocca, Milan 20126, Italy
- MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Republic of Maldives
| |
Collapse
|
25
|
Das BC, Ramanan P A, Gorakh SS, Pillai D, Vattiringal Jayadradhan RK. Sub-chronic exposure of Oreochromis niloticus to environmentally relevant concentrations of smaller microplastics: Accumulation and toxico-physiological responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131916. [PMID: 37402322 DOI: 10.1016/j.jhazmat.2023.131916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
This study assesses the accumulation and toxic effects of environmentally relevant concentrations (0.01, 0.1 and 1 mg/L) of polystyrene MPs (1 µm) in Oreochromis niloticus (Nile tilapia) for 14 days. The results showed that 1 µm PS-MPs accumulated in the intestine, gills, liver, spleen, muscle, gonad and brain. RBC, Hb and HCT showed a significant decline, while WBC and PLT showed a significant increase after the exposure. Glucose, total protein, A/G ratio, SGOT, SGPT and ALP showed significant increments in 0.1 and 1 mg/L of PS-MPs treated groups. The increase in cortisol level and upregulation of HSP70 gene expression in response to MPs exposure indicate MPs-mediated stress in tilapia. MPs-induced oxidative stress is evident from reduced SOD activity, increased MDA levels and upregulated P53 gene expression. The immune response was enhanced by inducing respiratory burst activity, MPO activity and serum TNF-α and IgM levels. MPs exposure also led to down-regulation of CYP1A gene and decreased AChE activity, GNRH and vitellogenin levels, indicating the toxicity of MPs on the cellular detoxification mechanism, nervous and reproductive systems. The present study highlights the tissue accumulation of PS-MP and its effects on hematological, biochemical, immunological and physiological responses in tilapia with low environmentally relevant concentrations.
Collapse
Affiliation(s)
- Bini C Das
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Aparna Ramanan P
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Satkar Sagar Gorakh
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | | |
Collapse
|
26
|
Jeyasanta KI, Jayanthi M, Laju RL, Patterson J, Bilgi DS, Sathish N, Edward JKP. Seasonal and spatial variations in the distribution pattern, sources and impacts of microplastics along different coastal zones of Tamil Nadu, India. MARINE POLLUTION BULLETIN 2023; 192:115114. [PMID: 37276709 DOI: 10.1016/j.marpolbul.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
We investigated spatiotemporal variations of microplastics (MPs) in Coromandel Coast, Palk Bay, Gulf of Mannar, and West Coast of Tamil Nadu, India. MPs abundance varies from 37 ± 1.52 to 189 ± 9.02 items/kg in sediment and 23 ± 15.25 to 155.25 ± 4.16 items/L in water. Highest abundance in monsoon by riverine inflow transports plastic waste to the ocean. MPs sizes 0.5-1 mm are dominant in summer with 16 polymers, while 3-4 mm dominates the monsoon with 23 polymers. Carbonyl Index shows high MP oxidation (>0.31), unrelated to spatiotemporal changes. SEM-EDAX shows weathered MPs carrying hazardous metals. High MP diversity (MPDII = 0.77) of Coromandel Coast points to many sources of pollution and the need for immediate control measures. Pollution load values indicate low degree of MP pollution (<10), polymer hazard index shows level III (10-100) and IV (100-1000), and ecological risk assessment shows minor risks (<150) at present.
Collapse
Affiliation(s)
| | - M Jayanthi
- Tamil Nadu Pollution Control Board, Government of Tamil Nadu, Chennai, India
| | - R L Laju
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - Jamila Patterson
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - Deepak S Bilgi
- Department of Environment and Climate Change, Government of Tamil Nadu, Chennai, India
| | - Narmatha Sathish
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | | |
Collapse
|
27
|
Bai Z, Zhang Y, Cheng L, Zhou X, Wang M. Nanoplastics pose a greater effect than microplastics in enhancing mercury toxicity to marine copepods. CHEMOSPHERE 2023; 325:138371. [PMID: 36906006 DOI: 10.1016/j.chemosphere.2023.138371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Due to human activities, high abundances of nano/microplastics (N/MPs) concurrent with metal pollution have become a serious problem in the global marine environment. Because of displaying a high surface-area-to-volume ratio, N/MPs can serve as the carriers of metals and thus increase their accumulation/toxicity in marine biota. As one of the most toxic metals, mercury (Hg) causes adverse effects on marine organisms but whether environmentally relevant N/MPs can play a vector role of this metal in marine biota, as well as their interaction, is poorly known. To evaluate the vector role of N/MPs in Hg toxicity, we first performed the adsorption kinetics and isotherms of N/MPs and Hg in seawater, as well as ingestion/egestion of N/MPs by marine copepod Tigriopus japonicus, and second, the copepod T. japonicus was exposed to polystyrene (PS) N/MPs (500-nm, 6-μm) and Hg in isolation, combined, and incubated forms at environmentally relevant concentrations for 48 h. Also, the physiological and defense performance including antioxidant response, detoxification/stress, energy metabolism, and development-related genes were assessed after exposure. The results indicated N/MPs significantly increased Hg accumulation and thus its toxicity effects in T. japonicus as exemplified by decreased transcription of genes related to development and energy metabolism and increased transcriptional levels of genes functioning in antioxidant and detoxification/stress defense. More importantly, NPs were superimposed onto MPs and produced the most vector effect in Hg toxicity to T. japonicus, especially in the incubated forms. Overall, this study highlighted the role of N/MPs as a potential risk factor for increasing the adverse effects of Hg pollution, and emphasized the adsorption forms of contaminants by N/MPs should doubly be considered in the continuing researches.
Collapse
Affiliation(s)
- Zhuoan Bai
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Luman Cheng
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Xiaoping Zhou
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
28
|
de Carvalho VS, Felix CSA, da Silva Junior JB, de Oliveira OMC, de Andrade JB, Ferreira SLC. Determination and evaluation of the ecological risk of mercury in different granulometric fractions of sediments from a public supply river in Brazil. MARINE POLLUTION BULLETIN 2023; 192:115083. [PMID: 37245321 DOI: 10.1016/j.marpolbul.2023.115083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
This work reports the quantification of total mercury in sediments collected in periods with and without rain from the Joanes River, Bahia, Brazil. Determinations were made using Direct Mercury Analysis (DMA), the accuracy of which was confirmed with two certified reference materials. The highest total mercury concentrations were found at the sampling point close to commercial areas and large residential condominiums. On the other hand, the lowest levels were found in the site close to a mangrove region. The geoaccumulation index was applied to the total mercury results, evidencing low contamination in the region studied. The contamination factor showed that of the seven stations investigated, four samples collected in the rainy season showed moderate contamination. The results of the ecological risk assessment were utterly consistent with the contamination factor data. This study showed that the smaller sediment particles concentrate more mercury, corroborating what has been predicted by the adsorption processes.
Collapse
Affiliation(s)
- Vanessa S de Carvalho
- Universidade Federal da Bahia, Instituto de Química, Campus Ondina, 40170-270 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil
| | - Caio S A Felix
- Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Centro Interdisciplinar de Energia & Ambiente, CIEnAm, 40170-115 Salvador, Bahia, Brazil.
| | - Jucelino B da Silva Junior
- Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto de Geociências, Campus Ondina, 40170-270 Salvador, Bahia, Brazil
| | - Olivia M C de Oliveira
- Universidade Federal da Bahia, Instituto de Geociências, Campus Ondina, 40170-270 Salvador, Bahia, Brazil
| | - Jailson B de Andrade
- Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Centro Interdisciplinar de Energia & Ambiente, CIEnAm, 40170-115 Salvador, Bahia, Brazil; Centro Universitário SENAI, CIMATEC, Avenida Orlando Gomes, 1845, 41650-000 Salvador, Bahia, Brazil
| | - Sergio L C Ferreira
- Universidade Federal da Bahia, Instituto de Química, Campus Ondina, 40170-270 Salvador, Bahia, Brazil; Universidade Federal da Bahia, Instituto Nacional de Ciência e Tecnologia de Energia & Ambiente, INCT, 40170-115 Salvador, Bahia, Brazil.
| |
Collapse
|
29
|
Rahman MN, Shozib SH, Akter MY, Islam ARMT, Islam MS, Sohel MS, Kamaraj C, Rakib MRJ, Idris AM, Sarker A, Malafaia G. Microplastic as an invisible threat to the coral reefs: Sources, toxicity mechanisms, policy intervention, and the way forward. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131522. [PMID: 37146332 DOI: 10.1016/j.jhazmat.2023.131522] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
Microplastic (MP) pollution waste is a global macro problem, and research on MP contamination has been done in marine, freshwater, and terrestrial ecosystems. Preventing MP pollution from hurting them is essential to maintaining coral reefs' ecological and economic benefits. However, the public and scientific communities must pay more attention to MP research on the coral reef regions' distribution, effects, mechanisms, and policy evaluations. Therefore, this review summarizes the global MP distribution and source within the coral reefs. Current knowledge extends the impacts of MP on coral reefs, existing policy, and further recommendations to mitigate MPs contamination on corals are critically analyzed. Furthermore, mechanisms of MP on coral and human health are also highlighted to pinpoint research gaps and potential future studies. Given the escalating plastic usage and the prevalence of coral bleaching globally, there is a pressing need to prioritize research efforts on marine MPs that concentrate on critical coral reef areas. Such investigations should encompass an extensive and crucial understanding of the distribution, destiny, and effects of the MPs on human and coral health and the potential hazards of those MPs from an ecological viewpoint.
Collapse
Affiliation(s)
- Md Naimur Rahman
- Department of Geography and Environmental Science, Begum Rokeya University, Rangpur 5400, Bangladesh
| | | | - Mst Yeasmin Akter
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Md Salman Sohel
- Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Aniruddha Sarker
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
30
|
Zheng X, Sun R, Dai Z, He L, Li C. Distribution and risk assessment of microplastics in typical ecosystems in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163678. [PMID: 37100141 DOI: 10.1016/j.scitotenv.2023.163678] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Microplastic pollution in the marine environment has attracted worldwide attention. The South China Sea is considered a hotspot for microplastic pollution due to the developed industries and high population density around the South China Sea. The accumulation of microplastics in ecosystems can adversely affect the health of the environment and organisms. This paper reviews the recent microplastic studies conducted in the South China Sea, which novelty summarizes the abundance, types, and potential hazards of microplastics in coral reef ecosystems, mangrove ecosystems, seagrass bed ecosystems, and macroalgal ecosystems. A summary of the microplastic pollution status of four ecosystems and a risk assessment provides a more comprehensive understanding of the impact of microplastic pollution on marine ecosystems in the South China Sea. Microplastic abundances of up to 45,200 items/m3 were reported in coral reef surface waters, 5738.3 items/kg in mangrove sediments, and 927.3 items/kg in seagrass bed sediments. There are few studies of microplastics in the South China Sea macroalgae ecosystems. However, studies from other areas indicate that macroalgae can accumulate microplastics and are more likely to enter the food chain or be consumed by humans. Finally, this paper compared the current risk levels of microplastics in the coral reef, mangrove, and seagrass bed ecosystems based on available studies. Pollution load index (PLI) ranges from 3 to 31 in mangrove ecosystems, 5.7 to 11.9 in seagrass bed ecosystems, and 6.1 to 10.2 in coral reef ecosystems, respectively. The PLI index varies considerably between mangroves depending on the intensity of anthropogenic activity around the mangrove. Further studies on seagrass beds and macroalgal ecosystems are required to extend our understanding of microplastic pollution in marine environments. Recent microplastic detection in fish muscle tissue in mangroves requires more research to further the biological impact of microplastic ingestion and the potential food safety risks.
Collapse
Affiliation(s)
- Xuanjing Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China.
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China; School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
31
|
Rukmangada R, Naidu BC, Nayak BB, Balange A, Chouksey MK, Xavier KAM. Microplastic contamination in salted and sun dried fish and implications for food security - A study on the effect of location, style and constituents of dried fish on microplastics load. MARINE POLLUTION BULLETIN 2023; 191:114909. [PMID: 37086549 DOI: 10.1016/j.marpolbul.2023.114909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics in 21 different species of marine dried fish products from four locations in India is reported in this study. All samples have microplastics, and majority of the MPs were found to be fragments (56 %) and are of <100 μm size (47 %). Eviscerated fish found to have significantly higher MPs than whole fish. Micro FTIR spectroscopy was used to recognize the polymer of identified MPs, which included polypropylene (21 %), low density polyethylene (17.5 %), polystyrene (15.5 %), and others. Anguilla bengalensis from station 1 had the greatest concentration of microplastics (99 ± 18.91 MPs/g) among all the samples. High value of microplastics polymer induced risk index (H) of different stations, suggesting a significant level of threat to consumer safety. Additional research is required to determine the potential effects on human health caused by consuming dried fish that contains variety of microplastics and their associated compounds.
Collapse
Affiliation(s)
- Rakesh Rukmangada
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | | | - Binaya Bhusan Nayak
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | - Amjad Balange
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India
| | | | - K A Martin Xavier
- ICAR-Central Institute of Fisheries Education, Versova, Mumbai 400061, Maharashtra, India.
| |
Collapse
|
32
|
Nama S, Shanmughan A, Nayak BB, Bhushan S, Ramteke K. Impacts of marine debris on coral reef ecosystem: A review for conservation and ecological monitoring of the coral reef ecosystem. MARINE POLLUTION BULLETIN 2023; 189:114755. [PMID: 36905864 DOI: 10.1016/j.marpolbul.2023.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Coral reefs are the most spectacular underwater creation of nature. It enhances ecosystem functioning and marine biodiversity while also ensuring the livelihood of millions of coastal communities worldwide. Unfortunately, marine debris poses a serious threat to ecologically sensitive reef habitats and their associated organisms. Over the past decade, marine debris has been regarded as a major anthropogenic threat to marine ecosystems and gained scientific attention around the globe. However, the sources, types, abundance, distribution, and potential consequences of marine debris on reef ecosystems are hardly known. The goal of this review is to provide an overview of the current status of marine debris in various reef ecosystems across the world, with special emphasis on its sources, abundance, distribution, species impacted, major categories, potential impacts and management strategies. Furthermore, the adhesion mechanisms of microplastics to coral polyps, diseases caused by microplastics and are also highlighted.
Collapse
Affiliation(s)
- Suman Nama
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400061, India.
| | - Ashna Shanmughan
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400061, India
| | - Binaya Bhusan Nayak
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400061, India
| | - Shashi Bhushan
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400061, India
| | - Karankumar Ramteke
- Fisheries Resource Harvest and Post-Harvest Management Division, ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Mumbai 400061, India
| |
Collapse
|
33
|
Zhang W, Sik Ok Y, Bank MS, Sonne C. Macro- and microplastics as complex threats to coral reef ecosystems. ENVIRONMENT INTERNATIONAL 2023; 174:107914. [PMID: 37028266 DOI: 10.1016/j.envint.2023.107914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The impacts of macroplastics (macro-), microplastics (MPs, <5mm), and nanoplastics (NPs, <100 nm) on corals and their complex reef ecosystems are receiving increased attention and visibility. MPs represent a major, contemporary, sustainability challenge with known and unknown effects on the ocean, and coral reef ecosystems worldwide. However, the fate and transport processes of macro-, MPs, and NPs and their direct and indirect impacts on coral reef ecosystems remains poorly understood. In this study, we verify and briefly summarize MPs distribution and pollution patterns in coral reefs from various geographical regions and discuss potential risks. The main interaction mechanisms show that MPs may substantially affect coral feeding performance, proper skeletal formation, and overall nutrition and, thus, there is an urgent need to address this rapidly growing environmental problem. From a management perspective, macro-, MPs, and NPs should, ideally, all be included in environmental monitoring frameworks, as possible, to aid in identifying those geographical areas that are most heavily impacted and to support future prioritization of conservation efforts. The potential solutions to the macro-, MP, and NP pollution problem include raising public awareness of plastic pollution, developing robust, environmental, conservation efforts, promoting a circular economy, and propelling industry-supported technological innovations to reduce plastic use and consumption. Global actions to curb plastic inputs, and releases of macro-, MP, and NP particles, and their associated chemicals, to the environment are desperately needed to secure the overall health of coral reef ecosystems and their inhabitants. Global scale horizon scans, gap analyses, and other future actions are necessary to gain and increase momentum to properly address this massive environmental problem and are in good accordance with several relevant UN sustainable development goals to sustain planetary health.
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science & Ecological Engineering, Korea University, Seoul 02841, Korea.
| | - Michael S Bank
- Institute of Marine Research, Bergen, Norway; University of Massachusetts Amherst, Amherst, MA, USA
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| |
Collapse
|
34
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R, Tamilselvan R, Subash P. Microplastics accumulation in pelagic and benthic species along the Thoothukudi coast, South Tamil Nadu, India. MARINE POLLUTION BULLETIN 2023; 189:114735. [PMID: 36842282 DOI: 10.1016/j.marpolbul.2023.114735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Microplastics contamination poses a serious threat to marine biota, so the current study was carried out to assess the incidence of microplastics in the gastrointestinal tracts of pelagic and benthic species collected from the six sampling sites along Thoothukudi region from January 2021 to December 2021. In the present study, benthic species (0.67 ± 0.14 MPs/indiv) showed a higher abundance of microplastics than pelagic species (0.53 ± 0.11 MPs/indiv). The dominance of microplastic shapes, sizes, colours and polymers found were comparable among both pelagic and benthic species, this being fibre (27.56% and 48.33%), 0.5-1mm (39.78% and 42.94%), blue (50% and 40.85%), and PE (46.24% and 48.18%), respectively. The present study showed that microplastics are ubiquitous in both habitats, which raises serious concerns for public health. Hence, measures focusing on reducing local emissions and plastic waste disposal should be implemented to control microplastic pollution in the marine environment.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India.
| | - Pandurengan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | | | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of Fisheries, Kerala University of Fisheries and Ocean studies, Kochi, Kerala, India
| | - Rajarajan Tamilselvan
- Department of Fisheries Biology and Resource Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Palaniappan Subash
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| |
Collapse
|
35
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R, Arisekar U, Tamilselvan R, Subash P. Ingestion of microplastics in commercially important species along Thoothukudi coast, south east India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:511. [PMID: 36964882 DOI: 10.1007/s10661-023-11049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics pollute the marine environment and pose a greater risk to marine organisms. The microplastics were observed in the guts of the 12 species, which varied from 0.00 to 1.80 ± 1.19 particles /individual. Most of the microplastics were fibre shaped, 0.5-1 mm sized, blue-coloured, and polyethylene polymers. The abundance of the microplastics was higher for benthic species (0.66 ± 0.13 particles/ individual) than the pelagic species (0.53 ± 0.11 particles/individual), with no significant difference (p > 0.05). According to their feeding habits and trophic level, significantly the microplastics were abundant in the herbivores (1.23 ± 0.61 particles/individual) and quaternary consumers (0.76 ± 0.16 particles/individual), respectively. The present study suggests that microplastic ingestion in commercially important species was influenced by their feeding habits irrespective of their habitat and length and weight. In addition to this, biomagnification of the microplastics (Trophic Magnification Factor, TMF = 1.02) was also observed in the commercially important species with increasing trophic level. This further indicates that the trophic level can serve as the pathway for the transfer of microplastics from lower trophic level organisms to higher trophic level organisms. The present study concludes that the occurrence of biomagnification of microplastics and the pollutants absorbed by them might harm the commercially important species from the Thoothukudi region.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India.
- Department of Aquatic Environment Management, Dr. M.G.R Fisheries College and Research Institute, Thalainayeru, India.
| | - Pandurengan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Robinson Jeyashakila
- Dean, Dr. M.G.R Fisheries College and Research Institute, Ponneri, Tamil Nadu, India
| | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of Fisheries, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Rajarajan Tamilselvan
- Department of Fisheries Biology and Resource Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Palaniappan Subash
- Department of Fish Pathology and Health Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| |
Collapse
|
36
|
Nunes BZ, Moreira LB, Xu EG, Castro ÍB. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161293. [PMID: 36592906 DOI: 10.1016/j.scitotenv.2022.161293] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) become ubiquitous contaminants in Marine Protected Areas (MPA) that have been planned as a conservation strategy. The present study provides a comprehensive overview of the occurrence, abundance, and distribution of MPs potentially affecting MPA worldwide. Data on MP occurrence and levels in sediment and biota samples were collected from recent peer-reviewed literature and screened using a GIS-based approach overlapping MP records with MPA boundaries. MPs were found in 186 MPAs, with levels ranging from 0 to 9187.5 items/kg in sediment and up to 17,461.9 items/kg in organisms. Peaked MPs concentrations occurred within multiple-use areas, and no-take MPAs were also affected. About half of MP levels found within MPA fell into the higher concentration quartiles, suggesting potential impacts on these areas. In general, benthic species were likely more affected than pelagic ones due to the higher concentrations of MP reported in the tissues of benthic species. Alarmingly, MPs were found in tissues of two threatened species on the IUCN Red List. The findings denote urgent concerns about the effectiveness of the global system of protected areas and their proposed conservation goals.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Programa de pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil
| | - Lucas Buruaem Moreira
- Instituto do Mar, Universidade Federal de São Paulo (IMAR -UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Ítalo Braga Castro
- Programa de pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR -UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil.
| |
Collapse
|
37
|
Xiao B, Li D, Liao B, Zheng H, Yang X, Xie Y, Xie Z, Li C. Effects of microplastic combined with Cr(III) on apoptosis and energy pathway of coral endosymbiont. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39750-39763. [PMID: 36602726 DOI: 10.1007/s11356-022-25041-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
The combined effect of polyethylene (PE) microplastics and chromium (Cr(III)) on the scleractinian coral Acropora pruinosa (A. pruinosa) was investigated. The endpoints analysed in this study included the endosymbiont density, the chlorophyll a + c content, and the activity of enzymes involved in apoptosis (caspase-1, caspase-3), glycolysis (lactate dehydrogenase, LDH), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH) and electron transfer coenzyme (nicotinamide adenine dinucleotide, NAD+/NADH). During the 7-day exposure to PE and Cr(III) stress, the endosymbiont density and chlorophyll content decreased gradually. The caspase-1 and caspase-3 activities increased in the high-concentration Cr(III) exposure group. Furthermore, the LDH and G6PDH activities decreased significantly, and the NAD+/NADH was decreased significantly. In summary, the results showed that PE and Cr(III) stress inhibited the endosymbiont energy metabolism enzymes and further led to endosymbiont apoptosis in coral. In addition, under exposure to the combination of stressors, when the concentration of Cr(III) remained at 1 × 10-2 mg/L, the toxic effects of heavy metals on the endosymbiont were temporarily relieved with elevated PE concentrations. In contrast, when coral polyps were exposed to 5 mg/L PE and increasing Cr(III) concentrations, their metabolic activities were seriously disturbed, which increased the burden of energy consumption. In the short term, the toxic effect of Cr(III) was more obvious than that of PE because Cr(III) exposure leads to endosymbiont apoptosis and irreversible damage. This is the first study to provide insights into the combined effect of microplastic and Cr(III) stress on the apoptosis and energy pathways of coral endosymbionts. This study suggested that microplastics combined with Cr(III) are an important factor affecting the apoptosis and energy metabolism of endosymbionts, accelerating the collapse of the balance between the coral host and symbiotic endosymbiont.
Collapse
Affiliation(s)
- Baohua Xiao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Dongdong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Baolin Liao
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Huina Zheng
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Xiaodong Yang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Yongqi Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Ziqiang Xie
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China
| | - Chengyong Li
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, People's Republic of China.
- School of Chemistry and Environment, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Zhou Z, Tang J, Cao X, Wu C, Cai W, Lin S. High Heterotrophic Plasticity of Massive Coral Porites pukoensis Contributes to Its Tolerance to Bioaccumulated Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3391-3401. [PMID: 36800204 DOI: 10.1021/acs.est.2c08188] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scleractinian corals have been observed to be capable of accumulating microplastics from reef environments; however, the tolerant mechanism is poorly known. Here, we examined the response of Porites pukoensis to microplastic pollution by analyzing algal symbiont density, energetic metabolism, and caspase3 activities (representing the apoptosis level) in the coral-Symbiodiniaceae association. The environments of three fringing reef regions along the south coast of Sanya City, Hainan Province of China, were polluted by microplastics (for example, microplastic concentrations in the seawater ranged from 3.3 to 46.6 particles L-1), resulting in microplastic accumulation in P. pukoensis (0.4-2.4 particles cm-2). The accumulation of microplastics was negatively correlated to algal symbiont density in the corals but not to caspase3 activities in the two symbiotic partners, demonstrating that P. pukoensis could tolerate accumulated microplastics despite the decrease of algal symbiont density. Furthermore, results from the carbon stable isotope and cellular energy allocation assay indicated that P. pukoensis obtained energy availability (mainly as lipid reserves) using the switch between heterotrophy and autotrophy to maintain energy balance and cope with accumulated microplastics. Collectively, P. pukoensis achieved tolerance to microplastic pollution by maintaining energy availability, which was largely attributed to its high heterotrophic plasticity.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chuanliang Wu
- Sanya Institute of Coral Reef Ecosystem, Sanya 572000, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| |
Collapse
|
39
|
Xiong F, Liu J, Xu K, Huang J, Wang D, Li F, Wang S, Zhang J, Pu Y, Sun R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120939. [PMID: 36581239 DOI: 10.1016/j.envpol.2022.120939] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) draw international attention owing to their widespread distribution in water ecosystems, but whether MPs cause neurotoxic effects in aquatic animals at environmentally realistic concentrations is still controversial. This meta-analysis recompiled 35 studies to determine whether MPs could change the levels of brain (in vivo) neurotransmitters in aquatic animals at environmentally realistic concentrations (≤1 mg/L, median = 0.100 mg/L). Then, a group comparison was conducted to compare the effects of different factors on the effect size and to explore the significant factors affecting the neurotoxicity of MPs. The results demonstrated that MP exposure could considerably decrease the levels of acetylcholinesterase (AchE) in the brain of aquatic animals by 16.2%. However, the effects of MPs on cholinesterase (CHE), acetylcholine (ACh), dopamine (DA) and γ-aminobutyric acid (GABA) were not statistically significant due to the small number of studies and samples. The neurotoxicity of MPs was closely linked with particle size and exposure time but independent of animal species, MP compositions, MP morphology and MP concentrations. Further literatures review indicated that MP-induced neurotoxicity and behavioral changes are related with multiple biological processes, including nerve damage, oxidative stress, intestinal flora disturbance and metabolic disorder. Furthermore, some factors influencing MP neurotoxicity in the real environment (e.g. the aging of MPs, the release of MP additives, and the co-exposure of MPs and pollutants) were discussed. Overall, this study preliminarily explored whether MPs induced changes in neurotoxicity-related indicators in aquatic animals through meta-analysis and provided scientific evidence for evaluating the health risks and neurotoxicity of MPs at the environmental level.
Collapse
Affiliation(s)
- Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Shiyuan Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
40
|
Dong R, Li W, Wang P, Dong D, Song X, Li X. Effects of light intensity and photoperiod on the cultivation of the soft coral Sarcophyton trocheliophorum. MARINE ENVIRONMENTAL RESEARCH 2023; 184:105856. [PMID: 36592545 DOI: 10.1016/j.marenvres.2022.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/03/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Coral reefs are one of the most diverse, productive ecosystems in the world, and light plays crucial role in its survival. Notably, the effects of light conditions on soft coral and its adaptive mechanism were unclear. Thus, the present study aimed to investigate and evaluate the effects of different light intensities (30, 80 and 130 μmol m-2 s-1) and photoperiods (18D:6L, 12D:12L and 6D:18L) on cultivation of soft coral Sarcophyton trocheliophorum. During two 50-day of the experiments, we monitored the zooxanthellae density, Chl a content, enzyme activities (SOD, CAT and GST) and microbial diversity of S. trocheliophorum. Our study's outcomes found that, at the end of the experiment, the 80 μmol m-2 s-1 light intensity group and 12D:12L photoperiod group both possessed the highest zooxanthellae density (2.54 × 108 ± 0.14 × 108 cells g-1 DW and 2.40 × 108 ± 0.07 × 108 cells g-1 DW, respectively), Chl a content (295.01 ± 14.13 μg g-1 DW and 287.78 ± 16.13 μg g-1 DW, respectively) and microbial diversity and relatively stable enzyme activities level. Besides, we speculated that the reason for the decline of zooxanthellae density, Chl a content and microbial diversity under other light conditions might be that it induced light stress and caused oxidative damage. The main bacterial composition of S. trocheliophorum in different light conditions was similar at the phylum level, showing the stability of microbial community structure. Proteobacteria, Actinobacteria and Firmicutes were dominant under all light conditions, so we hypothesized that these bacteria phylum play a crucial role in coral growth and survival. In conclusion, compared with the other treatments, 80 μmol m-2 s-1 light intensity and 12D:12L photoperiod were more beneficial to the growth performance of S. trocheliophorum and could be recommended for its cultivation condition. Our study could provide helpful information for sustainable management plans for the cultivation and conservation of soft corals, which was especially important to the protection and restoration of degraded coral reefs.
Collapse
Affiliation(s)
- Ruiguang Dong
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Weidong Li
- College of Ecology and Environment, Hainan University, Haikou, 570000, China
| | - Peizheng Wang
- Key Laboratory of Utilization and Protection of Tropical Marine Living Resources, Ministry of Education, Hainan Tropical Ocean University, Sanya, 572000, China
| | - Dengpan Dong
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Xiefa Song
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| | - Xian Li
- Key Laboratory of Mariculture (Ministry of Education), College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
41
|
Miller ME, Motti CA, Hamann M, Kroon FJ. Assessment of microplastic bioconcentration, bioaccumulation and biomagnification in a simple coral reef food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159615. [PMID: 36309288 DOI: 10.1016/j.scitotenv.2022.159615] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastics, and more specifically, microplastics (MPs, <5 mm) are considered a marine contaminant of emerging concern. To accurately assess the ecological risk of MPs, it is critical to first understand the relationship between MP contamination in organisms with that in their surrounding environment. The goal of this study was to examine the ecological risk of MPs in coral reef ecosystems by assessing the MP contamination found within a simple food web against contamination in the surrounding environment. Taxa representing three trophic levels (zooplankton, benthic crustaceans, and reef fish), as well as the distinct environmental matrices which they inhabit (i.e., mid-column water and sediment) were collected from two mid-shelf reefs in the central Great Barrier Reef, Australia. Microplastics were isolated using validated clarification techniques, visually characterised (i.e., shape, colour, size) by microscopy, chemically confirmed by Fourier transform infrared spectroscopy and recorded in all three trophic levels and all abiotic samples. MPs were found to bioconcentrate, with similar concentrations, polymer types, sizes, shapes, and colours at each trophic level compared to their surrounding environment. However, MP contamination varied across the three trophic levels, with no evidence of bioaccumulation. Further, MP concentrations did not increase up the food web, discounting MP biomagnification. Regardless, given the heterogeneity of MPs found in the marine environment, and the complexity of marine food webs, trophic transfer represents a prominent pathway of exposure from lower to higher trophic levels.
Collapse
Affiliation(s)
- Michaela E Miller
- Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia; College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| | - Mark Hamann
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Frederieke J Kroon
- Australian Institute of Marine Science (AIMS), Townsville, Queensland 4810, Australia; AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
42
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R. Contamination of microplastics, surface morphology and risk assessment in beaches along the Thoothukudi coast, Gulf of Mannar region. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:75525-75538. [PMID: 35657544 DOI: 10.1007/s11356-022-21054-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Microplastics accumulation on beaches raises a serious concern worldwide. Hence, the present study was conducted with the focus of investigating the abundance, characteristics, risk assessment, surface morphology and elemental composition of microplastics (MPs) in the beach sediments of the Thoothukudi region, situated on the south-east coast of India, Gulf of Mannar region. The MPs abundance ranged between 19 ± 18.62 and 78.55 ± 95.17 items/kg with a mean abundance of 33.82 ± 26.11 items/kg and the spatial distribution of MPs showed insignificant variation. Fragments (59.48%), 0.5-1 mm (43.66%) and blue-coloured MPs (45.61%) were highly predominant in the sediments. Attenuated total reflection - Fourier transform infrared (ATR-FTIR) spectroscopy showed the dominance of polyethylene polymers in sediments (52.26%) and their sources could be attributed to the direct inflow of sewage, recreational and fishing activities and accidental loss. The current study revealed that microplastics (< 5 mm) are ubiquitous along the Thoothukudi coast, posing a serious threat to the marine environment and marine organisms. The ecological risk assessment of MPs in sediments was calculated by adopting 3 models: the polymer hazard index (PHI), pollution load index (PLI) and potential ecological risk assessment (RI). The overall PHIsediments = 698.96 exhibited a hazard level of IV, which was mainly due to the varying abundance of polymer composition in sediments. The value of PLIsediments is 2.51, which mainly depends on the MPs abundance in sediments and yields the hazard level of I. The ecological risk posed by MPs in beach sediments along the Thoothukudi coast (RIsediments = 241.06) falls into the medium category, indicating that steps must be taken to reduce the flow of plastics through management measures such as proper wastewater treatment practices, recycling of plastic waste and proper waste disposal. Field emission scanning electron microscopy (FESEM) images revealed that MPs surfaces were strongly weathered and energy dispersive X-ray (EDX) spectroscopy spectra showed that the presence of inorganic elements associated with the surface MPs might be derived from the surrounding environment or additives in plastics. Hence, further research has to be conducted in view of studying the combined effects of MPs pollution and organic pollutants, which will provide further understanding of the contamination of MPs in the marine environment.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Pandurangan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India.
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Robinson Jeyashakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of Fisheries, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
43
|
Keerthika K, Padmavathy P, Rani V, Jeyashakila R, Aanand S, Kutty R. Spatial, seasonal and ecological risk assessment of microplastics in sediment and surface water along the Thoothukudi, south Tamil Nadu, south east India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:820. [PMID: 36138235 DOI: 10.1007/s10661-022-10468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Microplastics are a widespread environmental contaminant that raises serious concern for aquatic organisms. Hence, the present study was conducted to investigate the spatial and seasonal variation of microplastics, their characteristics, polymer types and the risk assessment caused by the microplastics in six sampling sites along the Thoothukudi region. The average microplastic abundance ranged from 32 ± 26 to 232 ± 229 items/kg and 54 ± 41 to 619 ± 377 items/l in sediment and surface water, respectively, and they exhibited a significant spatial difference among the sampling sites. The microplastic abundance also showed a significant difference among the seasons with the monsoon significantly recording the highest mean microplastic abundance in sediment (160 ± 130 items/kg) and surface water (454 ± 374 items/l). In sediment and surface water, fragment (sediment: 52.72%, surface water: 40.89%), 0.5-1 mm (sediment: 43.96%, surface water: 31.11%) and blue-coloured (sediment: 52.33%, surface water: 41.85%) microplastics were dominant with no significant difference both spatially and seasonally. Polyethylene, the dominant polymer, was observed in both the sediment and surface water, accounting for about 47.58% and 49.83%, respectively, and it showed no significant difference among the selected sites. This signifies that they are homogenously distributed along the coast and further suggests that these particles persisted in the sediment and surface water for a longer period of time. The results of the polymer hazard index show that the sediment (PHI = 1181.63) and surface water (PHI = 1018.66) were severely contaminated (hazard level V) with microplastic polymers such as PE, PP, PS, PET and PA. It was also found that the degree of the microplastic contamination in sediment (PLI = 3.57) and surface water (PLI = 3.84) was lower (hazard level I). The overall risk index (RI) for sediment (253.48) and surface water (444.74) falls under the higher risk category. From the correlation analysis, a significantly positive relationship was observed between microplastics in sediment and surface water based on each classification (abundance, shape, size, colour and polymer). This suggests that microplastics rejoin the water column from the sediment through resuspension, which occurs due to the circulation, tides and sedimentation rate. This might be the reason for the higher microplastic abundance in the surface water than in the sediment. As a result, proper management measures to reduce plastic waste disposal in the marine environment should be implemented to lessen the effects of microplastics on marine biota and on public health.
Collapse
Affiliation(s)
- Kalaiselvan Keerthika
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India.
| | - Pandurangan Padmavathy
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Velu Rani
- Department of Aquatic Environment Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Robinson Jeyashakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Thoothukudi, Tamil Nadu, India
| | - Samraj Aanand
- Erode Bhavanisagar Centre for Sustainable Aquaculture, Erode, Tamil Nadu, India
| | - Ranjeet Kutty
- Department of Aquatic Environment Management, College of Fisheries, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
44
|
Rabari V, Patel K, Patel H, Trivedi J. Quantitative assessment of microplastic in sandy beaches of Gujarat state, India. MARINE POLLUTION BULLETIN 2022; 181:113925. [PMID: 35841675 DOI: 10.1016/j.marpolbul.2022.113925] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The present study was carried out to quantify microplastic prevalence among 20 sandy beaches on the Gujarat coast. Beaches were categorised into three different classes, viz. low-impacted sites, moderately impacted sites, and highly impacted sites based on anthropogenic pressure. Microplastic (MP) (≤ 5 mm) contamination on the beaches varied with an average of 1.4 MPs/kg to 26 MPs/kg sediment. Sutrapada site-1 and Porbandar showed the highest and lowest mean abundance of microplastics, respectively, among 20 selected beaches. Out of the total assessed microplastics, threads were the maximum (89.98%), followed by the films (4.75%), fragments (3.36%) and foam (1.89%). In terms of colour and size, different microplastics were recorded in this study. The chemical composition of microplastics was identified by ATR-FTIR as polypropylene (47.5%), polyethylene (26%), and polystyrene (25%). Tourism and fishing activities are the possible sources of higher microplastic contamination at highly impacted sites.
Collapse
Affiliation(s)
- Vasantkumar Rabari
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Heris Patel
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Jigneshkumar Trivedi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| |
Collapse
|
45
|
Santos D, Luzio A, Félix L, Bellas J, Monteiro SM. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109363. [PMID: 35525464 DOI: 10.1016/j.cbpc.2022.109363] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 02/06/2023]
Abstract
Fish gills are in direct contact with the surrounding pollutants, and thus, potentially more vulnerable to microplastics (MPs) and heavy metals. The present study aimed to evaluate the long-term exposure effects of MPs and copper (Cu) in the gills of adult zebrafish (Danio rerio). To this end, zebrafish were exposed to MPs (2 mg/L), Cu (Cu25, 25 μg/L) and their mixture (Cu25 + MPs) for 30 days, and then oxidative stress, detoxification, antioxidant, metabolic and neurotoxicity enzymes/genes, as well serotonergic system and apoptosis genes, were evaluated in gills. In the mixture group, ROS levels were increased, while CAT and GPx activities were inhibited, indicating the induction of oxidative stress in zebrafish gills. This was followed by an increase of LPO levels and potential oxidative damage in zebrafish gills. The tryptophan hydroxylase 1a (tph1a) and caspase-3 (casp3) genes were significantly upregulated in Cu25 + MPs group, indicating a potential dysregulation of serotonin synthesis and apoptosis pathways, respectively. Overall, the present study contributes to improving the knowledge about the response of aquatic organisms to MPs and the potential ecological risk that these particles represent to the ecosystems.
Collapse
Affiliation(s)
- Dércia Santos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal.
| | - Ana Luzio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Luís Félix
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Juan Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, IEO-CSIC, Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Sandra M Monteiro
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, Portugal
| |
Collapse
|
46
|
Cui Y, Liu M, Selvam S, Ding Y, Wu Q, Pitchaimani VS, Huang P, Ke H, Zheng H, Liu F, Luo B, Wang C, Cai M. Microplastics in the surface waters of the South China sea and the western Pacific Ocean: Different size classes reflecting various sources and transport. CHEMOSPHERE 2022; 299:134456. [PMID: 35364074 DOI: 10.1016/j.chemosphere.2022.134456] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/05/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Microplastic transport in the marginal seas is a key process influencing their ultimate fate in the open oceans. In the present study, we collected seawater samples from the western Pacific Ocean (WP) and the South China Sea (SCS) to investigate the distribution, transport, and possible sources for microplastics. Generally, the range of microplastic levels were 187-1816, 146-1563, and 34.2-622 particles/m3 (averaged in 797 ± 512, 744 ± 330, and 201 ± 134 particles/m3) for the northern SCS, the western SCS, and the WP, respectively. Based on the size distribution, the highest value (390 ± 288 particles/m3) was found for 100-200 μm, followed by 200-500 μm (131 ± 155 particles/m3), and 500-1000 μm (29.7 ± 39.2 particles/m3), with the lowest for 1-5 mm (13.6 ± 14.2 particles/m3). Granule, yellow, and size <1000 μm were their most prevalent characteristics. The main polymer types of microplastics were polyester, rayon, and nylon. A negative correlation between microplastic proportion and particle size was observed in the SCS and the WP. Furthermore, the main sources of microplastics in the northern SCS probably came from the Pearl River. Surface currents and the vertical mixing processes might be two different mechanisms that affect microplastic transport from the WP and the SCS. Future comparison to measured particle size distributions data allows us to explain size-selective microplastic transport in the marine environment, and probably provide guidance on microplastic longevity.
Collapse
Affiliation(s)
- Yaozong Cui
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Mengyang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - S Selvam
- Department of Geology, V.O. Chidambaram College, Tuticorin, 628008, Tamil Nadu, India
| | - Yongcheng Ding
- Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China
| | - Qianqian Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - V Stephen Pitchaimani
- Department of Geology, V.O. Chidambaram College, Tuticorin, 628008, Tamil Nadu, India
| | - Peng Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hongwei Ke
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Haowen Zheng
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fengjiao Liu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Bojun Luo
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Chunhui Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; Coastal and Ocean Management Institute, Xiamen University, Xiamen, 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
47
|
Sharma MD, Krupadam RJ. Adsorption-desorption dynamics of synthetic and naturally weathered microfibers with toxic heavy metals and their ecological risk in an estuarine ecosystem. ENVIRONMENTAL RESEARCH 2022; 207:112198. [PMID: 34656635 DOI: 10.1016/j.envres.2021.112198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/12/2021] [Accepted: 10/07/2021] [Indexed: 05/12/2023]
Abstract
Microfibers (MFs) in aquatic and marine ecosystems adsorb toxic heavy metals and then transfer the heavy metals enriched MFs to living organisms. In this research paper, the adsorption-desorption dynamics of heavy metals onto MFs was studied by using theoretical models and experimental investigations. The adsorption of metals onto MFs was well correlated for the Freundlich model and the adsorption kinetics follows pseudo-second order rate equation. The adsorption capacity of naturally weathered MFs was 30.8 mg g-1 which is about 35% higher than the synthetic fiber of similar range of size of MFs. The leaching of heavy metals from MFs was found that 90-95% of adsorbed metals were leached within 24 h. The leaching of Ti(II) and Al(III) were slower than the other metal ions. The salinity has shown decrease in adsorption capacity of MFs for heavy metals. Based on the Nemerov pollution index (PN), the naturally weathered MFs enriched with heavy metals in sediments became heavily polluted with PN values between 2.98 and 3.49. The risk index value of 396 represents that the bottom dwellers and other marine organisms in the Narmada estuary high risk from MFs and MFs enriched with metals. This study indicates that MFs play dominant role in fate and distribution of heavy metals in the estuarine ecosystems.
Collapse
Affiliation(s)
- Madhu D Sharma
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific & Innovative Research, Sector 19, Kamla Nehru Nagar, Gaziabad, 201002, India
| | - Reddithota J Krupadam
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India; Academy of Scientific & Innovative Research, Sector 19, Kamla Nehru Nagar, Gaziabad, 201002, India.
| |
Collapse
|
48
|
Ge J, Yang Q, Fang Z, Liu S, Zhu Y, Yao J, Ma Z, Gonçalves RJ, Guan W. Microplastics impacts in seven flagellate microalgae: Role of size and cell wall. ENVIRONMENTAL RESEARCH 2022; 206:112598. [PMID: 34953887 DOI: 10.1016/j.envres.2021.112598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The toxicity of microplastic particles (MPs) on aquatic environments has been widely reported; however, their effects on protists are still contradictory. For example, it is unclear if cell size and cell wall have a role in shaping the response of flagellates to MPs. In this study, seven marine flagellated microalgae (six Dinoflagellates and one Raphidophyceae) were incubated with 10 mg L-1 MPs (polystyrene plastic micro-spheres, 1 μm diameter) to address the above question by measuring different response variables, i.e., growth, optimal photochemical efficiency (Fv/Fm), chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, and cell morphology. The effect of MPs on growth and Fv/Fm showed species-specificity effects. Maximum and minimum MPs-induced inhibitions were detected in Karenia mikimotoi (76.43%) and Akashiwo sanguinea (10.16%), respectively, while the rest of the species showed intermediate responses. The presence of MPs was associated with an average reduction of Chl-a content in most cases and with a higher superoxide dismutase activity in all cases. Seven species were classified into two groups by the variation of Chl-a under MPs treatment. One group (Prorocentrum minimum and Karenia mikimotoi) showed increased Chl-a, while the other (P. donghaiense, P. micans, Alexandrium tamarense, Akashiwo sanguinea, Heterosigma akashiwo) showed decreased Chl-a content. The MPs-induced growth inhibition was negatively correlated with cell size in the latter group. SEM images further indicated that MPs-induced malformation in the smaller cells (e.g., P. donghaiense and K. mikimotoi) was more severe than the bigger cells (e.g., A. sanguinea and P. micans), probably due to a relatively higher ratio of the cell surface to cell volume in the former. These results implicate that the effect of MPs on marine flagellated microalgae was related to the cell size among most species but not cell wall. Thus plastic pollution may have size-dependent effects on phytoplankton in future scenarios.
Collapse
Affiliation(s)
- Jingke Ge
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China; State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qiongying Yang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zhouxi Fang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Shuqi Liu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Yue Zhu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Jiang Yao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China
| | - Zengling Ma
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Rodrigo J Gonçalves
- Laboratorio de Oceanografía Biológica (LOBio), Centro para el Estudio de Sistemas Marinos (CESIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), U9120ACD, Puerto Madryn, Argentina
| | - Wanchun Guan
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, China.
| |
Collapse
|
49
|
De K, Sautya S, Gaikwad S, Mitra A, Nanajkar M. Characterization of anthropogenic marine macro-debris affecting coral habitat in the highly urbanized seascape of Mumbai megacity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118798. [PMID: 34999148 DOI: 10.1016/j.envpol.2022.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Marine debris has become a major form of pollution and a serious ecosystem health concern. The present study evaluates the accumulation, origin, and fate of debris in intertidal coral habitats of Mumbai-one of the world's highly populated coastal cities on the west coast of India. Predominantly, seven hermatypic coral species belonging to seven genera and five families were identified and mainly represented by Pseudosidastrea, Porites, and Bernardpora. In terms of number, the mean density of marine debris was 1.60 ± 0.13 SE items/m2, which is higher than the global average. The mean density of plastic debris was 1.46 ± 0.14 SE items/m2. Approximately 9% of total coral colonies were in physical contact with debris, and 22% of these colonies showed visible signs of partial bleaching. Single use plastic bags and wrappers were dominant plastic debris. The study area was characterized as 'very poor cleanliness' according to the Beach Quality Indexes, which include the Clean Coast Index, General Index, and Hazardous Items Index. The numerical model indicates the influence of river discharge and probable areas of plastic accumulation with high tidal currents in this region, maneuvering the spatial advection of litter in the nearshore areas. Combined analysis of ground-truthing and model simulation implies that the possible contributing sources of litter were representatives of land-based and sea-originated. The overall results point to increasing anthropogenic stressors threatening coastal coral communities, including marine debris pollution. It is advocated to adopt an integrated coastal zone management approach supported by coordinated policy frameworks could guide the mitigation of the debris footprint in coastal environments.
Collapse
Affiliation(s)
- Kalyan De
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Sabyasachi Sautya
- Laboratory for Benthic Ecological Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra, 400053, India.
| | - Santosh Gaikwad
- Laboratory for Benthic Ecological Trait Analysis (L-BETA), CSIR- National Institute of Oceanography, Regional Centre-Mumbai, Maharashtra, 400053, India.
| | - Aditi Mitra
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | - Mandar Nanajkar
- CSIR- National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
50
|
Patterson J, Jeyasanta KI, Laju RL, Booth AM, Sathish N, Edward JKP. Microplastic in the coral reef environments of the Gulf of Mannar, India - Characteristics, distributions, sources and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118848. [PMID: 35032604 DOI: 10.1016/j.envpol.2022.118848] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs; particles <5 mm) are widely distributed in various habitats from the land to the oceans. They have even reached the remotest of places, including the deep seas and Polar Regions. Although research on MPs pollution in the marine environment has received widespread attention in recent years, the distribution, sources and ecological risks of MPs in coastal areas remain unclear. This study assessed the abundance, characteristics, sources and ecological risk of MPs in surface waters and sediment of the mainland coast and four island groups comprising the coral reef environment of the Gulf of Mannar (GoM), southeast India. Mean MPs abundance across all 95 sampling sites ranged from 28.4 to 126.6 items L-1 in water and from 31.4 to 137.6 items kg-1 in sediment. MP fibers <2 mm dominated the water, while fragments >3 mm were predominant in sediments. Polyethylene (PE) and polypropylene (PP) were the most common polymers in both matrices. The major proportion of MPs in the GoM derived from land-based sources, with distance to the mainland, coastal population density and improper handling of solid waste being the main factors influencing the abundance of MPs. Polymer Hazard Index (PHI), Pollution Load Index (PLI) and Potential Ecological Risk Index (PERI) were used to assess current levels of MPs. While the GoM has high PHI values (>1000) resulting from MPs with high hazard scores (e.g. polyamide, polystyrene, polyvinyl chloride), the PLI values (1.46 and 1.51) indicate low MPs pollution levels in GoM waters and sediments, and the PERI values (31.7 and 24.4) indicate that this represents a minor ecological risk. The results from the current study enhance our understanding of the characteristics, sources, and associated environmental risks of MPs to marine ecosystems. This data may provide a baseline for future monitoring and the formulation of environmental policy.
Collapse
Affiliation(s)
- Jamila Patterson
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India.
| | | | - R L Laju
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - Andy M Booth
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | - Narmatha Sathish
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | | |
Collapse
|