1
|
Ribeiro AVC, Mannarino CF, Dos Santos Leal T, de Oliveira CS, Bianco K, Clementino MM, Novo SPC, Prado T, de Castro EDSG, Lermontov A, Fumian TM, Miagostovich MP. Environmental Dissemination of SARS-CoV-2: An Analysis Employing Crassphage and Next-Generation Sequencing Protocols. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:13. [PMID: 39776004 DOI: 10.1007/s12560-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively. Viruses were detected and quantified by (RT-)qPCR applying TaqMan® system protocols. SARS-CoV-2 RNA signals were detected in 92.5% (37/40) of the wastewater samples and in 31.25% (10/32) of the stream water samples, but not in seawater samples. CrAssphage was detected in 100% of the wastewater samples, 93.75% (30/32) of the stream samples, and in 2/4 of the seawater samples. CrAssphage detection and high concentrations in stream surface waters (median 8.95 log10 gc/L) revealed diffuse contamination by domestic wastewater in a region with high sanitary coverage. The correlations detected between SARS-CoV-2 data and the moving averages of clinical cases per capita over the sampling period were moderate to strong when applying a 13-day offset, regardless of normalization by crAssphage data or not. Sequencing of the receptor-binding domain of the spike protein confirmed the detection of SARS-CoV-2, but did not characterize the circulating variant. On the other hand, the whole genome sequencing protocol identified circulation of the Gamma variant, corroborating the sampling period clinical data.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Stricto Sensu Graduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Thiago Dos Santos Leal
- Niterói City Hall/Secretariat for Environment, Water Resources and Sustainability, Niterói, 24020-206, Brazil
| | - Carla Santos de Oliveira
- Laboratory of Arbovirus and Hemorrhagic Virus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Shênia Patricia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | | | - André Lermontov
- Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
2
|
Saravia CJ, Pütz P, Wurzbacher C, Uchaikina A, Drewes JE, Braun U, Bannick CG, Obermaier N. Wastewater-based epidemiology: deriving a SARS-CoV-2 data validation method to assess data quality and to improve trend recognition. Front Public Health 2024; 12:1497100. [PMID: 39735750 PMCID: PMC11674844 DOI: 10.3389/fpubh.2024.1497100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Introduction Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex. Multiple effects such as precipitation events or industrial discharges might affect the quantification of SARS-CoV-2 concentrations. Hence, analysing data from more than 150 wastewater treatment plants (WWTP) in Germany necessitates an automated and reliable method to evaluate data validity, identify potential extreme events, and, if possible, improve overall data quality. Methods We developed a method that first categorises the data quality of WWTPs and corresponding laboratories based on the number of outliers in the reproduction rate as well as the number of implausible inflection points within the SARS-CoV-2 time series. Subsequently, we scrutinised statistical outliers in several standard quality control parameters (QCP) that are routinely collected during the analysis process such as the flow rate, the electrical conductivity, or surrogate viruses like the pepper mild mottle virus. Furthermore, we investigated outliers in the ratio of the analysed gene segments that might indicate laboratory errors. To evaluate the success of our method, we measure the degree of accordance between identified QCP outliers and outliers in the SARS-CoV-2 concentration curves. Results and discussion Our analysis reveals that the flow and gene segment ratios are typically best at identifying outliers in the SARS-CoV-2 concentration curve albeit variations across WWTPs and laboratories. The exclusion of datapoints based on QCP plausibility checks predominantly improves data quality. Our derived data quality categories are in good accordance with visual assessments. Conclusion Good data quality is crucial for trend recognition, both on the WWTP level and when aggregating data from several WWTPs to regional or national trends. Our model can help to improve data quality in the context of health-related monitoring and can be optimised for each individual WWTP to account for the large diversity among WWTPs.
Collapse
Affiliation(s)
- Cristina J. Saravia
- Wastewater Technology Research, Wastewater Disposal, German Environment Agency, Berlin, Germany
| | - Peter Pütz
- Infectious Disease Epidemiology, Surveillance, Robert-Koch-Institute, Berlin, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Jörg E. Drewes
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Ulrike Braun
- Wastewater Analysis, Monitoring Methods, German Environment Agency, Berlin, Germany
| | - Claus Gerhard Bannick
- Wastewater Technology Research, Wastewater Disposal, German Environment Agency, Berlin, Germany
| | - Nathan Obermaier
- Wastewater Technology Research, Wastewater Disposal, German Environment Agency, Berlin, Germany
| |
Collapse
|
3
|
Chen C, Wang Y, Kaur G, Adiga A, Espinoza B, Venkatramanan S, Warren A, Lewis B, Crow J, Singh R, Lorentz A, Toney D, Marathe M. Wastewater-based epidemiology for COVID-19 surveillance and beyond: A survey. Epidemics 2024; 49:100793. [PMID: 39357172 DOI: 10.1016/j.epidem.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding wastewater-based epidemiology for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States.
| | - Yunfan Wang
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States.
| | - Gursharn Kaur
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Aniruddha Adiga
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Baltazar Espinoza
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Srinivasan Venkatramanan
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Andrew Warren
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Bryan Lewis
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| | - Justin Crow
- Virginia Department of Health, Richmond, 23219, United States.
| | - Rekha Singh
- Virginia Department of Health, Richmond, 23219, United States.
| | - Alexandra Lorentz
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States.
| | - Denise Toney
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States.
| | - Madhav Marathe
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States; Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States.
| |
Collapse
|
4
|
Masachessi G, Castro GM, Marinzalda MDLA, Cachi AM, Sicilia P, Prez VE, Martínez LC, Giordano MO, Pisano MB, Ré VE, Del Bianco CM, Parisato S, Fernandez M, Ibarra G, Lopez L, Barbás G, Nates SV. Unveiling the silent information of wastewater-based epidemiology of SARS-CoV-2 at community and sanitary zone levels: experience in Córdoba City, Argentina. JOURNAL OF WATER AND HEALTH 2024; 22:2171-2183. [PMID: 39611676 DOI: 10.2166/wh.2024.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/30/2024]
Abstract
The emergence of COVID-19 in 2020 significantly enhanced the application of wastewater monitoring for detecting SARS-CoV-2 circulation within communities. From October 2021 to October 2022, we collected 406 wastewater samples weekly from the Córdoba Central Pipeline Network (BG-WWTP) and six specific sewer manholes from sanitary zones (SZs). Following WHO guidelines, we processed samples and detected SARS-CoV-2 RNA and variants using real-time PCR. Monitoring at the SZ level allowed for the development of a viral activity flow map, pinpointing key areas of SARS-CoV-2 circulation and tracking its temporal spread and variant evolution. Our findings demonstrate that wastewater-based surveillance acts as a sensitive indicator of viral activity, detecting imminent increases in COVID-19 cases before they become evident in clinical data. This study highlights the effectiveness of targeted wastewater monitoring at both municipal and SZ levels in identifying viral hotspots and assessing community-wide circulation. Importantly, the data shows that environmental wastewater studies provide valuable insights into virus presence, independent of clinical COVID-19 case records, and offer a robust tool for adapting to future public health challenges.
Collapse
Affiliation(s)
- Gisela Masachessi
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina E-mail:
| | - Gonzalo Manuel Castro
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - María de Los Angeles Marinzalda
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aerea Argentina 5011, Córdoba X5000, Argentina
| | - Ariana Mariela Cachi
- Instituto Nacional de Medicina Aeronáutica y Espacial, FAA, Av. Fuerza Aérea Argentina Km 6 1/2 S/N B.0 Cívico, Córdoba X5010, Argentina; Facultad de la Fuerza Aérea, Universidad de la Defensa Nacional, Av. Fuerza Aerea Argentina 5011, Córdoba X5000, Argentina
| | - Paola Sicilia
- Departamento Laboratorio Central, Ministerio de Salud de la Provincia de Córdoba, T. Cáceres de Allende 421, Córdoba X5000HVE, Argentina
| | - Veronica Emilce Prez
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Laura Cecilia Martínez
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - Miguel Oscar Giordano
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| | - María Belen Pisano
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Viviana Elizabeth Ré
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA C1425FQB, Argentina
| | - Carlos Martin Del Bianco
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Sofia Parisato
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Micaela Fernandez
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Gustavo Ibarra
- Planta Municipal de tratamiento de efluente cloacales Bajo Grande-Laboratorio de análisis fisicoquímicos, bacteriológicos EDAR Bajo Grande, Cam. Chacra de la Merced 901, Córdoba X5000, Argentina
| | - Laura Lopez
- Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Gabriela Barbás
- Ministerio de Salud de la Provincia de Córdoba, Av. Vélez Sarsfield 2311 Ciudad Universitaria, Córdoba X5016 GCH, Argentina
| | - Silvia Viviana Nates
- Instituto de Virología Dr J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, Córdoba X5000, Argentina
| |
Collapse
|
5
|
Annan J, Henderson R, Gray M, Clark RG, Sarin C, Black K. A Review of Wastewater-Based Epidemiology for the SARS-CoV-2 Virus in Rural, Remote, and Resource-Constrained Settings Internationally: Insights for Implementation, Research, and Policy for First Nations in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1429. [PMID: 39595696 PMCID: PMC11593473 DOI: 10.3390/ijerph21111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is regarded as a support tool for detecting and assessing the prevalence of infectious diseases at a population level. For rural, remote, and resource-constrained communities with little access to other public health monitoring tools, WBE can be a low-cost approach to filling gaps in population health knowledge to inform public health risk assessment and decision-making. This rapid review explores and discusses unique considerations of WBE in key settings, with a focus on the detection of the SARS-CoV-2 virus, which has rapidly expanded WBE infrastructure globally. To frame our understanding of possibilities for WBE with First Nations in Alberta, we address the following questions: What are the unique considerations and challenges for WBE under similar contexts in rural, remote, or resource-constrained settings? What are the resources and expertise required to support WBE? This review identifies several unique considerations for WBE in rural, remote, and resource-constrained communities, including costs, accessibility, operator capacity, wastewater infrastructure, and data mobilization-highlighting the need for equity in WBE. In summary, most resource-constrained communities require additional support from external research and/or governmental bodies to undertake WBE.
Collapse
Affiliation(s)
- Jessica Annan
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (J.A.); (R.H.)
| | - Rita Henderson
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; (J.A.); (R.H.)
| | - Mandi Gray
- Department of Sociology, Trent University, Oshawa, NG11 8NS, Canada;
| | - Rhonda Gail Clark
- Department of Biological Sciences, Geomicrobiology Group, University of Calgary, Calgary, AB T2N 1N5, Canada;
| | - Chris Sarin
- Indigenous Services Canada, First Nations and Inuit Health Branch, Alberta Region, Canada Place, Suite 730 9700, Jasper Avenue, Edmonton, AB T5J 4C3, Canada;
| | - Kerry Black
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
6
|
Kim YT, Lee K, Lee H, Son B, Song M, Lee SH, Kwon M, Kim DS, Noh TH, Lee S, Kim YJ, Lee MK, Lee KR. Development of a wastewater based infectious disease surveillance research system in South Korea. Sci Rep 2024; 14:24544. [PMID: 39427054 PMCID: PMC11490628 DOI: 10.1038/s41598-024-76614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Wastewater-based epidemiology has been used in pathogen surveillance for microorganisms at the community level. This study was conducted to determine the occurrence and trends of infectious pathogens in sewage from Yongin city and the relationships between these pathogens and the incidence of infectious diseases in the community. From December 2022 to November 2023, we collected inflow water from six wastewater treatment plants in Yongin city twice a month. The analyzed microorganisms included 15 respiratory viruses, 7 pneumonia-causing bacteria, 19 acute diarrhea-causing pathogens, SARS-CoV-2, Zika virus, hepatitis A virus, poliovirus, Mpox, and measles. They were detected through real-time PCR and conventional PCR. The concentrations of 9 pathogens among them were additionally analyzed using quantitative real time PCR. The correlation was confirmed through statistical analysis with the rate of detection for pathogens reported by the Korea Disease Control and Prevention Agency. Influenza A virus, human adenovirus, and human rhinovirus were moderately correlated (rho values of 0.45 to 0.58). Campylobacter spp. and sapovirus were strong correlated (rho values of 0.62, 0.63). Enteropathogenic E. coli, human coronavirus, and norovirus GII were very strong correlated (rho values of 0.86 to 0.92). We were able to identify the prevalence of respiratory viral infections, pneumonia, and acute diarrhea-causing pathogens in the community through wastewater-based epidemiology data. This study will be helpful in establishing a system for future surveillance of infectious diseases present in sewage.
Collapse
Affiliation(s)
- Yun-Tae Kim
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea.
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bokyung Son
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Myeongwon Song
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seung-Hyun Lee
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Miran Kwon
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong-Soo Kim
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae-Hun Noh
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sanghoo Lee
- SCL Healthcare Inc. Gyeonggi-do, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Young-Jin Kim
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Mi-Kyeong Lee
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Ryul Lee
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Chen C, Wang Y, Kaur G, Adiga A, Espinoza B, Venkatramanan S, Warren A, Lewis B, Crow J, Singh R, Lorentz A, Toney D, Marathe M. Wastewater-based Epidemiology for COVID-19 Surveillance and Beyond: A Survey. ARXIV 2024:arXiv:2403.15291v2. [PMID: 38562450 PMCID: PMC10984000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The pandemic of COVID-19 has imposed tremendous pressure on public health systems and social economic ecosystems over the past years. To alleviate its social impact, it is important to proactively track the prevalence of COVID-19 within communities. The traditional way to estimate the disease prevalence is to estimate from reported clinical test data or surveys. However, the coverage of clinical tests is often limited and the tests can be labor-intensive, requires reliable and timely results, and consistent diagnostic and reporting criteria. Recent studies revealed that patients who are diagnosed with COVID-19 often undergo fecal shedding of SARS-CoV-2 virus into wastewater, which makes wastewater-based epidemiology for COVID-19 surveillance a promising approach to complement traditional clinical testing. In this paper, we survey the existing literature regarding wastewater-based epidemiology for COVID-19 surveillance and summarize the current advances in the area. Specifically, we have covered the key aspects of wastewater sampling, sample testing, and presented a comprehensive and organized summary of wastewater data analytical methods. Finally, we provide the open challenges on current wastewater-based COVID-19 surveillance studies, aiming to encourage new ideas to advance the development of effective wastewater-based surveillance systems for general infectious diseases.
Collapse
Affiliation(s)
- Chen Chen
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States
| | - Yunfan Wang
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States
| | - Gursharn Kaur
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Aniruddha Adiga
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Baltazar Espinoza
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Srinivasan Venkatramanan
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Andrew Warren
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Bryan Lewis
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| | - Justin Crow
- Virginia Department of Health, Richmond, 23219, United States
| | - Rekha Singh
- Virginia Department of Health, Richmond, 23219, United States
| | - Alexandra Lorentz
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States
| | - Denise Toney
- Division of Consolidated Laboratory Services, Department of General Services, Richmond, 23219, United States
| | - Madhav Marathe
- Department of Computer Science, University of Virginia, Charlottesville, 22904, United States
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, 22904, United States
| |
Collapse
|
8
|
Ribeiro AVC, Mannarino CF, Novo SPC, Prado T, Lermontov A, de Paula BB, Fumian TM, Miagostovich MP. Assessment of crAssphage as a biological variable for SARS-CoV-2 data normalization in wastewater surveillance. J Appl Microbiol 2024; 135:lxae177. [PMID: 39013607 DOI: 10.1093/jambio/lxae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
AIMS This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Shênia Patrícia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Respiratory, Exanthematic, Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - André Lermontov
- Chemical and Biochemical Process Technology, School of Chemistry/Federal University of Rio de Janeiro - EQ/UFRJ, Rio de Janeiro 21941-909, Brazil
| | - Bruna Barbosa de Paula
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
9
|
Inson JGM, Malla B, Amalin DM, Carvajal TM, Enriquez MLD, Hirai S, Raya S, Rahmani AF, Angga MS, Sthapit N, Shrestha S, Ruti AA, Takeda T, Kitajima M, Alam ZF, Haramoto E. Detection of SARS-CoV-2 and Omicron variant RNA in wastewater samples from Manila, Philippines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170921. [PMID: 38350577 DOI: 10.1016/j.scitotenv.2024.170921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/15/2024]
Abstract
Manila, a highly urbanized city, is listed as one of the top cities with the highest recorded number of coronavirus disease 2019 (COVID-19) cases in the Philippines. This study aimed to detect and quantify the RNA of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the Omicron variant in 51 wastewater samples collected from three locations in Manila, namely Estero de Santa Clara, Estero de Pandacan, which are open drainages, and a sewage treatment plant (STP) at De La Salle University-Manila, between July 2022 and February 2023. Using one-step reverse transcription-quantitative polymerase chain reaction, SARS-CoV-2 and Omicron variant RNA were detected in 78 % (40/51; 4.9 ± 0.5 log10 copies/L) and 60 % (24/40; 4.4 ± 0.3 log10 copies/L) of wastewater samples collected from all sampling sites, respectively. SARS-CoV-2 RNA was detected frequently at Estero de Santa Clara (88 %, 15/17); its highest concentration was at the STP (6.3 log10 copies/L). The Omicron variant RNA was present in the samples collected (4.4 ± 0.3 log10 copies/L) from all sampling sites, with the highest concentration at the STP (4.9 log10 copies/L). Regardless of normalization, using concentrations of pepper mild mottle virus RNA, SARS-CoV-2 RNA concentrations exhibited the highest positive correlation with COVID-19 reported cases in Manila 5 days after the clinical report. These findings revealed that wastewater-based epidemiology may aid in identifying and monitoring of the presence of pathogens in open drainages and STPs in the Philippines. This paper provides the first documentation on SARS-CoV-2 and the Omicron variant in wastewater from Manila.
Collapse
Affiliation(s)
- Jessamine Gail M Inson
- Department of Biology, De La Salle University, Manila 1004, Philippines; Environmental Biomonitoring Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Divina M Amalin
- Department of Biology, De La Salle University, Manila 1004, Philippines; Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | - Thaddeus M Carvajal
- Department of Biology, De La Salle University, Manila 1004, Philippines; Biological Control Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | | | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
| | - Zeba F Alam
- Department of Biology, De La Salle University, Manila 1004, Philippines; Environmental Biomonitoring Research Unit, Center for Natural Sciences and Environmental Research, De La Salle University, Manila 1004, Philippines.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
10
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
11
|
Kumar M, Joshi M, Prajapati B, Sirikanchana K, Mongkolsuk S, Kumar R, Gallage TP, Joshi C. Early warning of statewide COVID-19 Omicron wave by sentineled urbanized sewer network monitoring using digital PCR in a province capital city, of Gujarat, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167060. [PMID: 37709091 DOI: 10.1016/j.scitotenv.2023.167060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Wastewater-based epidemiology (WBE) has been implemented globally. However, there remains confusion about the number and frequency of samples to be collected, as well as which types of treatment systems can provide reliable specific details about the virus prevalence in specific areas or communities, enabling prompt management and intervention measures. More research is necessary to fully comprehend the possibility of deploying sentinel locations in sewer networks in larger geographic areas. The present study introduces the first report on wastewater-based surveillance in Gandhinagar City using digital PCR (d-PCR) as a SARS-Cov-2 quantification tool, which describes the viral load from five pumping stations in Gandhinagar from October 2021 to March 2022. Raw wastewater samples (n = 119) were received and analyzed weekly to detect SARS-CoV-2 RNA, 109 of which were positive for N1 or N2 genes. The monthly variation analysis in viral genome copies depicted the highest concentrations in January 2022 and February 2022 (p < 0.05; Wilcoxon signed rank test) coincided with the Omicron wave, which contributed mainly from Vavol and Jaspur pumping stations. Cross-correlation analysis indicated that WBE from five stations in Gandhinagar, i.e., capital city sewer networks, provided two-week lead times to the citywide and statewide active cases (time-series cross-correlation function [CCF]; 0.666 and 0.648, respectively), mainly from individual contributions of the urbanized Kudasan and Vavol stations (CCF; 0.729 and 0.647, respectively). These findings suggest that sewer pumping stations in urbanized neighborhoods can be used as sentinel sites for statewide clinical surveillance and that WBE surveillance using digital PCR can be an efficient monitoring and management tool.
Collapse
Affiliation(s)
- Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Technologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico.
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Bhumika Prajapati
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India; Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Tharindu Pollwatta Gallage
- Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat 382011, India
| |
Collapse
|
12
|
Kumthip K, Khamrin P, Yodmeeklin A, Ushijima H, Maneekarn N. Molecular detection and characterization of SARS-CoV-2 in wastewater in Thailand during 2020-2022. J Infect Public Health 2023; 16:1884-1890. [PMID: 37839311 DOI: 10.1016/j.jiph.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND SARS-CoV-2 has been detected in feces of infected individuals and in wastewater in many countries, which indicates that wastewater may be used to monitor contamination of the virus in community. However, information about the presence of SARS-CoV-2 in different types of environmental water and their genetic characterization are still limited. The purpose of this study was to investigate the presence of SARS-CoV-2 contaminating in environmental water in Thailand. METHODS We collected 600 water samples from 10 different sampling sites in Chiang Mai city, Thailand twice a month from July 2020 to December 2022. The SARS-CoV-2 RNA was detected by real-time RT-PCR and further amplified for ORF1a and S genes to investigate their genetic relationship to the reference strains by phylogenetic analysis. RESULTS SARS-CoV-2 was detected at 0.17% in the wastewater sample collected in the vicinity of fresh market where the outbreak of COVID-19 cases were simultaneously reported. The detected SARS-CoV-2 strain (W323/21) had nucleotide and amino acid sequences identical to SARS-CoV-2 Delta variant. Amino acid sequence alignment of spike protein revealed that the W323/21 strain carried a mutation of D950N as it was demonstrated in Delta variant reference strains. CONCLUSIONS The findings indicated that SARS-CoV-2 Delta variant was detected in wastewater in Chiang Mai, Thailand during the outbreak of COVID-19, suggesting a circulation of the virus in environmental water and in the community during the outbreak.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ushijima
- Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence (Emerging and Re-emerging Diarrheal Viruses), Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
13
|
Maqbool N, Shahid MA, Khan SJ. Situational assessment for fecal sludge management in major cities of Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98869-98880. [PMID: 35943647 PMCID: PMC9360668 DOI: 10.1007/s11356-022-22331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/28/2022] [Indexed: 05/17/2023]
Abstract
With enhanced focus on global sanitation, access to toilets at the household level is increasing in developing countries although the provision of sewer networks is not expanding at the same pace. This is resulting in the adaptation of on-site sanitation facilities to contain the fecal sludge. The fecal sludge generated by the on-site sanitation facilities requires emptying, treatment, and safe end-use or disposal. In this study, the sanitation situation and need for fecal sludge management was evaluated in major cities of Pakistan including Karachi (provincial capital), Lahore (provincial capital), and Islamabad (national capital). Primary and secondary data were collected from key informant interviews of the stakeholders, national and international reports, research, and review articles. Infographics on wastewater and fecal sludge from origin to disposal were developed using a shit flow diagram tool and enabling environment was evaluated with a modified service delivery assessment tool. The results indicate that sewerage network coverage exists for 60%, 63%, and 50% of the areas in Karachi, Lahore, and Islamabad respectively. The sewerage network in major cities is old, leaking, and insufficient, thus a limited amount of wastewater reaches the treatment plants. Total wastewater treatment in Karachi and Islamabad is 10% and 9% respectively whereas, in Lahore, there is no infrastructure for the same. The safe sanitation in Lahore (8%) and Islamabad (25%) is coming from on-site sanitation systems with fecal sludge buried safely onsite. National level sanitation programs exist in the country but are limited to reducing open defecation and containments of fecal sludge only. The inclusion of complete fecal sludge management related framework, guidelines, and policies can help achieve the goal of safe sanitation for all.
Collapse
Affiliation(s)
- Nida Maqbool
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H 12, Islamabad, Pakistan
| | - Muhammad Arslan Shahid
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H 12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Sector H 12, Islamabad, Pakistan.
| |
Collapse
|
14
|
Rusková M, Bučková M, Puškárová A, Cíchová M, Janská V, Achs A, Šubr Z, Kuchta T, Pangallo D. Comparison of ordinary reverse transcription real-time polymerase chain reaction (qRT-PCR) with a newly developed one-step single-tube nested real-time RT-PCR (OSN-qRT-PCR) for sensitive detection of SARS-CoV-2 in wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95579-95589. [PMID: 37553492 PMCID: PMC10482794 DOI: 10.1007/s11356-023-29123-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Wastewater monitoring has proven to be an important approach to detecting and controlling the development of the SARS-CoV-2 pandemic. Various tests based on reverse transcription real-time PCR (qRT-PCR) have been developed and used for the detection of SARS-CoV-2 in wastewater samples. In this study, we attempted to increase the sensitivity of qRT-PCR by developing a one-step single-tube nested qRT-PCR assay (OSN-qRT-PCR). Two variants were developed, oriented to nucleocapsid phosphoprotein gene (N) and to spike protein gene (S), respectively. The performance of conventional qRT-PCR assays oriented to these genes with two novel OSN-qRT-PCR assays were firstly optimized using wastewater artificially contaminated with two encapsidated RNA mimic systems harboring a portion either N or S gene (ENRM and ESRM, respectively). The assays were coupled to a polyethylene glycol-based RNA precipitation/extraction method and applied to detect SARS-CoV-2 in wastewater samples from four cities in Slovakia. Both novel OSN-qRT-PCR assays demonstrated higher detection rates than the ordinary qRT-PCR counterparts. The virus levels in the analyzed wastewater samples had a high or very high relation with the numbers of clinical cases in the monitored regions. In fact, correlation with a 3-, 4-, or 5-day temporal offset was revealed. The OSN-qRT-PCR assays demonstrated robustness, mainly in samples with low viral loads.
Collapse
Affiliation(s)
- Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia
| | - Marianna Cíchová
- Water Research Institute, Nábrežie Arm. Gen. L. Svobodu 5, 812 49, Bratislava, Slovakia
| | - Veronika Janská
- Water Research Institute, Nábrežie Arm. Gen. L. Svobodu 5, 812 49, Bratislava, Slovakia
| | - Adam Achs
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Dúbravská Cesta 9, 845 05, Bratislava, Slovakia
| | - Tomáš Kuchta
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51, Bratislava, Slovakia.
- Caravella, s.r.o., Tupolevova 2, 851 01, Bratislava, Slovakia.
| |
Collapse
|
15
|
Wannigama DL, Amarasiri M, Hongsing P, Hurst C, Modchang C, Chadsuthi S, Anupong S, Phattharapornjaroen P, Rad S. M. AH, Fernandez S, Huang AT, Vatanaprasan P, Jay DJ, Saethang T, Luk-in S, Storer RJ, Ounjai P, Devanga Ragupathi NK, Kanthawee P, Sano D, Furukawa T, Sei K, Leelahavanichkul A, Kanjanabuch T, Hirankarn N, Higgins PG, Kicic A, Singer AC, Chatsuwan T, Trowsdale S, Abe S, McLellan AD, Ishikawa H. COVID-19 monitoring with sparse sampling of sewered and non-sewered wastewater in urban and rural communities. iScience 2023; 26:107019. [PMID: 37351501 PMCID: PMC10250052 DOI: 10.1016/j.isci.2023.107019] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Equitable SARS-CoV-2 surveillance in low-resource communities lacking centralized sewers is critical as wastewater-based epidemiology (WBE) progresses. However, large-scale studies on SARS-CoV-2 detection in wastewater from low-and middle-income countries is limited because of economic and technical reasons. In this study, wastewater samples were collected twice a month from 186 urban and rural subdistricts in nine provinces of Thailand mostly having decentralized and non-sewered sanitation infrastructure and analyzed for SARS-CoV-2 RNA variants using allele-specific RT-qPCR. Wastewater SARS-CoV-2 RNA concentration was used to estimate the real-time incidence and time-varying effective reproduction number (Re). Results showed an increase in SARS-CoV-2 RNA concentrations in wastewater from urban and rural areas 14-20 days earlier than infected individuals were officially reported. It also showed that community/food markets were "hot spots" for infected people. This approach offers an opportunity for early detection of transmission surges, allowing preparedness and potentially mitigating significant outbreaks at both spatial and temporal scales.
Collapse
Affiliation(s)
- Dhammika Leshan Wannigama
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Biofilms and Antimicrobial Resistance Consortium of ODA receiving countries, The University of Sheffield, Sheffield, UK
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Mohan Amarasiri
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Parichart Hongsing
- Mae Fah Luang University Hospital, Chiang Rai, Thailand
- School of Integrative Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Cameron Hurst
- Molly Wardaguga Research Centre, Charles Darwin University, Brisbane, QLD, Australia
- Statistics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Charin Modchang
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
| | - Sudarat Chadsuthi
- Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Suparinthon Anupong
- Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phatthranit Phattharapornjaroen
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Institute of Clinical Sciences, Department of Surgery, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden
| | - Ali Hosseini Rad S. M.
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Stefan Fernandez
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Angkana T. Huang
- Department of Virology, U.S. Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Dylan John Jay
- Pathogen Hunter’s Research Collaborative Team, Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Thammakorn Saethang
- Department of Computer Science, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Robin James Storer
- Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Puey Ounjai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Naveen Kumar Devanga Ragupathi
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA, Australia
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, UK
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Phitsanuruk Kanthawee
- Public Health major, School of Health Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Daisuke Sano
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Takashi Furukawa
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Kazunari Sei
- Laboratory of Environmental Hygiene, Department of Health Science, School of Allied Health Sciences, Graduate School of Medical Sciences, Kitasato University, Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Asada Leelahavanichkul
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Talerngsak Kanjanabuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Kidney Metabolic Disorders, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Dialysis Policy and Practice Program (DiP3), School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Peritoneal Dialysis Excellence Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paul G. Higgins
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner site Bonn-Cologne, Cologne, Germany
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, Medical School, The University of Western Australia, Nedlands, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- School of Population Health, Curtin University, Bentley, WA 6102, Australia
| | | | - Tanittha Chatsuwan
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Center of Excellence in Antimicrobial Resistance and Stewardship, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sam Trowsdale
- Department of Environmental Science, University of Auckland, Auckland 1010, New Zealand
| | - Shuichi Abe
- Department of Infectious Diseases and Infection Control, Yamagata Prefectural Central Hospital, Yamagata, Japan
| | - Alexander D. McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago 9010, New Zealand
| | - Hitoshi Ishikawa
- Yamagata Prefectural University of Health Sciences, Kamiyanagi, Yamagata 990-2212, Japan
| |
Collapse
|
16
|
Ashraf MA, Nawaz M, Asif A, Ali MA, Mehmood A, Aziz MW, Shabbir MZ, Mukhtar N, Shabbir MAB, Raza S, Yaqub T. Temporal study of wastewater surveillance from September 2020 to March 2021: an estimation of COVID-19 patients in Lahore, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80855-80862. [PMID: 37308626 DOI: 10.1007/s11356-023-28041-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
The first aim of study was to quantify the viral load in the wastewater samples by RT-qPCR testing in Lahore population to estimate the number of patients affected and predict the next resurgence of COVID-19 wave in the city. The second aim of the study was to determine the hotspot areas of Lahore which remained positive more often for virus with high viral load. In this study, n = 420 sewage samples were collected on an average of two weeks intervals from 30 different sewage water disposal stations (14 sampling events) from Sept 2020 to March 2021. RNA was extracted and quantified by RT-qPCR without concentrating the virus in samples. Number of positive disposal sites (7-93%), viral load from sewage samples (100.296 to 103.034), and estimated patients (660-17,030) ranged from low to high according to the surge and restrain of 2nd and 3rd COVID-19 waves in the country. The viral load and estimated patients were reported high in January 2021 and March 2021 which were similar to the peak of 2nd and 3rd waves in Pakistan. Site 18 (Niaz Baig village DS) showed the highest viral load among all sites. Findings of the present study helped to estimate the number of patients and track the resurgence in COVID-19 waves in Lahore particularly, and in Punjab generally. Furthermore, it emphasizes the role of wastewater-based epidemiology to help policymakers strengthen the quarantine measures along with immunization to overcome enteric viral diseases. Local and national stake holders should work in collaboration to improve the environmental hygiene to control the disease.
Collapse
Affiliation(s)
- Muhammad Adnan Ashraf
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Nawaz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Ali Asif
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Asad Ali
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Adnan Mehmood
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Waqar Aziz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Zubair Shabbir
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Nadia Mukhtar
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Sohail Raza
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Tahir Yaqub
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
17
|
Trigo-Tasende N, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Vaamonde M, López-Oriona Á, Barbeito I, Nasser-Ali M, Reif R, Rodiño-Janeiro BK, Fernández-Álvarez E, Iglesias-Corrás I, Freire B, Tarrío-Saavedra J, Tomás L, Gallego-García P, Posada D, Bou G, López-de-Ullibarri I, Cao R, Ladra S, Poza M. Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27877-3. [PMID: 37286834 DOI: 10.1007/s11356-023-27877-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 mutations in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected people and the frequency of each emerging variant circulating in the community, which considerable improved the surveillance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between 103 and 106 SARS-CoV-2 RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8-36 days in advance with respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health system did. Data generated here helped local authorities and health managers to give a faster and more efficient response to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring in wastewater over time.
Collapse
Affiliation(s)
- Noelia Trigo-Tasende
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Soraya Rumbo-Feal
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Kelly Conde-Pérez
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Manuel Vaamonde
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ángel López-Oriona
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Inés Barbeito
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Mohammed Nasser-Ali
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Rubén Reif
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Bruno K Rodiño-Janeiro
- BFlow, University of Santiago de Compostela (USC) and Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15706, Santiago de Compostela, A Coruña, Spain
| | - Elisa Fernández-Álvarez
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Iago Iglesias-Corrás
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Borja Freire
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Javier Tarrío-Saavedra
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Germán Bou
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Ignacio López-de-Ullibarri
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ricardo Cao
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Susana Ladra
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Margarita Poza
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain.
| |
Collapse
|
18
|
Nakgul L, Pasomsub E, Thongpradit S, Chanprasertyothin S, Prasongtanakij S, Thadanipon K, Jadmuang C, Kunanan D, Ongphiphadhanakul B, Phuphuakrat A. Saliva and wastewater surveillance for SARS-CoV-2 during school reopening amid COVID-19 pandemic in Thailand. PUBLIC HEALTH IN PRACTICE 2023; 5:100378. [PMID: 36937099 PMCID: PMC10010048 DOI: 10.1016/j.puhip.2023.100378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Objectives School closure during the coronavirus disease 2019 (COVID-19) pandemic resulted in a negative impact on children. Serial testing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been proposed as a measure for safety school reopening. We aimed to study the usefulness of SARS-CoV-2 surveillance by saliva testing and performing wastewater surveillance for SARS-CoV-2 in a day school in a resource-limited setting. Methods We conducted a cluster randomized study to investigate the potential use of saliva antigen testing compared to saliva pooling for nucleic acid detection in a primary school in Thailand from December 2021 to March 2022. Wastewater surveillance in the school was also performed. Results A total of 484 participants attended the study. SARS-CoV-2 was detected in two participants from the tests provided by the study (one in the pool nucleic acid test arm, and another in the quantitative antigen test arm). Additional ten participants reported positive results on an additional rapid antigen test (RAT) performed by nasal swab when they had symptoms or household contact. There was no difference among arms in viral detection by intention-to-treat and per protocol analysis (p = 0.304 and 0.894, respectively). We also investigated the feasibility of wastewater surveillance to detect the virus in this setting. However, wastewater surveillance could not detect the virus. Conclusions In a low COVID-19 prevalence, serial saliva testing and wastewater surveillance for SARS-CoV-2 rarely detected the virus in a day school setting. Performing RAT on nasal swabs when students, teachers or staff have symptoms or household contact might be more reasonable.
Collapse
Affiliation(s)
- Laor Nakgul
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ekawat Pasomsub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Supranee Thongpradit
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Somsak Prasongtanakij
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kunlawat Thadanipon
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chokchai Jadmuang
- Anubansamsen School (the Government Lottery Office Support), Bangkok, Thailand
| | - Daranee Kunanan
- Anubansamsen School (the Government Lottery Office Support), Bangkok, Thailand
| | | | - Angsana Phuphuakrat
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Gh Jeelani P, Muzammil Munawar S, Khaleel Basha S, Krishna P G, Joshua Sinclair B, Dharshini Jenifer A, Ojha N, Mossa AT, Chidambaram R. Exploring possible strategies for treating SARS-CoV-2 in sewage wastewater: A review of current research and future directions. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100056. [PMID: 37131485 PMCID: PMC10088352 DOI: 10.1016/j.heha.2023.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
The advent of acute respiratory coronavirus disease (COVID-19) is convoyed by the shedding of the virus in stool. Although inhalation from person-to-person and aerosol/droplet transmission are the main modes of SARS-Coronavirus-2 (SARS-CoV-2) transmission, currently available evidence indicates the presence of viral RNA in the sewerage wastewater, which highlights the need for more effective corona virus treatment options. In the existing COVID-19 pandemic, a substantial percentage of cases shed SARS-CoV-2 viral RNA in their faeces. Hence the treating this sewerage wastewater with proper surveillance is essential to contain this deadly pathogen from further transmission. Since, the viral disinfectants will not be very effective on sewerage waste as organic matter, and suspended solids in water can protect viruses that adsorb to these particles. More effective methods and measures are needed to prevent this virus from spreading. This review will explore some potential methods to treat the SARS-CoV-2 infected sewerage wastewater, current research and future directions.
Collapse
Affiliation(s)
- Peerzada Gh Jeelani
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Syed Muzammil Munawar
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - S Khaleel Basha
- C. Abdul Hakeem College, (Automous) Melvisharam - 632 509, Ranipet District, Tamilnadu, India
| | - Gopi Krishna P
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Bruce Joshua Sinclair
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - A Dharshini Jenifer
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Nupur Ojha
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai 600036 Tamil Nadu, India
| | - Abdel-Tawab Mossa
- National Research Centre, Egypt | Cairo, Egypt | NRC 33 El Buhouth St 'Ad Doqi, Dokki, Cairo Governorate 12622, Egypt
| | - Ramalingam Chidambaram
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 Tamil Nadu, India
| |
Collapse
|
20
|
Corchis-Scott R, Geng Q, Al Riahi AM, Labak A, Podadera A, Ng KKS, Porter LA, Tong Y, Dixon JC, Menard SL, Seth R, McKay RM. Actionable wastewater surveillance: application to a university residence hall during the transition between Delta and Omicron resurgences of COVID-19. Front Public Health 2023; 11:1139423. [PMID: 37265515 PMCID: PMC10230041 DOI: 10.3389/fpubh.2023.1139423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Wastewater surveillance has gained traction during the COVID-19 pandemic as an effective and non-biased means to track community infection. While most surveillance relies on samples collected at municipal wastewater treatment plants, surveillance is more actionable when samples are collected "upstream" where mitigation of transmission is tractable. This report describes the results of wastewater surveillance for SARS-CoV-2 at residence halls on a university campus aimed at preventing outbreak escalation by mitigating community spread. Another goal was to estimate fecal shedding rates of SARS-CoV-2 in a non-clinical setting. Passive sampling devices were deployed in sewer laterals originating from residence halls at a frequency of twice weekly during fall 2021 as the Delta variant of concern continued to circulate across North America. A positive detection as part of routine sampling in late November 2021 triggered daily monitoring and further isolated the signal to a single wing of one residence hall. Detection of SARS-CoV-2 within the wastewater over a period of 3 consecutive days led to a coordinated rapid antigen testing campaign targeting the residence hall occupants and the identification and isolation of infected individuals. With knowledge of the number of individuals testing positive for COVID-19, fecal shedding rates were estimated to range from 3.70 log10 gc ‧ g feces-1 to 5.94 log10 gc ‧ g feces-1. These results reinforce the efficacy of wastewater surveillance as an early indicator of infection in congregate living settings. Detections can trigger public health measures ranging from enhanced communications to targeted coordinated testing and quarantine.
Collapse
Affiliation(s)
- Ryland Corchis-Scott
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Abdul Monem Al Riahi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr Labak
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Kenneth K. S. Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Lisa A. Porter
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| | - Jess C. Dixon
- Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | | | - Rajesh Seth
- Civil and Environmental Engineering, University of Windsor, Windsor, ON, Canada
| | - R. Michael McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
21
|
Rainey AL, Liang S, Bisesi JH, Sabo-Attwood T, Maurelli AT. A multistate assessment of population normalization factors for wastewater-based epidemiology of COVID-19. PLoS One 2023; 18:e0284370. [PMID: 37043469 PMCID: PMC10096268 DOI: 10.1371/journal.pone.0284370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023] Open
Abstract
Wastewater-based epidemiology (WBE) has become a valuable tool for monitoring SARS-CoV-2 infection trends throughout the COVID-19 pandemic. Population biomarkers that measure the relative human fecal contribution to normalize SARS-CoV-2 wastewater concentrations are needed for improved analysis and interpretation of community infection trends. The Centers for Disease Control and Prevention National Wastewater Surveillance System (CDC NWSS) recommends using the wastewater flow rate or human fecal indicators as population normalization factors. However, there is no consensus on which normalization factor performs best. In this study, we provided the first multistate assessment of the effects of flow rate and human fecal indicators (crAssphage, F+ Coliphage, and PMMoV) on the correlation of SARS-CoV-2 wastewater concentrations and COVID-19 cases using the CDC NWSS dataset of 182 communities across six U.S. states. Flow normalized SARS-CoV-2 wastewater concentrations produced the strongest correlation with COVID-19 cases. The correlation from the three human fecal indicators were significantly lower than flow rate. Additionally, using reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) significantly improved correlation values over samples that were analyzed with real-time reverse transcription quantitative polymerase chain reaction (rRT-qPCR). Our assessment shows that utilizing flow normalization with RT-ddPCR generate the strongest correlation between SARS-CoV-2 wastewater concentrations and COVID-19 cases.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Song Liang
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Joseph H. Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
22
|
Ahmed W, Bivins A, Stephens M, Metcalfe S, Smith WJM, Sirikanchana K, Kitajima M, Simpson SL. Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161023. [PMID: 36539100 PMCID: PMC9759456 DOI: 10.1016/j.scitotenv.2022.161023] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 05/07/2023]
Abstract
The early warning and tracking of COVID-19 prevalence in the community provided by wastewater surveillance has highlighted its potential for much broader viral disease surveillance. In this proof-of-concept study, 46 wastewater samples from four wastewater treatment plants (WWTPs) in Queensland, Australia, were analyzed for the presence and abundance of 13 respiratory viruses, and the results were compared with reported clinical cases. The viruses were concentrated using the adsorption-extraction (AE) method, and extracted nucleic acids were analyzed using qPCR and RT-qPCR. Among the viruses tested, bocavirus (BoV), parechovirus (PeV), rhinovirus A (RhV A) and rhinovirus B (RhV B) were detected in all wastewater samples. All the tested viruses except influenza B virus (IBV) were detected in wastewater sample from at least one WWTP. BoV was detected with the greatest concentration (4.96-7.22 log10 GC/L), followed by Epstein-Barr virus (EBV) (4.08-6.46 log10 GC/L), RhV A (3.95-5.63 log10 GC/L), RhV B (3.74-5.61 log10 GC/L), and PeV (3.17-5.32 log10 GC/L). Influenza viruses and respiratory syncytial virus (RSV) are notifiable conditions in Queensland, allowing the gene copy (GC) concentrations to be compared with reported clinical cases. Significant correlations (ρ = 0.60, p < 0.01 for IAV and ρ = 0.53, p < 0.01 for RSV) were observed when pooled wastewater influenza A virus (IAV) and RSV log10 GC/L concentrations were compared to log10 clinical cases among the four WWTP catchments. The positive predictive value for the presence of IAV and RSV in wastewater was 97 % for both IAV and RSV clinical cases within the four WWTP catchments. The overall accuracy of wastewater analysis for predicting clinical cases of IAV and RSV was 97 and 90 %, respectively. This paper lends credibility to the application of wastewater surveillance to monitor respiratory viruses of various genomic characteristics, with potential uses for increased surveillance capabilities and as a tool in understanding the dynamics of disease circulation in the communities.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA
| | - Mikayla Stephens
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | | |
Collapse
|
23
|
Sangsanont J, Rattanakul S, Makkaew P, Precha N, Rukthanapitak P, Sresung M, Siri Y, Kitajima M, Takeda T, Haramoto E, Puenpa J, Wanlapakorn N, Poovorawan Y, Mongkolsuk S, Sirikanchana K. Wastewater monitoring in tourist cities as potential sentinel sites for near real-time dynamics of imported SARS-CoV-2 variants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160317. [PMID: 36436629 PMCID: PMC9691270 DOI: 10.1016/j.scitotenv.2022.160317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology (WBE) complements the clinical surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants' distribution in populations. Many developed nations have established national and regional WBE systems; however, governance and budget constraints could be obstacles for low- and middle-income countries. An urgent need thus exists to identify hotspots to serve as sentinel sites for WBE. We hypothesized that representative wastewater treatment plants (WWTPs) in two international gateway cities, Bangkok and Phuket, Thailand, could be sentineled for SARS-CoV-2 and its variants to reflect the clinical distribution patterns at city level and serve as early indicators of new variants entering the country. Municipal wastewater samples (n = 132) were collected from eight representative municipal WWTPs in Bangkok and Phuket during 19 sampling events from October 2021 to March 2022, which were tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) using the US CDC N1 and N2 multiplex and variant (Alpha, Delta, and Omicron BA.1 and BA.2) singleplex assays. The variant detection ratios from Bangkok and Phuket followed similar trends to the national clinical testing data, and each variant's viral loads agreed with the daily new cases (3-d moving average). Omicron BA.1 was detected in Phuket wastewater prior to Bangkok, possibly due to Phuket's WWTPs serving tourist communities. We found that the Omicron BA.1 and BA.2 viral loads predominantly drove the SARS-CoV-2 resurgence. We also noted a shifting pattern in the Bangkok WBE from a 22-d early warning in early 2021 to a near real-time pattern in late 2021. The potential application of tourist hotspots for WBE to indicate the arrival of new variants and re-emerging or unprecedented infectious agents could support tourism-dependent economies by complementing the reduced clinical regulations while maintaining public health protection via wastewater surveillance.
Collapse
Affiliation(s)
- Jatuwat Sangsanont
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Water Science and Technology for Sustainable Environmental Research Group, Chulalongkorn University, Bangkok 10330, Thailand
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pratchaya Rukthanapitak
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat 80160, Thailand
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 113-0033, Japan
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Yamanashi 400-8511, Japan
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Helm B, Geissler M, Mayer R, Schubert S, Oertel R, Dumke R, Dalpke A, El-Armouche A, Renner B, Krebs P. Regional and temporal differences in the relation between SARS-CoV-2 biomarkers in wastewater and estimated infection prevalence - Insights from long-term surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159358. [PMID: 36240928 PMCID: PMC9554318 DOI: 10.1016/j.scitotenv.2022.159358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology provides a conceptual framework for the evaluation of the prevalence of public health related biomarkers. In the context of the Coronavirus disease-2019, wastewater monitoring emerged as a complementary tool for epidemic management. In this study, we evaluated data from six wastewater treatment plants in the region of Saxony, Germany. The study period lasted from February to December 2021 and covered the third and fourth regional epidemic waves. We collected 1065 daily composite samples and analyzed SARS-CoV-2 RNA concentrations using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Regression models quantify the relation between RNA concentrations and disease prevalence. We demonstrated that the relation is site and time specific. Median loads per diagnosed case differed by a factor of 3-4 among sites during both waves and were on average 45 % higher during the third wave. In most cases, log-log-transformed data achieved better regression performance than non-transformed data and local calibration outperformed global models for all sites. The inclusion of lag/lead time, discharge and detection probability improved model performance in all cases significantly, but the importance of these components was also site and time specific. In all cases, models with lag/lead time and log-log-transformed data obtained satisfactory goodness-of-fit with adjusted coefficients of determination higher than 0.5. Back-estimation of testing efficiency from wastewater data confirmed state-wide prevalence estimation from individual testing statistics, but revealed pronounced differences throughout the epidemic waves and among the different sites.
Collapse
Affiliation(s)
- Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany.
| | - Michael Geissler
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Hydrobiology, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Roger Dumke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Alexander Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; University Heidelberg, Institute of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - Ali El-Armouche
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany; Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Peter Krebs
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, Helmholtzstrasse 10, 01069 Dresden, Germany
| |
Collapse
|
25
|
Rainey AL, Buschang K, O’Connor A, Love D, Wormington AM, Messcher RL, Loeb JC, Robinson SE, Ponder H, Waldo S, Williams R, Shapiro J, McAlister EB, Lauzardo M, Lednicky JA, Maurelli AT, Sabo-Attwood T, Bisesi J. Retrospective Analysis of Wastewater-Based Epidemiology of SARS-CoV-2 in Residences on a Large College Campus: Relationships between Wastewater Outcomes and COVID-19 Cases across Two Semesters with Different COVID-19 Mitigation Policies. ACS ES&T WATER 2023; 3:16-29. [PMID: 37552720 PMCID: PMC9762499 DOI: 10.1021/acsestwater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 06/18/2023]
Abstract
Wastewater-based epidemiology (WBE) has been utilized for outbreak monitoring and response efforts in university settings during the coronavirus disease 2019 (COVID-19) pandemic. However, few studies examined the impact of university policies on the effectiveness of WBE to identify cases and mitigate transmission. The objective of this study was to retrospectively assess relationships between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) wastewater outcomes and COVID-19 cases in residential buildings of a large university campus across two academic semesters (August 2020-May 2021) under different COVID-19 mitigation policies. Clinical case surveillance data of student residents were obtained from the university COVID-19 response program. We collected and processed building-level wastewater for detection and quantification of SARS-CoV-2 RNA by RT-qPCR. The odds of obtaining a positive wastewater sample increased with COVID-19 clinical cases in the fall semester (OR = 1.50, P value = 0.02), with higher odds in the spring semester (OR = 2.63, P value < 0.0001). We observed linear associations between SARS-CoV-2 wastewater concentrations and COVID-19 clinical cases (parameter estimate = 1.2, P value = 0.006). Our study demonstrated the effectiveness of WBE in the university setting, though it may be limited under different COVID-19 mitigation policies. As a complementary surveillance tool, WBE should be accompanied by robust administrative and clinical testing efforts for the COVID-19 pandemic response.
Collapse
Affiliation(s)
- Andrew L. Rainey
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Katherine Buschang
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Amber O’Connor
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Deirdre Love
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Alexis M. Wormington
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Julia C. Loeb
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Sarah E. Robinson
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Hunter Ponder
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Sarah Waldo
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Roy Williams
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
| | - Jerne Shapiro
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Florida Department of
Health, Alachua County, Gainesville, Florida32641, United
States
- Department of Epidemiology, College of Public
Health and Health Professions and College of Medicine, Gainesville,
Florida32611, United States
| | | | - Michael Lauzardo
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- UF Health Screen, Test, and Protect,
University of Florida, Gainesville, Florida32611,
United States
- Department of Medicine, College of Medicine,
University of Florida, Gainesville, Florida32611,
United States
| | - John A. Lednicky
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Anthony T. Maurelli
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| | - Joseph
H. Bisesi
- Department of Environmental and Global Health, College
of Public Health and Health Professions, University of Florida,
Gainesville, Florida32610, United States
- Emerging Pathogens Institute, University
of Florida, Gainesville, Florida32610, United
States
- Center for Environmental and Human Toxicology,
University of Florida, Gainesville, Florida32611,
United States
| |
Collapse
|
26
|
Zhang M, King MD. Temporal Variation of SARS-CoV-2 Levels in Wastewater from a Meat Processing Plant. Microorganisms 2023; 11:174. [PMID: 36677465 PMCID: PMC9864470 DOI: 10.3390/microorganisms11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Wastewater-based surveillance (WBS) on SARS-CoV-2 has been proved to be an effective approach to estimate the prevalence of COVID-19 in communities and cities. However, its application was overlooked at smaller scale, such as a single facility. Meat processing plants are hotspots for COVID-19 outbreaks due to their unique environment that are favorable for the survival and persistence of SARS-CoV-2. This is the first known WBS study in meat processing plants. The goal was to understand the temporal variation of the SARS-CoV-2 levels in wastewater from a meat processing plant in Canada during a three-month campaign and to find any correlation with clinically confirmed cases in the surrounding city area. Higher SARS-CoV-2 concentrations and detection frequencies were observed in the solid fraction compared to the liquid fraction of the wastewater. The viruses can be preserved in the solid fraction of wastewater for up to 12 days. The wastewater virus level did not correlate to the city-wide COVID-19 cases due to the unmatching scales. WBS on SARS-CoV-2 in meat processing plants can be useful for identifying COVID-19 outbreaks in the facility and serve as an effective alternative when resources for routine individual testing are not available.
Collapse
Affiliation(s)
| | - Maria D. King
- Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
27
|
Li X, Zhang S, Sherchan S, Orive G, Lertxundi U, Haramoto E, Honda R, Kumar M, Arora S, Kitajima M, Jiang G. Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129848. [PMID: 36067562 PMCID: PMC9420035 DOI: 10.1016/j.jhazmat.2022.129848] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
Wastewater-based epidemiology (WBE) has been considered as a promising approach for population-wide surveillance of coronavirus disease 2019 (COVID-19). Many studies have successfully quantified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater (CRNA). However, the correlation between the CRNA and the COVID-19 clinically confirmed cases in the corresponding wastewater catchments varies and the impacts of environmental and other factors remain unclear. A systematic review and meta-analysis were conducted to identify the correlation between CRNA and various types of clinically confirmed case numbers, including prevalence and incidence rates. The impacts of environmental factors, WBE sampling design, and epidemiological conditions on the correlation were assessed for the same datasets. The systematic review identified 133 correlation coefficients, ranging from -0.38 to 0.99. The correlation between CRNA and new cases (either daily new, weekly new, or future cases) was stronger than that of active cases and cumulative cases. These correlation coefficients were potentially affected by environmental and epidemiological conditions and WBE sampling design. Larger variations of air temperature and clinical testing coverage, and the increase of catchment size showed strong negative impacts on the correlation between CRNA and COVID-19 case numbers. Interestingly, the sampling technique had negligible impact although increasing the sampling frequency improved the correlation. These findings highlight the importance of viral shedding dynamics, in-sewer decay, WBE sampling design and clinical testing on the accurate back-estimation of COVID-19 case numbers through the WBE approach.
Collapse
Affiliation(s)
- Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shuxin Zhang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia
| | - Samendrdra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- Bioaraba Health Research Institute; Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Hokkaido, Japan
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| |
Collapse
|
28
|
Oh C, Zhou A, O'Brien K, Jamal Y, Wennerdahl H, Schmidt AR, Shisler JL, Jutla A, Schmidt AR, Keefer L, Brown WM, Nguyen TH. Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158448. [PMID: 36063927 PMCID: PMC9436825 DOI: 10.1016/j.scitotenv.2022.158448] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/28/2022] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology (WBE), an emerging approach for community-wide COVID-19 surveillance, was primarily characterized at large sewersheds such as wastewater treatment plants serving a large population. Although informed public health measures can be better implemented for a small population, WBE for neighborhood-scale sewersheds is less studied and not fully understood. This study applied WBE to seven neighborhood-scale sewersheds (average population of 1471) from January to November 2021. Community testing data showed an average of 0.004 % incidence rate in these sewersheds (97 % of monitoring periods reported two or fewer daily infections). In 92 % of sewage samples, SARS-CoV-2 N gene fragments were below the limit of quantification. We statistically determined 10-2.6 as the threshold of the SARS-CoV-2 N gene concentration normalized to pepper mild mottle virus (N/PMMOV) to alert high COVID-19 incidence rate in the studied sewershed. This threshold of N/PMMOV identified neighborhood-scale outbreaks (COVID-19 incidence rate higher than 0.2 %) with 82 % sensitivity and 51 % specificity. Importantly, neighborhood-scale WBE can discern local outbreaks that would not otherwise be identified by city-scale WBE. Our findings suggest that neighborhood-scale WBE is an effective community-wide disease surveillance tool when COVID-19 incidence is maintained at a low level.
Collapse
Affiliation(s)
- Chamteut Oh
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States.
| | - Aijia Zhou
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Kate O'Brien
- School of Integrative Biology, University of Illinois Urbana-Champaign, United States
| | - Yusuf Jamal
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, United States
| | - Hayden Wennerdahl
- Illinois State Water Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, United States
| | - Arthur R Schmidt
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Joanna L Shisler
- Department of Microbiology, University of Illinois Urbana-Champaign, United States
| | - Antarpreet Jutla
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, United States
| | - Arthur R Schmidt
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States
| | - Laura Keefer
- Illinois State Water Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, United States
| | - William M Brown
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, United States
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, United States; Institute of Genomic Biology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
29
|
Mitranescu A, Uchaikina A, Kau AS, Stange C, Ho J, Tiehm A, Wurzbacher C, Drewes JE. Wastewater-Based Epidemiology for SARS-CoV-2 Biomarkers: Evaluation of Normalization Methods in Small and Large Communities in Southern Germany. ACS ES&T WATER 2022; 2:2460-2470. [PMID: 37552738 PMCID: PMC9578648 DOI: 10.1021/acsestwater.2c00306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
In the context of the COVID-19 pandemic, wastewater-based epidemiology (WBE) emerged as a useful tool to account for the prevalence of SARS-CoV-2 infections on a population scale. In this study, we analyzed wastewater samples from three large (>300,000 people served) and four small (<25,000 people served) communities throughout southern Germany from August to December 2021, capturing the fourth infection wave in Germany dominated by the Delta variant (B.1.617.2). As dilution can skew the SARS-CoV-2 biomarker concentrations in wastewater, normalization to wastewater parameters can improve the relationship between SARS-CoV-2 biomarker data and clinical prevalence data. In this study, we investigated the suitability and performance of various normalization parameters. Influent flow data showed strong relationships to precipitation data; accordingly, flow-normalization reacted distinctly to precipitation events. Normalization by surrogate viruses CrAssphage and pepper mild mottle virus showed varying performance for different sampling sites. The best normalization performance was achieved with a mixed fecal indicator calculated from both surrogate viruses. Analyzing the temporal and spatial variation of normalization parameters proved to be useful to explain normalization performance. Overall, our findings indicate that the performance of surrogate viruses, flow, and hydro-chemical data is site-specific. We recommend testing the suitability of normalization parameters individually for specific sewage systems.
Collapse
Affiliation(s)
- Alexander Mitranescu
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Anna Uchaikina
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Anna-Sonia Kau
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Claudia Stange
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Johannes Ho
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Andreas Tiehm
- Department of Water Microbiology, TZW:
DVGW-Technologiezentrum Wasser, Karlsruher Straße 84, 76139Karlsruhe,
Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| | - Jörg E. Drewes
- Chair of Urban Water Systems Engineering,
Technical University of Munich, Am Coulombwall 3,
85748Garching, Germany
| |
Collapse
|
30
|
Jantharadej K, Kongprajug A, Mhuantong W, Limpiyakorn T, Suwannasilp BB, Mongkolsuk S, Sirikanchana K. Comparative genomic analyses of pathogenic bacteria and viruses and antimicrobial resistance genes in an urban transportation canal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157652. [PMID: 35905960 DOI: 10.1016/j.scitotenv.2022.157652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Water commuting is a major urban transportation method in Thailand. However, urban boat commuters risk exposure to microbially contaminated bioaerosols or splash. We aimed to investigate the microbial community structures, identify bacterial and viral pathogens, and assess the abundance of antimicrobial resistance genes (ARGs) using next-generation sequencing (NGS) at 10 sampling sites along an 18 km transportation boat route in the Saen Saep Canal, which traverses cultural, commercial, and suburban land-based zones. The shotgun metagenomic (Illumina HiSeq) and 16S rRNA gene amplicon (V4 region) (Illumina MiSeq) sequencing platforms revealed diverse microbial clusters aligned with the zones, with explicit segregation between the cultural and suburban sites. The shotgun metagenomic sequencing further identified bacterial and viral pathogens, and ARGs. The predominant bacterial pathogens (>0.5 % relative abundance) were the Burkholderia cepacia complex, Arcobacter butzleri, Burkholderia vietnamiensis, Klebsiella pneumoniae, and the Enterobacter cloacae complex. The viruses (0.28 %-0.67 % abundance in all microbial sequences) comprised mainly vertebrate viruses and bacteriophages, with encephalomyocarditis virus (33.3 %-58.2 % abundance in viral sequences), hepatitis C virus genotype 1, human alphaherpesvirus 1, and human betaherpesvirus 6A among the human viral pathogens. The 15 ARG types contained 611 ARG subtypes, including those resistant to beta-lactam, which was the most diverse and abundant group (206 subtypes; 17.0 %-27.5 %), aminoglycoside (94 subtypes; 9.6 %-15.3 %), tetracycline (80 subtypes; 15.6 %-20.2 %), and macrolide (79 subtypes; 14.5 %-32.1 %). Interestingly, the abundance of ARGs associated with resistance to beta-lactam, trimethoprim, and sulphonamide, as well as A. butzleri and crAssphage, at the cultural sites was significantly different from the other sites (p < 0.05). We demonstrated the benefits of using NGS to deliver insights into microbial communities, and antimicrobial resistance, both of which pose a risk to human health. Using NGS may facilitate microbial risk mitigation and management for urban water commuters and proximal residents.
Collapse
Affiliation(s)
- Krittayapong Jantharadej
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology, Enzyme Technology Research Team, Pathum Thani, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Benjaporn Boonchayaanant Suwannasilp
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand; Center of Excellence on Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand; Biotechnology for Wastewater Engineering Research Group, Chulalongkorn University, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
31
|
Mousazadeh M, Kabdaşlı I, Khademi S, Sandoval MA, Moussavi SP, Malekdar F, Gilhotra V, Hashemi M, Dehghani MH. A critical review on the existing wastewater treatment methods in the COVID-19 era: What is the potential of advanced oxidation processes in combatting viral especially SARS-CoV-2? JOURNAL OF WATER PROCESS ENGINEERING 2022; 49:103077. [PMID: 35990175 PMCID: PMC9381433 DOI: 10.1016/j.jwpe.2022.103077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/01/2023]
Abstract
The COVID-19 epidemic has put the risk of virus contamination in water bodies on the horizon of health authorities. Hence, finding effective ways to remove the virus, especially SARS-CoV-2, from wastewater treatment plants (WWTPs) has emerged as a hot issue in the last few years. Herein, this study first deals with the fate of SARS-CoV-2 genetic material in WWTPs, then critically reviews and compares different wastewater treatment methods for combatting COVID-19 as well as to increase the water quality. This critical review sheds light the efficiency of advanced oxidation processes (AOPs) to inactivate virus, specially SARS-CoV-2 RNA. Although several physicochemical treatment processes (e.g. activated sludge) are commonly used to eliminate pathogens, AOPs are the most versatile and effective virus inactivation methods. For instance, TiO2 is the most known and widely studied photo-catalyst innocuously utilized to degrade pollutants as well as to photo-induce bacterial and virus disinfection due to its high chemical resistance and efficient photo-activity. When ozone is dissolved in water and wastewater, it generates a wide spectrum of the reactive oxygen species (ROS), which are responsible to degrade materials in virus membranes resulting in destroying the cell wall. Furthermore, electrochemical advanced oxidation processes act through direct oxidation when pathogens react at the anode surface or by indirect oxidation through oxidizing species produced in the bulk solution. Consequently, they represent a feasible choice for the inactivation of a wide range of pathogens. Nonetheless, there are some challenges with AOPs which should be addressed for application at industrial-scale.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Işık Kabdaşlı
- İstanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazağa Campus, 34469 Maslak, İstanbul, Turkey
| | - Sara Khademi
- Health, Safety, and Environment Specialist, North Drilling Company, Ahvaz, Iran
| | - Miguel Angel Sandoval
- Universidad de Santiago de Chile USACH, Facultad de Química y Biología, Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Casilla 40, Correo 33, Santiago, Chile
- Universidad de Guanajuato, División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | | | - Fatemeh Malekdar
- Department of Foot and Mouth Disease Vaccine Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Rusková M, Bučková M, Achs A, Puškárová A, Wu JH, Kuchta T, Šubr Z, Pangallo D. Useful molecular tools for facing next pandemic events: Effective sample preparation and improved RT-PCR for highly sensitive detection of SARS-CoV-2 in wastewater environment. Int J Hyg Environ Health 2022; 245:114017. [PMID: 35939897 PMCID: PMC9346026 DOI: 10.1016/j.ijheh.2022.114017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 10/28/2022]
Abstract
Viral pandemics can be inevitable in the next future. Considering SARS-CoV-2 pandemics as an example, there seems to be a need to develop a surveillance system able to monitor the presence of potential pathogenic agents. The sewage and wastewater environments demonstrated to be suitable targets for such kind of analysis. In addition, it is important to have reliable molecular diagnostic tools and also to develop a robust detection strategy. In this study, an effective sample preparation procedure was selected from four options and combined with a newly developed improved RT-PCR. First, a model viral system was constructed, containing a fragment of the SARS-CoV-2 gene encoding for the Spike protein. The encapsidated S RNA mimic (ESRM) was based on the plum pox virus (PPV) genome with the inserted targeted gene fragment. ESRM was used for seeding wastewater samples in order to evaluate the viral recovery of four different viral RNA concentration/extraction methods. The efficiency of individual approaches was assessed by the use of a quantitative reverse transcription PCR (qRT-PCR) and by a one-step single-tube nested quantitative reverse transcription PCR (OSN-qRT-PCR). For the detection of viruses in wastewater samples with low viral loads, OSN-qRT-PCR assay produced the most satisfactory results and the highest sensitivity.
Collapse
Affiliation(s)
- Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Adam Achs
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology. Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia
| | - Jer-Horng Wu
- National Cheng Kung University, Department of Environmental Engineering. University Road 1, East District, 701 01, Tainan City, Taiwan
| | - Tomáš Kuchta
- Department of Microbiology, Molecular Biology and Biotechnology, Food Research Institute, National Agricultural and Food Centre, Priemyselná 4, 824 75, Bratislava, Slovakia
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology. Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
33
|
Jiang G, Wu J, Weidhaas J, Li X, Chen Y, Mueller J, Li J, Kumar M, Zhou X, Arora S, Haramoto E, Sherchan S, Orive G, Lertxundi U, Honda R, Kitajima M, Jackson G. Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. WATER RESEARCH 2022; 218:118451. [PMID: 35447417 PMCID: PMC9006161 DOI: 10.1016/j.watres.2022.118451] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/02/2022] [Accepted: 04/10/2022] [Indexed: 05/06/2023]
Abstract
As a cost-effective and objective population-wide surveillance tool, wastewater-based epidemiology (WBE) has been widely implemented worldwide to monitor the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentration in wastewater. However, viral concentrations or loads in wastewater often correlate poorly with clinical case numbers. To date, there is no reliable method to back-estimate the coronavirus disease 2019 (COVID-19) case numbers from SARS-CoV-2 concentrations in wastewater. This greatly limits WBE in achieving its full potential in monitoring the unfolding pandemic. The exponentially growing SARS-CoV-2 WBE dataset, on the other hand, offers an opportunity to develop data-driven models for the estimation of COVID-19 case numbers (both incidence and prevalence) and transmission dynamics (effective reproduction rate). This study developed artificial neural network (ANN) models by innovatively expanding a conventional WBE dataset to include catchment, weather, clinical testing coverage and vaccination rate. The ANN models were trained and evaluated with a comprehensive state-wide wastewater monitoring dataset from Utah, USA during May 2020 to December 2021. In diverse sewer catchments, ANN models were found to accurately estimate the COVID-19 prevalence and incidence rates, with excellent precision for prevalence rates. Also, an ANN model was developed to estimate the effective reproduction number from both wastewater data and other pertinent factors affecting viral transmission and pandemic dynamics. The established ANN model was successfully validated for its transferability to other states or countries using the WBE dataset from Wisconsin, USA.
Collapse
Affiliation(s)
- Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Jiangping Wu
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jennifer Weidhaas
- University of Utah, Civil and Environmental Engineering, 110 Central Campus Drive, Suite 2000, Salt Lake City, UT, USA
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Australia
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sudipti Arora
- Dr. B. Lal Institute of Biotechnology, Jaipur, India
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, Kofu, Japan
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA, USA
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Unax Lertxundi
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Hokkaido University, Hokkaido 060-8628, Japan
| | - Greg Jackson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 4102, Brisbane, Australia
| |
Collapse
|
34
|
Risk Assessment and Prevention Strategy of Virus Infection in the Context of University Resumption. BUILDINGS 2022. [DOI: 10.3390/buildings12060806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The risk assessment system of virus infection probability and the prevention measures for virus transmission are keys to controlling epidemics. In the context of university resumption, this study identifies the risk elements in terms of the mechanism of virus transmission. The effect of two recognized effective measures, i.e., occupancy constraints and ventilation intervention, on the infection risk are quantified and compared using the improved Wells–Riley model. Considering the priority of these two measures, the controlling quantity are determined, and the optimal schemes are proposed based on the targeted infection risk. The results show that the effect of reducing infection risk by constraining occupancy within 25% of all public campus buildings is better than that achieved by increasing the ventilation rate alone. If the ventilation system of the building type is operated by occupiers, it is a priority to prevent the risk of virus infection by restricting occupancy and ensuring the distance between occupants, while if the ventilation system of the building type is centrally controlled, it is a priority to increase the ventilation rate and then limit the occupancy rate during peak periods to 75%.
Collapse
|
35
|
Bar-Or I, Indenbaum V, Weil M, Elul M, Levi N, Aguvaev I, Cohen Z, Levy V, Azar R, Mannasse B, Shirazi R, Bucris E, Mor O, Sela Brown A, Sofer D, Zuckerman NS, Mendelson E, Erster O. National Scale Real-Time Surveillance of SARS-CoV-2 Variants Dynamics by Wastewater Monitoring in Israel. Viruses 2022; 14:1229. [PMID: 35746700 PMCID: PMC9227326 DOI: 10.3390/v14061229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
In this report, we describe a national-scale monitoring of the SARS-CoV-2 (SC-2) variant dynamics in Israel, using multiple-time sampling of 13 wastewater treatment plants. We used a combination of inclusive and selective quantitative PCR assays that specifically identify variants A19/A20 or B.1.1.7 and tested each sample for the presence and relative viral RNA load of each variant. We show that between December 2020 and March 2021, a complete shift in the SC-2 variant circulation was observed, where the B.1.1.7 replaced the A19 in all examined test points. We further show that the normalized viral load (NVL) values and the average new cases per week reached a peak in January 2021 and then decreased gradually in almost all test points, in parallel with the progression of the national vaccination campaign, during February-March 2021. This study demonstrates the importance of monitoring SC-2 variant by using a combination of inclusive and selective PCR tests on a national scale through wastewater sampling, which is far more amendable for high-throughput monitoring compared with sequencing. This approach may be useful for real-time dynamics surveillance of current and future variants, such as the Omicron (BA.1, BA.2) and other variants.
Collapse
Affiliation(s)
- Itay Bar-Or
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Victoria Indenbaum
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Merav Weil
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Michal Elul
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Nofar Levi
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Irina Aguvaev
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Zvi Cohen
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Virginia Levy
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Roberto Azar
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Batya Mannasse
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Rachel Shirazi
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Efrat Bucris
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Orna Mor
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
- Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Alin Sela Brown
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Danit Sofer
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Neta S. Zuckerman
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| | - Ella Mendelson
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
- Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Oran Erster
- Central Virology Laboratory, Israel Ministry of Health, Chaim Sheba Medical Center, Ramat Gan 5262000, Israel; (I.B.-O.); (V.I.); (M.W.); (M.E.); (N.L.); (I.A.); (Z.C.); (V.L.); (R.A.); (B.M.); (R.S.); (E.B.); (O.M.); (A.S.B.); (D.S.); (N.S.Z.); (E.M.)
| |
Collapse
|
36
|
Yamkasem J, Prasartset T, Tattiyapong P, Sirikanchana K, Mongkolsuk S, Soto E, Surachetpong W. Persistence of Tilapia tilapinevirus in fish rearing and environmental water and its ability to infect cell line. JOURNAL OF FISH DISEASES 2022; 45:679-685. [PMID: 35218230 DOI: 10.1111/jfd.13593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Tilapia tilapinevirus, or Tilapia Lake Virus (TiLV), is a RNA virus associated with mass morbidity and mortality in tilapia, leading to severe economic losses for global tilapia aquaculture. In this study, we investigated the persistence of TiLV in water by spiking sterile distilled water (SDW), freshwater collected from rearing fish tanks (FW) and natural pond water (PW) at 27°C as a representative of environmental water conditions with 0.6 ml of stock virus (3.18 × 107 viral copies/ml of water). The water samples were filtered through an electronegative charge membrane and quantified using reverse transcriptase quantitative PCR at 0, 3, 5, 7, 10 and 14 days post-inoculation. The results revealed that TiLV RNA in SDW was reduced by 1.34 log10 in 14 days. A similar approximately 4 log10 removal of the virus in FW and PW was observed at 3 and 7 days, respectively. Moreover, the infectivity of TiLV was further studied; the virus lost its infectivity in E-11 cells after 1 day in SDW, FW and PW water samples, even though the virus was spiked 10 more times than in the viral persistence study. Taken together, the results could be applied to improving biosecurity practices in tilapia farms by disinfecting or resting reservoir water for at least three to five days prior to stocking tilapia, to limit the spread of TiLV.
Collapse
Affiliation(s)
- Jidapa Yamkasem
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Tharinthon Prasartset
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| | | | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Win Surachetpong
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
37
|
Ahmed W, Bivins A, Metcalfe S, Smith WJM, Verbyla ME, Symonds EM, Simpson SL. Evaluation of process limit of detection and quantification variation of SARS-CoV-2 RT-qPCR and RT-dPCR assays for wastewater surveillance. WATER RESEARCH 2022; 213:118132. [PMID: 35152136 PMCID: PMC8812148 DOI: 10.1016/j.watres.2022.118132] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 05/21/2023]
Abstract
Effective wastewater surveillance of SARS-CoV-2 RNA requires the rigorous characterization of the limit of detection resulting from the entire sampling process - the process limit of detection (PLOD). Yet to date, no studies have gone beyond quantifying the assay limit of detection (ALOD) for RT-qPCR or RT-dPCR assays. While the ALOD is the lowest number of gene copies (GC) associated with a 95% probability of detection in a single PCR reaction, the PLOD represents the sensitivity of the method after considering the efficiency of all processing steps (e.g., sample handling, concentration, nucleic acid extraction, and PCR assays) to determine the number of GC in the wastewater sample matrix with a specific probability of detection. The primary objective of this study was to estimate the PLOD resulting from the combination of primary concentration and extraction with six SARS-CoV-2 assays: five RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab (CCDC N and CCDC ORF1ab), and E_Sarbeco RT-qPCR, and one RT-dPCR assay (US CDC N1 RT-dPCR) using two models (exponential survival and cumulative Gaussian). An adsorption extraction (AE) concentration method (i.e., virus adsorption on membrane and the RNA extraction from the membrane) was used to concentrate gamma-irradiated SARS-CoV-2 seeded into 36 wastewater samples. Overall, the US CDC N1 RT-dPCR and RT-qPCR assays had the lowest ALODs (< 10 GC/reaction) and PLODs (<3,954 GC/50 mL; 95% probability of detection) regardless of the seeding level and model used. Nevertheless, consistent amplification and detection rates decreased when seeding levels were < 2.32 × 103 GC/50 mL even for US CDC N1 RT-qPCR and RT-dPCR assays. Consequently, when SARS-CoV-2 RNA concentrations are expected to be low, it may be necessary to improve the positive detection rates of wastewater surveillance by analyzing additional field and RT-PCR replicates. To the best of our knowledge, this is the first study to assess the SARS-CoV-2 PLOD for wastewater and provides important insights on the analytical limitations for trace detection of SARS-CoV-2 RNA in wastewater.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia.
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J M Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Matthew E Verbyla
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA, USA
| | - Erin M Symonds
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | | |
Collapse
|