1
|
Li S, Peng W, Guo Y, Li S, Wang Q. Current status of microplastic pollution and the latest treatment technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177467. [PMID: 39522775 DOI: 10.1016/j.scitotenv.2024.177467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
With the widespread use of plastics globally, the issue of microplastic (MP) pollution has escalated into a significant social and environmental concern. This paper seeks to comprehensively review the environmental hazards associated with MPs and to present the latest analytical techniques and countermeasures. By analyzing the global distribution of MPs and the hazards they pose to the human body, it is found that MPs come from a variety of sources and are widely distributed, and that their hazards cover the whole body, but there is a lack of specific dose analyses and acute toxicity analyses. To address the challenges of industrial-scale MP treatment, numerous advanced theories and methods have been developed, providing valuable insights for effective remediation. Despite these advancements, notable limitations persist, particularly in the treatment of MPs in residential water supplies. Furthermore, this review identifies promising approaches in the utilization of microorganisms and the synergistic mechanisms of enzymes for MP pollution mitigation. Additionally, the urgent need for the development of standardized methods and a comprehensive legal framework for the isolation and detection of MPs across various environmental media is underscored, providing novel perspectives on the study of MPs.
Collapse
Affiliation(s)
- Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenkang Peng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Sumei Li
- Department of Environment, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Liu L, Yin H, Xu Y, Liu B, Ma Y, Feng J, Cao Z, Jung J, Li P, Li ZH. Environmental behavior and toxic effects of micro(nano)plastics and engineered nanoparticles on marine organisms under ocean acidification: A review. ENVIRONMENTAL RESEARCH 2024; 263:120267. [PMID: 39481783 DOI: 10.1016/j.envres.2024.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Ocean acidification (OA) driven by human activities and climate change presents new challenges to marine ecosystems. At the same time, the risks posed by micro(nano)plastics (MNPs) and engineered nanoparticles (ENPs) to marine ecosystems are receiving increasing attention. Although previous studies have uncovered the environmental behavior and the toxic effects of MNPs and ENPs under OA, there is a lack of comprehensive literature reviews in this field. Therefore, this paper reviews how OA affects the environmental behavior of MNPs and ENPs, and summarizes the effects and the potential mechanisms of their co-exposure on marine organisms. The review indicates that OA changes the marine chemical environment, thereby altering the behavior of MNPs and ENPs. These changes affect their bioavailability and lead to co-exposure effects. This impacts marine organisms' energy metabolism, growth and development, antioxidant systems, reproduction and immunity. The potential mechanisms involved the regulation of signaling pathways, abnormalities in energy metabolism, energy allocation, oxidative stress, decreased enzyme activity, and disruptions in immune and reproductive functions. Finally, based on the limitations of existing research, actual environment and hot issues, we have outlined future research needs and identified key priorities and directions for further investigation. This review deepens our understanding of the potential effects of MNPs and ENPs on marine organisms under OA, while also aiming to promote further research and development in related fields.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
3
|
Lu Q, Tang D, Liang Q, Wang S. Biotechnology for the degradation and upcycling of traditional plastics. ENVIRONMENTAL RESEARCH 2024; 263:120140. [PMID: 39395553 DOI: 10.1016/j.envres.2024.120140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
Traditional plastics, predominantly derived from petrochemicals, are extensively utilized in modern industry and daily life. However, inadequate management and disposal practices have resulted in widespread environmental contamination, with polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polystyrene being the most prevalent pollutants. Biological methods for plastic degradation have garnered significant attention due to their cost-effectiveness and potential for resource recovery, positioning them as promising strategies for sustainable plastic waste management. While polyethylene terephthalate, characterized by its relatively less stable C-O bonds, has been extensively studied and demonstrates significant potential for biodegradation. In contrast, the biodegradation of other plastics remains a significant challenge due to the inherent stability of their C-C backbone structures. This review comprehensively examines the state-of-the-art biotechnology for treating these traditional plastics, focusing on: (1) the roles of specific microorganisms and enzymes, their taxonomic classifications, and the metabolic pathways involved in plastic biodegradation; and (2) a proposed two-stage hybrid approach integrating physicochemical and biological processes to enhance the biodegradation or upcycling of these traditional plastics. Additionally, the review highlights the critical role of multi-omics approaches and tailored strategies in enhancing the efficiency of plastic biodegradation while examining the impact of plastic molecular structures and additives on their degradation potential. It also addresses key challenges and delineates future research directions to foster the development of innovative biological methods for the effective and sustainable management of plastic waste.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Daoyu Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qi Liang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Kang Q, Zhang Y, Kang S, Gao T, Zhao Y, Luo X, Guo J, Wang Z, Zhang S. Characteristics of soil microplastics and ecological risks in the Qilian Mountains region, Northeast Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125016. [PMID: 39341408 DOI: 10.1016/j.envpol.2024.125016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Microplastics (MPs) pollution has become a vital global environmental issue. However, comprehensive understanding of the ecological risks of MPs in soils of Northeast Tibetan Plateau still requires further study. In this study, we used the Agilent 8700 Laser Direct Infrared (LDIR) spectroscopy to analyze the characteristics of 10-1000 μm MPs in soils of different vegetation types throughout the Qilian Mountains basin, and to comprehensively explore the ecological risks of MPs in various ecological environments. The results indicate that MPs abundance is highest in soil of shrub areas (26,369 ± 32,147 items kg-1-dry weight (dw)), followed by woodland (22,215 ± 22,544 items kg-1-dw), desert (17,769 ± 9,040 items kg-1-dw), grassland (16,462 ± 12,872 items kg-1-dw), and forest (15,662 ± 13,857 items kg-1-dw). MPs in soils of different vegetation types show similar physical and chemical characteristics, with the shape dominated by fragments (93%-96%), followed by fibers and a few beads, with dominant sizes of 10-30 μm (63%-76%), and polymers dominated by polyamide (PA) and polyethylene terephthalate (PET). Additionally, the environmental risks posed by the fundamental characteristics of MPs have been quantified through the Pollution Load Index (PLI), Pollution Hazard Index (PHI), and Potential Ecological Risk Index (PERI) models. According to the PLI assessment, the current levels of MPs in the environment have not yet imposed significant burdens on the ecosystem. However, the results of PHI and PERI indicate a higher risk of MPs pollution in the Qilian Mountains. This study offers vital information for MPs pollution in the whole Qilian Mountains regions and their potential environmental risks in remote areas' soil.
Collapse
Affiliation(s)
- Qiangqiang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yulan Zhang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Tanguang Gao
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yujiao Zhao
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xi Luo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhaoqing Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuncun Zhang
- Key Laboratory of Petroleum Resources Exploration and Evaluation, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
5
|
Zhang S, Xing Z, Li Y, Jiang L, Shi W, Zhao Y, Fang L. Plastic film from the source of anaerobic digestion: Surface degradation, biofilm and UV response characteristics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135793. [PMID: 39276739 DOI: 10.1016/j.jhazmat.2024.135793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
This study simulates a major environmental scenario involving "organic fertilizer source" plastics, by exploring the key factors influencing the changes in plastic-films during anaerobic digestion (AD), as well as the responses of the anaerobically digested plastics to ultraviolet (UV) radiation exposure. The results demonstrate that the degradation effect of AD on plastics is reflected by their yellowish and ruptured appearance, slightly worn surfaces, hardening and opacity, and fragmentation. AD significantly increases the content of oxygen-containing functional groups and the degree of unsaturation in plastic films, with thermophilic temperature processes proving more effective than those conducted at mesophilic temperatures. Exposure to UV light has been found to amplify the degradative effects, suggesting the potential cumulative impact of AD and UV. Both AD and UV irradiation reduced the hydrophilicity of plastics. In particular, the hydrophobicity of polylactic acid films was completely disrupted under overlay-exposure. Furthermore, microbial populations on plastic surfaces were mainly bacterial. These bacterial populations were primarily influenced by temperature, and moderately by the plastic types. In contrast, archaea were predominantly affected by both temperature and digested substrate. This study offers a theoretical foundation for strategies aimed at preventing and controlling plastic pollution derived from organic fertilizers.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China.
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Luoyun Fang
- Beijing Key Laboratory of Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
6
|
Chen SQ, Huang QS, Li Y, Wu J, Chen S, Yan ZF. Targeted aggregation of PETase towards surface of Stenotrophomonas pavanii for degradation of PET microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135895. [PMID: 39312844 DOI: 10.1016/j.jhazmat.2024.135895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/25/2024]
Abstract
Polyethylene terephthalate (PET) is one of the most widely used plastics, but its fragmentation into microplastics poses significant environmental challenges. The recycling of PET microplastics is hindered by their low solubility and widespread dispersion in the environment, making microbial in-situ degradation a promising solution. However, existing PET-degrading strains exhibited the limited effectiveness, primarily due to the diffusion of secreted hydrolases away from the PET surface. In this study, Stenotrophomonas pavanii JWG-G1 was engineered to achieve the targeted aggregation of PET hydrolase PETase on the cell surface by fusing it with an endogenous anchor protein. This approach aims to maximise the local concentration of PETase around PET, thereby increasing the overall rate of PET degradation. The PETase surface-aggregated system, S. pavanii/PaL-PETase, demonstrated the highest degradation efficiency, achieving 63.3 % degradation of low-crystallinity PET (lcPET) and 27.3 % degradation of high-crystallinity PET bottles (hcPET) at 30 °C. This represents the highest degradation rate reported for a displayed whole-cell system at ambient temperature. Furthermore, this system exhibited broad-spectrum degradation activity against various polyesters. These findings suggest that this system offers a promising, eco-friendly solution to PET and other polyester pollution, with potential implications for environmental bioremediation strategies.
Collapse
Affiliation(s)
- Si-Qi Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qing-Song Huang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yang Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; National Center of Technology Innovation for Dairy, Hohhot, China
| | - Sheng Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| | - Zheng-Fei Yan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
7
|
Gonçalves GRL, Koomson A, Aggrey-Fynn J, Nyarko BK, Narayanaswamy BE. Invisible Peril: Assessing microplastic pollution in Ghanaian mangroves. MARINE POLLUTION BULLETIN 2024; 211:117361. [PMID: 39631189 DOI: 10.1016/j.marpolbul.2024.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Mangroves are key providers of crucial ecological services. This study's aim is to investigate the levels of microplastic (MP) contamination in mangroves from Ghana's Western and Central regions. A total of 1303 particles were analysed from sediment and water samples, 65 % comprising MPs. West and Central regions had notable differences in MPs abundance. Sediment had the highest number of MPs (703 MPs), with concentrations ranging from 0.01 to 2.23 MPs/g·dw, whilst concentrations in water ranged from 0.2 to 3.75 MPs/l. Fibre shapes were the most abundant MP (67 %) followed by fragments. Ten different groups of polymers were found, with polyester, polyethylene and polypropylene being the most abundant. Synthetic hair, textile and water sachets/small plastic bags were expected to be the source of most MPs collected. High population abundance was shown to be related to high levels of MPs. Our findings suggest reducing single-use plastics, waste management/treatment, and clean drinking water, could reduce the impact of MPs in Ghana.
Collapse
Affiliation(s)
- Geslaine R L Gonçalves
- The Scottish Association for Marine Science (SAMS), Oban, Argyll, Scotland PA37 1QA, UK.
| | - Albert Koomson
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Joseph Aggrey-Fynn
- Department of Fisheries and Aquatic Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Benjamin Kofi Nyarko
- Department of Geography and Regional Planning, University of Cape Coast, Cape Coast, Ghana.
| | | |
Collapse
|
8
|
Tong R, Wang B, Xiao N, Yang S, Xing Y, Wang Y, Xing B. Selection of engineered degradation method to remove microplastics from aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176281. [PMID: 39278507 DOI: 10.1016/j.scitotenv.2024.176281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) in the aquatic environment are difficult to degrade naturally due to their hydrophobicity and structure. A variety of engineered degradation methods were developed to treat MPs contamination in the aquatic environment. Current reviews of MPs degradation methods only provided an inventory but lacked systematic comparisons and application recommendations. However, selecting suitable degradation methods for different types of MPs contamination may be more effective. This work examined the present engineered degradation methods for MPs in the aquatic environment. They were categorized into chemical degradation, biodegradation, thermal degradation and photodegradation. These degradation methods were systematically summarized in terms of degradation efficiency, technical limitations and production of environmental hazards. Also, the potential influences of different environmental factors and media on degradation were analyzed, and the selection of degradation methods were suggested from the perspectives of contamination types and degradation mechanisms. Finally, the development trend and challenges for studying MPs engineered degradation were proposed. This work will contribute to a better selection of customized degradation methods for different types of MPs contamination scenarios in aquatic environments.
Collapse
Affiliation(s)
- Ruizhen Tong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Bo Wang
- Shaanxi Geomatics Center, Ministry of Natural Resources, Xi'an, Shaanxi 710054, China.
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Shuo Yang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Yan Xing
- Shaanxi Environmental Monitoring Center, Shaanxi Key Laboratory of Environmental Monitoring and Forewarning of Trace Pollutants, Xi'an 710054, China
| | - Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
9
|
Fang S, Li Y, Wang F, Wei Z, Cheng S, Liu X, Zhao Y, Cao J, Cheng Y, Luo J. Promoting effects of bioplastics and sludge anaerobic co-fermentation for carboxylates production with pH regulation: Insights into the plastic structure, microbial metabolic traits, and adaptive mechanism. BIORESOURCE TECHNOLOGY 2024; 413:131564. [PMID: 39362348 DOI: 10.1016/j.biortech.2024.131564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Biodegradable plastics (BPs) are presenting new challenges for their reutilization. This work found that volatile fatty acids (VFAs) production by co-fermentation of BPs with waste activated sludge (WAS) reached 4-37 times of the WAS fermentation alone, which was further amplified by pH regulation (especially alkaline regulation). Moreover, the VFAs composition is highly associated with BPs category. By contrast, the traditional plastic showed a limited effect on the VFAs yield and composition. Alkaline regulation enhanced the breakdown of BPs' ester bonds and boosted WAS disintegration, increasing bioavailable substrates. The hydrolytic-acidogenic anaerobes (i.e., Serpentinicella and Proteiniclasticum) and the major metabolic processes participated in the transformation of BPs and WAS to VFAs were upregulated under alkaline conditions. Further exploration unveiled that quorum sensing and peptidoglycan synthesis played important roles in counteracting alkaline stress and maintaining microbial activity for effective VFAs generation. The works demonstrated the effectiveness of pH-regulated anaerobic co-fermentation for BPs valorization.
Collapse
Affiliation(s)
- Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zihao Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xuran Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yu Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
10
|
Boeing GANS, Provase M, Tsukada E, Salla RF, Waldman WR, Abdalla FC. Spray paint-derived microplastics and incorporated substances as ecotoxicological contaminants in the neotropical bumblebee Bombus atratus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104586. [PMID: 39510216 DOI: 10.1016/j.etap.2024.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
While bumblebees may be exposed to microplastics (MPs), the effects on them are not well studied. Therefore, in this research, we assessed the cytotoxicity of pristine and photodegraded spray paint-derived MPs on the midgut, Malpighian tubules, and hepato-nephrocitic system cells of Bombus atratus workers exposed to 50 mg.L-1 MPs for 96 hours. Histological and histochemical analyses revealed that pristine MPs caused subtle cellular changes, while the exposure to photodegraded MPs led to significant vacuolization, nuclear condensation, and pyknosis. These effects are possibly linked to the release of potentially toxic elements (PTEs) like Copper, Manganese, and Iron from photodegraded MPs, which exceeded Brazil's CONAMA safety limits. Photodegraded MPs also reduced body weight, disrupting homeostasis and potentially decreasing bumblebee's fitness. These findings highlight the importance of studying the toxicity of environmentally realistic MPs, as plastic composition and weathering significantly influence their harmful effects.
Collapse
Affiliation(s)
- Guilherme Andrade Neto Schmitz Boeing
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil.
| | - Michele Provase
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Elisabete Tsukada
- Post-graduate Program in Animal Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Raquel F Salla
- Department of Biology & Biochemistry, University of Houston, Houston, TX, United States
| | - Walter Ruggeri Waldman
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| | - Fábio Camargo Abdalla
- Federal University of São Carlos (UFSCar), Department of Biology (DBio-So), Laboratory of Structural and Functional Biology (LABEF), Brazil; Post-graduate Program in Biotechnology and Environmental Monitoring (PPGBMA), Center for Science and Technology for Sustainability (CCTS), UFSCar, Sorocaba, SP, Brazil
| |
Collapse
|
11
|
Hossain MM, Roy K. The development of classification-based machine-learning models for the toxicity assessment of chemicals associated with plastic packaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 484:136702. [PMID: 39637787 DOI: 10.1016/j.jhazmat.2024.136702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Assessing chemical toxicity in materials like plastic packaging is critical to safeguarding public health. This study presents the development of classification-based machine learning models to predict the toxicity of chemicals associated with plastic packaging. Using an extensive dataset of chemical structures, we trained multiple machine learning models-Random Forest, Support Vector Machine, Linear Discriminant Analysis, and Logistic Regression-targeting endpoints such as Neurotoxicity, Hepatotoxicity, Dermatotoxicity, Carcinogenicity, Reproductive Toxicity, Skin Sensitization, and Toxic Pneumonitis. The dataset was pre-processed by selecting 2D molecular descriptors as feature inputs, with resampling methods (ADASYN, Borderline SMOTE, Random Over-sampler, SVMSMOTE Cluster Centroid, Near Miss, Random Under Sampler) applied to balance classes for accurate classification. A five-fold cross-validation technique was used to optimize model performance, with model parameters fine-tuned using grid search. The model performance was evaluated using accuracy (Acc), sensitivity (Se), specificity (Sp), and area under the receiver operating characteristic curve (AUC-ROC) metrics. In most of the cases, the model accuracy was 0.8 or above for both training and test sets. Additionally, SHAP (SHapley Additive exPlanations) values were utilized for feature importance analysis, highlighting significant descriptors contributing to toxicity predictions. The models were ranked using the Sum of Ranking Differences (SRD) method to systematically select the most effective model. The optimal models demonstrated high predictive accuracy and interpretability, providing a scalable and efficient solution for toxicity assessment compared to traditional methods. This approach offers a valuable tool for rapidly screening potentially hazardous chemicals in plastic packaging.
Collapse
Affiliation(s)
- Md Mobarak Hossain
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Kunal Roy
- Drug Theoretics and Cheminformatics (DTC) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
12
|
Chukwuka AV, Adegboyegun AD, Oluwale FV, Oni AA, Omogbemi ED, Adeogun AO. Microplastic dynamics and risk projections in West African coastal areas: Developing a vulnerability index, adverse ecological pathways, and mitigation framework using remote-sensed oceanographic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175963. [PMID: 39226961 DOI: 10.1016/j.scitotenv.2024.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Microplastic pollution presents a serious risk to marine ecosystems worldwide, with West Africa being especially susceptible. This study sought to identify the key factors driving microplastic dynamics in the region. Using NASA's Giovanni system, we analyzed environmental data from 2019 to 2024. Results showed uniform offshore air temperatures due to turbulence (25.22-45.62 K) with significant variations nearshore. Salinity levels remained largely stable (4 PSU) but slightly decreased in southern Nigeria. Surface wind speeds rose from 4.206-5.026 m/s in Nigeria to over 5.848 m/s off Mauritania, while eastward stress hotspots were prominent in Nigeria and from Sierra Leone to Senegal. Photosynthetically available radiation (PAR) beam values peaked off Mauritania and dipped from Nigeria to Sierra Leone, with the inverse pattern observed for diffuse PAR. Hotspots of high absorption, particulate backscattering, elevated aerosol optical depth, and remote sensing reflectance all pointed to substantial particulate matter concentrations. The Microplastic Vulnerability Index (MVI) identifies the coastal stretch from Nigeria to Guinea-Bissau as highly vulnerable to microplastic accumulation due to conditions that favor buildup. In contrast, moderate vulnerability was observed from Guinea-Bissau to Senegal and in Mauritania, where conditions were less extreme, such as higher offshore temperatures that could promote widespread microplastic suspension and cooler nearshore temperatures that favor sedimentation. Increased turbulence and temperatures in coastal areas of Senegal and Mauritania may enhance microplastic transport and impact marine life. In Nigeria, stable coastal conditions-characterized by consistent temperatures, low turbulence, and uniform salinity-may lead to increased persistence and accumulation of microplastics in sensitive habitats like mangroves and coral reefs. These findings highlight the need for region-specific management strategies to address microplastic pollution and effectively protect marine ecosystems.
Collapse
Affiliation(s)
- Azubuike Victor Chukwuka
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State, Nigeria.
| | - Ayotunde Daniel Adegboyegun
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State, Nigeria
| | - Femi V Oluwale
- Zoology Department, University of Ibadan, Oyo State, Nigeria
| | - Adeola A Oni
- Zoology Department, University of Ibadan, Oyo State, Nigeria
| | | | - Aina O Adeogun
- Zoology Department, University of Ibadan, Oyo State, Nigeria.
| |
Collapse
|
13
|
Tian J, Liang L, Li Q, Li N, Zhu X, Zhang L. Association between microplastics in human amniotic fluid and pregnancy outcomes: Detection and characterization using Raman spectroscopy and pyrolysis GC/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 482:136637. [PMID: 39591787 DOI: 10.1016/j.jhazmat.2024.136637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Microplastic contamination has emerged as a global environmental concern, while the limitation of single-technique identification methods in complex biological matrices calls for multi-analytical approaches for accurate microplastic detection. This study pioneers a dual-method approach, combining Raman spectroscopy and pyrolysis gas chromatography-mass spectrometry (Py-GC/MS), to investigate microplastics in human amniotic fluid. In total, samples from 48 pregnant women were collected and analyzed under stringent quality control measures, then Raman spectroscopy and Py-GC/MS were employed for comprehensive polymer identification and verification. Our analysis revealed 6 distinct microplastic polymer types in 39 subjects, with an average particle size of 3.05 ± 1.05 µm, polytetrafluoroethylene (PTFE, 31.25 %), polystyrene (PS, 20.83 %), and acrylonitrile-butadiene-styrene (ABS, 14.58 %) being the most prevalent. Py-GC/MS analysis corroborated the Raman spectroscopy findings, identifying pyrolytic markers such as fluoroethylene for PTFE and styrene for PS. However, no significant associations were found between microplastic exposure and immediate adverse pregnancy outcomes. This study, for the first time, utilizes a dual-method approach combining Raman spectroscopy and Py-GC/MS to conclusively demonstrate the presence of diverse microplastics in human amniotic fluid, which underscores the need for larger-scale, longitudinal investigations to elucidate the potential long-term health implications of microplastic exposure.
Collapse
Affiliation(s)
- Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan 250001, China
| | - Liyang Liang
- Department of Surgery-Oncology, Tangshan Gongren Hospital Affiliated to Hebei Medical University, Tangshan 063000, China
| | - Qiang Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan 250001, China
| | - Ning Li
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan 250001, China
| | - Xiaodan Zhu
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250001, China; Jinan (Preparatory) Key Laboratory of Women's Diseases and Fertility Preservation, Jinan 250001, China.
| |
Collapse
|
14
|
Şimşek İ, Sanin FD. Fate and effect of Polyamide-6 microplastics in mesophilic and thermophilic anaerobic digestion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124855. [PMID: 39214448 DOI: 10.1016/j.envpol.2024.124855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Research has demonstrated that depending on the type and concentration, microplastics affect anaerobic digestion (AD). Owing to the high abundance of polyamide-6 (PA6) in wastewater treatment plants and limited understanding of its behavior, this study investigates PA6 microplastics' effect in AD. Biochemical methane potential experiments were performed under mesophilic (35 °C) and thermophilic (55 °C) conditions using PA6 at concentrations from 0 to 200 particles/g total solids (TS). Under both conditions, methane production increased in the highest (200 particles/g TS) PA6-dosed reactors, with thermophilic conditions having a statistically significant effect. Methane yield increased from 403.1 ± 5.3 mL/g VS to 436.6 ± 9.2 mL/g VS under thermophilic and from 332.1 ± 1.5 to 340.6 ± 6.6 mL/g VS under mesophilic conditions for the 200 particles/g TS dose, corresponding to increases of 8.3% and 2.6% respectively. PA6 crystallinity decreased from 32.8% to 27.1% and 26.8%, corresponding to decreases of 17.4% in mesophilic and 18.2% in thermophilic reactors compared to pristine control. Similarly, crystallinity decreased in PA6 microplastics collected from abiotic reactors, with thermophilic conditions showing a greater effect. The carbonyl index (CI) values were similar between biotic and abiotic reactors, but PA6 from all reactors had significantly higher CI than pristine PA6, suggesting abiotic factors also affect carbonyl bonds. Additionally, an increase in average PA6 mass was observed for mesophilic and thermophilic conditions by 22.0 % and 23.0 %, respectively. The study shows that temperature and other abiotic factors, like sludge chemistry, significantly influence the fate and effect of PA6 microplastics in digesters. Including abiotic reactors seems crucial for a full understanding of the impact of microbial and non-microbial factors in microplastic studies in the AD process. Studying the effects of microplastics on AD is only one part of the picture, whereas simultaneously examining their fate in digestion is necessary for a complete understanding.
Collapse
Affiliation(s)
- İrem Şimşek
- Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON, K1S 5B6, Canada; Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - F Dilek Sanin
- Department of Environmental Engineering, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|
15
|
Wang L, Gao J, Wu WM, Luo J, Bank MS, Koelmans AA, Boland JJ, Hou D. Rapid Generation of Microplastics and Plastic-Derived Dissolved Organic Matter from Food Packaging Films under Simulated Aging Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20147-20159. [PMID: 39467053 DOI: 10.1021/acs.est.4c05504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
In this study, we show that low-density polyethylene films, a prevalent choice for food packaging in everyday life, generated high numbers of microplastics (MPs) and hundreds to thousands of plastic-derived dissolved organic matter (DOM) substances under simulated food preparation and storage conditions. Specifically, the plastic film generated 66-2034 MPs/cm2 (size range 10-5000 μm) under simulated aging conditions involving microwave irradiation, heating, steaming, UV irradiation, refrigeration, freezing, and freeze-thaw cycling alongside contact with water, which were 15-453 times that of the control (plastic film immersed in water without aging). We also noticed a substantial release of plastic-derived DOM. Using ultrahigh-resolution mass spectrometry, we identified 321-1414 analytes with molecular weights ranging from 200 to 800 Da, representing plastic-derived DOM containing C, H, and O. The DOM substances included both degradation products of polyethylene (including oxidized forms of oligomers) and toxic plastic additives. Interestingly, although no apparent oxidation was observed for the plastic film under aging conditions, plastic-derived DOM was more oxidized (average O/C increased by 27-46%) following aging with a higher state of carbon saturation and higher polarity. These findings highlight the future need to assess risks associated with MP and DOM release from plastic wraps.
Collapse
Affiliation(s)
- Liuwei Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jing Gao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020, United States
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0355, United States
| | | | - Albert A Koelmans
- Aquatic Ecology and Water Quality Management Group, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, Netherlands
| | - John J Boland
- AMBER Research Centre and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Martínez Rodríguez A, Kratina P, Jones JI. Microplastic pollution and nutrient enrichment shift the diet of freshwater macroinvertebrates. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124540. [PMID: 39004208 DOI: 10.1016/j.envpol.2024.124540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Microplastic pollution poses a global threat to freshwater ecosystems, with laboratory experiments indicating potential toxic impacts through chemical toxicity, physical abrasion, and false satiation. Bioplastics have emerged as a potential greener alternative to traditional oil-based plastics. Yet, their environmental effects remain unclear, particularly at scales relevant to the natural environment. Additionally, the interactive impacts of microplastics with other environmental stressors, such as nutrient enrichment, are poorly understood and rarely studied. Under natural conditions organisms might be able to mitigate the toxic effects of microplastics by shifting their diet, but this ability may be compromised by other stressors. This study combines an outdoor mesocosm experiment and stable isotope analysis to determine changes in the trophic niches of three freshwater invertebrate species exposed to conventional (HDPE) and bio-based biodegradable (PLA) microplastics at two concentrations, both independently and combined with nutrient enrichment. Exposure to microplastics altered the isotopic niches of two of the invertebrate species, with nutrient enrichment mediating this effect. Moreover, the effects of microplastics were consistent regardless of their type or concentration. Under enriched conditions, two of the species exposed to microplastics shifted to a specialised diet compared with controls, whereas little difference was observed between the isotopic niches of those exposed to microplastic and controls under ambient nutrient conditions. Additionally, PLA was estimated to support 24 % of the diet of one species, highlighting the potential assimilation of bioplastics by biota and possible implications. Overall, these findings suggest that the toxic effects of microplastics suggested from laboratory studies might not manifest under real-world conditions. However, this study does demonstrate that subtle sublethal effects occur even at environmentally realistic microplastic concentrations. The crucial role of nutrient enrichment in mediating microplastic effects underscores the importance of considering microplastic pollution in the context of other environmental stressors.
Collapse
Affiliation(s)
- Ana Martínez Rodríguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| |
Collapse
|
17
|
Menger F, Römerscheid M, Lips S, Klein O, Nabi D, Gandrass J, Joerss H, Wendt-Potthoff K, Bedulina D, Zimmermann T, Schmitt-Jansen M, Huber C, Böhme A, Ulrich N, Beck AJ, Pröfrock D, Achterberg EP, Jahnke A, Hildebrandt L. Screening the release of chemicals and microplastic particles from diverse plastic consumer products into water under accelerated UV weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135256. [PMID: 39106725 DOI: 10.1016/j.jhazmat.2024.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Photodegradation of plastic consumer products is known to accelerate weathering and facilitate the release of chemicals and plastic particles into the aquatic environment. However, these processes are complex. In our presented pilot study, eight plastic consumer products were leached in distilled water under strong ultraviolet (UV) light simulating eight months of Central European climate and compared to their respective dark controls (DCs). The leachates and formed plastic particles were exploratorily characterized using a range of chemical analytical tools to describe degradation and leaching processes. These techniques covered (a) microplastic analysis, showing substantial liberation of plastic particles further increased under UV exposure, (b) non-targeted mass spectrometric characterization of the leachates, revealing several hundreds of chemical features with typically only minor agreement between the UV exposure and the corresponding DCs, (c) target analysis of 71 organic analytes, of which 15 could be detected in at least one sample, and (d) metal(loid) analysis, which revealed substantial release of toxic metal(loid)s further enhanced under UV exposure. A data comparison with the US-EPA's ToxVal and ToxCast databases showed that the detected metals and organic additives might pose substantial health and environmental concerns, requiring further study and comprehensive impact assessments.
Collapse
Affiliation(s)
- Frank Menger
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Mara Römerscheid
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Lips
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ole Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Deedar Nabi
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Jürgen Gandrass
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Hanna Joerss
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Katrin Wendt-Potthoff
- Department of Lake Research, Helmholtz-Centre for Environmental Research - UFZ, Brueckstr. 3 a, 39114 Magdeburg, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tristan Zimmermann
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Mechthild Schmitt-Jansen
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carolin Huber
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52047 Aachen, Germany.
| | - Lars Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
18
|
Ma Y, Zhao Z, Chen J, Chen Y, Wang B, Luo Y. Hydroborative Depolymerization of Polyesters and Polycarbonates to Diols Catalyzed by Heterogeneous Lanthanum Materials La(CH 2C 6H 4NMe 2- o) 3@SBA-15. Inorg Chem 2024. [PMID: 39235131 DOI: 10.1021/acs.inorgchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Chemical recycling is a promising strategy to establish a circular plastic economy, and it is still in an early stage of development. In this work, the reductive depolymerization of polyesters and polycarbonates into their corresponding borylated alcohols promoted by heterogeneous lanthanum materials was described. Grafting the easily accessible lanthanum tris(aminobenzyl) complex La(CH2C6H4NMe2-o)3 (1) onto the partially dehydroxylated silica support SBA-15 (SBA-15500 or SBA-15700) gave the inorganic-organic hybrid materials 1@SBA-15500 and 1@SBA-15700. These hybrid lanthanum materials, in combination with pinacolborane (HBpin), could serve as highly active heterogeneous catalysts for the selective depolymerization of aliphatic and aromatic polyesters, as well as polycarbonates into their corresponding borylated diols through a hydroboration reaction under mild conditions. The lanthanum materials exhibited a practical application in plastic waste recycling for their easy preparation, high catalytic efficiency, and recyclable property.
Collapse
Affiliation(s)
- Yansong Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zheyu Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Jue Chen
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, P. R. China
| | - Yanjun Chen
- Ningbo Polytechnic, Ningbo 315800, P. R. China
| | - Bin Wang
- Ningbo Tianli Petrochemical Co., Ltd., Ningbo 315200, P. R. China
| | - Yunjie Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
19
|
Deo L, Benjamin LK, Osborne JW. Critical review on unveiling the toxic and recalcitrant effects of microplastics in aquatic ecosystems and their degradation by microbes. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:896. [PMID: 39230754 DOI: 10.1007/s10661-024-13023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Production of synthetic plastic obtained from fossil fuels are considered as a constantly growing problem and lack in the management of plastic waste has led to severe microplastic pollution in the aquatic ecosystem. Plastic particles less than 5mm are termed as microplastics (MPs), these are pervasive in water and soil, it can also withstand longer period of time with high durability. It can be broken down into smaller particles and can be adsorbed by various life-forms. Most marine organisms tend to consume plastic debris that can be accumulated easily into the vertebrates, invertebrates and planktonic entities. Often these plastic particles surpass the food chain, resulting in the damage of various organs and inhibiting the uptake of food due to the accumulation of microplastics. In this review, the physical and chemical properties of microplastics, as well as their effects on the environment and toxicity of their chemical constituents are discussed. In addition, the paper also sheds light on the potential of microorganisms such as bacteria, fungi, and algae which play a pivotal role in the process of microplastics degradation. The mechanism of microbial degradation, the factors that affect degradation, and the current advancements in genetic and metabolic engineering of microbes to promote degradation are also summarized. The paper also provides information on the bacterial, algal and fungal degradation mechanism including the possible enzymes involved in microplastic degradation. It also investigates the difficulties, limitations, and potential developments that may occur in the field of microbial microplastic degradation.
Collapse
Affiliation(s)
- Loknath Deo
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Lincy Kirubhadharsini Benjamin
- Department of Plant Pathology and Entomology, VIT-School of Agricultural Innovation and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Jabez William Osborne
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
20
|
Yuan W, Xu EG, Shabaka S, Chen P, Yang Y. The power of green: Harnessing phytoremediation to combat micro/nanoplastics. ECO-ENVIRONMENT & HEALTH 2024; 3:260-265. [PMID: 39234422 PMCID: PMC11372594 DOI: 10.1016/j.eehl.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 09/06/2024]
Abstract
Plastic pollution and its potential risks have been raising public concerns as a global environmental issue. Global plastic waste may double by 2030, posing a significant challenge to the remediation of environmental plastics. In addition to finding alternative products and managing plastic emission sources, effective removal technologies are crucial to mitigate the negative impact of plastic pollution. However, current remediation strategies, including physical, chemical, and biological measures, are unable to compete with the surging amounts of plastics entering the environment. This perspective lays out recent advances to propel both research and action. In this process, phytoaccumulation, phytostabilization, and phytofiltration can be applied to reduce the concentration of nanoplastics and submicron plastics in terrestrial, aquatic, and atmospheric environments, as well as to prevent the transport of microplastics from sources to sinks. Meanwhile, advocating for a more promising future still requires significant efforts in screening hyperaccumulators, coupling multiple measures, and recycling stabilized plastics from plants. Phytoremediation can be an excellent strategy to alleviate global micro/nanoplastic pollution because of the cost-effectiveness and environmental sustainability of green technologies.
Collapse
Affiliation(s)
- Wenke Yuan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Soha Shabaka
- National Institute of Oceanography and Fisheries, Cairo 11516, Egypt
| | - Peng Chen
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
21
|
Jin J, Wang X, Sha Y, Wang F, Huang X, Zong H, Liu J, Song N. Changes in soil properties and microbial activity unveil the distinct impact of polyethylene and biodegradable microplastics on chromium uptake by peanuts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53369-53380. [PMID: 39187679 DOI: 10.1007/s11356-024-34743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Microplastics (MPs) are emerging persistent pollutants, and heavy metals are typical environmental pollutants, with their coexistence potentially compounding pollution and ecological risks. However, the interactive impacts and the relevant mechanisms of heavy metal and different types of MPs in plant-soil systems are still unclear. This study investigated the differential impacts of polyethylene MPs (PE MPs) and biodegradable polybutylene adipate MPs (PBAT MPs) on chromium (Cr) uptake in peanuts, focusing on plant performance and rhizosphere soil microenvironment. Compared with nondegradable PE-MPs, biodegradable PBAT MPs produced less significant influences on plant phytotoxicity, soil Cr bioavailability, and soil properties such as pH, CEC, DOC, and MBC, with the exception of MBN in Cr-contaminated soils. Compared to the control, soil pH and cation exchange capacity (CEC) decreased by MPs, while soil-soluble carbon (DOC), microbial biomass carbon, and nitrogen (MBC and MBN) increased by MPs. Compared to the control, soil-bioavailable Cr increased by 11.8-177.8% under PE MPs treatments, while increased by 5.1-156.9% under PBAT MPs treatments. The highest Cr content in shoots and roots was observed at 500.0 mg·kg-1 Cr level, which increased by 53.1% and 79.2% under 5% PE MPs treatments, respectively, as well as increased by 38.3% and 60.4% under 5% PBAT MPs treatments, respectively, compared with the control. The regression path analysis indicated that pH, MBC, MBN, and soil-bioavailable Cr played a vital role in the changes of soil properties and Cr uptake by peanuts induced by MPs. Soil bacterial community analysis revealed that Nocardioides, Proteobacteria, and Sphingomonas were reduced by the inhibition of MPs, which affected Cr uptake by peanuts. These results indicated that the peanut soil microenvironment was affected by PBAT and PE MPs, altering the Cr bioavailability and plant Cr uptake in Cr-contaminated soil.
Collapse
Affiliation(s)
- Jianpeng Jin
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuexia Wang
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ying Sha
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fangli Wang
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoli Huang
- Central Laboratory, Qingdao Agricultural University, Qingdao, 266109, PR China
| | - Haiying Zong
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jun Liu
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ningning Song
- Qingdao Engineering Research Center for Rural Environment, School of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Biao W, Hashim NA, Rabuni MFB, Lide O, Ullah A. Microplastics in aquatic systems: An in-depth review of current and potential water treatment processes. CHEMOSPHERE 2024; 361:142546. [PMID: 38849101 DOI: 10.1016/j.chemosphere.2024.142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Plastic products, despite their undeniable utility in modern life, pose significant environmental challenges, particularly when it comes to recycling. A crucial concern is the pervasive introduction of microplastics (MPs) into aquatic ecosystems, with deleterious effects on marine organisms. This review presents a detailed examination of the methodologies developed for MPs removal in water treatment systems. Initially, investigating the most common types of MPs in wastewater, subsequently presenting methodologies for their precise identification and quantification in aquatic environments. Instruments such as scanning electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, Raman spectroscopy, surface-enhanced Raman spectroscopy, and Raman tweezers stand out as powerful tools for studying MPs. The discussion then transitions to the exploration of both existing and emergent techniques for MPs removal in wastewater treatment plants and drinking water treatment plants. This includes a description of the core mechanisms that drive these techniques, with an emphasis on the latest research developments in MPs degradation. Present MPs removal methodologies, ranging from physical separation to chemical and biological adsorption and degradation, offer varied advantages and constraints. Addressing the MPs contamination problem in its entirety remains a significant challenge. In conclusion, the review offers a succinct overview of each technique and forwards recommendations for future research, highlighting the pressing nature of this environmental dilemma.
Collapse
Affiliation(s)
- Wang Biao
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - N Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Mohamad Fairus Bin Rabuni
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Ong Lide
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Aubaid Ullah
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
24
|
Santos VS, Vidal C, Bisinoti MC, Moreira AB, Montagner CC. Integrated occurrence of contaminants of emerging concern, including microplastics, in urban and agricultural watersheds in the State of São Paulo, Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173025. [PMID: 38723955 DOI: 10.1016/j.scitotenv.2024.173025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Contaminants of emerging concern (CECs), including microplastics, have been the focus of many studies due to their environmental impact, affecting biota and human health. The diverse land uses and occupation of watersheds are important parameters driving the occurrence of these contaminants. CECs such as pesticides, drugs, hormones, and industrial-origin substances were analyzed in urban/industrial (Atibaia) and agricultural (Preto/Turvo) watersheds located in São Paulo state, Brazil. A total of 24 CECs were investigated, and, as a result, only 5 (caffeine, carbendazim, atrazine, ametrine and 2-hydroxytrazine) were responsible for 81.73 % of the statistical difference between watersheds contamination profile. The Atibaia watershed presented considerable concentrations of caffeine (ranging from 75 to 2025 ng L-1), while carbendazim (44 to 1144 ng L-1) and atrazine (3 to 266 ng L-1) presented highest levels in Preto/Turvo watershed. In all sampling points, the cumulative potential aquatic life risk assessed by the NORMAN database indicates some level of environmental concern associated to pesticides and caffeine (risk quotient >1). Microplastics had been analyzed in both watersheds, being the white/transparent fragments in size between 100 and 250 μm the most detected in this study. The estimated abundance in the Atibaia watershed ranged from 349 to 2898 items m-3 presenting some influence of pluviosity, while in Rio Preto/Turvo ranged from 169 to 6370 items m-3, being more abundant in the dam area without a clear influence of pluviosity. In both basins, polyethylene and polypropylene were the most detected polymers, probably due to the intense use of single-use plastics in urban areas. Possibly, due to the distinct physic-chemical properties of microplastics and organic CECs, no correlations were observed between their occurrence, which makes us conclude that they have different transport mechanism, behavior, and fate in the environment.
Collapse
Affiliation(s)
- Vinicius S Santos
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, SP 13083-970, Brazil
| | - Cristiane Vidal
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, SP 13083-970, Brazil
| | - Marcia C Bisinoti
- São Paulo State University, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Altair B Moreira
- São Paulo State University, Department of Chemistry and Environmental Sciences, São José do Rio Preto, SP 15054-000, Brazil
| | - Cassiana C Montagner
- University of Campinas (UNICAMP), Institute of Chemistry, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
25
|
Feng J, Li H, Lu Y, Li R, Cavaco-Paulo A, Fu J. Non-ionic surfactant PEG: Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate. Int J Biol Macromol 2024; 273:133049. [PMID: 38857727 DOI: 10.1016/j.ijbiomac.2024.133049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
To enhance the enzymatic digestibility of polyethylene terephthalate (PET), which is highly oriented and crystallized, a polyethylene glycol (PEG) surfactant of varying molecular weights was utilized to improve the stability of mutant cutinase from Humicola insolens (HiC) and to increase the accessibility of the enzyme to the substrate. Leveraging the optimal conditions for HiC hydrolysis of PET, the introduction of 1 % w/v PEG significantly increased the yield of PET hydrolysis products. PEG600 was particularly effective, increasing the yield by 64.58 % compared to using HiC alone. Moreover, the mechanisms by which PEG600 and PEG6000 enhance enzyme digestion were extensively examined using circular dichroism and fluorescence spectroscopy. The results from CD and fluorescence analyses indicated that PEG alters the protein conformation, thereby affecting the catalytic effect of the enzyme. Moreover, PEG improved the affinity between HiC and PET by lowering the surface tension of the solution, substantially enhancing PET hydrolysis. This study suggests that PEG holds considerable promise as an enzyme protector, significantly aiding in the hydrophilic modification and degradation of PET in an environmentally friendly and sustainable manner.
Collapse
Affiliation(s)
- Jundan Feng
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Yuzheng Lu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; Mechanical Engineering College, Tarim University, Alar, Xinjiang, China
| | - Rong Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | | | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| |
Collapse
|
26
|
Corti A, Mugnaioli E, Manariti A, Paoli G, Petri F, Tersigni PFM, Ceccarini A, Castelvetro V. Natural iron-containing minerals catalyze the degradation of polypropylene microplastics: a route to self-remediation learnt from the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45162-45176. [PMID: 38958859 PMCID: PMC11512828 DOI: 10.1007/s11356-024-34120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Virgin and environmentally aged polypropylene (PP) micropowders (V-PP and E-PP, respectively) were used as reference microplastics (MPs) in comparative photo- and thermo-oxidative ageing experiments performed on their mixtures with a natural ferrous sand (NS) and with a metal-free silica sand (QS). The ferrous NS was found to catalyze the photo-oxidative degradation of V-PP after both UV and simulated solar light irradiation. The catalytic activity in the V-PP/NS mixture was highlighted by the comparatively higher fraction of photo-oxidized PP extracted in dichloromethane, and the higher carbonyl index of the bulk polymer extracted with boiling xylene, when compared with the V-PP/QS mixture. Similarly, NS showed a catalytic effect on the thermal degradation (at T = 60 °C) of E-PP. The results obtained indicate that, under suitable environmental conditions (in this case, an iron-containing sediment or soil matrix, combined with simulated solar irradiation), the degradation of some types of MPs could be much faster than anticipated. Given the widespread presence of iron minerals (including the magnetite and iron-rich serpentine found in NS) in both coastal and mainland soils and sediments, a higher than expected resilience of the environment to the contamination by this class of pollutants is anticipated, and possible routes to remediation of polluted natural environments by eco-compatible iron-based minerals are envisaged.
Collapse
Affiliation(s)
- Andrea Corti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Enrico Mugnaioli
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
- Department of Earth Science, University of Pisa, Via S Maria 53, 56126, Pisa, Italy
| | - Antonella Manariti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Gabriele Paoli
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy
| | - Filippo Petri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
| | | | - Alessio Ceccarini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy
| | - Valter Castelvetro
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G Moruzzi 13, 56124, Pisa, Italy.
- CISUP - Center for the Integration of Scientific Instruments of the University of Pisa, Lungarno Pacinotti 43, 56126, Pisa, Italy.
| |
Collapse
|
27
|
Guo P, Wang Y, Moghaddamfard P, Meng W, Wu S, Bao Y. Artificial intelligence-empowered collection and characterization of microplastics: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134405. [PMID: 38678715 DOI: 10.1016/j.jhazmat.2024.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Microplastics have been detected from water and soil systems extensively, with increasing evidence indicating their detrimental impacts on human and animal health. Concerns surrounding microplastic pollution have spurred the development of advanced collection and characterization methods for studying the size, abundance, distribution, chemical composition, and environmental impacts. This paper offers a comprehensive review of artificial intelligence (AI)-empowered technologies for the collection and characterization of microplastics. A framework is presented to streamline efforts in utilizing emerging robotics and machine learning technologies for collecting, processing, and characterizing microplastics. The review encompasses a range of AI technologies, delineating their principles, strengths, limitations, representative applications, and technology readiness levels, facilitating the selection of suitable AI technologies for mitigating microplastic pollution. New opportunities for future research and development on integrating robots and machine learning technologies are discussed to facilitate future efforts for mitigating microplastic pollution and advancing AI technologies.
Collapse
Affiliation(s)
- Pengwei Guo
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yuhuan Wang
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Parastoo Moghaddamfard
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Weina Meng
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Shenghua Wu
- Department of Civil, Coastal, and Environmental Engineering, University of South Alabama, Mobile, AL 36688, United States
| | - Yi Bao
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States.
| |
Collapse
|
28
|
Bergeson AR, Silvera AJ, Alper HS. Bottlenecks in biobased approaches to plastic degradation. Nat Commun 2024; 15:4715. [PMID: 38830860 PMCID: PMC11148140 DOI: 10.1038/s41467-024-49146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Plastic waste is an environmental challenge, but also presents a biotechnological opportunity as a unique carbon substrate. With modern biotechnological tools, it is possible to enable both recycling and upcycling. To realize a plastics bioeconomy, significant intrinsic barriers must be overcome using a combination of enzyme, strain, and process engineering. This article highlights advances, challenges, and opportunities for a variety of common plastics.
Collapse
Affiliation(s)
- Amelia R Bergeson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Ashli J Silvera
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
29
|
Xu L, Liu C, Ren Y, Huang Y, Liu Y, Feng S, Zhong X, Fu D, Zhou X, Wang J, Liu Y, Yang M. Nanoplastic toxicity induces metabolic shifts in Populus × euramericana cv. '74/76' revealed by multi-omics analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134148. [PMID: 38565012 DOI: 10.1016/j.jhazmat.2024.134148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.
Collapse
Affiliation(s)
- Liren Xu
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Chong Liu
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yachao Ren
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yinran Huang
- Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Yichao Liu
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Shuxiang Feng
- Hebei Academy of Forestry and Grassland Science, Shijiazhuang, Hebei 050061, China.
| | - Xinyu Zhong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Donglin Fu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Xiaohong Zhou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinmao Wang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| | - Yujun Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Minsheng Yang
- Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, Hebei 071000, China.
| |
Collapse
|
30
|
Ke Y, Lin L, Zhang G, Hong H, Yan C. Aging behavior and leaching characteristics of microfibers in landfill leachate: Important role of surface mesh structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134092. [PMID: 38554515 DOI: 10.1016/j.jhazmat.2024.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Mesh-structured films formed by the post-processing of microfibers improves their permeability and dexterity, such as disposable masks. However, the aging behavior and potential risks of mesh-structured microfibers (MS-MFs) in landfill leachate remain poorly understood. Herein, the aging behavior and mechanisms of MS-MFs and ordinary polypropylene-films (PP-films) microplastics, as well as their leaching concerning dissolved organic matter (DOM) in landfill leachate were investigated. Results revealed that MS-MFs underwent more significant physicochemical changes than PP-films during the aging process in landfill leachate, due to their rich porous habitats. An important factor in the photoaging of MS-MFs was related to reactive oxygen species produced by DOM, and this process was promoted by photoelectrons under UV irradiation. Compared with PP-films, MS-MFs released more DOM and nano-plastics fragments into landfill leachate, altering the composition and molecular weight of DOM. Aged MS-MFs-DOM generated new components, and humus-like substances produced by photochemistry showed the largest increase. Correlation analysis revealed that leached DOM was positively correlated with oxygen-containing groups accumulated in aged MS-MFs. Overall, MS-MFs will bring higher environmental risks and become a new long-term source of DOM contaminants in landfill leachate. This study provides new insights into the impact of novel microfibers on landfill leachate carbon dynamics.
Collapse
Affiliation(s)
- Yue Ke
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
31
|
Paul I, Mondal P, Haldar D, Halder G. Beyond the cradle - Amidst microplastics and the ongoing peril during pregnancy and neonatal stages: A holistic review. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133963. [PMID: 38461669 DOI: 10.1016/j.jhazmat.2024.133963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Advancements in research concerning the occurrence of microplastics (MPs) in human blood, sputum, urine, and breast milk samples have piqued the interest of the scientific community, prompting further investigation. MPs present in the placenta, amniotic fluid, and meconium raise concerns about interference with embryonic development, leading to preeclampsia, stillbirth, preterm birth, and spontaneous abortion. The challenges posed by MPs extend beyond pregnancy, affecting the digestive, reproductive, circulatory, immune, and central nervous systems. This has spurred scientists to examine the origins of MPs in distinct environmental layers, including air, water, and soil. These risks continue after birth, as neonates are continuously exposed to MPs through everyday items such as breast milk, cow milk and infant milk powder, as well as plastic-based products like feeding bottles and breast milk storage bags. It is the need of the hour to strike a balance amidst lifestyle changes, alternative choices to traditional plastic products, raising awareness about plastic-related health risks, and fostering collaboration between the scientific community and policymakers. This review aims to provide fresh insights into potential sources of MP pollution, with a specific focus on pregnancy and neonates. It is the first compilation of its kind so far that includes critical studies on recently reported discoveries.
Collapse
Affiliation(s)
- Indrani Paul
- Department of Biotechnology, Brainware University, Kolkata 700125, West Bengal, India
| | - Pritam Mondal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Dibyajyoti Haldar
- Division of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India.
| |
Collapse
|
32
|
Rahmati F, Sethi D, Shu W, Asgari Lajayer B, Mosaferi M, Thomson A, Price GW. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. CHEMOSPHERE 2024; 355:141749. [PMID: 38521099 DOI: 10.1016/j.chemosphere.2024.141749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University (IAU), Qom 37185364, Iran
| | - Debadatta Sethi
- Sugarcane Research Station, Odisha University of Agriculture and Technology, Nayagarh, India
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | | | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Allan Thomson
- Perennia Food and Agriculture Corporation., 173 Dr. Bernie MacDonald Dr., Bible Hill, Truro, NS, B6L 2H5, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
33
|
Martinez M, Minetti R, La Marca EC, Montalto V, Rinaldi A, Costa E, Badalamenti F, Garaventa F, Mirto S, Ape F. The power of Posidonia oceanica meadows to retain microplastics and the consequences on associated macrofaunal benthic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123814. [PMID: 38499170 DOI: 10.1016/j.envpol.2024.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.
Collapse
Affiliation(s)
- Marco Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy.
| | - Roberta Minetti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Emanuela Claudia La Marca
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Valeria Montalto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Alessandro Rinaldi
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Elisa Costa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Fabio Badalamenti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Garaventa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Ape
- Institute of Marine Sciences, National Research Council (ISMAR-CNR) Via Gobetti, 101, 40129, Bologna, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
34
|
Surana M, Pattanayak DS, Yadav V, Singh VK, Pal D. An insight decipher on photocatalytic degradation of microplastics: Mechanism, limitations, and future outlook. ENVIRONMENTAL RESEARCH 2024; 247:118268. [PMID: 38244970 DOI: 10.1016/j.envres.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Plastic material manufacturing and buildup over the past 50 years has significantly increased pollution levels. Microplastics (MPs) and non-biodegradable residual plastic films have become the two most pressing environmental issues among the numerous types of plastic pollution. These tiny plastic flakes enter water systems from a variety of sources, contaminating the water. Since MPs can be consumed by people and aquatic species and eventually make their way into the food chain, their presence in the environment poses a serious concern. Traditional technologies can remove MPs to some extent, but their functional groups, stable covalent bonds, and hydrophobic nature make them difficult to eliminate completely. The urgent need to develop a sustainable solution to the worldwide contamination caused by MPs has led to the exploration of various techniques. Advanced oxidation processes (AOPs) such as photo-catalytic oxidation, photo-degradation, and electrochemical oxidation have been investigated. Among these, photocatalysis stands out as the most promising method for degrading MPs. Photocatalysis is an environmentally friendly process that utilizes light energy to facilitate a chemical reaction, breaking down MPs into carbon dioxide and water-soluble hydrocarbons under aqueous conditions. In photocatalysis, semiconductors act as photocatalysts by absorbing energy from a light source, becoming excited, and generating reactive oxygen species (ROS). These ROS, including hydroxyl radicals (•OH) and superoxide ions ( [Formula: see text] ), play a crucial role in the degradation of MPs. This extensive review provides a detailed exploration of the mechanisms and processes underlying the photocatalytic removal of MPs, emphasizing its potential as an efficient and environmentally friendly approach to address the issue of plastic pollution.
Collapse
Affiliation(s)
- Madhu Surana
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Dhruti Sundar Pattanayak
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Venkteshwar Yadav
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - V K Singh
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology Raipur, Raipur, 492010, Chhattisgarh, India.
| |
Collapse
|
35
|
Wang Y, van Putten RJ, Tietema A, Parsons JR, Gruter GJM. Polyester biodegradability: importance and potential for optimisation. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:3698-3716. [PMID: 38571729 PMCID: PMC10986773 DOI: 10.1039/d3gc04489k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/23/2024] [Indexed: 04/05/2024]
Abstract
To reduce global CO2 emissions in line with EU targets, it is essential that we replace fossil-derived plastics with renewable alternatives. This provides an opportunity to develop novel plastics with improved design features, such as better reusability, recyclability, and environmental biodegradability. Although recycling and reuse of plastics is favoured, this relies heavily on the infrastructure of waste management, which is not consistently advanced on a worldwide scale. Furthermore, today's bulk polyolefin plastics are inherently unsuitable for closed-loop recycling, but the introduction of plastics with enhanced biodegradability could help to combat issues with plastic accumulation, especially for packaging applications. It is also important to recognise that plastics enter the environment through littering, even where the best waste-collection infrastructure is in place. This causes endless environmental accumulation when the plastics are non-(bio)degradable. Biodegradability depends heavily on circumstances; some biodegradable polymers degrade rapidly under tropical conditions in soil, but they may not also degrade at the bottom of the sea. Biodegradable polyesters are theoretically recyclable, and even if mechanical recycling is difficult, they can be broken down to their monomers by hydrolysis for subsequent purification and re-polymerisation. Additionally, both the physical properties and the biodegradability of polyesters are tuneable by varying their building blocks. The relationship between the (chemical) structures/compositions (aromatic, branched, linear, polar/apolar monomers; monomer chain length) and biodegradation/hydrolysis of polyesters is discussed here in the context of the design of biodegradable polyesters.
Collapse
Affiliation(s)
- Yue Wang
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Albert Tietema
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Gert-Jan M Gruter
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Avantium Support BV Zekeringstraat 29 1014 BV Amsterdam The Netherlands
| |
Collapse
|
36
|
Zhang Z, Zhang Q, Yang H, Cui L, Qian H. Mining strategies for isolating plastic-degrading microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123572. [PMID: 38369095 DOI: 10.1016/j.envpol.2024.123572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste is a growing global pollutant. Plastic degradation by microorganisms has captured attention as an earth-friendly tactic. Although the mechanisms of plastic degradation by bacteria, fungi, and algae have been explored over the past decade, a large knowledge gap still exists regarding the identification, sorting, and cultivation of efficient plastic degraders, primarily because of their uncultivability. Advances in sequencing techniques and bioinformatics have enabled the identification of microbial degraders and related enzymes and genes involved in plastic biodegradation. In this review, we provide an outline of the situation of plastic degradation and summarize the methods for effective microbial identification using multidisciplinary techniques such as multiomics, meta-analysis, and spectroscopy. This review introduces new strategies for controlling plastic pollution in an environmentally friendly manner. Using this information, highly efficient and colonizing plastic degraders can be mined via targeted sorting and cultivation. In addition, based on the recognized rules and plastic degraders, we can perform an in-depth analysis of the associated degradation mechanism, metabolic features, and interactions.
Collapse
Affiliation(s)
- Ziyao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Huihui Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
37
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
38
|
Khedre AM, Ramadan SA, Ashry A, Alaraby M. Abundance and risk assessment of microplastics in water, sediment, and aquatic insects of the Nile River. CHEMOSPHERE 2024; 353:141557. [PMID: 38417495 DOI: 10.1016/j.chemosphere.2024.141557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/01/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Microplastics (MPs) are a serious threat in freshwater environments. The ecological risk and abundance level of MPs in abiotic and biotic compartments of the Nile River haven't been systematically reported. Thus, these issues were highlighted in the present study during different seasons of the sampling year. The results showed that MP concentrations in the river ranged from 2.24 ± 0.6 to 3.76 ± 1.1 particles/L, 298 ± 63 to 520 ± 80 particles/kg dry weight, and 0.081 ± 0.051 to 4.95 ± 2.6 particles/individual in surface water, sediment, and different species of aquatic insects, respectively. All the extracted MPs are colored blue, red, and black. Fiber-shaped polyesters (<500-1500 μm) were the most common MPs in all the river compartments. MPs' dominance was observed during the summer in comparison with that in the other seasons. Environmental risk indicators indicate the high ecological risk of MPs, which are widely distributed in the Nile River. In conclusion, MP consumption by aquatic insects may not only be related to levels of environmental contamination, since other variables, such as taxon size, weight, and particular feeding behavior, may also be significant. Additionally, the presence of MPs in insects (at lower trophic levels) creates the potential for predation-based inter-trophic level transmission. Thus, higher trophic-level investigations of various feeding groups should be carried out to identify any possible harm that MPs cause to various aquatic organisms.
Collapse
Affiliation(s)
- Azza M Khedre
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Somaia A Ramadan
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Ali Ashry
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt.
| | - Mohamed Alaraby
- Group of Entomology and Environmental Toxicology, Department of Zoology, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| |
Collapse
|
39
|
Sorasan C, Taladriz-Blanco P, Rodriguez-Lorenzo L, Espiña B, Rosal R. New versus naturally aged greenhouse cover films: Degradation and micro-nanoplastics characterization under sunlight exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170662. [PMID: 38316311 DOI: 10.1016/j.scitotenv.2024.170662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
The understanding of microplastic degradation and its effects remains limited due to the absence of accurate analytical techniques for detecting and quantifying micro- and nanoplastics. In this study, we investigated the release of nanoplastics and small microplastics in water from low-density polyethylene (LDPE) greenhouse cover films under simulated sunlight exposure for six months. Our analysis included both new and naturally aged (used) cover films, enabling us to evaluate the impact of natural aging. Additionally, photooxidation effects were assessed by comparing irradiated and non-irradiated conditions. Scanning electron microscopy (SEM) and nanoparticle tracking analysis (NTA) confirmed the presence of particles below 1 μm in both irradiated and non-irradiated cover films. NTA revealed a clear effect of natural aging, with used films releasing more particles than new films but no impact of photooxidation, as irradiated and non-irradiated cover films released similar amounts of particles at each time point. Raman spectroscopy demonstrated the lower crystallinity of the released PE nanoplastics compared to the new films. Flow cytometry and total organic carbon data provided evidence of the release of additional material besides PE, and a clear effect of both simulated and natural aging, with photodegradation effects observed only for the new cover films. Finally, our results underscore the importance of studying the aging processes in both new and used plastic products using complementary techniques to assess the environmental fate and safety risks posed by plastics used in agriculture.
Collapse
Affiliation(s)
- Carmen Sorasan
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| | - Patricia Taladriz-Blanco
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers, 4, 1700 Fribourg, Switzerland.
| | - Laura Rodriguez-Lorenzo
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Water Quality Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Roberto Rosal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Alcalá de Henares, E-28871 Madrid, Spain
| |
Collapse
|
40
|
Theobald B, Risani R, Donaldson L, Bridson JH, Kingsbury JM, Pantos O, Weaver L, Lear G, Pochon X, Zaiko A, Smith DA, Anderson R, Davy B, Davy S, Doake F, Masterton H, Audrezet F, Maday SDM, Wallbank JA, Barbier M, Greene AF, Parker K, Harris J, Northcott GL, Abbel R. An investigation into the stability and degradation of plastics in aquatic environments using a large-scale field-deployment study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170301. [PMID: 38272094 DOI: 10.1016/j.scitotenv.2024.170301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.
Collapse
Affiliation(s)
| | | | | | - James H Bridson
- Scion, Rotorua 3010, New Zealand; University of Canterbury, Christchurch 8140, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Gavin Lear
- University of Auckland, Auckland 1010, New Zealand
| | - Xavier Pochon
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | - Ben Davy
- Scion, Rotorua 3010, New Zealand
| | | | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand
| | - François Audrezet
- University of Auckland, Auckland 1010, New Zealand; Cawthron Institute, Nelson 7010, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
42
|
Duncan TV, Khan SA, Patri AK, Wiggins S. Regulatory Science Perspective on the Analysis of Microplastics and Nanoplastics in Human Food. Anal Chem 2024; 96:4343-4358. [PMID: 38452774 DOI: 10.1021/acs.analchem.3c05408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Microplastics are increasingly reported, not only in the environment but also in a wide range of food commodities. While studies on microplastics in food abound, the current state of science is limited in its application to regulatory risk assessment by a continued lack of standardized definitions, reference materials, sample collection and preparation procedures, fit-for purpose analytical methods for real-world and environmentally relevant plastic mixtures, and appropriate quality controls. This is particularly the case for nanoplastics. These methodological challenges hinder robust, quantitative exposure assessments of microplastic and nanoplastic mixtures from food consumption. Furthermore, limited toxicological studies on whether microplastics and nanoplastics adversely impact human health are also impeded by methodology challenges. Food safety regulatory agencies must consider both the exposure and the risk of contaminants of emerging concern to ascertain potential harm. Foundational to this effort is access to and application of analytical methods with the capability to quantify and characterize micro- and nanoscale sized polymers in complex food matrices. However, the early stages of method development and application of early stage methods to study the distribution and potential health effects of microplastics and nanoplastics in food have largely been done without consideration of the stringent requirements of methods to inform regulatory activities. We provide regulatory science perspectives on the state of knowledge regarding the occurrence of microplastics and nanoplastics in food and present our general approach for developing, validating, and implementing analytical methods for regulatory purposes.
Collapse
Affiliation(s)
- Timothy V Duncan
- Division of Food Processing Science and Technology, Office of Food Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Bedford Park, Illinois 60501, United States
| | - Sadia Afrin Khan
- Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| | - Anil K Patri
- Nanotechnology Core Facility, Office of Scientific Coordination, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, Arkansas 72029, United States
| | - Stacey Wiggins
- Division of Seafood Safety, Office of Food Safety, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| |
Collapse
|
43
|
Liu Y, Zhao S, Wang D, Wang S, Ding X, Han K, Wang R, Kou Y, Zhou G, Shen W. Environmental fate of microplastics in alpine and canyon-type river-cascade reservoir systems: Large-scale investigation of the Yalong River in the eastern Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170300. [PMID: 38272090 DOI: 10.1016/j.scitotenv.2024.170300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Reservoirs are regarded as potential collection sites for microplastics (MPs), and ample water resources in plateau regions provide favorable natural conditions for hydroelectric power generation. However, research on the impact of cascade reservoir construction in the plateau region on the fate of MPs within the watershed is limited. In this study, the Yalong River, an alpine canyon river in the eastern Qinghai-Tibet Plateau, was selected as the research area. This study explored the distribution of MPs at various depths in water, sediment, and riverbank soil as well as the formation of "MP communities" within the river-cascade reservoir system. Furthermore, the effects of dam construction on MPs' migration in different environments were analyzed. The results revealed that the abundance of MPs in the water and sediment within the cascade reservoir area (CRA) was significantly higher than that in the river area (RA) (P < 0.001). Additionally, the trend of increasing MPs in water with decreasing altitude was notably slower in CRA. Regarding shape, the proportion of fibers in the water within the CRA was significantly lower than that in the RA, with a smaller vertical migration rate in the water than in the sediment. The proportion of MPs < 500 μm in the water within the CRA was significantly higher than that in the RA. High-density MPs were notably deposited in the reservoir sediments. The analysis of the MP communities revealed that the construction of cascade dams led to relative geographical isolation between different sampling sites, reducing the similarity of MP communities in the CRA. This study established a theoretical foundation for understanding the impact of cascade dam construction on the fate characteristics of MPs and their potential risks in plateau areas.
Collapse
Affiliation(s)
- Yixuan Liu
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shaoting Zhao
- Agricultural Technology Promotion Center of Xi'an, Xi'an, Shaanxi 710000, PR China
| | - Dongzhi Wang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Shichen Wang
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaofan Ding
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, PR China
| | - Kaiyang Han
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ruiying Wang
- Xi'an Institute of Environmental Hygiene Sciences, Xi'an, Shaanxi 710075, PR China
| | - Yuyang Kou
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Guangqian Zhou
- College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Weibo Shen
- College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation), Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; College of Science, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
44
|
Quilumbaquin W, Castillo-Cabrera GX, Borrero-González LJ, Mora JR, Valle V, Debut A, Loor-Urgilés LD, Espinoza-Montero PJ. Photoelectrocatalytic degradation of high-density polyethylene microplastics on TiO 2-modified boron-doped diamond photoanode. iScience 2024; 27:109192. [PMID: 38433924 PMCID: PMC10906510 DOI: 10.1016/j.isci.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO2-modified boron-doped diamond (BDD/TiO2) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO2 nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions. The results indicate that the PEC technique degraded 89.91 ± 0.08% of HDPE MPs in a 10-h reaction and was more efficient at a lower current density (6.89 mA cm-1) with the BDD/TiO2 photoanode compared to electrochemical oxidation on bare BDD.
Collapse
Affiliation(s)
- Wendy Quilumbaquin
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | | - Luis J. Borrero-González
- Laboratorio de Óptica Aplicada, Escuela de Ciencias Físicas y Matemática, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - José R. Mora
- Department of Chemical Engineering, Universidad San Francisco de Quito USFQ, Quito 170157, Ecuador
| | - Vladimir Valle
- Departamento de Ciencias de Alimentos y Biotecnología, Escuela Politécnica Nacional, Quito 170517, Ecuador
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 170501, Ecuador
| | - Luis D. Loor-Urgilés
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | | |
Collapse
|
45
|
Liu Y, Xu J, Li X, Zhou W, Cui X, Tian P, Yu H, Wang X. Synergistic effects of Fe-based nanomaterial catalyst on humic substances formation and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2024; 395:130371. [PMID: 38278455 DOI: 10.1016/j.biortech.2024.130371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/07/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 μm) and reduced the abundance of small-sized (10-50 μm) and large-sized MPs (>1000 μm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.
Collapse
Affiliation(s)
- Yuhuan Liu
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Jiayi Xu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiaolu Li
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Wuyi Zhou
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi Province, 330047, China
| | - Pengjiao Tian
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Haizhong Yu
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China
| | - Xiqing Wang
- College of Food Science Technology and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, China.
| |
Collapse
|
46
|
Shin N, Kim SH, Oh J, Kim S, Lee Y, Shin Y, Choi S, Bhatia SK, Kim YG, Yang YH. Reproducible Polybutylene Succinate (PBS)-Degrading Artificial Consortia by Introducing the Least Type of PBS-Degrading Strains. Polymers (Basel) 2024; 16:651. [PMID: 38475335 DOI: 10.3390/polym16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Polybutylene succinate (PBS) stands out as a promising biodegradable polymer, drawing attention for its potential as an eco-friendly alternative to traditional plastics due to its biodegradability and reduced environmental impact. In this study, we aimed to enhance PBS degradation by examining artificial consortia composed of bacterial strains. Specifically, Terribacillus sp. JY49, Bacillus sp. JY35, and Bacillus sp. NR4 were assessed for their capabilities and synergistic effects in PBS degradation. When only two types of strains, Bacillus sp. JY35 and Bacillus sp. NR4, were co-cultured as a consortium, a notable increase in degradation activity toward PBS was observed compared to their activities alone. The consortium of Bacillus sp. JY35 and Bacillus sp. NR4 demonstrated a remarkable degradation yield of 76.5% in PBS after 10 days. The degradation of PBS by the consortium was validated and our findings underscore the potential for enhancing PBS degradation and the possibility of fast degradation by forming artificial consortia, leveraging the synergy between strains with limited PBS degradation activity. Furthermore, this study demonstrated that utilizing only two types of strains in the consortium facilitates easy control and provides reproducible results. This approach mitigates the risk of losing activity and reproducibility issues often associated with natural consortia.
Collapse
Affiliation(s)
- Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
47
|
Gupta P, Saha M, Suneel V, Rathore C, Ray D, Naik A. The consequences of reduced anthropogenic activities during the COVID-19 pandemic on microplastic abundance in a tropical estuarine region: Goa, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169041. [PMID: 38056653 DOI: 10.1016/j.scitotenv.2023.169041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Plastic pollution is pervasive, as it has infiltrated every corner of the planet and the COVID-19 pandemic has caused a depletion in the production, consumption, and disposal of plastics. To find out the effect of the COVID-19 pandemic, a comparative assessment of microplastics (MPs) observed before and after the pandemic was evaluated in surface water and sediment from the major rivers of Goa, i.e. Mandovi and Zuari. To comprehend the relative difference in the abundance, characteristics, and source of MPs, samples were examined in both the dry and wet seasons. We found a sharp decrease in the concentration of MPs immediately after the isolated pandemic. During the dry and wet seasons, two to seven times less concentration of MPs was recorded for water and sediments after the pandemic period compared to the prior pandemic. MPs size, >300 μm were relatively abundant after the pandemic period in contrast to the prior pandemic (<300 μm sized MPs were more). Polyamide (PA), polyvinyl alcohol (PVAL), and polyvinyl chloride (PVC) were the dominant polymers after the pandemic whereas earlier the dominant polymers were polyacetylene, polyacrylamide (PAM), and polyvinyl pyrrolidone (PVP). The risk assessment of MPs in sediments (Polymer load index) was higher prior to the pandemic. The water quality parameters also indicated an improvement in the water quality during the pandemic. The present study clearly exhibited that due to the reduction of overall anthropogenic activities during the COVID-19 pandemic period, a sharp decline of plastic waste and MP abundance in the coastal water body in Goa, west coast of India was found. This study unveils the controlling factors (such as total solid waste generation, plastic waste, tourism activities, and the effect of monsoon) which influence the abundance and distribution of macro- and microplastics.
Collapse
Affiliation(s)
- Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - V Suneel
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durbar Ray
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Akshata Naik
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| |
Collapse
|
48
|
Jin M, Sun M, Liu J, Dong C, Xue J. Influence of operating parameters on the yield of micro-plastics from plastics incineration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169347. [PMID: 38104822 DOI: 10.1016/j.scitotenv.2023.169347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Plastics account for a large proportion of domestic waste. However, micro-plastics will be produced after the plastic is incinerated. The purpose of this study is to find out the change rule of micro-plastics produced during incineration under different conditions. Combining micro-FTIR and PCA algorithm is a good tool to identify the micro-plastics. The PE, PP and PVC micro-plastics are distinguished using PCA-FTIR spectra. The results show different incineration conditions significantly affect the output of micro-plastics. The yield of micro-plastics increases with increasing temperature for both PP and PVC. And the yield of micro-plastics decreases with the increase in flow rate. The maximum amount of micro-plastics is produced by PE, which is 6.62 × 103 after 1 g PE incineration. The yield of micro-plastics in the co-incineration of PE and PP, as well as PE and PVC, significantly increased to 1.42 and 1.89 times of the calculated values, respectively. The nano-particles are also observed. The FTIR and EDS results show that the nano-particles are the products of incineration of plastics, including partly CH bond and unburned carbon, tar and ash.
Collapse
Affiliation(s)
- Mingnuo Jin
- School of New Energy, North China Electric Power University, No.2 Beinong Road, Beijing 102206, PR China
| | - Mufei Sun
- School of New Energy, North China Electric Power University, No.2 Beinong Road, Beijing 102206, PR China
| | - Jingyi Liu
- School of New Energy, North China Electric Power University, No.2 Beinong Road, Beijing 102206, PR China
| | - Changqing Dong
- School of New Energy, North China Electric Power University, No.2 Beinong Road, Beijing 102206, PR China
| | - Junjie Xue
- School of New Energy, North China Electric Power University, No.2 Beinong Road, Beijing 102206, PR China.
| |
Collapse
|
49
|
Ou D, Ni Y, Li W, He W, Wang L, Huang H, Pan Z. Psychrobacter species enrichment as potential microplastic degrader and the putative biodegradation mechanism in Shenzhen Bay sediment, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132971. [PMID: 37956562 DOI: 10.1016/j.jhazmat.2023.132971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Microplastic (MP) pollution has emerged as a pressing environmental concern due to its ubiquity and longevity. Biodegradation of MPs has garnered significant attention in combatting global MP contamination. This study focused on MPs within sediments near the sewage outlet of Shenzhen Bay. The objective was to elucidate the microbial communities in sediments with varying MPs, particularly those with high MP loads, and to identify microorganisms associated with MP degradation. The results revealed varying MP abundance, ranging from 211 to 4140 items kg-1 dry weight (d. w.), with the highest concentration observed near the outfall. Metagenomic analysis confirmed the enrichment of Psychrobacter species in sediments with high MP content. Psychrobacter accounted for ∼16.71% of the total bacterial community and 41.71% of hydrocarbon degrading bacteria at the S3 site, exhibiting a higher abundance than at other sampling sites. Psychrobacter contributed significantly to bacterial function at S3, as evidenced by the Kyoto Encyclopedia of Genes and Genomes pathway and enzyme analysis. Notably, 28 enzymes involved in MP biodegradation were identified, predominantly comprising oxidoreductases, hydrolases, transferases, ligases, lyases, and isomerases. We propose a putative mechanism for MP biodegradation, involving the breakdown of long-chain plastic polymers and subsequent oxidation of short-chain oligomers, ultimately leading to thorough mineralization.
Collapse
Affiliation(s)
- Danyun Ou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai 536015, PR China
| | - Yue Ni
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiwen Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Weiyi He
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Institute for Advanced Studies, Universiti Malaya, Federal Territory of Kuala Lumpur, 50603 Kuala Lumpur, Malaysia
| | - Lei Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Hao Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China; Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, PR China; Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, PR China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, PR China.
| |
Collapse
|
50
|
Guo F, Liu B, Zhao J, Hou Y, Wu J, Hu H, Zhou C, Hu H, Zhang T, Yang Z. Temperature-dependent effects of microplastics on sediment bacteriome and metabolome. CHEMOSPHERE 2024; 350:141190. [PMID: 38215830 DOI: 10.1016/j.chemosphere.2024.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
The increasing prevalence of microplastics in the environment has become a concern for various ecosystems, including wetland ecosystems. Here, we investigated the effects of three popular microplastic types: polyethylene, polylactic acid, and tire particles at 5 °C and 25 °C on the sediment microbiome and metabolome at the 3% (w/w) level. Results indicated that temperature greatly influenced catalase and neutral phosphatase activities, whereas the type of microplastic had a more significant impact on urease and dehydrogenase activities. The addition of microplastic, especially tire particles, increased microbial diversity and significantly altered the microbial community structure and metabolic profile, leading to the formation of different clusters of microbial communities depending on the temperature. Nonetheless, the effect of temperature on the metabolite composition was less significant. Functional prediction showed that the abundance of functional genes related to metabolism and biogeochemical cycling increased with increasing temperature, especially the tire particles treatment group affected the nitrogen cycling by inhibiting ureolysis and nitrogen fixation. These observations emphasize the need to consider microplastic type and ambient temperature to fully understand the ecological impact of microplastics on microbial ecosystems.
Collapse
Affiliation(s)
- Feng Guo
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China; School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| | - Biao Liu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China.
| | - Jiaying Zhao
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| | - Yiran Hou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Junfeng Wu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Hongwei Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Changrui Zhou
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Hui Hu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Tingting Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, PR China
| | - Ziyan Yang
- School of Environment and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, Henan Province, 450011, PR China
| |
Collapse
|