1
|
Tian X, Yang Q, Zhao Y, Cao D, Liu Y, Guo Y, Cui W, Hu L, Yin Y, Cai Y, Jiang G. Comprehensive Multidimensional Analysis of Metal(loid)-Containing Dust in Plastic Sports Facilities: Insights into the Potential Sources and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:23212-23221. [PMID: 39693048 DOI: 10.1021/acs.est.4c11896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Dust released from widely established plastic sports courts and synthetic turf poses potential environmental and health risks. Herein, we systematically investigate the metal(loid) characteristics, potential sources, and health risks of 162 dust samples from 17 campuses in Beijing, using complementary analytical techniques. Bulk analysis revealed higher levels of Zn, Pb, Cu, Sb, Cd, and Cr than background values, suggesting excessive anthropogenic contamination. Pb and Cr in plastic basketball court and track dust and Zn and Sb in synthetic turf dust were higher than those in other sports facilities. Multielement single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOF-MS) revealed more Fe-, Al-, Si-, Ti-, and Pb-containing particles in the dust. At least 92% toxic Pb-containing particles were composed of multiple elements. The significant correlations between Pb and Cr contents on individual dust particles support their common potential source from inorganic pigments (crocoite, PbCrO4). Pb, Sb, As, and Cr in the dust pose higher health risks through intake. The risks were estimated to be approximately 3-5 times higher for children than for adults. Additionally, highly toxic Cr(VI) and As(III) species were observed in the sweat and gastric juice leachate of dust, highlighting severe threats of the metal(loid)s to human health.
Collapse
Affiliation(s)
- Xiangwei Tian
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Qingqing Yang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yuqian Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Dandan Cao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenbin Cui
- R&D Center, Shandong Yingsheng Biotechnology Co., Ltd., Beijing 100088, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Akindele AFI, Joseph A. Health risk assessment of lead, cadmium, heavy metals and metalloids in residential paint flakes from indoor wall surfaces. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1261. [PMID: 39601907 DOI: 10.1007/s10661-024-13324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Paint components pose risky metals like lead, cadmium, arsenic, and mercury that endanger occupants, mainly children and pregnant women. To assess the levels and health risks of 14 metals in paint flakes from indoor walls of residential houses in four states in South-western Nigeria. Flaked paints were collected from 144 houses where children reside. Metals were analysed using an inductively coupled plasma-optical emission spectrometer. The cadmium (Cd), lead (Pb), arsenic (As), and chromium (Cr) levels (mg/kg) ranged from 1239.9 to 2254.2, 1126.5 to 3080.3, 822.1 to 1492.0, and 2.5 to 60.6 in all the state capitals examined, respectively. All samples examined in this study were above the regulated permissible limits. The US Environmental Protection Agency estimated health risk assessment model was used to calculate the chronic daily intake, hazard quotient, hazard index (HI), and lifetime cancer risk (LCR). HI > 1 was highest in the ingestion route (2.592341: adults, 24.5153: children), and the LCR in children and adults followed the order of LCRingestion > LCRinhalation > LCRdermal. The probability of developing cancer over a lifetime, Total Lifetime Cancer Risk, for children exceeded the limit range for Pb, Mn, and Zn in the paint flakes from all the buildings, while almost all buildings where children resided exceeded the limit range for Cd. The study revealed that paint flakes from indoor walls pose a significant source of metal contamination and health risk, especially for children. In Nigeria, there is a need for stricter regulation and monitoring of metal content in paints and paint flakes.
Collapse
Affiliation(s)
- Ajoke Fehintola Idayat Akindele
- The Council of Scientific and Industrial Research-National Environmental Engineering Research Institute Laboratory, Nagpur, Maharashtra, India.
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - Akaninyene Joseph
- Department of Biosciences and Biotechnology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| |
Collapse
|
3
|
Cai K, Du J, Yan L, Luan Z, He Y, Shen J, Song Z, Zhao Z, Luan W, Liu X, Lam SS. Toxic metal pollution and associated health risk in nonferrous metal smelting soil containing clay minerals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122909. [PMID: 39405840 DOI: 10.1016/j.jenvman.2024.122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Given the research situation of toxic metals (TMs) pollution in farmland soil, it is very critical to study the clay influence on TMs environmental behavior to meet the aim of lowering TMs pollution. This research explores the association among clay minerals and TMs and the health risks in TMs combined polluted farmland of northern China. In this study, agricultural soil, wheat grain, and atmospheric sediments from nonferrous metal smelting (NMS) areas were collected and investigated to determine the effect of clay minerals on TMs. The results show that the content ranges of Cd (0.199 mg/kg ∼1.98 × 102 mg/kg), Pb (0.228 × 102 mg/kg ∼ 4.87 × 103 mg/kg), Cu (0.187 × 102 mg/kg ∼ 4.57 × 103 mg/kg), and Zn (0.559 × 102 mg/kg ∼ 3.04 × 103 mg/kg) in the agricultural soil. In particular, Cd has reached heavy pollution by the high pollution index (6.74). The findings indicate that Cd and Pb in wheat grain were influenced by their exchangeable fractions in soil, according to a significant relationship between Cd and Pb in soil and wheat grain. XRD-SEM suggests that TMs come from atmospheric sediments associated with NMS emissions by microsphere signatures with surface burn marks. Meanwhile, Geographical detector indicated that clay was the primary contributor to spatial distribution of Cd and Pb. In addition, XRD results showed that I/S (a mixed layer of illite and smectite), illite, chlorite, and kaolinite co-existed. Whereas the clay minerals with this ratio did not demonstrate better adsorption capacities for Cd and Pb due to the Cd percentage of the residual fraction being less than 9%. The result of negative correlation between exchangeable Cd and clay minerals implies that illite, chlorite, and kaolinite may preferentially adsorb Cd and Pb. It is similar to the relationship between Cd and Pb in wheat grain and illite, chlorite, and kaolinite. In addition, the health assessment result show that the negative correlation between clay minerals and the noncarcinogenic hazard quotient (HQ) and indicate that clay minerals could reduce the noncarcinogenic risk of Pb and Cd for children. Our findings provide a potential mechanism and application of clay minerals for the remediation of soil contaminated with TMs.
Collapse
Affiliation(s)
- Kui Cai
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China; Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Jun Du
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China
| | - Lina Yan
- College of Geoscience, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Zhuoran Luan
- College of Geoscience, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Yinhai He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Jiani Shen
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zefeng Song
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Zhirui Zhao
- College of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Wenlou Luan
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
4
|
Soleimani Z, Azimi P, Haghshenas R, Farzi Y, Taherkhani A, Naddafi K, Yunesian M, Naserinjad M, Behnoush AH, Parizad M, Keyvani M, Hajebi A, Gorgani F, Mirzaei S, Handy RD, Mesdaghinia A, Farzadfar F. Exposure assessment of metal(loids) in indoor air and biomonitoring in six urban residential areas in Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174169. [PMID: 38917899 DOI: 10.1016/j.scitotenv.2024.174169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Exposure to metal(loid)s can cause adverse health effects. This study evaluated the concentrations of aluminum, arsenic, cadmium, chromium, mercury, nickel, and lead in particulate matter <10 μm (PM10) and in the urine of 100 participants from urban residential areas in Iran. A total of 100 residential buildings (one adult from each household) in six cities across Iran were recruited for this study. The levels of metal(loid)s in PM10 and the urine of participants were measured using acid digestion followed by inductively coupled plasma mass spectrometry (ICP-MS). The average (±SE) PM10 concentration in the buildings was 51.7 ± 3.46 μg/m3. Aluminum and cadmium had the highest and lowest concentrations among the metal(loid)s, averaging 3.74 ± 1.26 μg/m3 and 0.01 ± 0.001 μg/m3, respectively. In 85 % of the samples, the concentration of metal(loid)s in indoor air exceeded WHO air quality standards. Cadmium and lead had the highest and lowest numbers of indoor air samples exceeding the recommended standards, respectively. A significant correlation was found between the concentration of metal(loid)s in urine samples and indoor PM10 levels, as well as the wealth index of participants. There was also a significant direct relationship between the concentrations of nickel, arsenic, lead, and mercury in urine and the age of participants. Factors such as building location, type of cooling systems, use of printers at home, and natural ventilation influenced the concentration and types of metal(loid)s in the indoor air.
Collapse
Affiliation(s)
- Zahra Soleimani
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Azimi
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Rosa Haghshenas
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yosef Farzi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Taherkhani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran
| | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran; Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Naserinjad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzeih Parizad
- Health and work environment group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Keyvani
- Environmental Health Group, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirali Hajebi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Gorgani
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saham Mirzaei
- Institute of methodologies for Environmental Analysis, Italian National Research Council Potenza, Italy
| | - Richard D Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences. Tehran, Iran; Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Yao Q, Yang Y, Chen J, Li X, He M, Long D, Zeng J, Wu D, Sha L, Fan X, Kang H, Zhang H, Zhou Y, Wang Y, Cheng Y. Soil application of FeCl 3 and Fe 2(SO 4) 3 reduced grain cadmium concentration in Polish wheat (Triticum polonicum L.). BMC PLANT BIOLOGY 2024; 24:930. [PMID: 39370516 PMCID: PMC11457330 DOI: 10.1186/s12870-024-05652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.
Collapse
Affiliation(s)
- Qin Yao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Chengdu Agricultural College, Wenjiang, 611130, Sichuan, China
| | - Yueying Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jia Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xiaoying Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Miao He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China/ Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
6
|
Roy D, Kim J, Lee M, Kim S, Park J. PM10-bound microplastics and trace metals: A public health insight from the Korean subway and indoor environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135156. [PMID: 39079300 DOI: 10.1016/j.jhazmat.2024.135156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024]
Abstract
Inhalable airborne microplastics (MPs) presented in indoor and outdoor environments, can deeply penetrate the lungs, potentially triggering inflammation and respiratory illnesses. The present study aims to evaluate human health risks from respirable particulate matter (PM)-bound trace metals and MPs in indoor (SW- subway and IRH- indoor residential houses) and outdoor (OD) environments. This research provides an initial approach to human respiratory tract (HRT) mass depositions of PM10-bound total MPs and nine specific MP types to predict potential human health threats from inhalation exposure. Results indicate that PM-bound trace metals and MPs were around 4 times higher in SW microenvironments compared to OD locations. In IRH, cancer risk (CR) levels were estimated 9 and 4 times higher for PM10 and PM2.5, respectively. Additionally, MP particle depositions per gram of lung cell weight were highest in IRH (23.77), followed by OD and SW. Whereas, lifetime alveoli depositions of MPs were estimated at 13.73 MP/g, which exceeds previously reported respiratory disease fatality cases by 10 to 5 times. Prolonged exposure duration at IRH emerged as a key factor contributing to increased CR and MP lung deposition levels. This research highlights severe lung risks from inhaling PM-bound MPs and metals, offering valuable health insights.
Collapse
Affiliation(s)
- Debananda Roy
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jayun Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Minjoo Lee
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunga Kim
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Beauchemin S, Avramescu ML, Levesque C, Rasmussen PE. Carcinogenic metal(loid)s in house dust compared to soil: Concentrations and gastric bioaccessibility. ENVIRONMENTAL RESEARCH 2024; 255:119175. [PMID: 38768886 DOI: 10.1016/j.envres.2024.119175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
As a sink and a source of chemicals, house dust represents a relevant medium to assess indoor exposure to metal(loid)s via incidental ingestion or inhalation. However, nationally representative indoor data are scarce. Results from the Canadian House Dust Study (CHDS, 2007-2010; n = 1025) provide nationally representative mean, median and 95th percentile concentrations for 38 elements in typical urban house dust, along with their gastric bioaccessibility. Total concentrations (median/95th percentile) of carcinogenic metal(loid)s in Canadian house dust (μg g-1) are as follows: As (9.0/40), Be (0.4/0.9), Cd (3.5/17), Co (5.6/19), Cr (99/214), Ni (62/322) and Pb (100/760). Total As and Pb concentrations in house dust exceed residential soil guidelines for the protection of human health in about one-third of Canadian homes. Percent bioaccessibilities (median) are: Cd (65%) > Pb (63%) > Be ∼ Ni (36%) > Co (35%) > As (20%) > Cr (15%). Lead, Cd and Co concentrations are significantly greater in older houses (< 1976). Data from two pilot studies (n = 66 + 51) further demonstrate the distinct geochemistry of house dust compared to soils, notably enrichment of carcinogenic metal(loid)s and their increased bioaccessibility. These results provide essential baseline values to refine risk assessment and inform on health risk at contaminated sites.
Collapse
Affiliation(s)
- Suzanne Beauchemin
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9.
| | - Mary-Luyza Avramescu
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9
| | - Christine Levesque
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9
| | - Pat E Rasmussen
- Environmental Health Research Science Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada, K1A 0K9; Department of Earth and Environmental Science, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| |
Collapse
|
8
|
Sowers TD, Nelson CM, Blackmon MD, Li K, Jerden ML, Kirby AM, Kovalcik K, Cox D, Dewalt G, Friedman W, Pinzer EA, Ashley PJ, Bradham KD. United States house dust Pb concentrations are influenced by soil, paint, and house age: insights from a national survey. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:709-717. [PMID: 38548929 PMCID: PMC11303246 DOI: 10.1038/s41370-024-00655-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 08/09/2024]
Abstract
BACKGROUND Lead (Pb) in house dust contributes significantly to blood lead levels (BLLs) in children which may result in dire health consequences. Assessment of house dust Pb in the United States, relationships with Pb in soil and paint, and residential factors influencing Pb concentrations are essential to probing drivers of house dust Pb exposure. OBJECTIVE Pb concentrations in vacuum-collected house dust are characterized across 346 homes participating in the American Health Homes Survey II (AHHS II), a US survey (2018-2019) evaluating residential Pb hazards. Connections between house dust Pb and soil Pb, paint Pb, and other residential factors are evaluated, and dust Pb concentration data are compared to paired loading data to understand Pb hazard standard implications. RESULTS Mean and median vacuum dust Pb concentrations were 124 µg Pb g-1 and 34 µg Pb g-1, respectively. Vacuum-collected dust concentrations and dust wipe Pb loading rates were significantly correlated within homes (α < 0.001; r ≥ 0.4). At least one wipe sample exceeded current house dust Pb loading hazard standards (10 µg ft-2 or 100 µg Pb ft-2 for floors and windowsills, respectively) in 75 of 346 homes (22%). House dust Pb concentrations were correlated with soil Pb (r = 0.64) and Pb paint (r = 0.57). Soil Pb and paint Pb were also correlated (r = 0.6). IMPACT The AHHS II provides a window into the current state of Pb in and around residences. We evaluated the relationship between house dust Pb concentrations and two common residential Pb sources: soil and Pb-based paint. Here, we identify relationships between Pb concentrations from vacuum-collected dust and paired Pb wipe loading data, enabling dust Pb concentrations to be evaluated in the context of hazard standards. This relationship, along with direct ties to Pb in soil and interior/exterior paint, provides a comprehensive assessment of dust Pb for US homes, crucial for formulating effective strategies to mitigate Pb exposure risks in households.
Collapse
Affiliation(s)
- Tyler D Sowers
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | | | - Matthew D Blackmon
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Kevin Li
- Independent Researcher, Lansing, MI, 48915, USA
| | - Marissa L Jerden
- Jacobs Technology, Inc., 109 T.W. Alexander Drive, Research Triangle Park, NC, 27711, USA
| | - Alicia M Kirby
- Oak Ridge Associated Universities, Oak Ridge, TN, 37830, USA
| | - Kasey Kovalcik
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - David Cox
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Gary Dewalt
- QuanTech, 6110 Executive Blvd Suite 206, Rockville, MD, 20852, USA
| | - Warren Friedman
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Eugene A Pinzer
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Peter J Ashley
- Office of Lead Hazard Control and Healthy Homes, Department of Housing and Urban Development, Washington, DC, 20410, USA
| | - Karen D Bradham
- Center of Environmental Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
9
|
Cao Y, Liu M, Zhang W, Zhang X, Li X, Wang C, Zhang W, Liu H, Wang X. Characterization and childhood exposure assessment of toxic heavy metals in household dust under true living conditions from 10 China cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171669. [PMID: 38494014 DOI: 10.1016/j.scitotenv.2024.171669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
Health hazards caused by metal exposure in household dust are concerning environmental health problems. Exposure to toxic metals in household dust imposes unclear but solid health risks, especially for children. In this multicenter cross-sectional study, a total of 250 household dust samples were collected from ten stratified cities in China (Panjin, Shijiazhuang, Qingdao, Lanzhou, Luoyang, Ningbo, Xi'an, Wuxi, Mianyang, Shenzhen) between April 2018 and March 2019. Questionnaire was conducted to gather information on individuals' living environment and health status in real-life situations. Multivariate logistic regression and principal component analysis were conducted to identify risk factors and determine the sources of metals in household dust. The median concentration of five metals in household dust from 10 cities ranged from 0.03 to 73.18 μg/g. Among the five heavy metals, only chromium in household dust of Mianyang was observed significantly both higher in the cold season and from the downwind households. Mercury, cadmium, and chromium were higher in the third-tier cities, with levels of 0.08, 0.30 and 97.28 μg/g, respectively. There were two sources with a contribution rate of 38.3 % and 25.8 %, respectively. Potential risk factors for increased metal concentration include long residence time, close to the motorway, decoration within five years, and purchase of new furniture within one year. Under both moderate and high exposure scenarios, chromium showed the highest level of exposure with 6.77 × 10-4 and 2.28 × 10-3 mg·kg-1·d-1, and arsenic imposed the highest lifetime carcinogenic risk at 1.67 × 10-4 and 3.17 × 10-4, respectively. The finding highlighted the priority to minimize childhood exposure of arsenic from household dust.
Collapse
Affiliation(s)
- Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wenying Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaotong Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Weiyi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
10
|
Zhang Z, Xu X, Qian Z, Zhong Q, Wang Q, Hylkema MN, Snieder H, Huo X. Association between 6PPD-quinone exposure and BMI, influenza, and diarrhea in children. ENVIRONMENTAL RESEARCH 2024; 247:118201. [PMID: 38220074 DOI: 10.1016/j.envres.2024.118201] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China; Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
11
|
Unsal MH, Ignatavičius G, Valiulis A, Prokopciuk N, Valskienė R, Valskys V. Assessment of Heavy Metal Contamination in Dust in Vilnius Schools: Source Identification, Pollution Levels, and Potential Health Risks for Children. TOXICS 2024; 12:224. [PMID: 38535957 PMCID: PMC10974985 DOI: 10.3390/toxics12030224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 11/12/2024]
Abstract
The main objective of this study is to thoroughly evaluate the diversity and sources of heavy metals in the school environment. Specifically, this study examines the presence of heavy metals in the dust found and collected from 24 schools in Vilnius. Employing hierarchical cluster analysis, principal component analysis, and positive matrix factorization, we identified combustion-related activities as primary contributors to elevated metal concentrations, notably zinc, scandium, and copper, with PM2.5/PM10 ratios indicating a combustion source. They reveal significant differences in the levels of elements such as arsenic (4.55-69.96 mg/kg), copper (51.28-395.37 mg/kg), zinc, and lead, which are affected by both local environmental factors and human activities. Elevated pollution levels were found in certain school environments, indicating environmental degradation. Pollution assessment and specific element pairings' strong positive correlations suggested shared origins or deposition processes. While this study primarily assesses non-carcinogenic risks to children based on a health risk assessment model, it acknowledges the well-documented carcinogenic potential of substances such as lead and arsenic. The research emphasizes the immediate necessity for efficient pollution management in educational environments, as indicated by the elevated hazard index for substances such as lead and arsenic, which present non-carcinogenic risks to children. This research offers important insights into the composition and origins of dust pollution in schools. It also promotes the need for broader geographic sampling and prolonged data collection to improve our understanding of pollution sources, alongside advocating for actionable strategies such as environmental management and policy reforms to effectively reduce exposure risks in educational settings. Furthermore, it aims to develop specific strategies to safeguard the health of students in Vilnius and similar urban areas.
Collapse
Affiliation(s)
- Murat Huseyin Unsal
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (G.I.); (V.V.)
| | - Gytautas Ignatavičius
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (G.I.); (V.V.)
| | - Arunas Valiulis
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Medical Faculty, Vilnius University, Antakalnio St. 57, 10207 Vilnius, Lithuania
- Department of Public Health, Institute of Health Sciences, Medical Faculty, Vilnius University, M. K. Čiurlionio St. 21, 03101 Vilnius, Lithuania
| | - Nina Prokopciuk
- Clinic of Children’s Diseases, Institute of Clinical Medicine, Medical Faculty, Vilnius University, Antakalnio St. 57, 10207 Vilnius, Lithuania
| | - Roberta Valskienė
- Nature Research Centre, Laboratory of Ecotoxicology, Akademijos St. 2, 08412 Vilnius, Lithuania;
| | - Vaidotas Valskys
- Institute of Biosciences, Life Sciences Center, Vilnius University, Saulėtekio Ave. 7, 10257 Vilnius, Lithuania; (G.I.); (V.V.)
- Nature Research Centre, Laboratory of Climate and Water Research, Akademijos St. 2, 08412 Vilnius, Lithuania
| |
Collapse
|
12
|
Hintikka T, Andersson MA, Lundell T, Marik T, Kredics L, Mikkola R, Andersson MC, Kurnitski J, Salonen H. Toxicity Screening of Fungal Extracts and Metabolites, Xenobiotic Chemicals, and Indoor Dusts with In Vitro and Ex Vivo Bioassay Methods. Pathogens 2024; 13:217. [PMID: 38535560 PMCID: PMC10974995 DOI: 10.3390/pathogens13030217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 02/11/2025] Open
Abstract
It is controversial how useful bioassays are for identifying the in vivo toxicity of hazardous environmental exposures. In this study, fruiting bodies of forest mushrooms (n = 46), indoor mold colonies (n = 412), fungal secondary metabolites (n = 18), xenobiotic chemicals such as biocides and detergents (n = 6), and methanol extracts of indoor dusts from urban buildings (n = 26) were screened with two different bioactivity assays: boar sperm motility inhibition (BSMI) and inhibition of cell proliferation (ICP) tests. For the forest mushrooms, the toxicity testing result was positive for 100% of poisonous-classified species, 69% of non-edible-classified species, and 18% of edible-classified species. Colonies of 21 isolates of Ascomycota mold fungal species previously isolated from water-damaged buildings proved to be toxic in the tests. Out of the fungal metabolites and xenobiotic chemicals, 94% and 100% were toxic, respectively. Out of the indoor dusts from moldy-classified houses (n = 12) and from dry, mold-free houses (n = 14), 50% and 57% were toxic, respectively. The bioassay tests, however, could not differentiate the samples from indoor dusts of moldy-classified buildings from those from the mold-free buildings. Xenobiotic chemicals and indoor dusts were more toxic in the BSMI assay than in the ICP assay, whereas the opposite results were obtained with the Ascomycota mold colonies and fungal secondary metabolites. The tests recognized unknown methanol-soluble thermoresistant substances in indoor settled dusts. Toxic indoor dusts may indicate a harmful exposure, regardless of whether the toxicity is due to xenobiotic chemicals or microbial metabolites.
Collapse
Affiliation(s)
- Tuomas Hintikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (M.A.A.); (T.L.)
| | - Maria A. Andersson
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (M.A.A.); (T.L.)
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; (R.M.); (J.K.); (H.S.)
| | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (M.A.A.); (T.L.)
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (T.M.); (L.K.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (T.M.); (L.K.)
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; (R.M.); (J.K.); (H.S.)
| | - Magnus C. Andersson
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, 04920 Saarentaus, Finland;
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; (R.M.); (J.K.); (H.S.)
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, 00076 Espoo, Finland; (R.M.); (J.K.); (H.S.)
- International Laboratory for Air Quality and Health, Faculty of Science, School of Earth & Atmospheric Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
13
|
Kao CS, Wang YL, Jiang CB, Tai PJ, Chen YH, Chao HJ, Lo YC, Hseu ZY, Hsi HC, Chien LC. Assessment of sources and health risks of heavy metals in metropolitan household dust among preschool children: The LEAPP-HIT study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120015. [PMID: 38194873 DOI: 10.1016/j.jenvman.2024.120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The most common construction material used in Taiwan is concrete, potentially contaminated by geologic heavy metals (HMs). Younger children spend much time indoors, increasing HM exposure risks from household dust owing to their behaviors. We evaluated arsenic (As), cadmium (Cd), and lead (Pb) concentrations in fingernails among 280 preschoolers between 2017 and 2023. We also analyzed HM concentrations, including As, Cd, Pb, chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn), in 90 household dust and 50 road dust samples from a residential area where children lived between 2019 and 2021 to deepen the understanding of sources and health risks of exposure to HMs from household dust. The average As, Cd, and Pb concentrations in fingernails were 0.12 ± 0.06, 0.05 ± 0.05, and 0.95 ± 0.77 μg/g, respectively. Soil parent materials, indoor construction activities, vehicle emissions, and mixed indoor combustion were the pollution sources of HMs in household dust. Higher Cr and Pb levels in household dust may pose non-carcinogenic risks to preschoolers. Addressing indoor construction and soil parent materials sources is vital for children's health. The finding of the present survey can be used for indoor environmental management to reduce the risks of HM exposure and avoid potential adverse health effects for younger children.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ying-Lin Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, SanZhi District, New Taipei City, Taiwan
| | - Pei-Ju Tai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Buljovčić M, Živančev J, Antić I, Đurišić-Mladenović N. Heavy elements in indoor dust from Serbian households: pollution status, sources, and potential health risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:50-60. [PMID: 36170597 DOI: 10.1080/09603123.2022.2128077] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Occurrence of five heavy elements (HEs) was analyzed in indoor dust (n = 45) in households from four settlements in Vojvodina Province, Serbia. Overall medians (mg/kg) of Pb (5.6), Ni (5.2), Cu (27), and Cr (6.8) were below soil background values, while median for Cd (1.1) exceeded it. Pollution load index showed that the households' microenvironment in examined region might be regarded as unpolluted. Integrated pollution index revealed low contamination by Pb, Ni, and Cr, but high with Cu and Cd. Source apportionment by principal component analysis and positive matrix factorization suggested two possible sources: outdoor pollution and household materials. Hazard index was below safe limit (<1), indicating no adverse non-carcinogenic health effects. Estimated total carcinogenic risk for children and adult population was not negligible. Results indicated that attention should be paid to the presence of HE in indoors to conduct effective control measures and to ensure the health of the population.
Collapse
Affiliation(s)
- Maja Buljovčić
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Jelena Živančev
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | - Igor Antić
- Faculty of Technology, University of Novi Sad Faculty of Technology Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
15
|
Khalid M, Liu X, Ur Rahman S, Rehman A, Zhao C, Li X, Yucheng B, Hui N. Responses of microbial communities in rhizocompartments of king grass to phytoremediation of cadmium-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167226. [PMID: 37734611 DOI: 10.1016/j.scitotenv.2023.167226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
King grass has been recognized as a potential phytoremediation plant species due to its high biomass and resistance to heavy metals (HMs). However, the possible impacts of cadmium (Cd) contamination on rhizocompartments' microbial activities in association with king grass have not been extensively explored. The utilization of 16S rRNA gene and ITS sequencing was carried out to examine alterations in the bacterial and fungal communities in the rhizosphere and rhizoplane of king grass in response to low and high Cd stress. Results demonstrated that both bacterial and fungal communities' diversity and richness were negatively impacted by Cd stress, regardless of its concentration. However, evenness did not exhibit any significant response to either of the concentrations. Additionally, nonmetric multidimensional scaling (NMDS) ordination demonstrated a significant difference (p < 0.001) in microbial communities under different treatments. The abundance of bacterial taxa such as Steroibacter, Nitrospira, Pseudoxanthomonas, Cellvirio, Phenylobacterium, Mycobacterium, Pirellula and Aquicella was adversely affected under Cd stress while Flavobacterium, Gemmata, Thiobacillus and Gemmatimonas showed no prominent response, indicating their resistance to Cd stress. Like that, certain fungal taxa for instance, Cladosporium, Cercophora, Acremonium, Mortierella, Aspergillus, Penicillium, Glomus and Sebacina were also highly reduced by low and high Cd stress. In contrast, Fusarium, Thanatephorus, Botrytis and Curvularia did not show any response to Cd stress. The identified taxa may have a crucial role in the growth of king grass under heavy metal contamination, making them promising candidates for developing bioinoculants to encourage plant performance and phytoremediation capability in HM-contaminated soils.
Collapse
Affiliation(s)
- Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xinxin Liu
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation, 800 Dongchuan Rd, Shanghai 200240, China
| | - Saeed Ur Rahman
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asad Rehman
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chang Zhao
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Li
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bian Yucheng
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation, 800 Dongchuan Rd, Shanghai 200240, China; Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
16
|
Somsunun K, Prapamontol T, Kuanpan T, Santijitpakdee T, Kohsuwan K, Jeytawan N, Thongjan N. Health Risk Assessment of Heavy Metals in Indoor Household Dust in Urban and Rural Areas of Chiang Mai and Lamphun Provinces, Thailand. TOXICS 2023; 11:1018. [PMID: 38133419 PMCID: PMC10747779 DOI: 10.3390/toxics11121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Indoor exposure to heavy metals poses human health risks worldwide, but study reports from Thailand are still limited, particularly in rural and urban areas. We measured the heavy metals in a hundred indoor household dust samples collected from urban and rural areas in Chiang Mai and Lamphun provinces and found a significantly higher concentration of As in rural areas and Cd in urban areas with industrial activities. The source identification of the heavy metals showed significant enrichment from traffic emissions, paint, smoking, and mixed sources with natural soil. From health risk assessment models, children were more vulnerable to noncarcinogenic risks (HI = 1.45), primarily via ingestion (HQ = 1.39). Lifetime cancer risks (LCRs) due to heavy metal exposure were found in adults (LCR = 5.31 × 10-4) and children (LCR = 9.05 × 10-4). The cancer risks from As were higher in rural areas via ingestion, while Cr and Ni were higher in urban areas via inhalation and ingestion, respectively. This study estimated that approximately 5 out of 10,000 adults and 9 out of 10,000 children among the population may develop cancer in their lifetime from exposure to indoor heavy metals in this region.
Collapse
Affiliation(s)
- Kawinwut Somsunun
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
- PhD Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang University, Chiang Mai 50200, Thailand
| | - Tippawan Prapamontol
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Todsabhorn Kuanpan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Teetawat Santijitpakdee
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Kanyapak Kohsuwan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Natwasan Jeytawan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| | - Nathaporn Thongjan
- Environment and Health Research Group, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (T.K.); (T.S.); (K.K.); (N.J.); (N.T.)
| |
Collapse
|
17
|
Zhang Z, Liang W, Zheng X, Zhong Q, Hu H, Huo X. Kindergarten dust heavy metal(loid) exposure associates with growth retardation in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118341-118351. [PMID: 37910347 DOI: 10.1007/s11356-023-30278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Heavy metal contamination from electronic waste recycling sites is present in dust found in indoor kindergartens located in e-waste recycling areas, and its potential impact on child health is a significant concern. The association between heavy metal(loid)s and the child developmental indicators is still unclear. In 2019 and 2020, we enrolled 325 and 319 children in an e-waste recycling town, respectively. Corresponding 61 and 121 dust samples were collected from roads, houses, and kindergartens in the two years. The median concentrations of metals, including Cr, Ni, Cu, Zn, and Pb exceeded the allowable limits. The highest amount of cumulative enrichment (cEF) was observed in indoor kindergarten dust (cEF = 112.3400), followed by house dust (cEF = 76.6950) and road dust (cEF = 39.7700). Children residing in the e-waste town had below-average height and weight compared to their Chinese peers. Based on linear regression analysis, the daily intake of Cd, V, Mn, and Pb in indoor kindergarten dust was found to be negatively associated with head circumference (HeC) (P < 0.05). Similarly, the daily intake of As, Cd, and Ba in indoor kindergarten dust was found to be negatively associated with chest circumference (ChC) (P < 0.05). In addition, the daily intake of As, Cd, and Ba in indoor kindergarten dust was negatively correlated with body mass index (BMI), as per the results of the study (P < 0.05). Cross-product term analysis revealed a negative correlation between daily intake of heavy metal(loid)s and HeC, ChC, and BMI, with age and sex serving as influencing factors. In conclusion, exposure to heavy metal(loid)s in indoor kindergarten dust increases the risk of growth retardation and developmental delay in children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
18
|
Yu Q, Liu H, Lv G, Liu X, Wang L, Liao L. Mechanistic insight into lead immobilization on bone-derived carbon/hydroxyapatite composite at low and high initial lead concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165910. [PMID: 37524186 DOI: 10.1016/j.scitotenv.2023.165910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The contamination of heavy metal lead has a serious impact on the natural environment and organisms. Among various materials for lead removal, animal bone derived hydroxyapatite has received extensive attention. However, there are different opinions among researchers regarding the mechanism of lead removal by hydroxyapatite, possibly due to varying initial lead concentrations used in different studies and lack of accuracy in the study of lead removal mechanisms. In present work, we synthesized a carbon-containing hydroxyapatite (CHAP) through pyrolysis of bovine bone with excellent lead removal efficiency, and further investigated the lead removal mechanism of CHAP under high and low initial lead concentrations by combining XRD Rietveld refinement, FTIR, XPS, HRTEM etc. methods. The results showed that under low initial Pb2+ concentration condition, the main mechanism of lead removal by CHAP was chemical precipitation (94.1 %), with small contributions of lead complexation with carbon functional groups and cation-π interactions on the amorphous carbon in CHAP, and surface adsorption on the precipitates. Under high initial Pb2+ concentration condition, chemical precipitation remained the main mechanism (74.68 %), but the contributions of the other three mechanisms increased, and ion exchange appeared in the later stage of the removal process. This study provides new insights on the lead immobilization mechanism by CHAP at different initial Pb2+ concentrations in water.
Collapse
Affiliation(s)
- Qihui Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Hao Liu
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Liu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Lijuan Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
19
|
Chen H, Cheng J, Li Y, Li Y, Wang J, Tang Z. Occurrence and potential release of heavy metals in female underwear manufactured in China: Implication for women's health. CHEMOSPHERE 2023; 342:140165. [PMID: 37709063 DOI: 10.1016/j.chemosphere.2023.140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Underwear is a potential source of women's exposure to heavy metals owing to its direct contact with the skin, especially the skin of the vagina and vulva, which has a strong absorptive capacity. However, information regarding the prevalence of metals in female underwear, and its potential hazards, remains scarce. In the present study, we examined the concentrations and potential release of Cr, Co, Ni, Cu, As, Cd, Sb, and Pb in brassieres and briefs manufactured in China. We detected higher levels of Pb and moderate levels of other metals, relative to the metal levels reported for other textiles in the literature. Cu, As, Ni and Cd, had higher migration rates (MRs) from the underwear, with medians of 100%, 100%, 30.1%, and 20.7%, respectively. The median MRs of the other metals were in the range 1.07%-15.7%. On the whole, the total and extractable concentrations of these metals differed by item and fabric type. The pollution of raw materials and the use of chemical additives containing metals commonly contributed to the metals in the underwear. On the basis of the exposure estimation, the non-carcinogenic risks posed by the underwear metals were acceptable, but the carcinogenic risks from the metals in 5.18% of brassiere samples exceeded the acceptable level.
Collapse
Affiliation(s)
- Hanzhi Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 N73K, Cork, Ireland.
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Yuan Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Jiayu Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| |
Collapse
|
20
|
Jha AK, Chakraborty S. Environmental Application of Graphene and Its Forms for Wastewater Treatment: a Sustainable Solution Toward Improved Public Health. Appl Biochem Biotechnol 2023; 195:6392-6420. [PMID: 36867385 DOI: 10.1007/s12010-023-04381-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Public health is seriously jeopardized in developing countries due to poor sanitation and the presence of persistent pollutants in natural water bodies. Open dumping, wastewater discharge without proper treatment and atmospheric fallout of the organic and inorganic pollutants are the main causes behind the poor condition. Some of the pollutants pose a greater risk due to their toxicity and persistence. Such a class of pollutants are known as chemical contaminants of emerging concern (CECC), including antibiotics and drug residues, endocrine disruptors, pesticides and micro- and nano-plastics. Conventional treatment methods cannot treat them properly and are often associated with several disadvantages. However, the chronological development of techniques and materials for their treatment has exhibited graphene as an efficient candidate for environmental remediation. This current review considers the various graphene-based materials, their properties, advancement in synthesis methods with time and their detailed application in removing dyes, antibiotics and heavy metals. It has been discussed how graphene and its derivatives exhibit unique electronic, mechanical, structural and thermal properties. In this paper, the mechanism of adsorption and degradation using these graphene-based materials has also been discussed vividly. In addition to this, a bibliographic analysis was performed to identify the trend of research related to graphene and its derivatives in the adsorption and degradation of pollutants round the globe reflected by the publications. Therefore, this review can be instrumental in understanding the fact that further development of graphene-based materials and their mass production can provide a very effective and economical wastewater treatment method.
Collapse
Affiliation(s)
- Aditya Kumar Jha
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Sukalyan Chakraborty
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
21
|
Huang CC, Cai LM, Xu YH, Jie L, Hu GC, Chen LG, Wang HZ, Xu XB, Mei JX. A comprehensive approach to quantify the source identification and human health risk assessment of toxic elements in park dust. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5813-5827. [PMID: 37148428 DOI: 10.1007/s10653-023-01588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
In this research, enrichment factor (EF) and pollution load index were utilized to explore the contamination characteristics of toxic elements (TEs) in park dust. The results exhibited that park dust in the study area was mainly moderately polluted, and the EF values of dust Cd, Zn, Pb, Cu and Sb were all > 1. The concentrations of Cr, Cu, Zn and Pb increased with the decrease of dust particle size. The investigation results of chemical speciation and bioavailability of TEs showed that Zn had the highest bioavailability. Three sources of TEs were determined by positive matrix factorization model, Pearson correlation analysis and geostatistical analysis, comprising factor 1 mixed sources of industrial and transportation activities (46.62%), factor 2 natural source (25.56%) and factor 3 mixed source of agricultural activities and the aging of park infrastructures (27.82%). Potential ecological risk (PER) and human health risk (HHR) models based on source apportionment were exploited to estimate PER and HHR of TEs from different sources. The mean PER value of TEs in the park dust was 114, indicating that ecological risk in the study area was relatively high. Factor 1 contributed the most to PER, and the pollution of Cd was the most serious. There were no significant carcinogenic and non-carcinogenic risks for children and adults in the study area. And factor 3 was the biggest source of non-carcinogenic risk, and As, Cr and Pb were the chief contributor to non-carcinogenic risk. The primary source of carcinogenic risk was factor 2, and Cr was the cardinal cancer risk element.
Collapse
Affiliation(s)
- Chang-Chen Huang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Li-Mei Cai
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Yao-Hui Xu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Luo Jie
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Guo-Cheng Hu
- Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China
| | - Lai-Guo Chen
- Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China.
| | - Han-Zhi Wang
- Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xu-Bang Xu
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Jing-Xian Mei
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| |
Collapse
|
22
|
Araja A, Bertins M, Celma G, Busa L, Viksna A. Distribution of Minor and Major Metallic Elements in Residential Indoor Dust: A Case Study in Latvia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6207. [PMID: 37444055 PMCID: PMC10341758 DOI: 10.3390/ijerph20136207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has not only brought considerable and permanent changes to economies and healthcare systems, but it has also greatly changed the habits of almost the entire society. During the lockdowns, people were forced to stay in their dwellings, which served as a catalyst for the initiation of a survey on the estimation of the metallic element content in residential indoor dust in different parts of Latvia. This article presents the study results obtained through the analysis of collected dust samples from 46 dwellings, both in the capital of Latvia, Riga, and in smaller cities. Two methods were employed for indoor dust collection: vacuum sampling and manual sampling with a brush and plastic spatula. After microwave-assisted acid extraction, the samples were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) in terms of the major (Na, K, Ca, Mg, Al and Fe) and minor (Mn, Ni, Co, Pb, Cr, As, Ba, Li, Be, B, V, Cu, Zn, Se, Rb, Sr, Cd, La, Ce and Bi) elements. For the data analysis, principal component analysis was performed. Among the measured metals, the highest values were determined for the macro and most abundant elements (Na > K > Ca > Fe > Mg > Al). The concentration ranges of the persistently detected elements were as follows: Pb, 0.27-1200 mg kg-1; Cd, 0.01-6.37 mg kg-1; Ni, 0.07-513 mg kg-1; As, 0.01-69.2 mg kg-1; Cu, 5.71-1900 mg kg-1; Zn, 53.6-21,100 mg kg-1; and Cr, 4.93-412 mg kg-1. The critical limit values of metallic elements in soil defined by the legislation of the Republic of Latvia (indicating the level at or above which the functional characteristics of soil are disrupted, or pollution poses a direct threat to human health or the environment) were exceeded in the following numbers of dwellings: Pb = 4, Ni = 2, As = 1, Cu = 16, Cr = 1 and Zn = 28.
Collapse
Affiliation(s)
- Agnese Araja
- Faculty of Chemistry, University of Latvia, Jelgavas Str.1, LV-1004 Riga, Latvia
| | | | | | | | | |
Collapse
|
23
|
Gunjyal N, Rani S, Asgari Lajayer B, Senapathi V, Astatkie T. A review of the effects of environmental hazards on humans, their remediation for sustainable development, and risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:795. [PMID: 37264257 DOI: 10.1007/s10661-023-11353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 05/04/2023] [Indexed: 06/03/2023]
Abstract
In the race for economic development and prosperity, our earth is becoming more polluted with each passing day. Technological advances in agriculture and rapid industrialization have drastically polluted the two pillars of natural resources, land and water. Toxic chemicals and microbial contaminants/agents created by natural and anthropogenic activities are rapidly becoming environmental hazards (EH) with increased potential to affect the natural environment and human health. This review has attempted to describe the various agents (chemical, biological, and physical) responsible for environmental contamination, remediation methods, and risk assessment techniques (RA). The main focus is on finding ways to mitigate the harmful effects of EHs through the simultaneous application of remediation methods and RA for sustainable development. It is recommended to apply the combination of different remediation methods using RA techniques to promote recycling and reuse of different resources for sustainable development. The report advocates for the development of site-specific, farmer-driven, sequential, and plant-based remediation strategies along with policy support for effective decontamination. This review also focuses on the fact that the lack of knowledge about environmental health is directly related to public health risks and, therefore, focuses on promoting awareness of effective ways to reduce anthropological burden and pollution and on providing valuable data that can be used in environmental monitoring assessments and lead to sustainable development.
Collapse
Affiliation(s)
- Neelam Gunjyal
- Department of Civil Engineering, IIT Roorkee, Roorkee, 247667, India
| | - Swati Rani
- Department of Biotechnology, Ambala College of Engineering and Applied Research, 133001, Ambala Cantt, Jagadhari Rd, P.O, Sambhalkha, Haryana, India.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
24
|
Zheng K, Zeng Z, Tian Q, Huang J, Zhong Q, Huo X. Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161691. [PMID: 36669659 DOI: 10.1016/j.scitotenv.2023.161691] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/28/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Heavy metals exist widely in daily life, and exposure to heavy metals caused by environmental pollution has become a serious public health problem worldwide. Due to children's age-specific behavioral characteristics and imperfect physical function, the adverse health effects of heavy metals on children are much higher than in adults. Studies have found that heavy metal exposure is associated with low immune function in children. Although there are reviews describing the evidence for the adverse effects of heavy metal exposure on the immune system in children, the summary of evidence from epidemiological studies involving the level of immune molecules is not comprehensive. Therefore, this review summarizes the current epidemiological study on the effect of heavy metal exposure on childhood immune function from multiple perspectives, emphasizing its risks to the health of children's immune systems. It focuses on the effects of six heavy metals (lead (Pb), cadmium (Cd), arsenic (As), mercury (Hg), nickel (Ni), and manganese (Mn)) on children's innate immune cells, lymphocytes and their subpopulations, cytokines, total and specific immunoglobulins, and explores the immunotoxicological effects of heavy metals. The review finds that exposure to heavy metals, particularly Pb, Cd, As, and Hg, not only reduced lymphocyte numbers and suppressed adaptive immune responses in children, but also altered the innate immune response to impair the body's ability to fight pathogens. Epidemiological evidence suggests that heavy metal exposure alters cytokine levels and is associated with the development of inflammatory responses in children. Pb, As, and Hg exposure was associated with vaccination failure and decreased antibody titers, and increased risk of immune-related diseases in children by altering specific immunoglobulin levels. Cd, Ni and Mn showed activation effects on the immune response to childhood vaccination. Exposure age, sex, nutritional status, and co-exposure may influence the effects of heavy metals on immune function in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
25
|
Gong Y, Yang S, Chen S, Zhao S, Ai Y, Huang D, Yang K, Cheng H. Soil microbial responses to simultaneous contamination of antimony and arsenic in the surrounding area of an abandoned antimony smelter in Southwest China. ENVIRONMENT INTERNATIONAL 2023; 174:107897. [PMID: 37001217 DOI: 10.1016/j.envint.2023.107897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Soil contamination with heavy metal(loid)s may influence microbial activities in the soil, and consequently jeopardize soil health. Microbial responses to soil contamination play an important role in ecological risk assessment. This study investigated the effect of heavy metal(loid)s contamination on microbial community structure and abundance in the surrounding soil of an abandoned antimony (Sb) smelter in Qinglong county, Guizhou province, Southwest China. A total of 46 soil samples were collected from ten sampling sites (labelled as A-I, and CK) across the study area at depths of 0-2, 2-10, 10-20, 20-30, 30-40, and 40-50 cm. The soil samples were analyzed for total and bioavailable heavy metal(loid) concentrations, bacterial, fungal, and archaeal community structures, diversities, and functions, together with soil basic physicochemical properties. Much greater ecological risk of Sb and arsenic (As) was present in the surface soil (0-2 cm) compared to that in the subsoils. The activities of dominant microorganisms tended to be associated with soil pH and heavy metal(loid)s (i.e., Sb, As, lead (Pb), cadmium (Cd), and chromium (Cr)). Bacteria associated with IMCC26256, Rhizobiales, Burkholderiales, and Gaiellales, and archaea associated with Methanocellales were estimated to be tolerant to high concentrations of Sb and As in the soil. In addition, the magnitude of soil microbial responses to Sb and As contamination was in the order of archaea > bacteria > fungi. In contrast to the negligible response of fungi and negative response of bacteria to Sb and As contamination, there was a strongly positive correlation between archaeal activity and total Sb and As concentrations in the soil. Our findings provide a theoretical basis for the remediation of Sb smelter-affected soil.
Collapse
Affiliation(s)
- Yiwei Gong
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuwen Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shaoyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shoudao Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yadi Ai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Di Huang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Kai Yang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
26
|
Wang M, Lv Y, Lv X, Wang Q, Li Y, Lu P, Yu H, Wei P, Cao Z, An T. Distribution, sources and health risks of heavy metals in indoor dust across China. CHEMOSPHERE 2023; 313:137595. [PMID: 36563718 DOI: 10.1016/j.chemosphere.2022.137595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The potential effects of heavy metals on human health have attracted increasing attention as most people spend up to 90% of their time indoors. Human exposure to heavy metals in indoor dust have only been characterised for limited regions in China, and full-scale data for different functional areas are not available. Therefore, this review analysed the concentrations, contamination characteristics, and potential health risks of seven heavy metals (including zinc (Zn), lead (Pb), copper (Cu), chromium (Cr), nickel (Ni), arsenic (As), and cadmium (Cd)) in indoor dust at 3392 sampling sites in 55 cities across 27 provincial regions of China based on literature data. Results revealed that the median heavy metal concentrations in indoor dust throughout China decreased in the following order: Zn > Pb > Cu > Cr > Ni > As > Cd. Traffic emissions and decorative materials are the primary sources of heavy metal pollution in indoor dust. No considerable non-carcinogenic risk was found for Zn, Cu, Cr, Ni, and Cd in indoor dust, while Pb and As exhibited potential non-carcinogenic risks to children, primarily distributed in cities across Southern China. Meanwhile, the carcinogenic risks posed by Cr and Ni were higher than those posed by As and Cd, especially in Southern China. Therefore, effective measures in Southern China should prioritised for controlling Pb, Cr, Ni and As pollution in indoor dust to reduce human health risk. This review is useful for policy decision-making and protecting human from exposure to heavy metals in indoor dust across China.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinyi Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xinyan Lv
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Qianhan Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yiyi Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Lu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hao Yu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengkun Wei
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Taicheng An
- Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
27
|
Liu Y, Jin T, Yu S, Chu H. Pollution characteristics and health risks of heavy metals in road dust in Ma'anshan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43726-43739. [PMID: 36662435 DOI: 10.1007/s11356-023-25303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023]
Abstract
Road dust contains various heavy metals, which are re-suspension in the air under the action of wind and other external forces, threatening people's health all the time. Road dust was collected in the industrial heavy traffic area (IHT), non-industrial heavy traffic area (HT), urban area (UA), and study recreation area (SR) of Ma'anshan. The pollution degree of heavy metals in the four areas was calculated and demonstrated IHT > HT > UA > SR. In addition to the Ni (24.24 mg kg-1)metals, the metals concentrations of Cr (74.14 mg kg-1), Cu (91.8 mg kg-1), Zn (393.03 mg kg-1), Cd (9.93 mg kg-1), and Pb (72.85 mg kg-1) were all higher than the local soil background values. Cu comes from traffic emissions, Pb, Cd, and Zn mainly come from industrial emissions, as well as traffic emissions. While Cr and Ni mainly come from industrial emissions and local soil re-suspension. The non-carcinogenic risk of each heavy metal to children is 10 times higher than that of adults. Among them, the non-carcinogenic risk of Cr, Cd, and Pb to children is close to 1, so great attention should be paid to it. According to the study of enrichment factor (EF) and geo-accumulation index (Igeo), Cd is extremely polluted and it is imperative to reduce Cd pollution.
Collapse
Affiliation(s)
- Ya Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, People's Republic of China
| | - Tao Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, People's Republic of China
| | - Shuihua Yu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, People's Republic of China
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, Anhui, People's Republic of China.
| |
Collapse
|
28
|
Jung CC, Chen YH, Chou CCK. Spatial and seasonal variations in the carbon and lead isotopes of PM 2.5 in air of residential buildings and their applications for source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120654. [PMID: 36375577 DOI: 10.1016/j.envpol.2022.120654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
To understand isotope distributions of PM2.5 in residential buildings and apply them for source identification, carbon (δ13C) and lead (Pb) isotope ratios in indoor and outdoor air of residential buildings were analyzed. Moreover, factor analysis (FA) was employed to investigate sources, which were compared through isotopic analyses. The average δ13C values of indoor air are -26.94 ± 1.22‰ and -27.04 ± 0.44‰ in warm (August to October) and cold (February to March) seasons, respectively, and the corresponding values for outdoor air are -26.77 ± 0.54‰ and -26.57 ± 0.39‰. The average 206Pb/207Pb (208Pb/207Pb) ratios of indoor air are 1.1584 ± 0.0091 (2.4309 ± 0.0125) and 1.1529 ± 0.0032 (2.4227 ± 0.0081) in warm and cold seasons, respectively, and the corresponding values for outdoor air are 1.1594 ± 0.0069 (2.4374 ± 0.0103) and 1.1538 ± 0.0077 (2.4222 ± 0.0085). Seasonal variation in δ13C values or Pb isotope ratios of indoor air was not significant, and similar results were obtained for outdoor air. Significant differences were not observed between δ13C values or Pb isotope ratios of indoor and outdoor air. Traffic emission is the major contributor to indoor and outdoor PM2.5 based on isotopic analyses; this result was consistent with the results of FA. The δ13C values of indoor air in buildings with poor ventilation conditions were significantly lighter than those of outdoor air. In summary, the spatial and seasonal variations of isotopes were similar in residential buildings, which can be used to identify sources of indoor PM2.5, and ventilation condition is an influencing factor.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Yang-Hsueh Chen
- Department of Public Health, China Medical University, Taichung City, Taiwan.
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
29
|
Zheng K, Zeng Z, Huang J, Tian Q, Cao B, Huo X. Kindergarten indoor dust metal(loid) exposure associates with elevated risk of anemia in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158227. [PMID: 35998718 DOI: 10.1016/j.scitotenv.2022.158227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Exposure to metals and metalloids in indoor dust is associated with adverse health effects in young children, but there is limited evidence for an association with anemia, which is at high risk in children. The aim of this study was to investigate the association between exposure to multiple metal(loid)s in indoor dust in kindergartens and the risk of anemia in children. In 2021, 2165 children from 25 kindergartens in eastern China were included in the study and had their hemoglobin (Hb) measured. Indoor dust samples were collected from the children's kindergartens, and the concentrations of 11 metals and metalloids in the samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The daily exposure dose (DED) of dust was used to assess the risk of metal(loid) exposure in the children. The results showed that of the 2165 children with available data, 351 (16.2 %) met the WHO definition of anemia. In multiple linear regression and logistic regression analyses, we found that for each quartile of DED increase in Cd inhalation, child Hb levels decreased by 2.703 g/L (95 % CI: -4.055, -1.351), and the risk of anemia increased 1.602-fold (95 % CI: 1.087, 2.360). Mn ingestion was associated with increased odds of anemia [odds ratio (OR) = 1.760 (95 % CI: 1.217, 2.544)]. Interaction analysis indicated that metal(loid)s exposure effects were modified by child sex, age, and body mass index (BMI). Cluster analysis found that children at high risk of metal(loid) exposure in the school environment tended to have lower Hb levels and higher prevalence of anemia compared with those at low risk, although this was not statistically significant. These findings suggest that child school exposure to metal(loid)s in indoor dust is associated with an increased risk of developing anemia in children, modified by child sex, age, and BMI.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China
| | - Jintao Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Bo Cao
- Community Health Service Center of Kou Town Street, Jinan 250000, Shandong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511443, Guangdong, China.
| |
Collapse
|
30
|
Zhou L, Liu G, Shen M, Liu Y. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China. CHEMOSPHERE 2022; 302:134864. [PMID: 35537633 DOI: 10.1016/j.chemosphere.2022.134864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 05/28/2023]
Abstract
The harm caused by indoor dust has received increasing attention in recent years. However, current studies have ignored comparisons with the corresponding outdoor dust. This study aimed to investigate the distribution of heavy metals in indoor and corresponding outdoor dust and the ecological and health risks they pose in Hefei, Central China. We analyzed O/I (outdoor/indoor concentration ratios) values, background comparison, and correlation analysis (heavy metal concentrations vs. particle size) and found that Cu, Zn, and Cd mainly existed in indoor sources, while V, Co, and As mainly existed in outdoor sources, and both family sizes and floor number influenced the variation of O/I. Through a new potential ecological risk assessment method, we determined that Cd risk levels in indoor and outdoor dust were extreme and high to extreme, respectively. Additionally, the carcinogenic risks of Ni, As, and Cr were not negligible. The risk of indoor dust was higher than that of outdoor dust for the heavy metals studied, implying a poor indoor environment. Notably, indoor dust from families with smaller sizes, lower floors, and smokers had higher ecological and carcinogenic risks.
Collapse
Affiliation(s)
- Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China; State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
31
|
Kim D, Park JY, Lee DH, Lim JE, Moon HB, Kim S, Lee K. Simultaneous assessment of organophosphate flame retardants, plasticizers, trace metals, and house dust mite allergens in settled house dust. INDOOR AIR 2022; 32:e13071. [PMID: 35904395 DOI: 10.1111/ina.13071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Settled house dust (SHD) is a reservoir for various contaminants, including endocrine-disrupting chemicals (EDCs), trace metals, and house dust mite allergens. This study aimed to characterize various chemical and biological contaminants in SHD and identify determinants governing the indoor contaminants. In total, 106 SHD samples were collected from 106 houses in Seoul and Gyeonggi Province, Korea, in 2021. Bedding dust samples were collected from 30 of these 106 houses. All participants completed a questionnaire comprised of housing and lifestyle-related factors. The samples were analyzed for 18 organophosphate flame retardants (OPFRs), 16 phthalates, five alternative plasticizers (APs), seven trace metals, and two house dust mite allergens (Dermatophagoides farinae type 1 [Der f1] and Dermatophagoides pteronyssinus type 1 [Der p1]). A multiple regression analysis was conducted to identify the determinants governing the concentrations and profiles of various contaminants. OPFRs, phthalates, APs, and trace metals were detected in all SHD samples, indicating ubiquitous contamination in indoor environments. Among the three EDC groups, APs were detected at the highest concentrations (geometric mean [GM] (geometric standard deviation, [GSD]): 1452 (1.6) μg/g in total), followed by phthalates (GM (GSD): 676 (1.4) μg/g in total) and OPFRs (GM (GSD): 10 (1.4) μg/g in total). Der f1 was detected in all bedding dust samples with significantly higher levels than Der p1 (GM (GSD): 0.1 (1.8) μg/g vs. 1.4 × 10-3 (2.3) μg/g). The concentrations of OPFRs, plasticizers, and trace metals in SHD were significantly associated with the type and number of electronic appliances and combustion activities. Der f1 was significantly associated with the number of occupants and water penetration. Ventilation, vacuum cleaning, and wet cleaning or dry mopping significantly reduced the levels of most contaminants in SHD. As residents are persistently exposed to a wide array of pollutants, comprehensive and adequate measures are required to prevent potential exposures.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Ji Young Park
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Dong Hyun Lee
- Consulting & Technology for Environment Health and Safety, Seoul, South Korea
| | - Jae-Eun Lim
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, South Korea
| | - Sungkyoon Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
- Institute of Health and Environment, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Abdulraheem MO, Adeniran JA, Ameen HA, Odediran ET, Yusuf MNO, Abdulraheem KA. Source identification and health risk assessments of heavy metals in indoor dusts of Ilorin, North central Nigeria. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:315-330. [PMID: 35669800 PMCID: PMC9163253 DOI: 10.1007/s40201-021-00778-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/25/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND PURPOSE Exposure to heavy metals (HMs) in indoor dusts is a serious public concern that is linked to a myriad of deleterious health outcomes. The objectives of this study are to estimate the contamination levels of HMs in indoor dusts of different residential areas in Ilorin, Nigeria; identify HMs sources in different residential areas; and evaluate human health risks of HMs in selected residential areas. METHODS Indoor dust sampling was conducted in ten randomly selected from low, medium and high population density residential areas of Ilorin, Nigeria. Ten HMs concentration levels, their health risk implication and the associated potential ecological risks were evaluated. RESULTS The mean concentration levels measured for Fe, Pb, Zn, As, Co, Cr, Cu, Cd, Mn and Ni were 38.99, 5.74, 3.99, 0.08, 2.82, 2.13, 0.47, 0.60, 6.45 and 1.09 mg/kg, respectively. Positive Matrix Factorization (PMF) model was applied to ascertain sources of HMs in sampled indoor dust. Percentage contribution from oil-based cooking (29.82%) and transportation (29.77%) represented the highest source to HM concentrations among the six factors identified. The results of the various pollution indices employed showed that Pb, Zn, As, Co, Cr, Cu, Mn and Ni contributed moderately to HMs concentration levels in the sampled dusts. Cd had highest potential ecological risk factor E r i of between 160 and 320. The average values of Enrichment Factors (EFs) obtained aside from Fe used as the reference metal, ranged between 8.46 (As) and 2521.61(Cd). Health risk assessment results revealed that children are the most susceptible to the risks associated with HMs bound indoor dust than the adults. The percentage risk contributions of Hazard Quotient via ingestion route (HQing) in Hazard Index (HI) for non-cancer risk of indoor HMs were 93.17% and 69.87% in children and adults, respectively. Likewise, the percentage cancer risks contribution through ingestion pathway (CRing) were higher than cancer risks through inhalation and dermal pathways (CRinh and CRdermal), accounting for 99.84% and 97.04% of lifetime cancer risk in children and adults, respectively. The contamination level of Cd recorded is of great concern and signifies very strong contribution from anthropogenic sources. CONCLUSION This study has further revealed the levels of HMs in typical African residential settings that could be used by relevant stakeholders and policy makers in developing lasting control measures. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00778-8.
Collapse
Affiliation(s)
| | - Jamiu Adetayo Adeniran
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - Hafsat Abolore Ameen
- Department of Epidemiology and Community Health, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Toluwalope Odediran
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - Muhammad-Najeeb O. Yusuf
- Environmental Engineering Research Laboratory, Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
33
|
Attaallah R, Amine A. An Ultrasensitive and Selective Determination of Cadmium Ions at ppt Level Using an Enzymic Membrane with Colorimetric and Electrochemical Detection. BIOSENSORS 2022; 12:bios12050310. [PMID: 35624611 PMCID: PMC9138971 DOI: 10.3390/bios12050310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 01/17/2023]
Abstract
Cadmium ions (Cd2+) are extremely toxic heavy metal pollutants found in the environment, and which endanger human health. Therefore, it is critical to develop a sensitive and simple method for rapidly detecting Cd2+ in water samples. Herein, an enzymic membrane was developed based on an easy and rapid immobilization method of horseradish peroxidase (HRP), for determination of Cd2+ in drinking water. Hence, for the first time, an enzymic membrane was applied for the detection of Cd2+ without being pretreated. In the first format, the inhibition of horseradish peroxidase was performed using a colorimetric microplate reader. Under optimal conditions, the achieved limit of detection was 20 ppt. In addition, an electrochemical biosensor was developed, by combining the enzymic membrane with screen printed electrodes, which showed a linear calibration range between 0.02–100 ppb (R2 = 0.990) and a detection limit of 50 ppt. The use of this enzymic membrane proved to be advantageous when reversible inhibitors such as the copper ion (Cu2+) were present in water samples, as Cu2+ can interfere with Cd2+ and cause erroneous results. In order to alleviate this problem, a medium exchange procedure was used to eliminate Cu2+, by washing and leaving only cadmium ions as an irreversible inhibitor for identification. The use of this membrane proved to be a simple and rapid method of immobilizing HRP with a covalent bond.
Collapse
|
34
|
Xu L, Dai H, Skuza L, Xu J, Shi J, Wang Y, Shentu J, Wei S. Integrated survey on the heavy metal distribution, sources and risk assessment of soil in a commonly developed industrial area. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113462. [PMID: 35397444 DOI: 10.1016/j.ecoenv.2022.113462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The Jiangzhe Area was relatively common area that rely on industrial process for rapid development with serious heavy metals contamination. This study investigated the spatial, vertical and speciation distribution, correlation of heavy metals, as well as assessed pollution and health risks in three representative contamination industries at Jingjiang (electroplating site), Taizhou (e-waste recycling site) and Wenzhou (leather production site) in the Jiangzhe Area. The results indicated that the Cr(VI) pollution was serious in all three sites and there was a tendency to gradually decrease with depth. As for other heavy metals, not only the total concentration, but also the addition of acid soluble and reducible speciation generally decreased with soil depth at Jingjiang and Taizhou sites. Significantly positive correlations supported by correlation analysis were detected between the following elements: Cu-Ni (p < 0.01), Cr(VI)-Ni (p < 0.05) and Cr(VI)-Cu (p < 0.05) at Jingjiang site, Cu-Ni (p < 0.01), Cu-Cd (p < 0.01) and Ni-Cd (p < 0.05) at Taizhou site indicating possibly the same sources and pathways of origin, while the significantly negative correlation of Cd-Ni (p < 0.05) at Wenzhou site meaning the different sources. As regards the pollution assessment of topsoil, the mean PI value indicated that Cr(VI) contaminated severe in all three sites. In general, Jingjiang site was severe pollution (4.06), while Taizhou and Wenzhou (2.27 and 2.66) were moderate pollution, as NIPI value shown. In terms of health risk assessment that received much attention, non-carcinogenic risks caused by Pb contamination were significant for children at Jingjiang and Taizhou sites, with the HI values of 3.42E+ 00 and 2.03E+ 00, respectively. Ni caused unacceptable carcinogenic risk for both adults and children at all three sites. The present study can help to better understand the contamination characteristics of heavy metals in the commonly developed industrial area, and thus to control the environmental quality, so as to truly achieve the goal of "Green Deal objectives ".
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of biological resources and ecological environment jointly built by Qinba province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin 71-415, Poland.
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiali Shentu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
35
|
Mordhorst A, Zimmermann I, Fleige H, Horn R. Environmental risk of (heavy) metal release from urns into cemetery soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152952. [PMID: 34999077 DOI: 10.1016/j.scitotenv.2022.152952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/02/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Cremation of the deceased has become the most common funeral type in many countries in the world, including Germany. The ashes of the cremated human body (cremains) are transferred in an urn and most commonly buried in the soil. However, the possible environmental impacts of cremains on soils and groundwater have been rarely studied. In this context, it is still unclear whether or not the release of (heavy) metals like chromium, zinc, copper, nickel and lead from cremains and urns poses an environmental problem in urn grave soils. The aims of the study were to analyze the (heavy) metal content of two cremains from a 74-year-old male and 70-year-old female, and of soils in 6 cemeteries with urn graves in North and West Germany. Soil samples were taken from below the burial depth of 42 urns (upon expiry of the resting time) and from reference soils without urn burials (same cemetery site and depth). The two cremains differed significantly in their heavy metal content (zinc, nickel, copper, chromium), which originated from metal components of the deceased's clothing or burial objects or may have resulted from contrasting occupational exposure during the deceased's lives. Investigations at the cemetery sites revealed a high variability in (heavy) metal contents in the soil samples from below the buried urns. As expected, the accumulation of some element (e.g., lead and tin) in the soil increased with a higher degradation degree of the urns, but an enrichment in copper, chromium, nickel, and iron was also detected below only slightly corroded but not yet perforated urns, which were often made out of copper-bearing material and other alloying agents. This demonstrated that heavy metal releases into cemetery soils originated from both cremains and urn material.
Collapse
Affiliation(s)
- Anneka Mordhorst
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany.
| | - Iris Zimmermann
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
| | - Heiner Fleige
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
| | - Rainer Horn
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany
| |
Collapse
|
36
|
Painecur P, Muñoz A, Tume P, Melipichun T, Ferraro FX, Roca N, Bech J. Distribution of potentially harmful elements in attic dust from the City of Coronel (Chile). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1377-1386. [PMID: 35020089 DOI: 10.1007/s10653-021-01164-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Attic dusts provide an indirect measure of airborne pollutants deposited in the urban environment. The objectives of this study are: (1) to determine the concentrations of As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn in attic dust in the City of Coronel, (2) to evaluate the source apportionment of PHE and (3) to assess the risk of health effects from exposure in adults and children. In the City of Coronel, attic dust samples were collected in 19 houses. The concentrations of As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sr, V and Zn were measured in ICP-OES after Aqua Regia digestion of < 75 µm dust sample. The median (and the range) concentration (mg kg-1) of potentially harmful elements was: As 16 (7-72), Ba 154 (53-251), Cd 0.8 (0.25-14.5), Co 12, (8-22), Cr 38 (22-482), Cu 107 (44-1641), Mn 698 (364-1245), Ni 51 (24-1734), Pb 66 (18-393), Sr 131 (52-252), V 129 (57-376) and Zn 815 (107-9761). The exploratory data analysis shows that Ni, Cu, Cr, Zn, Pb and As distribution is dominated by anthropogenic sources and characterized by high extreme values. Principal component analysis shows four factors. One factor is geogenic, while the other three factors are associated with transport emissions and the industrial park. The resulting median of cumulative noncarcinogenic risk (HIs) value for attic dust was 3.49 for children. This is significant, as any value greater than one indicates an elevated risk.
Collapse
Affiliation(s)
- Paola Painecur
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Alejandra Muñoz
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Pedro Tume
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile.
| | - Tania Melipichun
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Francesc Xavier Ferraro
- Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
| | - Núria Roca
- Department Biologia Evolutiva, Ecologia i Ciències ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08023, Barcelona, Spain
| | - Jaume Bech
- Department Biologia Evolutiva, Ecologia i Ciències ambientals, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08023, Barcelona, Spain
| |
Collapse
|
37
|
Swaringen BF, Gawlik E, Kamenov GD, McTigue NE, Cornwell DA, Bonzongo JCJ. Children's exposure to environmental lead: A review of potential sources, blood levels, and methods used to reduce exposure. ENVIRONMENTAL RESEARCH 2022; 204:112025. [PMID: 34508773 DOI: 10.1016/j.envres.2021.112025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Lead has been used for thousands of years in different anthropogenic activities thanks to its unique properties that allow for many applications such as the manufacturing of drinking water pipes and its use as additives to gasoline and paint. However, knowledge of the adverse impacts of lead on human health has led to its banning from several of its applications, with the main goal of reducing environmental pollution and protecting human health. Human exposure to lead has been linked to different sources of contamination, resulting in high blood lead levels (BLLs) and adverse health implications, primarily in exposed children. Here, we present a summary of a literature review on potential lead sources affecting blood levels and on the different approaches used to reduce human exposure. The findings show a combination of different research approaches, which include the use of inspectors to identify problematic areas in homes, collection and analysis of environmental samples, different lead detection methods (e.g. smart phone applications to identify the presence of lead and mass spectrometry techniques). Although not always the most effective way to predict BLLs in children, linear and non-linear regression models have been used to link BLLs and environmental lead. However, multiple regressions and complex modelling systems would be ideal, especially when seeking results in support of decision-making processes. Overall, lead remains a pollutant of concern and many children are still exposed to it through environmental and drinking water sources. To reduce exposure to lead through source apportionment methods, recent technological advances using high-precision lead stable isotope ratios measured on multi-collector induced coupled plasma mass spectrometry (MC-ICP-MS) instruments have created a new direction for identifying and then eliminating prevalent lead sources associated with high BLLs.
Collapse
Affiliation(s)
- Benjamin F Swaringen
- Dept. of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructures and Environment. University of Florida, Gainesville, FL, 32611, USA
| | - Emory Gawlik
- Dept. of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructures and Environment. University of Florida, Gainesville, FL, 32611, USA
| | - George D Kamenov
- Dept. of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Nancy E McTigue
- Cornwell Engineering Group, 712 Gum Rock Ct, Newport News, VA 23606, USA
| | - David A Cornwell
- Dept. of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructures and Environment. University of Florida, Gainesville, FL, 32611, USA; Cornwell Engineering Group, 712 Gum Rock Ct, Newport News, VA 23606, USA
| | - Jean-Claude J Bonzongo
- Dept. of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructures and Environment. University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
38
|
Isley CF, Fry KL, Liu X, Filippelli GM, Entwistle JA, Martin AP, Kah M, Meza-Figueroa D, Shukle JT, Jabeen K, Famuyiwa AO, Wu L, Sharifi-Soltani N, Doyi INY, Argyraki A, Ho KF, Dong C, Gunkel-Grillon P, Aelion CM, Taylor MP. International Analysis of Sources and Human Health Risk Associated with Trace Metal Contaminants in Residential Indoor Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1053-1068. [PMID: 34942073 DOI: 10.1021/acs.est.1c04494] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
People spend increasing amounts of time at home, yet the indoor home environment remains understudied in terms of potential exposure to toxic trace metals. We evaluated trace metal (and metalloid) concentrations (As, Cu, Cr, Mn, Ni, Pb, and Zn) and health risks in indoor dust from homes from 35 countries, along with a suite of potentially contributory residential characteristics. The objective was to determine trace metal source inputs and home environment conditions associated with increasing exposure risk across a range of international communities. For all countries, enrichments compared to global crustal values were Zn > Pb > Cu > As > Cr > Ni; with the greatest health risk from Cr, followed by As > Pb > Mn > Cu > Ni > Zn. Three main indoor dust sources were identified, with a Pb-Zn-As factor related to legacy Pb sources, a Zn-Cu factor reflecting building materials, and a Mn factor indicative of natural soil sources. Increasing home age was associated with greater Pb and As concentrations (5.0 and 0.48 mg/kg per year of home age, respectively), as were peeling paint and garden access. Therefore, these factors form important considerations for the development of evidence-based management strategies to reduce potential risks posed by indoor house dust. Recent findings indicate neurocognitive effects from low concentrations of metal exposures; hence, an understanding of the home exposome is vital.
Collapse
Affiliation(s)
- Cynthia Faye Isley
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kara L Fry
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xiaochi Liu
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Gabriel Michael Filippelli
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | - Jane A Entwistle
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, U.K
| | | | - Melanie Kah
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - John T Shukle
- Department of Earth Sciences and Center for Urban Health, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, Indiana 46202, United States
| | - Khadija Jabeen
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, U.K
| | - Abimbola O Famuyiwa
- Department of Science Laboratory Technology, Moshood Abiola Polytechnic, Abeokuta, Ogun State P.M.B 2210, Nigeria
| | - Liqin Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China
| | - Neda Sharifi-Soltani
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Israel N Y Doyi
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment National & Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| | - Kin Fai Ho
- Institute of Environment, Energy, and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Peggy Gunkel-Grillon
- Institute of Exact and Applied Sciences (ISEA), University of New Caledonia, BPR4, 98851 Nouméa cedex, New Caledonia, France
| | - C Marjorie Aelion
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Patrick Taylor
- Earth and Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
- Environment Protection Authority, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia
| |
Collapse
|
39
|
Cao S, Wen D, Chen X, Duan X, Zhang L, Wang B, Qin N, Wei F. Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118551. [PMID: 34813887 DOI: 10.1016/j.envpol.2021.118551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 05/28/2023]
Abstract
Dust is regarded as an important pathway of heavy metal(loid)s to the human body. Health risks posed by metal(loid)s from household dust are of particular concern. However, the contamination and sources of heavy metal(loid)s in household dust environments, as well as source identification of health risks related to heavy metal(loid)s from household dust for vulnerable populations such as children, have not been thoroughly studied in China, particularly for the areas involved with industrial activities such as ore mining. Thus, a cross-sectional study was conducted in a rural area famous for Pb/Zn ore mining, to assess the pollution sources and health risks of heavy metal(loid)s from household indoor and outdoor dust and to identify the contribution of household dust to the health risks for children. The results indicated that household environment was heavily contaminated by metal(loid)s, which were mainly attributed to mining activity. Meanwhile, the indoor/outdoor ratio and the redundancy analysis indicated that there were other pollution sources in indoor environments such as coal combustion, materials for interior building and decoration. Vapor inhalation was the main exposure pathway for Hg, while ingestion was the predominant pathway for other metal(loid)s. Although the cancer risks were relatively low, the HIt from household indoor and outdoor dust (2.19) was about twice the acceptable limit (1) and was primarily from Pb (64.52%) and As (23.42%). Outdoor dust was a larger contributor to the HI of Sb, As, Cr, Cd, Zn and Pb, which accounted for 51.37%, 58.63%, 52.14%, 59.66%, 52.87% and 64.47%, respectively, and the HIt was mainly from outdoor dust (60.76%). These results indicated that non-cancer health risks were largely from outdoor dust exposure, and strengthened the notion that concern should be given to the potential health risks from metal(loid)s in household dust both originating from mining activity and indoor environmental sources.
Collapse
Affiliation(s)
- Suzhen Cao
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongsen Wen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xing Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoli Duan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Linlin Zhang
- China National Environmental Monitoring Center, Beijing, 100012, China
| | - Beibei Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ning Qin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fusheng Wei
- China National Environmental Monitoring Center, Beijing, 100012, China
| |
Collapse
|
40
|
Rasmussen PE, Levesque C, Butler O, Chénier M, Gardner HD. Selection of metric for indoor-outdoor source apportionment of metals in PM 2.5 : mg/kg versus ng/m 3. INDOOR AIR 2022; 32:e12924. [PMID: 34418165 PMCID: PMC9292266 DOI: 10.1111/ina.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Trends in the elemental composition of fine particulate matter (PM2.5 ) collected from indoor, outdoor, and personal microenvironments were investigated using two metrics: ng/m3 and mg/kg. Pearson correlations that were positive using one metric commonly disappeared or flipped to become negative when the other metric was applied to the same dataset. For example, the correlation between Mo and S in the outdoor microenvironment was positive using ng/m3 (p < 0.05) but negative using mg/kg (p < 0.05). In general, elemental concentrations (mg/kg) within PM2.5 decreased significantly (p < 0.05) as PM2.5 concentrations (µg/m3 ) increased-a dilution effect that was observed in all microenvironments and seasons. An exception was S: in the outdoor microenvironment, the correlation between wt% S and PM2.5 flipped from negative in the winter (p < 0.01) to positive (p < 0.01) in the summer, whereas in the indoor microenvironment, this correlation was negative year-round (p < 0.05). Correlation analyses using mg/kg indicated that elemental associations may arise from Fe-Mn oxyhydroxide sorption processes that occur as particles age, with or without the presence of a common anthropogenic source. Application of mass-normalized concentration metrics (mg/kg or wt%), enabled by careful gravimetric analysis, revealed new evidence of the importance of indoor sources of elements in PM2.5 .
Collapse
Affiliation(s)
- Pat E. Rasmussen
- Environmental Health Science and Research BureauHealthy Environments and Consumer Safety BranchHealth CanadaOttawaONCanada
- Department of Earth and Environmental SciencesUniversity of OttawaOttawaONCanada
| | - Christine Levesque
- Environmental Health Science and Research BureauHealthy Environments and Consumer Safety BranchHealth CanadaOttawaONCanada
| | | | - Marc Chénier
- Environmental Health Science and Research BureauHealthy Environments and Consumer Safety BranchHealth CanadaOttawaONCanada
| | - H. David Gardner
- Environmental Health Science and Research BureauHealthy Environments and Consumer Safety BranchHealth CanadaOttawaONCanada
- Department of Earth and Environmental SciencesUniversity of OttawaOttawaONCanada
| |
Collapse
|
41
|
Wang HZ, Cai LM, Wang S, Hu GC, Chen LG. A comprehensive exploration on pollution characteristics and health risks of potentially toxic elements in indoor dust from a large Cu smelting area, Central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57569-57581. [PMID: 34091847 DOI: 10.1007/s11356-021-14724-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Large-scale smelting activities release large amounts of potentially toxic elements (PTEs) in fine particles. These particles floating in the air eventually settle on leaves, roads, and even indoors. In smelting areas, indoor environments are generally considered relatively safe. However, these areas are not taken seriously and need to be assessed. This paper systematically studied pollution characteristics, main sources and health risks of ten potentially toxic elements, PTEs (Mn, Ni, Cu, Zn, Hg, Cd, As, Cr, Pb, and Tl), of dust samples from different indoor environments in smelting areas using various methods. Therefore, this study analyzed dust samples from 35 indoor environments. The enrichment factors showed that the indoor dust samples were extremely enriched by Cd and Cu and significantly enriched by Hg, Pb, As, and Zn. The result of the spatial distribution showed that the high-value PTEs were mainly distributed near the Cu smeltery. Three sources were quantitatively assigned for these PTEs, and they were industrial smelting and traffic activities (44.40%), coal-fired activities (18.11%), and natural existence (37.49%). Based on the calculation of health risk, the value of THI for children was 7.57, indicating a significant non-carcinogenic risk. For carcinogenic risk, the values of TCR for children and adults were 2.91×10-2 and 2.97×10-3, respectively, which were much higher than the acceptable risk value 1×10-4. Combining health risk assessment with source discrimination, we found that the industrial discharges and traffic activities were the most main source of non-cancer and cancer risks. Therefore, smelting activities should be more strictly monitored, and traffic emission management should be strengthened.
Collapse
Affiliation(s)
- Han-Zhi Wang
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, 430100, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Li-Mei Cai
- Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan, 430100, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China.
- Center for Environmental Health Research, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China.
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Urban Environment and Ecology, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Guo-Cheng Hu
- Center for Environmental Health Research, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510535, China.
| | - Lai-Guo Chen
- State Environmental Protection Key Laboratory of Urban Environment and Ecology, Ministry of Ecology and Environment, South China Institute of Environmental Sciences, Guangzhou, 510655, China
| |
Collapse
|
42
|
Tian T, Yin S, Jin L, Liu J, Wang C, Wei J, Liu M, Li Z, Wang L, Yin C, Ren A. Single and mixed effects of metallic elements in maternal serum during pregnancy on risk for fetal neural tube defects: A Bayesian kernel regression approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117203. [PMID: 33932758 DOI: 10.1016/j.envpol.2021.117203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Studies of the association between prenatal exposure to metal elements and risk for neural tube defects (NTDs) have produced inconsistent results. Little research has examined the joint effects and interactions of multiple elements. This study examined 273 women with NTD-affected pregnancies and 477 controls. Cadmium, cobalt, chromium, copper, iron, mercury, manganese, molybdenum, lead, and zinc were quantified in maternal serum. Single and mixed effects of these elements on NTD risk were evaluated with Bayesian kernel machine regression, and the effects of individual elements were validated using logistic regression. As a result, NTD risk increased with the concentration of the mixture of the 10 elements. NTD risk rose as the levels of the five toxic elements increased, with effect sizes larger than the overall analyses, but they decreased, albeit non-significantly, as the levels of the five essential elements increased. Lead and manganese showed risk effects on NTDs, with odds ratios (ORs) of 1.94 (1.76-2.13) and 1.25 (1.14-1.38), respectively, with the remaining nine elements remaining at their median. Molybdenum showed a protective effect against NTDs with an OR 0.87 (0.90-0.94). The single-element results were validated using logistic regression. In conclusion, NTD risk increased with concentrations of the five toxic elements, with lead and manganese being the major contributors. Essential elements showed protective effects against NTD risk.
Collapse
Affiliation(s)
- Tian Tian
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Shengju Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lei Jin
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jufen Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chengrong Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Jing Wei
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Cancer Center of Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Taiyuan, China
| | - Mengyuan Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Chenghong Yin
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health, Peking University, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
43
|
Yuk H, Yang S, Wi S, Kang Y, Kim S. Verification of particle matter generation due to deterioration of building materials as the cause of indoor fine dust. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125920. [PMID: 34492852 DOI: 10.1016/j.jhazmat.2021.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Particles of fine dust are pollutants that adversely affect indoor air quality and exacerbate human respiratory diseases. The aging of the building was pointed out as a source of fine dust indoors. The aging of buildings has various causes of deterioration. During various deterioration, friction adversely affects the building floor finish. In this study, an accelerated friction deterioration device was used to confirm the generation of fine dust particles through the frictional deterioration of floor finishes in buildings. The study found that the concentration of fine dust particles attributed to deteriorating flooring was 327 mg/m3 in PM2.5 and 4828 mg/m3 in PM10 and confirmed that particle distribution differs depending on the surface of the flooring. Particles of 10 µm or less were observed through particle analysis. The study confirmed that fine dust particles did not diffuse in a specific direction and that the detected fine dust particles could be attributed to deterioration. Further research is needed on the detection of fine dust in degraded building finishing materials.
Collapse
Affiliation(s)
- Hyeonseong Yuk
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungwoong Yang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghwan Wi
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yujin Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
44
|
Yang Q, Cui P, Liu C, Fang G, Huang M, Wang Q, Zhou Y, Hou H, Wang Y. In situ stabilization of the adsorbed Co 2+ and Ni 2+ in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126215. [PMID: 34492972 DOI: 10.1016/j.jhazmat.2021.126215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
The stabilization of heavy metals adsorbed in the spent biochar remains a challenge, and the risk of secondary pollution under environmental changes will rise under inadequate post-treatment. Moreover, the safe and sufficient re-utilization of the spent biochar with heavy metals loaded have attracted extensive attention. In this research, the performance and mechanism of rice straw biochar (RSBC) pyrolyzed at different temperature for nickel and cobalt adsorption were investigated, and the stabilization of the adsorbed heavy metals was achieved via a simple two-step strategy: the adsorption of metal ions and the hydrothermal process to form the stable layered double hydroxides (LDH) on biochar, with a leaching rate below 0.005% evaluated by EPA toxicity characteristic leaching procedure (TCLP). Meanwhile, the stabilized RSBC-LDH can be reused as an excellent catalyst in the activation of peroxymonosulfate (PMS) to degrade organic pollutants efficiently. This work eliminated the risk of heavy metal desorption from the spent biochar, and enabled a new strategy for the optimized utilization of biochar in environmental remediation.
Collapse
Affiliation(s)
- Qiang Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China; University of Chinese Academy of Science, 100049 Beijing, PR China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China; University of Chinese Academy of Science, 100049 Beijing, PR China
| | - Qiuyue Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China; College of Tropical Crops, Hainan University, 570100 Haikou, PR China
| | - Yiyi Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China; University of Chinese Academy of Science, 100049 Beijing, PR China
| | - Hongbo Hou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, 410004 Changsha, PR China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, PR China; University of Chinese Academy of Science, 100049 Beijing, PR China.
| |
Collapse
|
45
|
Liu B, Huang F, Yu Y, Li X, He Y, Gao L, Hu X. Heavy Metals in Indoor Dust Across China: Occurrence, Sources and Health Risk Assessment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:67-76. [PMID: 33944965 DOI: 10.1007/s00244-021-00849-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, the occurrence of heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) was investigated in indoor dust samples collected from 33 urban and rural areas in 11 provinces, China. The concentrations of the selected heavy metals were determined by an inductively coupled plasma mass spectrometry. The mean concentrations of Zn (166 mg kg-1), Pb (40.7 mg kg-1), Cr (19.8 mg kg-1), Cu (16.9 mg kg-1), and Cd (2.29 mg kg-1) in indoor dust are in low or moderate levels compared with other countries or regions. Cd was significantly enriched with the highest enrichment factor of 23.7, followed by Zn, Pb, Cu, and Cr, which were all lower than 3. The concentrations of Pb from Northern China (61.4 mg kg-1) were significantly higher than those from Southern China (8.88 mg kg-1). The concentrations of heavy metals in indoor dusts from rural areas were higher than those from urban areas except for Cu. The multivariate analysis of variance revealed that wall cover, fuel types, and air conditioning were dominant factors influencing the levels of heavy metals in indoor dust. Principal component analysis showed that outdoor dust and wall paint were main factors for the high concentrations of Cd, Pb, and Cr, accounting for 40.6% of the total contribution; traffic sources contributed to the high levels of Cu and Zn explained 20.6% of the total variance. The hazard indexes of selected heavy metals were less than 1 and carcinogenic risk value of Cr were between 1.01 × 10-6 and 1 × 10-4, indicating minor noncarcinogenic and carcinogenic risks from heavy metals in indoor dust for residents in China. Pb contributed 72.0% and 86.9% to the sum of noncarcinogenic risk values of selected heavy metals for adults and children, respectively. The carcinogenic risk value of Cr was approximately 13-fold higher than that of Cd for both adults and children. Children endured higher risks from heavy metals in indoor dust compared with adults.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| | - Fei Huang
- Technology Center Laboratory, Jilin Tobacco Industrial Co. Ltd., Changchun, 130031, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Xuedong Li
- College of Geographical Science, Changchun Normal University, Changchun, 130032, China
| | - Yaowei He
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Xin Hu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
46
|
Mineralogical and Chemical Tracing of Dust Variation in an Underground Historic Salt Mine. MINERALS 2021. [DOI: 10.3390/min11070686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the causes of the evolution of atmospheric dust composition in an open-to-public subterranean site (UNESCO-recognized historic mine) at increasing distances from the air intake. The role of the components imported with atmospheric air from the surface was compared with natural and anthropogenic sources of dust from inside the mine. Samples of deposited dust were directly collected from flat surfaces at 11 carefully selected sites. The morphological, mineralogical, and chemical characteristics were obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma spectroscopy (ICP). The study showed that the air in the underground salt mine was free of pollutants present in the ambient air on the surface. Most of the components sucked into the mine by the ventilation system from the surface (regular dust, particulate matter, gaseous pollutants, biogenic particles, etc.) underwent quick and instantaneous sedimentation in the close vicinity of the air inlet to the mine. The dust settled in the mine interior primarily consisted of natural geogenic particles, locally derived from the weathering of the host rock (halite, anhydrite, and aluminosilicates). This was confirmed by low values of enrichment factors (EF) calculated for minor and trace elements. Only one site, due to the tourist railroad and the associated local intensive tourist traffic, represented the anthropogenic sources of elevated concentrations of ferruginous particles and accompanied metals (P, Cr, Mn, Co, Ni, Cu, As, Mo, Cd, Sn, Sb, Pb, and W). The gravitational deposition of pollutants from these sources limits the effects of the emissions to the local range. The used methodology and the results are universal and might also apply to other mines, caves, or underground installations used for museums, tourists, or speleotherapeutic purposes.
Collapse
|
47
|
Kelepertzis E, Chrastný V, Botsou F, Sigala E, Kypritidou Z, Komárek M, Skordas K, Argyraki A. Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144827. [PMID: 33529817 DOI: 10.1016/j.scitotenv.2020.144827] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Understanding the links between sources of magnetic particles and bioaccessibility of metal(loids) in environmental sampling media is crucial for better evaluating human health risks, although relevant information in the scientific literature is scarce. Here, soil, road and house dust samples from a heavy industrial area in Greece were characterized in a multidisciplinary study combining magnetic measurements, SEM/EDS analyses, bioaccessibility measurements and Pb isotopic analyses of bioaccessible Pb. The oral and inhalable bioaccessible fractions of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were assessed by applying simulated gastric and lung solutions. SEM/EDS analysis revealed the abundant presence of anthropogenic Fe-containing spherules of industrial origin in all sampling media, often containing minor contents of Cr, Cu, Mn, Pb and Zn. The inhalation bioaccessibility (%) in all environmental compartments was higher than the oral one for most elements analyzed in the present study. Clear associations between magnetic susceptibility and bioaccessible amounts of most of analyzed elements were encountered for the soil and road dust. The isotopic analyses of bioaccessible Pb showed that there are significant differences in the isotopic ratios between total and bioaccessible Pb. We conclude that Pb solubilized by the simulated gastric and lung extractions is principally anthropogenic, representing a mixture of industrial Pb and Pb related to the past usage of leaded petrol. Low values of 206Pb/207Pb were accompanied by high bioaccessible contents of Cd, Pb and Zn indicating that anthropogenic (mostly industrial) sources exert influence on the bioaccessible forms of these metals. Coupling magnetic and bioaccessibility measurements with stable isotopic technique of bioaccessible Pb is more reliable for determining Pb and other metal sources with high oral and inhalation bioaccessibility.
Collapse
Affiliation(s)
- Efstratios Kelepertzis
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece.
| | - Vladislav Chrastný
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | - Fotini Botsou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 157 84 Athens, Greece
| | - Evangelia Sigala
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Zacharenia Kypritidou
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague-Suchdol, Czech Republic
| | - Konstantinos Skordas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784 Athens, Greece
| |
Collapse
|
48
|
Hussain A, Rizwan M, Ali S, Rehman MZU, Qayyum MF, Nawaz R, Ahmad A, Asrar M, Ahmad SR, Alsahli AA, Alyemeni MN. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112139. [PMID: 33761378 DOI: 10.1016/j.ecoenv.2021.112139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 03/06/2021] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) accumulation in arable lands has become a serious matter for food security. Among various approaches, the application of nanoparticles (NPs) for remediation of contaminated water and soils is attaining more popularity worldwide. The current field experiment was executed to explore the impacts of single and combined use of ZnO NPs, Fe NPs and Si NPs on wheat growth and Cd intake by plants in a Cd-contaminated field. Wheat was sown in a field which was contaminated with Cd and was irrigated with the raw-city-effluent while NPs were applied as foliar spray alone and in all possible combinations. The data revealed that straw and grain yields were enhanced in the presence of NPs over control. Chlorophyll, carotenoids contents and antioxidants activities were enhanced while electrolyte leakage was reduced with all NPs over control. In comparison with control, Cd uptake in wheat straw was reduced by 84% and Cd uptake in grain was reduced by 99% in T8 where all three NPs were foliar-applied simultaneously. Zinc (Zn) and iron (Fe) contents were increased in those plants where ZnO and Fe NPs were exogenously applied which revealed that ZnO and Fe NPs enhanced the bio-fortification of Zn and Fe in wheat grains. Overall, foliar application of different NPs is beneficial for better wheat growth, yield, nutrients uptake and to lessen the Cd intake by plants grown in Cd-contaminated soil under real field conditions.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Muhammad Zia Ur Rehman
- Institute of Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Farooq Qayyum
- Department of Soil Sciences, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| | - Awais Ahmad
- Department of Chemistry, The University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Asrar
- Department of Zoology, Government College University Faisalabad, 38000, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Abdulaziz Abdullah Alsahli
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|