1
|
Bodey TW, Cuthbert RN, Diagne C, Marino C, Turbelin A, Angulo E, Fantle-Lepczyk J, Pincheira-Donoso D, Courchamp F, Hudgins EJ. Predicting the global economic costs of biological invasions by tetrapods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178425. [PMID: 39954469 DOI: 10.1016/j.scitotenv.2025.178425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/11/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025]
Abstract
Globalisation has accelerated rates of biological invasions worldwide, leading to widespread environmental perturbations that often translate into rapidly expanding socio-economic costs. Although such monetary costs can be estimated from the observed effects of invasions, the pathways that lead invasive species to become economically impactful remain poorly understood. Here, we implement the first global-scale test of the hypothesis that adaptive traits that influence demographic resilience predict economic costs, using invasive terrestrial vertebrates as models given their well-catalogued impacts and characteristics. Our results reveal that total global costs of invasive tetrapods are conservatively in the tens of billions of dollars, with the vast majority due to damage costs from invasive mammals. These monetary impacts are predicted by longevity, female maturation age, diet and invasion pathway traits, although the directionality in the association between impacts and these drivers varied across classes. Alarmingly, costs remain unknown for >90 % of recorded established alien tetrapods worldwide, and across the majority of invaded countries. These huge socio-economic costs demonstrate the necessity of mitigating tetrapod invasions and filling knowledge gaps. Effective identification of traits predictive of costs among and within these groups can facilitate the prioritisation of resources to efficiently target the most damaging existing and emerging invasive tetrapod species.
Collapse
Affiliation(s)
- Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK.
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, UK
| | - Christophe Diagne
- CBGP, IRD, Université de Montpellier, CIRAD, INRAE, Institut Agro, 34988 Montferrier-sur-Lez, France
| | - Clara Marino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-Sur-Yvette, France; FRB-Cesab, 5 rue de l'école de médecine, 34000 Montpellier, France
| | - Anna Turbelin
- Great Lakes Forestry Centre, Natural Resources Canada, Canadian Forest Service, Sault Ste. Marie, Ontario P6A 2E5, Canada
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092 Seville, Spain
| | - Jean Fantle-Lepczyk
- Auburn University, College of Forestry, Wildlife and Environment, Auburn, AL 36849, USA
| | | | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-Sur-Yvette, France
| | - Emma J Hudgins
- School of Agriculture, Food and Ecosystem Sciences, University of Melbourne, Parkville, VIC 3010, Australia; Carleton University Department of Biology, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
2
|
Hsu FC, Chen JTC, Yamada A, Hsiao Y, Ho CK, Lin CC, Oguri E, Tseng SP. Hidden invaders: intraspecific cryptic invasion and hybridization of Dolichoderus thoracicus (Hymenoptera: Formicidae) in Taiwan. JOURNAL OF ECONOMIC ENTOMOLOGY 2025; 118:320-328. [PMID: 39673211 DOI: 10.1093/jee/toae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 10/16/2024] [Accepted: 11/02/2024] [Indexed: 12/16/2024]
Abstract
Biological invasions pose substantial threats to global biodiversity, agriculture, and ecological stability. Among these, intraspecific cryptic invasions, characterized by the spread of nonnative genotypes within a species, present unique challenges for detection and management. Despite the well-documented influence of invasive ants on ecosystems, instances of intraspecific cryptic ant invasions have rarely been documented. This study focused on the black cocoa ant, Dolichoderus thoracicus (Smith 1860), which has been increasingly reported as a pest in Taiwan over the past decade. In this study, we utilized a genome-wide approach employing multiplexed inter-simple sequence repeats genotyping by sequencing to identify single nucleotide polymorphisms across the D. thoracicus populations, elucidating the variations in the genetic population structure of the species in Taiwan. Our findings confirmed the occurrence of intraspecific cryptic invasions, demonstrating the coexistence of native and nonnative lineages, along with potential hybridization events between them. This study underscores the critical role of comprehensive genetic analysis in uncovering the complex dynamics of species invasions.
Collapse
Affiliation(s)
- Feng-Chuan Hsu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | - Aiki Yamada
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yun Hsiao
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chung-Chi Lin
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Emiko Oguri
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Shu-Ping Tseng
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Hulme PE. Trouble on the horizon: anticipating biological invasions through futures thinking. Biol Rev Camb Philos Soc 2025; 100:461-480. [PMID: 39310957 PMCID: PMC11718596 DOI: 10.1111/brv.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 01/11/2025]
Abstract
Anticipating future biosecurity threats to prevent their occurrence is the most cost-effective strategy to manage invasive alien species. Yet, biological invasions are complex, highly uncertain processes. High uncertainty drives decision-making away from strategic preventative measures and towards operational outcomes aimed at post-invasion management. The limited success of preventative measures in curbing biological invasions reflects this short-term mindset and decision-makers should instead apply strategic foresight to imagine futures where biosecurity threats are minimised. Here, four major futures thinking tools (environmental scanning, driver-mapping, horizon scanning, and scenario planning) that describe probable, possible, plausible and preferable futures are assessed in terms of their potential to support both research and policy addressing biological invasions. Environmental scanning involves surveying existing data sources to detect signals of emerging alien species through knowledge of changes in either the likelihood or consequences of biological invasions. Several approaches are widely used for biosecurity including automated scans of digital media, consensus-based expert scoring, and prediction markets. Automated systems can be poor at detecting weak signals because of the large volume of 'noise' they generate while expert scoring relies on prior knowledge and so fails to identify unknown unknowns which is also true of prediction markets that work well for quite specific known risks. Driver-mapping uses expert consensus to identify the political, economic, societal, technological, legislative, and environmental forces shaping the future and is a critical component of strategic foresight that has rarely been applied to biological invasions. Considerable potential exists to extend this approach to develop system maps to identify where biosecurity interventions may be most effective and to explore driver complexes to determine megatrends shaping the future of biological invasions. Horizon scanning is a systematic outlook of potential threats and future developments to detect weak signals of emerging issues that exist at the margins of current thinking. Applications have been strongly focused on emerging issues related to research and technological challenges relevant to biosecurity and invasion science. However, most of these emerging issues are already well known in current-day research. Because horizon scanning is based on expert consensus, it needs to embrace a diversity of cultural, gender, and disciplinary diversity more adequately to ensure participants think intuitively and outside of their own subject boundaries. Scenario planning constructs storylines that describe alternative ways the political, economic, social, technological, legislative, and environmental situation might develop in the future. Biological invasion scenario planning has favoured structured approaches such as standardised archetypes and uncertainty matrices, but scope exists to apply more intuitive thinking by using incasting, backcasting, or causal layered analysis. Futures thinking in biological invasions has not engaged with decision-makers or other stakeholders adequately and thus outcomes have been light on policy and management priorities. To date, strategic foresight addressing biological invasions has applied each approach in isolation. Yet, an integrated approach to futures thinking that involves a diverse set of stakeholders in exploring the probable, possible, plausible, and preferable futures relating to biological invasions is crucial to the delivery of strategic biosecurity foresight at both national and global scales.
Collapse
Affiliation(s)
- Philip E. Hulme
- Bioprotection Aotearoa, Department of Pest‐Management and ConservationLincoln UniversityPO Box 85084ChristchurchCanterbury7648New Zealand
| |
Collapse
|
4
|
Garcia‐Lozano C, Pueyo‐Ros J, Canelles Q, Latombe G, Adriaens T, Bacher S, Cardoso AC, Cleary M, Coromina L, Courchamp F, Dawson W, de Groot M, Essl F, Gallardo B, Golivets M, Huusela E, Jauni M, Jelaska SD, Jeschke JM, Katsanevakis S, Kourantidou M, Kühn I, Lenzner B, Leung B, Marchante E, O'Flynn C, Pérez‐Granados C, Pergl J, Pipek P, Preda C, Ribeiro F, Roy H, Scalera R, von Schmalensee M, Seebens H, Stefánsson RA, Tokarska‐Guzik B, Tricarico E, Vanderhoeven S, Vandvik V, Vilà M, Roura‐Pascual N. Management Measures and Trends of Biological Invasions in Europe: A Survey-Based Assessment of Local Managers. GLOBAL CHANGE BIOLOGY 2025; 31:e70028. [PMID: 39825587 PMCID: PMC11742469 DOI: 10.1111/gcb.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025]
Abstract
Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales. Here we present the first European assessment of how managers perceive trends in IAS and the effectiveness of management measures to mitigate biological invasions. We developed a structured questionnaire translated into 18 languages and disseminated it to local and regional managers of IAS in Europe. We received responses from 1928 participants from 41 European countries, including 24 European Union (EU) Member States. Our results reveal substantial efforts in IAS monitoring and control, with invasive plants being the primary focus. Yet, there is a general perception of an increase in the numbers, occupied areas, and impacts of IAS across environment and taxonomic groups, particularly plants, over time. This perceived increase is consistent across both EU and non-EU countries, with respondents from EU countries demonstrating more certainty in their responses. Our results also indicate a lack of data on alien vertebrates and invertebrates, reflecting a need for more targeted monitoring and knowledge sharing between managers and policymakers and between countries. Overall, our study suggests that Europe's current strategies are insufficient to substantially reduce IAS by 2030 and hence to meet the Kunming-Montreal Global Biodiversity Framework target.
Collapse
Affiliation(s)
- Carla Garcia‐Lozano
- Departament de GeografiaUniversitat de GironaGironaSpain
- Departament de Ciències Ambientals, Facultat de CiènciesUniversitat de GironaGironaSpain
| | - Josep Pueyo‐Ros
- Catalan Institute for Water Research (ICRA‐CERCA)GironaSpain
| | - Quim Canelles
- Departament de Ciències Ambientals, Facultat de CiènciesUniversitat de GironaGironaSpain
| | - Guillaume Latombe
- Institute of Ecology and Evolution, the University of Edinburgh, King's BuildingsEdinburghUK
| | - Tim Adriaens
- Research Institute for Nature and Forest (INBO)BrusselsBelgium
| | - Sven Bacher
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | | | - Michelle Cleary
- Swedish University of Agricultural Sciences (SLU)Southern Swedish Forest Research CentreAlnarpSweden
| | | | - Franck Courchamp
- Centre National de Recherche Scientifique, AgroParisTech, Ecologie Systématique Evolution, Université Paris‐SaclayGif‐Sur‐YvetteFrance
| | - Wayne Dawson
- Department of Evolution, Ecology and BehaviourInstitute of Infection, Veterinary, and Ecological Sciences, University of LiverpoolLiverpoolUK
| | | | - Franz Essl
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | | | - Marina Golivets
- Department of Community EcologyHelmholtz Centre for Environmental Research ‐ UFZHalleGermany
| | - Erja Huusela
- Natural Resources Institute Finland (Luke)JokioinenFinland
| | - Miia Jauni
- Natural Resources Institute Finland (Luke)HelsinkiFinland
| | | | - Jonathan M. Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Institute of BiologyFreie Universität BerlinBerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | | | - Melina Kourantidou
- Université de Bretagne Occidentale, AMURE, IUEM ‐ Institut Universitaire Européen de la MerPlouzanéFrance
- Department of Business and SustainabilityUniversity of Southern Denmark Business SchoolEsbjergDenmark
| | - Ingolf Kühn
- Department of Community EcologyHelmholtz Centre for Environmental Research ‐ UFZHalleGermany
- Geobotany and Botanical Garden, Martin Luther University Halle‐WittenbergHalleGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Brian Leung
- Department of BiologyMcGill UniversityMontrealQuebecCanada
- Bieler School of EnvironmentMcGill UniversityMontrealQuebecCanada
| | - Elizabete Marchante
- Department of Life Sciences, Centre for Functional Ecology, Associate Laboratory TERRAUniversity of CoimbraCoimbraPortugal
| | | | - Cristian Pérez‐Granados
- Ecology DepartmentAlicante UniversityAlicanteSpain
- Biodiversity Management and Conservation Programme, Forest Science and Technology Centre of CataloniaSolsonaSpain
| | - Jan Pergl
- Institute of Botany, Czech Academy of SciencesPrůhoniceCzech Republic
| | - Pavel Pipek
- Institute of Botany, Czech Academy of SciencesPrůhoniceCzech Republic
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | | | - Filipe Ribeiro
- MARE, Centro de Ciências do Mar e do AmbienteFaculdade de Ciências, Universidade de LisboaLisbonPortugal
| | - Helen Roy
- UK Centre for Ecology & HydrologyWallingfordUK
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| | | | | | - Hanno Seebens
- Department of Animal Ecology & SystematicsJustus‐Liebig University GiessenGiessenGermany
| | | | - Barbara Tokarska‐Guzik
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in KatowiceKatowicePoland
| | - Elena Tricarico
- Department of BiologyUniversity of FlorenceSesto FiorentinoItaly
| | | | - Vigdis Vandvik
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD‐CSIC)SevillaSpain
- Department of Plant Biology and EcologyUniversity of SevillaSevillaSpain
| | - Núria Roura‐Pascual
- Departament de Ciències Ambientals, Facultat de CiènciesUniversitat de GironaGironaSpain
| |
Collapse
|
5
|
Kang Z, Lin A, Ji M, Jing S, Song Z, Li Z, Song L, Sun J, Qu C. Comprehensive sex- and tissue-specific transcriptome of the destructive invasive pest Tuta absoluta adults. Sci Data 2024; 11:1429. [PMID: 39719454 DOI: 10.1038/s41597-024-04326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/14/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
The South American tomato pinworm, Tuta absoluta (Meyrick) is a newly emerged invasive pests causing devastating loss on tomato production globally. Semiochemical-based management is a promising method for controlling this pest. However, there is little known about how T. absoluta recognizes the semiochemical compounds. In this study, we generated a comprehensive sex- and tissue-specific transcriptome data of T. absoluta adults, which is a perfect sequel to the recently released chromosome-level genome data. Several tissues that we selected are important for semiochemicals perceptions in insects. Thus, the differentially expressed genes among the different tissues and sexes lays a good foundation for the olfaction researches in T. absoluta. Taken together, this transcriptomic data not only contribute to the molecular investigations about olfactory perception of T. absoluta, but also provided important information to developing innovative controlling methods based on the olfaction process of T. absoulta.
Collapse
Affiliation(s)
- Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China.
| | - Aoli Lin
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Mengqi Ji
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Shizhao Jing
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Zichao Song
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Zhenxaing Li
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Limei Song
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China
| | - Jianghua Sun
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding, 071000, China.
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Feng Z, Zhang L, Tang N, Li X, Xing W. Ensemble modeling of aquatic plant invasions and economic cost analysis in China under climate change scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177444. [PMID: 39522784 DOI: 10.1016/j.scitotenv.2024.177444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Pistia stratiotes, Eichhornia crassipes, Alternanthera philoxeroides, and Cabomba caroliniana are officially recognized as invasive aquatic plants in China. Accurately predicting their invasion dynamics under climate change is crucial for the future safety of aquatic ecosystems. Compared to single prediction models, ensemble models that integrate multiple algorithms provide more accurate forecasts. However, there has been a notable lack of research utilizing ensemble models to collectively predict the invasive regions of these four species in China. To address this gap, we collected and analyzed comprehensive data on species distribution, climate, altitude, population density, and the normalized difference vegetation index to accurately predict the future invasive regions and potential warnings for aquatic systems concerning these species. Our results indicate that suitable areas for invasive aquatic plants in China are primarily located in the southeastern region. Significant differences exist in the suitable habitats for each species: P. stratiotes and E. crassipes have broad distribution areas, covering most water systems in southeastern China, while C. caroliniana is concentrated in the middle and lower reaches of the Yangtze River and the estuaries of the Yangtze and Pearl Rivers. A. philoxeroides has an extensive invasion area, with the North China Plain projected to become a suitable invasion region in the future. The main factors influencing future invasions are human activities and climate change. In addition, under climate change, the suitable habitats for these invasive aquatic plants are expected to expand towards higher latitudes. We also estimated the economic costs associated with invasive aquatic plants in China using the Invacost database, revealing cumulative costs of US$5525.17 million, where damage costs (89.70%) significantly exceed management costs (10.30%). Our innovative approach, employing various ensemble algorithms and water system invasion forecasts, aims to effectively mitigate the future invasions and economic impacts of these species.
Collapse
Affiliation(s)
- Zixuan Feng
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lei Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Na Tang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Roe AD, Greenwood LF, Coyle DR. Catching invasives with curiosity: the importance of passive biosecurity surveillance systems for invasive forest pest detection. ENVIRONMENTAL ENTOMOLOGY 2024; 53:881-893. [PMID: 39513514 DOI: 10.1093/ee/nvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/03/2024] [Revised: 07/22/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
First detections of nonnative insect species are often made by curious members of the public rather than by specialists or trained professionals. Passive surveillance is a crucial component of national biosecurity surveillance, highlighted by early detection case studies of several prominent nonnative arthropod pests (e.g., Asian longhorned beetle [ALB], Jorō spider, spotted lanternfly). These examples demonstrate that curiosity and the recognition of novelty in the natural world, along with enabling technology and systems, are a critical part of early detection and effective invasive species management. This is particularly impactful when dealing with conspicuous pests or for new and emerging nonnative species that have yet to be detected in a new location. Data from historical and recent accounts of first detections of ALB incursions and other invasive forest pests underscore the need to invest in passive surveillance reporting systems and fully integrate public observations into existing surveillance frameworks. New automated approaches streamline the assessment of public observations and can generate pest alerts to initiate a formal regulatory assessment. Biodiversity monitoring platforms, such as iNaturalist, provide a focal point for community engagement and aggregate verified public observations. Empowering proactive reporting of biological novelty provides needed support for early detection of invasive species. Embracing the public as active members of the surveillance community can be cost effective and lead to the greatest gains in the proactive management of invasive species around the world.
Collapse
Affiliation(s)
- Amanda D Roe
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
| | - Leigh F Greenwood
- Forest Pest and Pathogen Program, North America Region, The Nature Conservancy, Missoula, MT, USA
| | - David R Coyle
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC, USA
| |
Collapse
|
8
|
Colberg EM, Bradley BA, Morelli TL, Brown-Lima CJ. Climate-Smart Invasive Species Management for 21st Century Global Change Challenges. GLOBAL CHANGE BIOLOGY 2024; 30:e17531. [PMID: 39445769 DOI: 10.1111/gcb.17531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
Addressing the global challenges of climate change and biotic invasions requires understanding their interactions and implications for natural resource management. To facilitate and support invasive species management in a changing climate, we review how climate change and invasions interact to impact the planning, action, and outcomes of invasive species management. Climate change is facilitating the introduction of new potential invasive species and altering pathways of introduction and spread, with implications for which species natural resource managers need to assess, monitor, and target. Climate-driven shifts in invasive species phenology require more flexible management timelines. Climate change may reduce the efficacy and feasibility of current treatment methods and make native ecosystems more vulnerable to invasion. Additionally, disturbance caused by extreme climate events can compound the spread and impacts of biological invasions, making invasive species management a necessary part of extreme event preparation and response planning. As a solution to these challenges, we propose climate-smart invasive species management, which we define as the approaches that managers and decision-makers can take to address the interactive effects of climate change and invasions. Climate-smart invasive species management includes considering potential shifts in species ranges, abundances, and impacts to inform monitoring, treatment, and policies to prevent new invasive species. Climate-smart management may also involve adjusting the timing and type of treatment to maintain efficacy, promoting resilient ecosystems through climate-smart restoration, and considering the effects of climate change when setting management goals. Explicitly considering the interactions of climate change and biological invasions within organizational decision-making and policy can lead to more effective management and promote more resilient landscapes.
Collapse
Affiliation(s)
- Eva M Colberg
- Department of Natural Resources and the Environment, New York Invasive Species Research Institute, Cornell University, Ithaca, New York, USA
| | - Bethany A Bradley
- Northeast Climate Adaptation Science Center, 134 Morrill Science Center, Amherst, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Toni Lyn Morelli
- Northeast Climate Adaptation Science Center, 134 Morrill Science Center, Amherst, Massachusetts, USA
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
- US Geological Survey, 134 Morrill Science Center, Amherst, Massachusetts, USA
| | - Carrie J Brown-Lima
- Department of Natural Resources and the Environment, New York Invasive Species Research Institute, Cornell University, Ithaca, New York, USA
- Northeast Climate Adaptation Science Center, 134 Morrill Science Center, Amherst, Massachusetts, USA
- US Geological Survey, 134 Morrill Science Center, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Zheng H, Mao X, Lin Y, Fu K, Qi Z, Wu Y. Reconstructing the biological invasion of noxious invasive weed Parthenium hysterophorus and invasion risk assessment in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1430576. [PMID: 39363921 PMCID: PMC11446801 DOI: 10.3389/fpls.2024.1430576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/10/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Invasive alien plants (IAPs) present a severe threat to native ecosystems and biodiversity. Comprehending the potential distribution patterns of these plant invaders and their responses to climate change is essential. Parthenium hysterophorus, native to the Americas, has become an aggressively invasive species since its introduction to China in the 1930s. This study aims to collect and reconstruct the historical occurrence and invasion of P. hysterophorus. Using the optimal MaxEnt model, the potential geographical distributions of P. hysterophorus were predicted based on screened species occurrences and environmental variables under the current and three future scenarios in the 2030s, 2050s, and 2070s (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), and the invasion risk of P. hysterophorus in Chinese cities, croplands, forests, and grasslands was assessed. The results show that: (1) The species initially invaded highly suitable areas and further spread to regions with non-analogous climate conditions. (2) Under the current climatic conditions, the overall potential distribution of P. hysterophorus is characterized by more in the southeast and less in the northwest. Climate variables, including mean annual temperature (bio1), precipitation in the wettest month (bio13), isothermality (bio3), and temperature seasonality (bio4), are the primary factors influencing its distribution. (3) The potential distribution of P. hysterophorus will expand further under future climate scenarios, particularly toward higher latitudes. (4) Forests and crop lands are the areas with the most serious potential invasion risk of P. hysterophorus. Therefore, we suggest that the government should strengthen the monitoring and management of P. hysterophorus to prevent its spread and protect agro-ecosystems and human habitats. Depending on the potential risk areas, measures such as quarantine, removal, and publicity should be taken to mitigate the threat of P. hysterophorus invasion and to raise awareness of P. hysterophorus invasion prevention.
Collapse
Affiliation(s)
- Huisen Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinjie Mao
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yi Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Keyi Fu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Zanyi Qi
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yongbin Wu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Saffer A, Worm T, Takeuchi Y, Meentemeyer R. GIATAR: a Spatio-temporal Dataset of Global Invasive and Alien Species and their Traits. Sci Data 2024; 11:991. [PMID: 39261508 PMCID: PMC11390876 DOI: 10.1038/s41597-024-03824-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Monitoring and managing the global spread of invasive and alien species requires accurate spatiotemporal records of species presence and information about the biological characteristics of species of interest including life cycle information, biotic and abiotic constraints and pathways of spread. The Global Invasive and Alien Traits And Records (GIATAR) dataset provides consolidated dated records of invasive and alien presence at the country-scale combined with a suite of biological information about pests of interest in a standardized, machine-readable format. We provide dated presence records for 46,666 alien taxa in 249 countries constituting 827,300 country-taxon pairs in locations where the taxon's invasive status is either alien, invasive, or unknown, joined with additional biological information for thousands of taxa. GIATAR is designed to be quickly updateable with future data and easy to integrate into ongoing research on global patterns of alien species movement using scripts provided to query and analyze data. GIATAR provides crucial data needed for researchers and policymakers to compare global invasion trends across a wide range of taxa.
Collapse
Affiliation(s)
- Ariel Saffer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA.
| | - Thom Worm
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA.
| | - Yu Takeuchi
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - Ross Meentemeyer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Soto I, Balzani P, Carneiro L, Cuthbert RN, Macêdo R, Serhan Tarkan A, Ahmed DA, Bang A, Bacela-Spychalska K, Bailey SA, Baudry T, Ballesteros-Mejia L, Bortolus A, Briski E, Britton JR, Buřič M, Camacho-Cervantes M, Cano-Barbacil C, Copilaș-Ciocianu D, Coughlan NE, Courtois P, Csabai Z, Dalu T, De Santis V, Dickey JWE, Dimarco RD, Falk-Andersson J, Fernandez RD, Florencio M, Franco ACS, García-Berthou E, Giannetto D, Glavendekic MM, Grabowski M, Heringer G, Herrera I, Huang W, Kamelamela KL, Kirichenko NI, Kouba A, Kourantidou M, Kurtul I, Laufer G, Lipták B, Liu C, López-López E, Lozano V, Mammola S, Marchini A, Meshkova V, Milardi M, Musolin DL, Nuñez MA, Oficialdegui FJ, Patoka J, Pattison Z, Pincheira-Donoso D, Piria M, Probert AF, Rasmussen JJ, Renault D, Ribeiro F, Rilov G, Robinson TB, Sanchez AE, Schwindt E, South J, Stoett P, Verreycken H, Vilizzi L, Wang YJ, Watari Y, Wehi PM, Weiperth A, Wiberg-Larsen P, Yapıcı S, Yoğurtçuoğlu B, Zenni RD, Galil BS, Dick JTA, Russell JC, Ricciardi A, Simberloff D, Bradshaw CJA, Haubrock PJ. Taming the terminological tempest in invasion science. Biol Rev Camb Philos Soc 2024; 99:1357-1390. [PMID: 38500298 DOI: 10.1111/brv.13071] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, 81530-000, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Rafael Macêdo
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
| | - Alok Bang
- Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal, Madhya Pradesh, 462010, India
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Sarah A Bailey
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, 867 Lakeshore Rd, Burlington, Ontario, ON L7S 1A1, Canada
| | - Thomas Baudry
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interaction, UMR, CNRS 7267 Équipe Écologie Évolution Symbiose, 3 rue Jacques Fort, Poitiers, Cedex, 86000, France
| | - Liliana Ballesteros-Mejia
- Institut de Systématique, Évolution, Biodiversité, Muséum National d'Histoire Naturelle, Centre national de la recherche scientifique, École Pratique des Hautes Études, Sorbonne Université, Université des Antilles, 45 Rue Buffon, Entomologie, Paris, 75005, France
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 2W1, Canada
| | - Alejandro Bortolus
- Grupo de Ecología en Ambientes Costeros. Instituto Patagónico para el Estudio de los Ecosistemas Continentales Consejo Nacional de Investigaciones Científicas y Técnicas - Centro Nacional Patagónico, Boulevard Brown 2915, Puerto Madryn, Chubut, U9120ACD, Argentina
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
| | - J Robert Britton
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Miloš Buřič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Morelia Camacho-Cervantes
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacan, Mexico City, 04510, Mexico
| | - Carlos Cano-Barbacil
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| | - Denis Copilaș-Ciocianu
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos 2, Vilnius, 08412, Lithuania
| | - Neil E Coughlan
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Republic of Ireland
| | - Pierre Courtois
- Centre d'Économie de l'Environnement - Montpellier, Université de Montpellier, Centre national de la recherche scientifique, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Institut Agro, Avenue Agropolis, Montpellier, 34090, France
| | - Zoltán Csabai
- University of Pécs, Department of Hydrobiology, Ifjúság 6, Pécs, H-7673, Hungary
- HUN-REN Balaton Limnological Research Institute, Klebelsberg Kuno 3, Tihany, H-8237, Hungary
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Cnr R40 and D725 Roads, Nelspruit, 1200, South Africa
| | - Vanessa De Santis
- Water Research Institute-National Research Council, Largo Tonolli 50, Verbania-Pallanza, 28922, Italy
| | - James W E Dickey
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel, 24148, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Freie Universität Berlin, Institute of Biology, Königin-Luise-Straße 1-3, Berlin, 14195, Germany
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | | | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-Consejo Nacional de Investigaciones Científicas y Técnicas, CC34, 4107, Yerba Buena, Tucumán, Argentina
| | - Margarita Florencio
- Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, Edificio de Biología, Darwin, 2, 28049, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, 28049, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Clara S Franco
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Emili García-Berthou
- GRECO, Institute of Aquatic Ecology, University of Girona, Maria Aurèlia Capmany 69, Girona, Catalonia, 17003, Spain
| | - Daniela Giannetto
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Milka M Glavendekic
- Department of Landscape Architecture and Horticulture, University of Belgrade-Faculty of Forestry, Belgrade, Serbia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Łódź, 90-237, Poland
| | - Gustavo Heringer
- Hochschule für Wirtschaft und Umwelt Nürtingen-Geislingen (HfWU), Schelmenwasen 4-8, Nürtingen, 72622, Germany
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Ileana Herrera
- Escuela de Ciencias Ambientales, Universidad Espíritu Santo, Km 2.5 Vía La Puntilla, Samborondón, 091650, Ecuador
- Instituto Nacional de Biodiversidad, Casilla Postal 17-07-8982, Quito, 170501, Ecuador
| | - Wei Huang
- Chinese Academy of Sciences Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Katie L Kamelamela
- School of Ocean Futures, Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, 96720, USA
| | - Natalia I Kirichenko
- Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Centre 'Krasnoyarsk Science Centre SB RAS', Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Institute of Ecology and Geography, 79 Svobodny pr, Krasnoyarsk, 660041, Russia
- Saint Petersburg State Forest Technical University, Institutski Per. 5, Saint Petersburg, 194021, Russia
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Business and Sustainability, University of Southern Denmark, Degnevej 14, Esbjerg, 6705, Denmark
- AMURE-Aménagement des Usages des Ressources et des Espaces marins et littoraux, UMR 6308, Université de Bretagne Occidentale, IUEM- Institut Universitaire Européen de la Mer, rue Dumont d'Urville, Plouzané, 29280, France
- Marine Policy Center, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA
| | - Irmak Kurtul
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, Bornova, İzmir, 35100, Turkey
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo, 11800, Uruguay
| | - Boris Lipták
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Slovak Environment Agency, Tajovského 28, Banská Bystrica, 975 90, Slovak Republic
| | - Chunlong Liu
- The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, 5 Yushan Road, Qingdao, 266005, China
| | - Eugenia López-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, C.P. 11340, Ciudad de México, 11340, Mexico
| | - Vanessa Lozano
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39/A, Sassari, 07100, Italy
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
| | - Stefano Mammola
- National Biodiversity Future Centre, Piazza Marina, 61, Palermo, 90133, Italy
- Molecular Ecology Group, Water Research Institute, National Research Council, Corso Tonolli 50, Pallanza, 28922, Italy
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki, 00100, Finland
| | - Agnese Marchini
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, Pavia, 27100, Italy
| | - Valentyna Meshkova
- Department of Entomology, Phytopathology, and Physiology, Ukrainian Research Institute of Forestry and Forest Melioration, Pushkinska 86, Kharkiv, UA-61024, Ukraine
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1283, Suchdol, Prague, 16500, Czech Republic
| | - Marco Milardi
- Southern Indian Ocean Fisheries Agreement (SIOFA), 13 Rue de Marseille, Le Port, La Réunion, 97420, France
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 bd Richard Lenoir, Paris, 75011, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Science & Research Building 2, 3455 Cullen Blvd, Houston, TX, 77204-5001, USA
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jiří Patoka
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, Suchdol, Prague, 16500, Czech Republic
| | - Zarah Pattison
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Modelling, Evidence and Policy Group, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel Pincheira-Donoso
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Marina Piria
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
- University of Zagreb Faculty of Agriculture, Department of Fisheries, Apiculture, Wildlife management and Special Zoology, Svetošimunska cesta 25, Zagreb, 10000, Croatia
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia
| | - Jes Jessen Rasmussen
- Norwegian Institute for Water Research, Njalsgade 76, Copenhagen S, 2300, Denmark
| | - David Renault
- Université de Rennes, Centre national de la recherche scientifique (CNRS), Écosystèmes, biodiversité, évolution, Rennes, 35000, France
| | - Filipe Ribeiro
- Marine and Environmental Sciences Centre / Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, P.O. Box 8030, Haifa, 31080, Israel
| | - Tamara B Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Axel E Sanchez
- Posgrado en Hidrociencias, Colegio de Postgraduados, Carretera México-Texcoco 36.5 km, Montecillo, Texcoco, C.P. 56264, Mexico
| | - Evangelina Schwindt
- Grupo de Ecología en Ambientes Costeros, Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Boulevard Brown 2915, Puerto Madryn, U9120ACD, Argentina
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Stoett
- Ontario Tech University, 2000 Simcoe St N, Oshawa, Ontario, L1G 0C5, Canada
| | - Hugo Verreycken
- Research Institute for Nature and Forest, Havenlaan 88 Box 73, Brussels, 1000, Belgium
| | - Lorenzo Vilizzi
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Yong-Jian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, F9F4+6FV, Dangui Rd, Hongshan, Wuhan, 430070, China
| | - Yuya Watari
- Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki, 305-8687, Japan
| | - Priscilla M Wehi
- Te Pūnaha Matatini National Centre of Research Excellence in Complex Systems, University of Auckland, Private Bag 29019, Aotearoa, Auckland, 1142, New Zealand
- Centre for Sustainability, University of Otago, 563 Castle Street North, Dunedin North, Aotearoa, Dunedin, 9016, New Zealand
| | - András Weiperth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Ave 1/C, Budapest, H-1117, Hungary
| | - Peter Wiberg-Larsen
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé 4-8, Aarhus, 8000, Denmark
| | - Sercan Yapıcı
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, Kötekli, Menteşe, Muğla, 48000, Turkey
| | - Baran Yoğurtçuoğlu
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe Campus, Ankara, 06800, Turkey
| | - Rafael D Zenni
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), Lavras, 37203-202, Brazil
| | - Bella S Galil
- Steinhardt Museum of Natural History, Tel Aviv University, Klaunserstr. 12, Tel Aviv, Israel
| | - Jaimie T A Dick
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - James C Russell
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Anthony Ricciardi
- Redpath Museum and Bieler School of Environment, McGill University, 859 Sherbrooke Street West, Montréal, Quebec, Quebec, H3A 0C4, Canada
| | - Daniel Simberloff
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Corey J A Bradshaw
- Global Ecology, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, 5001, South Australia, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mubarak Al-Abdullaj Area, Hawally, 32093, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystraße 12, Gelnhausen, 63571, Germany
| |
Collapse
|
12
|
Trouvé R, Robinson AP. Efficient border biosecurity inspection leverages superspreading to reduce biological invasion risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:1839-1849. [PMID: 38331570 DOI: 10.1111/risa.14277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/10/2024]
Abstract
Biological invasions are a growing threat to biodiversity, food security, and economies. Rising pressure from increased global trade requires improving border inspection efficiency. Here, we depart from the conventional consignment-by-consignment approach advocated in current inspection standards. Instead, we suggest a broader perspective: evaluating border inspection regimes based on their ability to reduce propagule pressure across entire pathways. Additionally, we demonstrate that most biosecurity pathways exhibit superspreading behavior, that is, consignments from the same pathway have varying infestation rates and contain rare right-tail events (also called overdispersion). We show that greater overdispersion leads to more pronounced diminishing returns, with consequences on the optimal allocation of sampling effort. We leverage these two insights to develop a simple and efficient border inspection regime that can significantly reduce propagule pressure compared to current standards. Our analysis revealed that consignment size is a key driver of biosecurity risk and that sampling proportional to the square root of consignment size is near optimal. In testing, our framework reduced propagule pressure by 31 to 38% compared to current standards. We also identified opportunities to further improve inspection efficiency by considering additional pathway characteristics (i.e., overdispersion parameters, zero inflation, relative risk, sampling cost, detectability) and developed solutions for these more complex scenarios. We anticipate our result will mitigate biological invasion risk with significant implications for biodiversity conservation, food security, and economies worldwide.
Collapse
Affiliation(s)
- Raphaël Trouvé
- Centre of Excellence for Biosecurity Risk Analysis (CEBRA), The University of Melbourne, Parkville, Australia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Andrew P Robinson
- Centre of Excellence for Biosecurity Risk Analysis (CEBRA), The University of Melbourne, Parkville, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
13
|
Roiz D, Pontifes PA, Jourdain F, Diagne C, Leroy B, Vaissière AC, Tolsá-García MJ, Salles JM, Simard F, Courchamp F. The rising global economic costs of invasive Aedes mosquitoes and Aedes-borne diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173054. [PMID: 38729373 DOI: 10.1016/j.scitotenv.2024.173054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 04/05/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Invasive Aedes aegypti and Aedes albopictus mosquitoes transmit viruses such as dengue, chikungunya and Zika, posing a huge public health burden as well as having a less well understood economic impact. We present a comprehensive, global-scale synthesis of studies reporting these economic costs, spanning 166 countries and territories over 45 years. The minimum cumulative reported cost estimate expressed in 2022 US$ was 94.7 billion, although this figure reflects considerable underreporting and underestimation. The analysis suggests a 14-fold increase in costs, with an average annual expenditure of US$ 3.1 billion, and a maximum of US$ 20.3 billion in 2013. Damage and losses were an order of magnitude higher than investment in management, with only a modest portion allocated to prevention. Effective control measures are urgently needed to safeguard global health and well-being, and to reduce the economic burden on human societies. This study fills a critical gap by addressing the increasing economic costs of Aedes and Aedes-borne diseases and offers insights to inform evidence-based policy.
Collapse
Affiliation(s)
- David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico.
| | - Paulina A Pontifes
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Fréderic Jourdain
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; Santé Publique France (French National Public Health Agency), Montpellier, France
| | - Christophe Diagne
- CBGP, Université de Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34988 Montferrier-sur-Lez, France
| | - Boris Leroy
- Unité Biologie des Organismes et Écosystèmes Aquatiques (BOREA, UMR 7208), Muséum national d'Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, France
| | - Anne-Charlotte Vaissière
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France; ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, CNRS, Université de Rennes, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - María José Tolsá-García
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France; International Joint Laboratory ELDORADO, IRD/UNAM, Mexico
| | - Jean-Michel Salles
- CEE-M, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | | | - Franck Courchamp
- CNRS, AgroParisTech, Écologie Systématique et Évolution, Université Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
14
|
Choi TY, Son DC, Oh A, Lee SR. Unveiling a potential threat to forest ecosystems: molecular diagnosis of Alliaria petiolata, a newly introduced alien plant in Korea. FRONTIERS IN PLANT SCIENCE 2024; 15:1395676. [PMID: 39011305 PMCID: PMC11246967 DOI: 10.3389/fpls.2024.1395676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/04/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Identifying stages of a species invasion in a new habitat (i.e., colonization, establishment, and landscape spread) and their primary determinants in biological invasion warrants attention, as it provides vital insights for preventing non-native species from becoming pervasive invaders. However, delineating invasion stages and their associated factors can pose significant challenges due to the ambiguous distinctions between these stages. Alliaria petiolata, one of the most noxious weeds in woodland habitats, has recently been introduced to Korea and observed in a few distant locations. Although the plant's spread has been relatively slow thus far, rapid spread is highly likely in the future, given the high invasive potential reported elsewhere. We indirectly diagnose the current status of A. petiolata invasion in Korea through the assessment of genetic diversity and phylogenetic inferences using genome-wide molecular markers and cytological data. We analyzed 86 individual samples collected from two native and six introduced populations, employing 1,172 SNPs. Our analysis estimated within- and among-population genetic diversity and included two clustering analyses. Furthermore, we investigated potential gene flow and reticulation events among the sampled populations. Our data unraveled that Korean garlic mustard exhibits a hexaploid ploidy level with two distinct chromosome numbers, 2n = 36 and 42. The extent of genetic diversity measured in Korean populations was comparable to that of native populations. Using genome-wide SNP data, we identified three distinct clusters with minor gene flow, while failing to detect indications of reticulation among Korean populations. Based on the multifaceted analyses, our study provides valuable insights into the colonization process and stressed the importance of closely monitoring A. petiolata populations in Korea.
Collapse
Affiliation(s)
- Tae-Young Choi
- Department of Biology Education, College of Education, Chosun University, Gwangju, Republic of Korea
| | - Dong Chan Son
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, Republic of Korea
| | - Ami Oh
- Department of Biology Education, College of Education, Chosun University, Gwangju, Republic of Korea
| | - Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
15
|
Kumschick S, Bertolino S, Blackburn TM, Brundu G, Costello KE, de Groot M, Evans T, Gallardo B, Genovesi P, Govender T, Jeschke JM, Lapin K, Measey J, Novoa A, Nunes AL, Probert AF, Pyšek P, Preda C, Rabitsch W, Roy HE, Smith KG, Tricarico E, Vilà M, Vimercati G, Bacher S. Using the IUCN Environmental Impact Classification for Alien Taxa to inform decision-making. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14214. [PMID: 38051018 DOI: 10.1111/cobi.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 12/07/2023]
Abstract
The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species' impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming-Montreal Global Biodiversity Framework (GBF) Target 6.
Collapse
Affiliation(s)
- Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - Giuseppe Brundu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
- National Biodiversity Future Centre (NBFC), Palermo, Italy
| | - Katie E Costello
- Biodiversity Assessment and Knowledge Team, Science and Data Centre, International Union for Conservation of Nature (IUCN), Cambridge, UK
| | | | - Thomas Evans
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Piero Genovesi
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- ISPRA, Rome, Italy
- IUCN SSC Invasive Species Specialist Group, Roma, Italy
| | - Tanushri Govender
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Jonathan M Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Katharina Lapin
- Austrian Research Centre for Forests, Natural Hazards and Landscape (BFW), Vienna, Austria
| | - John Measey
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Invasion Biology, Institute for Biodiversity, Yunnan University, Kunming, China
| | - Ana Novoa
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Ana L Nunes
- Biodiversity Assessment and Knowledge Team, Science and Data Centre, International Union for Conservation of Nature (IUCN), Cambridge, UK
| | - Anna F Probert
- Zoology Discipline, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Petr Pyšek
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Cristina Preda
- Department of Natural Sciences, Ovidius University of Constanta, Constanta, Romania
| | | | - Helen E Roy
- UK Centre for Ecology & Hydrology, Wallingford, UK
| | - Kevin G Smith
- Biodiversity Assessment and Knowledge Team, Science and Data Centre, International Union for Conservation of Nature (IUCN), Cambridge, UK
| | - Elena Tricarico
- National Biodiversity Future Centre (NBFC), Palermo, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Montserrat Vilà
- Doñana Biological Station (EBD-CSIC) and Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | | | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
16
|
Heringer G, Fernandez RD, Bang A, Cordonnier M, Novoa A, Lenzner B, Capinha C, Renault D, Roiz D, Moodley D, Tricarico E, Holenstein K, Kourantidou M, Kirichenko NI, Adelino JRP, Dimarco RD, Bodey TW, Watari Y, Courchamp F. Economic costs of invasive non-native species in urban areas: An underexplored financial drain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170336. [PMID: 38280594 DOI: 10.1016/j.scitotenv.2024.170336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.
Collapse
Affiliation(s)
- Gustavo Heringer
- Nürtingen-Geislingen University (HfWU), Schelmenwasen 4-8, 72622 Nürtingen, Germany; Programa de Pós-Graduação em Ecologia Aplicada, Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras (UFLA), CEP 37200-900 Lavras, MG, Brazil.
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha 442001, India; Biology Group, School of Arts and Sciences, Azim Premji University, Bhopal 462022, India
| | - Marion Cordonnier
- Lehrstuhl für Zoologie/Evolutionsbiologie, Univ. Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ana Novoa
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Bernd Lenzner
- Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Rua Branca Edmée Marques, 1600-276 Lisboa, Portugal; Associate Laboratory Terra, Portugal
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - David Roiz
- MIVEGEC, IRD, CNRS, Université Montpellier, Montpellier 34394, France
| | - Desika Moodley
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology, CZ-25243 Průhonice, Czech Republic
| | - Elena Tricarico
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, FI, Italy
| | - Kathrin Holenstein
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705 Esbjerg Ø, Denmark; UMR 6308, AMURE, Université de Bretagne Occidentale, IUEM, rue Dumont d'Urville, 29280 Plouzané, France
| | - Natalia I Kirichenko
- Sukachev Institute of Forest Siberian Branch of Russian Academy of Sciences, Federal Research Center «Krasnoyarsk Science Center SB RAS», Krasnoyarsk 660036, Russia; Siberian Federal University, Krasnoyarsk 660041, Russia; All-Russian Plant Quarantine Center, Krasnoyarsk branch, Krasnoyarsk 660020, Russia
| | - José Ricardo Pires Adelino
- Laboratório de Ecologia Evolutiva e Conservação, Departamento de Biologia Animal e Vegetal, Universidade Estadual de Londrina, CP 6001, Londrina 86051-970, Brazil
| | - Romina D Dimarco
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Grupo de Ecología de Poblaciones de Insectos, IFAB (INTA-CONICET), Bariloche, RN, Argentina
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190 Gif-Sur-Yvette, France
| |
Collapse
|
17
|
Mlambo S, Mubayiwa M, Tarusikirwa VL, Machekano H, Mvumi BM, Nyamukondiwa C. The Fall Armyworm and Larger Grain Borer Pest Invasions in Africa: Drivers, Impacts and Implications for Food Systems. BIOLOGY 2024; 13:160. [PMID: 38534430 DOI: 10.3390/biology13030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 03/28/2024]
Abstract
Invasive alien species (IAS) are a major biosecurity threat affecting globalisation and the international trade of agricultural products and natural ecosystems. In recent decades, for example, field crop and postharvest grain insect pests have independently accounted for a significant decline in food quantity and quality. Nevertheless, how their interaction and cumulative effects along the ever-evolving field production to postharvest continuum contribute towards food insecurity remain scant in the literature. To address this within the context of Africa, we focus on the fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), and the larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), two of the most important field and postharvest IAS, respectively, that have invaded Africa. Both insect pests have shown high invasion success, managing to establish themselves in >50% of the African continent within a decade post-introduction. The successive and summative nature of field and postharvest damage by invasive insect pests on the same crop along its value chain results in exacerbated food losses. This systematic review assesses the drivers, impacts and management of the fall armyworm and larger grain borer and their effects on food systems in Africa. Interrogating these issues is important in early warning systems, holistic management of IAS, maintenance of integral food systems in Africa and the development of effective management strategies.
Collapse
Affiliation(s)
- Shaw Mlambo
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
| | - Macdonald Mubayiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
| | - Vimbai L Tarusikirwa
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Honest Machekano
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brighton M Mvumi
- Department of Agricultural and Biosystems Engineering, University of Zimbabwe, Mount Pleasant, Harare P.O. Box MP167, Zimbabwe
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye 10071, Botswana
- Department of Zoology and Entomology, Rhodes University, Makhanda 6140, South Africa
| |
Collapse
|
18
|
Ye F, Kang Z, Kou H, Yang Y, Chen W, Wang S, Sun J, Liu F. G-Protein Coupled Receptor Gpr-1 Is Important for the Growth and Nutritional Metabolism of an Invasive Bark Beetle Symbiont Fungi Leptographium procerum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3354-3362. [PMID: 38230891 DOI: 10.1021/acs.jafc.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2024]
Abstract
Leptographium procerum has been demonstrated to play important roles in the invasive success of red turpentine beetle (RTB), one of the most destructive invasive pests in China. Our previous studies found that bacterial volatile ammonia plays an important role in the maintenance of the RTB-L. procerum invasive complex. In this study, we found a GPCR gene Gpr-1 that was a response to ammonia but not involved in the ammonia-induced carbohydrate metabolism. Deletion of Gpr-1 significantly inhibited the growth and pathogenicity but thickened the cell wall of L. procerum, resulting in more resistance to cell wall-perturbing agents. Further analyses suggested that Gpr-1 deletion caused growth defects that might be due to the dysregulation of the amino acid and lipid metabolisms. The thicker cell wall in the ΔGpr-1 mutant was induced through the cell wall remodeling process. Our results indicated that Gpr-1 is essential for the growth of L. procerum by regulating the nutritional metabolism, which can be further explored for potential applications in the management of RTB.
Collapse
Affiliation(s)
- Fangyuan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Kang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hongru Kou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunwen Yang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wei Chen
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Saige Wang
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fanghua Liu
- College of Life Science/Hebei Basic Science Center for Biotic Interactions, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
19
|
Soto I, Balzani P, Oficialdegui FJ, Molinero C, Kouba A, Ahmed DA, Turbelin AJ, Hudgins EJ, Bodey TW, Gojery SA, Courchamp F, Cuthbert RN, Haubrock PJ. The wild cost of invasive feral animals worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169281. [PMID: 38101642 DOI: 10.1016/j.scitotenv.2023.169281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Invasive non-native species are a growing burden to economies worldwide. While domesticated animals (i.e. livestock, beasts of burden or pets) have enabled our ways of life and provide sustenance for countless individuals, they may cause substantial impacts when they escape or are released (i.e. become feral) and then become invasive with impacts. We used the InvaCost database to evaluate monetary impacts from species in the Domestic Animal Diversity Information System database. We found a total cost of $141.95 billion from only 18 invasive feral species. Invasive feral livestock incurred the highest costs at $90.03 billion, with pets contributing $50.93 billion and beasts of burden having much lower costs at $0.98 billion. Agriculture was the most affected sector at $80.79 billion, followed by the Environment ($43.44 billion), and Authorities-Stakeholders sectors ($5.52 billion). Damage costs comprised the majority ($124.94 billion), with management and mixed damage-management costs making up the rest ($9.62 and $7.38 billion, respectively). These economic impacts were observed globally, where Oceania, North America and Europe were the most impacted regions. Islands recorded a higher economic burden than continental areas, with livestock species dominating costs more on islands than mainlands compared to other feral species. The costs of invasive feral animals were on average twice higher than those of wild species. The management of invasive feral populations requires higher investment, updated regulations, and comprehensive risk assessments. These are especially complex when considering the potential conflicts arising from interventions with species that have close ties to humans. Effective communication to raise public awareness of the impacts of feral populations and appropriate legislation to prevent or control such invasive feral populations will substantially contribute to minimizing their socioeconomic and environmental impacts.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Francisco J Oficialdegui
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | | | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Anna J Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif-sur-Yvette, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada; School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville 3010, Australia
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, UK
| | | | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif-sur-Yvette, France
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| |
Collapse
|
20
|
Borgelt J, Dorber M, Géron C, Kuipers KJJ, Huijbregts MAJ, Verones F. What Is the Impact of Accidentally Transporting Terrestrial Alien Species? A New Life Cycle Impact Assessment Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38332475 PMCID: PMC10882960 DOI: 10.1021/acs.est.3c08500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/10/2024]
Abstract
Alien species form one of the main threats to global biodiversity. Although Life Cycle Assessment attempts to holistically assess environmental impacts of products and services across value chains, ecological impacts of the introduction of alien species are so far not assessed in Life Cycle Impact Assessment. Here, we developed country-to-country-specific characterization factors, expressed as the time-integrated potentially disappeared fraction (PDF; regional and global) of native terrestrial species due to alien species introductions per unit of goods transported [kg] between two countries. The characterization factors were generated by analyzing global data on first records of alien species, native species distributions, and their threat status, as well as bilateral trade partnerships from 1870-2019. The resulting characterization factors vary over several orders of magnitude, indicating that impact greatly varies per transportation route and trading partner. We showcase the applicability and relevance of the characterization factors for transporting 1 metric ton of freight to France from China, South Africa, and Madagascar. The results suggest that the introduction of alien species can be more damaging for terrestrial biodiversity as climate change impacts during the international transport of commodities.
Collapse
Affiliation(s)
- Jan Borgelt
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| | - Martin Dorber
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| | - Charly Géron
- Biodiversity and Landscape, TERRA research centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
- Plants and Ecosystems, University of Antwerp, Wilrijk 2610, Belgium
- . CNRS, ECOBIO (Écosystèmes, Biodiversité, Évolution), UMR, University of Rennes, Rennes 6553, France
| | - Koen J J Kuipers
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, GL 6500, Netherlands
| | - Mark A J Huijbregts
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, GL 6500, Netherlands
| | - Francesca Verones
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| |
Collapse
|
21
|
Hulme PE, Ahmed DA, Haubrock PJ, Kaiser BA, Kourantidou M, Leroy B, McDermott SM. Widespread imprecision in estimates of the economic costs of invasive alien species worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:167997. [PMID: 37914135 DOI: 10.1016/j.scitotenv.2023.167997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/06/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Several hundred studies have attempted to estimate the monetary cost arising from the management and/or impacts of invasive alien species. However, the diversity of methods used to estimate the monetary costs of invasive alien species, the types of costs that have been reported, and the spatial scales at which they have been assessed raise important questions as to the precision of these reported monetary costs. Benford's Law has been increasingly used as a diagnostic tool to assess the accuracy and reliability of estimates reported in financial accounts but has rarely been applied to audit data on environmental costs. Therefore, the distributions of first, second- and leading double-digits of the monetary costs arising from biological invasions, as reported in the InvaCost database, were compared with the null expectations under Benford's Law. There was strong evidence that the reported monetary costs of biological invasions departed considerably from Benford's Law and the departures were of a scale equal to that found in global macroeconomic data. The rounding upwards of costs appears to be widespread. Furthermore, numerical heaping, where values cluster around specific numbers was evident with only 901 unique cost values accounting for half of the 13,553 cost estimates within the InvaCost database. Irrespective of the currency, the value of 1,000,000 was the most common cost estimate. An investigation of anomalous data entries concluded that non-peer reviewed official government reports need to provide greater detail regarding how costs are estimated. Despite the undeniably high economic cost of biological invasions worldwide, individual records of costs were often found to be imprecise and possibly inflated and this emphasises the need for greater transparency and rigour when reporting the costs of biological invasions. Identifying whether the irregularities found for the costs of biological invasions are general for other types of environmental costs should be a research priority.
Collapse
Affiliation(s)
- Philip E Hulme
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Christchurch, Canterbury, New Zealand.
| | - Danish A Ahmed
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Phillip J Haubrock
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Brooks A Kaiser
- MERE, SEBE, University of Southern Denmark, Degnevej 14a, 6705 Esbjerg Ø, Denmark
| | - Melina Kourantidou
- MERE, SEBE, University of Southern Denmark, Degnevej 14a, 6705 Esbjerg Ø, Denmark; Université de Bretagne Occidentale, UMR 6308 AMURE, IUEM, 29280, Plouzané, France
| | - Boris Leroy
- UMR 8067, Biologie Des Organismes Et Écosystèmes Aquatiques (BOREA), Sorbonne Université, Muséum National d'Histoire Naturelle, Université de Caen Normandie, Université Des Antilles, CNRS, IRD, CP26, 43 Rue Cuvier, 75005 Paris, France
| | - Shana M McDermott
- Department of Economics, Trinity University, San Antonio, TX 78216, USA
| |
Collapse
|
22
|
Macêdo RL, Haubrock PJ, Klippel G, Fernandez RD, Leroy B, Angulo E, Carneiro L, Musseau CL, Rocha O, Cuthbert RN. The economic costs of invasive aquatic plants: A global perspective on ecology and management gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168217. [PMID: 37952653 DOI: 10.1016/j.scitotenv.2023.168217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Safeguarding aquatic ecosystems from invasive species requires a comprehensive understanding and quantification of their impacts, as this information is crucial for developing effective management strategies. In particular, aquatic invasive plants cause profound alterations to aquatic ecosystem composition, structure and productivity. Monetary cost assessments have, however, lacked at large scales for this group. Here, we synthesize the global economic impacts of aquatic and semi-aquatic invasive plants to describe the distributions of these costs across taxa, habitat types, environments, impacted sectors, cost typologies, and geographic regions. We also examine the development of recorded costs over time using linear and non-linear models and infer the geographical gaps of recorded costs by superimposing cost and species distribution data. Between 1975 and 2020, the total cost of aquatic and semi-aquatic invasive plants to the global economy exceeded US$ 32 billion, of which the majority of recorded costs (57 %) was attributable to multiple or unspecified taxa. Submerged plants had $8.4 billion (25.5 %) followed by floating plants $4.7 billion (14.5 %), emergent $684 million (2.1 %) and semi-aquatic $306 million (0.9 %). Recorded costs were disproportionately high towards freshwater ecosystems, which have received the greatest cost research effort compared to marine and brackish systems. Public and social welfare and fisheries were the sectors most affected, while agriculture and health were most underreported. Cost attributed to management (4.8 %; $1.6 billion) represented only a fraction of damages (85.8 %; $28.2 billion). While recorded costs are rising over time, reporting issues e.g., robustness of data, lack of higher taxonomic resolution and geographical gaps likely have led to a dampening of trajectories. In particular, invasive taxa currently occupy regions where monetary cost reports are lacking despite well-known impacts. More robust and timely cost estimates will enhance interpretation of current and future impacts of aquatic invasive plants, assisting the long-term sustainability of our aquatic ecosystems and associated economic activities.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil; Laboratoire d'Ecologie Systématique et Evolution, IDEEV, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; Institute of Biology, Freie Universität Berlin, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Gabriel Klippel
- Laboratoire d'Ecologie Systématique et Evolution, IDEEV, Université Paris-Saclay, 91190 Gif-sur-Yvette, France; Graduate Program in Neotropical Biodiversity, Department of Ecology and Natural Resources, Federal University of the State of Rio de Janeiro, RJ, Brazil
| | - Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC. 34, 4107 Yerba Buena, Tucumán, Argentina
| | - Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 8067), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Américo Vespucio 26, 41092 Seville, Spain
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Federal University of Paraná, UFPR, Curitiba, Brazil
| | - Camille L Musseau
- Institute of Biology, Freie Universität Berlin, Berlin, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
23
|
de Souza JS, Franco ACS, Tavares MR, Guimarães TDFR, Dos Santos LN. Shipping traffic, salinity and temperature shape non-native fish richness in estuaries worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168218. [PMID: 37924895 DOI: 10.1016/j.scitotenv.2023.168218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Non-native species threaten biodiversity conservation and ecosystem functioning. Management at early-invasion stages can prevent ecological and socioeconomic impacts, but rely on the identification of drivers of non-native species occurrence at distinct scales. Here, we identify environmental and anthropogenic correlates of non-native fish richness across estuaries worldwide. We performed model selection using proxies of colonization pressure, habitat availability and connectivity, anthropogenic disturbance and climate, to assess the primary mechanisms underlying non-native species occurrence. Latitudinal and guild-related trends in non-native occurrence were also investigated using species thermal and salinity affinities. Data retrieved from a literature review revealed 147 non-native fish species in 147 estuaries worldwide. Shipping traffic, salinity (minimum and range values) and temperature (minimum value) were the main predictors of non-native fish richness. Hotspots of non-native species were under heavy levels of shipping traffic, had higher salinity (both minimum and range values) and colder waters. We also found evidence of thermal limits to species' geographic area of introduction. Latitude of invaded estuaries was negatively correlated with species' minimum, mean and maximum thermal affinities, and positively correlated with thermal affinity ranges. Most non-native species recorded in estuaries were freshwater, but their minimum salinity affinities ranged from 2 to 35 pss. Moreover, species within marine guilds were mostly stenohaline and showed affinity for minimum salinities around 20-30 pss, which may be related to the positive relationship between non-native richness and estuary's increased salinity. Our results indicate that colonization pressure, disturbance (as result of multiple shipping impacts) and habitat filtering are the primary mechanisms underlying non-native fish richness in estuaries, contributing to the development of management strategies targeting early-invasion stages. Matching climate between native and non-native ranges was particularly important for predicting introductions at the global scale, whereas local fluctuations in salinity likely drove non-native richness in response to increased habitat availability.
Collapse
Affiliation(s)
- Joice Silva de Souza
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil.
| | - Ana Clara Sampaio Franco
- Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil; Institute of Aquatic Ecology, University of Girona, 17003, Catalonia, Spain
| | - Marcela Rosa Tavares
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil
| | - Taís de Fátima Ramos Guimarães
- Graduate Course in Animal Biology, Federal University of Viçosa, Av. Ph Rolfs, S/N, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Luciano Neves Dos Santos
- Graduate Course in Ecology and Evolution (PPGEE), Rio de Janeiro State University (UERJ), São Francisco Xavier St, 524 - PHLC/R220, CEP 20550-900 Rio de Janeiro, RJ, Brazil; Theoretical and Applied Ichthyology Lab, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Av. Pasteur, 458 - R314A, 22290-240 Rio de Janeiro, Brazil; Graduate Course in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro, Av. Pasteur, 458 - R506A, 22290-240 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
24
|
Lopes C, Rodrigues ACM, Pires SFS, Campos D, Soares AMVM, Vieira HC, Bordalo MD. Responses of Mytilus galloprovincialis in a Multi-Stressor Scenario: Effects of an Invasive Seaweed Exudate and Microplastic Pollution under Ocean Warming. TOXICS 2023; 11:939. [PMID: 37999591 PMCID: PMC10675577 DOI: 10.3390/toxics11110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to the mussel Mytilus galloprovincialis are amplified by a 96 h exposure to increased temperature (24 °C) and polyethylene microplastics (PE-MPs, 1 mg/L). Biochemical (neurotoxicity, energy metabolism, oxidative stress, and damage) and physiological (byssal thread production) responses were evaluated. The number of produced byssus greatly decreased under concomitant exposure to all stressors. The antioxidant defences were depleted in the gills of mussels exposed to temperature rises and PE-MPs, regardless of exudate exposure, preventing oxidative damage. Moreover, the heat shock protein content tended to decrease in all treatments relative to the control. The increased total glutathione in the mussels' digestive gland exposed to 24 °C, exudate, and PE-MPs avoided oxidative damage. Neurotoxicity was observed in the same treatment. In contrast, the energy metabolism remained unaltered. In conclusion, depending on the endpoint, simultaneous exposure to A. armata exudate, PE-MPs, and warming does not necessarily mean an amplification of their single effects. Studies focusing on the impact of multiple stressors are imperative to better understand the underlying mechanisms of this chronic exposure.
Collapse
Affiliation(s)
- Cristiana Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Andreia C. M. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Sílvia F. S. Pires
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Diana Campos
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Amadeu M. V. M. Soares
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Maria D. Bordalo
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| |
Collapse
|
25
|
Macêdo RL, Haubrock PJ, Rocha O. Towards effective management of the marine-origin Prymnesium parvum (Haptophyta): A growing concern in freshwater reservoirs? HARMFUL ALGAE 2023; 129:102513. [PMID: 37951608 DOI: 10.1016/j.hal.2023.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Freshwater ecosystems are highly susceptible to harmful algal blooms (HABs), which are often caused by monospecific dense blooms. Effective preventive management strategies are urgently needed to avoid wide-ranging and severe impacts often resulting in costly damage to resources and unsustainable management options. In this study, we utilized SDM techniques focused on Prymnesium parvum, one of the most notorious HABs species worldwide. We first compare the climatic space occupied by P. parvum in North America, Europe and Australia. Additionally, we use MaxEnt algorithm to infer, for the first time, the potentially suitable freshwater environments in the aforementioned ranges. We also discuss the risks of invasion in reservoirs - prone habitats to persistent blooms of pests and invasive phytoplanktonic species. Our results show populations with distinctive niches suggesting ecophysiological tolerances, perhaps reflecting different strains. Our model projections revealed that the potential extent for P. parvum invasions is much broader than its current geographic distribution. The spatial configuration of reservoirs, if not sustaining dense blooms due to non-optimal conditions, favors colonization of multiple basins and ecoregions not yet occupied by P. parvum. Our models can provide valuable insights to decision-makers and monitoring programs while reducing the resources required to control the spread of P. parvum in disturbed habitats. Lastly, as impact magnitude is influenced by toxicity which in turn varies between different strains, we suggest future studies to incorporate intraspecific genetic information and fine-scale environmental variables to estimate potential distribution of P. parvum.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil; Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| | - Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, Department of Ecology and Evolutionary Biology, Federal University of São Carlos, UFSCar, São Carlos, Brazil
| |
Collapse
|
26
|
Evans T, Angulo E, Bradshaw CJA, Turbelin A, Courchamp F. Global economic costs of alien birds. PLoS One 2023; 18:e0292854. [PMID: 37851652 PMCID: PMC10584179 DOI: 10.1371/journal.pone.0292854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2023] [Accepted: 10/01/2023] [Indexed: 10/20/2023] Open
Abstract
The adverse impacts of alien birds are widespread and diverse, and associated with costs due to the damage caused and actions required to manage them. We synthesised global cost data to identify variation across regions, types of impact, and alien bird species. Costs amount to US$3.6 billion, but this is likely a vast underestimate. Costs are low compared to other taxonomic groups assessed using the same methods; despite underreporting, alien birds are likely to be less damaging and easier to manage than many other alien taxa. Research to understand why this is the case could inform measures to reduce costs associated with biological invasions. Costs are biassed towards high-income regions and damaging environmental impacts, particularly on islands. Most costs on islands result from actions to protect biodiversity and tend to be low and one-off (temporary). Most costs at mainland locations result from damage by a few, widespread species. Some of these costs are high and ongoing (permanent). Actions to restrict alien bird invasions at mainland locations might prevent high, ongoing costs. Reports increased sharply after 2010, but many are for local actions to manage expanding alien bird populations. However, the successful eradication of these increasingly widespread species will require a coordinated, international response.
Collapse
Affiliation(s)
- Thomas Evans
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Elena Angulo
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
- Estación Biológica de Doñana (CSIC), Seville, Spain
| | - Corey J. A. Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, EpicAustralia.org.au, Australia
| | - Anna Turbelin
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Franck Courchamp
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
27
|
Dahlmo LS, Velle G, Nilsen CI, Pulg U, Lennox RJ, Vollset KW. Behaviour of anadromous brown trout (Salmo trutta) in a hydropower regulated freshwater system. MOVEMENT ECOLOGY 2023; 11:63. [PMID: 37838718 PMCID: PMC10576395 DOI: 10.1186/s40462-023-00429-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/23/2022] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Many Norwegian rivers and lakes are regulated for hydropower, which affects freshwater ecosystems and anadromous fish species, such as sea trout (Salmo trutta). Lakes are an important feature of many anadromous river systems. However, there is limited knowledge on the importance of lakes as habitat for sea trout and how hydropower affects the behaviour of sea trout in lakes. To investigate this, we conducted an acoustic telemetry study. A total of 31 adult sea trout (532 ± 93 mm total length) were captured by angling in river Aurlandselva, Norway, and tagged between July 20 and August 12, 2021. The tags were instrumented with accelerometer, temperature, and depth sensors, which provided information on the sea trout's presence and behaviour in lake Vassbygdevatnet. Our results indicate that there was a large prevalence of sea trout in the lake during the spawning migration, and that the sea trout were less active in the lake compared to the riverine habitats. An increase in activity of sea trout in the lake during autumn might indicate that sea trout spawn in the lake. However, the discharge from the high-head storage plant into the lake did not affect the depth use or activity of sea trout in the lake. Furthermore, the large prevalence of spawners in the lake during autumn will likely cause an underestimation of the size of the sea trout population in rivers with lakes during annual stock assessment. In conclusion, our results could not find evidence of a large impact of the discharge on the behaviour of sea trout in the lake.
Collapse
Affiliation(s)
- Lotte S Dahlmo
- LFI Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008, Bergen, Norway.
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53A, 5008, Bergen, Norway.
| | - Gaute Velle
- LFI Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53A, 5008, Bergen, Norway
| | - Cecilie I Nilsen
- LFI Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53A, 5008, Bergen, Norway
| | - Ulrich Pulg
- LFI Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008, Bergen, Norway
| | - Robert J Lennox
- LFI Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008, Bergen, Norway
- NINA Norwegian Institute for Nature Research, Høgskoleringen 9, 7034, Trondheim, Norway
| | - Knut W Vollset
- LFI Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Nygårdsgaten 112, 5008, Bergen, Norway
| |
Collapse
|
28
|
Baker CM, Blonda P, Casella F, Diele F, Marangi C, Martiradonna A, Montomoli F, Pepper N, Tamborrino C, Tarantino C. Using remote sensing data within an optimal spatiotemporal model for invasive plant management: the case of Ailanthus altissima in the Alta Murgia National Park. Sci Rep 2023; 13:14587. [PMID: 37666884 PMCID: PMC10477239 DOI: 10.1038/s41598-023-41607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
We tackle the problem of coupling a spatiotemporal model for simulating the spread and control of an invasive alien species with data coming from image processing and expert knowledge. In this study, we implement a spatially explicit optimal control model based on a reaction-diffusion equation which includes an Holling II type functional response term for modeling the density control rate. The model takes into account the budget constraint related to the control program and searches for the optimal effort allocation for the minimization of the invasive alien species density. Remote sensing and expert knowledge have been assimilated in the model to estimate the initial species distribution and its habitat suitability, empirically extracted by a land cover map of the study area. The approach has been applied to the plant species Ailanthus altissima (Mill.) Swingle within the Alta Murgia National Park. This area is one of the Natura 2000 sites under the study of the ongoing National Biodiversity Future Center (NBFC) funded by the Italian National Recovery and Resilience Plan (NRRP), and pilot site of the finished H2020 project ECOPOTENTIAL, which aimed at the integration of modeling tools and Earth Observations for a sustainable management of protected areas. Both the initial density map and the land cover map have been generated by using very high resolution satellite images and validated by means of ground truth data provided by the EU Life Alta Murgia Project (LIFE12 BIO/IT/000213), a project aimed at the eradication of A. altissima in the Alta Murgia National Park.
Collapse
Affiliation(s)
- Christopher M Baker
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia
- Melbourne Centre for Data Science, The University of Melbourne, Parkville, VIC, 3010, Australia
- Centre of Excellence for Biosecurity Risk Analysis, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Palma Blonda
- Institute of Atmospheric Pollution Research, National Research Council (CNR), Via Amendola 173, 70126, Bari, Italy
| | - Francesca Casella
- Institute of Sciences of Food Production, National Research Council (CNR), Via Amendola 122/O, 70126, Bari, Italy
| | - Fasma Diele
- Istituto per le Applicazioni del Calcolo M. Picone, National Research Council (CNR), Via Amendola 122/I, 70126, Bari, Italy
| | - Carmela Marangi
- Istituto per le Applicazioni del Calcolo M. Picone, National Research Council (CNR), Via Amendola 122/I, 70126, Bari, Italy
| | - Angela Martiradonna
- Istituto per le Applicazioni del Calcolo M. Picone, National Research Council (CNR), Via Amendola 122/I, 70126, Bari, Italy.
- Department of Mathematics, University of Bari, via Orabona 4, 70125, Bari, Italy.
| | - Francesco Montomoli
- Department of Aeronautics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nick Pepper
- The Alan Turing Institute, The British Library, London, UK
| | - Cristiano Tamborrino
- Department of Computer Science, University of Bari, via Orabona 4, 70125, Bari, Italy
| | - Cristina Tarantino
- Institute of Atmospheric Pollution Research, National Research Council (CNR), Via Amendola 173, 70126, Bari, Italy
| |
Collapse
|
29
|
Rodríguez-Merino A. Identifying and Managing Areas under Threat in the Iberian Peninsula: An Invasion Risk Atlas for Non-Native Aquatic Plant Species as a Potential Tool. PLANTS (BASEL, SWITZERLAND) 2023; 12:3069. [PMID: 37687316 PMCID: PMC10490461 DOI: 10.3390/plants12173069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/30/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Predicting the likelihood that non-native species will be introduced into new areas remains one of conservation's greatest challenges and, consequently, it is necessary to adopt adequate management measures to mitigate the effects of future biological invasions. At present, not much information is available on the areas in which non-native aquatic plant species could establish themselves in the Iberian Peninsula. Species distribution models were used to predict the potential invasion risk of (1) non-native aquatic plant species already established in the peninsula (32 species) and (2) those with the potential to invade the peninsula (40 species). The results revealed that the Iberian Peninsula contains a number of areas capable of hosting non-native aquatic plant species. Areas under anthropogenic pressure are at the greatest risk of invasion, and the variable most related to invasion risk is temperature. The results of this work were used to create the Invasion Risk Atlas for Alien Aquatic Plants in the Iberian Peninsula, a novel online resource that provides information about the potential distribution of non-native aquatic plant species. The atlas and this article are intended to serve as reference tools for the development of public policies, management regimes, and control strategies aimed at the prevention, mitigation, and eradication of non-native aquatic plant species.
Collapse
|
30
|
Cuthbert RN, Darriet F, Chabrerie O, Lenoir J, Courchamp F, Claeys C, Robert V, Jourdain F, Ulmer R, Diagne C, Ayala D, Simard F, Morand S, Renault D. Invasive hematophagous arthropods and associated diseases in a changing world. Parasit Vectors 2023; 16:291. [PMID: 37592298 PMCID: PMC10436414 DOI: 10.1186/s13071-023-05887-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/01/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Biological invasions have increased significantly with the tremendous growth of international trade and transport. Hematophagous arthropods can be vectors of infectious and potentially lethal pathogens and parasites, thus constituting a growing threat to humans-especially when associated with biological invasions. Today, several major vector-borne diseases, currently described as emerging or re-emerging, are expanding in a world dominated by climate change, land-use change and intensive transportation of humans and goods. In this review, we retrace the historical trajectory of these invasions to better understand their ecological, physiological and genetic drivers and their impacts on ecosystems and human health. We also discuss arthropod management strategies to mitigate future risks by harnessing ecology, public health, economics and social-ethnological considerations. Trade and transport of goods and materials, including vertebrate introductions and worn tires, have historically been important introduction pathways for the most prominent invasive hematophagous arthropods, but sources and pathways are likely to diversify with future globalization. Burgeoning urbanization, climate change and the urban heat island effect are likely to interact to favor invasive hematophagous arthropods and the diseases they can vector. To mitigate future invasions of hematophagous arthropods and novel disease outbreaks, stronger preventative monitoring and transboundary surveillance measures are urgently required. Proactive approaches, such as the use of monitoring and increased engagement in citizen science, would reduce epidemiological and ecological risks and could save millions of lives and billions of dollars spent on arthropod control and disease management. Last, our capacities to manage invasive hematophagous arthropods in a sustainable way for worldwide ecosystems can be improved by promoting interactions among experts of the health sector, stakeholders in environmental issues and policymakers (e.g. the One Health approach) while considering wider social perceptions.
Collapse
Affiliation(s)
- Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK.
| | | | - Olivier Chabrerie
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Jonathan Lenoir
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Franck Courchamp
- Ecologie Systématique Evolution, Université Paris-Saclay, CNRS, AgroParisTech, Gif sur Yvette, France
| | - Cecilia Claeys
- Centre de Recherche sur les Sociétés et les Environnement Méditerranéens (CRESEM), UR 7397 UPVD, Université de Perpignan, Perpignan, France
| | - Vincent Robert
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Frédéric Jourdain
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Santé Publique France, Saint-Maurice, France
| | - Romain Ulmer
- UMR CNRS 7058 "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN), Université de Picardie Jules Verne, 1 rue des Louvels, 80037, Amiens Cedex 1, France
| | - Christophe Diagne
- CBGP, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, 755 Avenue du Campus Agropolis, 34988, Cedex, Montferrier-Sur-Lez, France
| | - Diego Ayala
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Medical Entomology Unit, Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | - Frédéric Simard
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Serge Morand
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
- Faculty of Veterinary Technology, CNRS - CIRAD, Kasetsart University, Bangkok, Thailand
| | - David Renault
- Université de Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) - UMR 6553, Rennes, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, France
| |
Collapse
|
31
|
Ferreira CSM, de Mesquita DC, de Freitas Lutz ÍA, Veneza IB, Martins TS, Santana PDCP, Miranda JAB, de Sousa JM, Matos SCDN, Holanda FCAF, da Cunha Sampaio MI, Evangelista-Gomes GF. First record of rainbow shrimp, exotic species Mierspenaeopsis sculptilis (Heller, 1862), in the Brazilian coastal amazon, validated by DNA barcode. BMC ZOOL 2023; 8:11. [PMID: 37568190 PMCID: PMC10416461 DOI: 10.1186/s40850-023-00176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND This is the first record of the alien shrimp Mierspenaeopsis sculptilis in Brazil. The invasion was detected within Marine Extractive Reserves based on eight specimens accidentally caught by local fishermen using trawlnets focused on fisheries of native species. These specimens were transported to the Laboratory of Applied Genetics and morphologically identified as Mierspenaeopsis sculptilis (rainbow shrimp). The taxonomic status of analyzed samples was confirmed by DNA barcoding using a 627-bp fragment of the Cytochrome C Oxidase Subunit I (COI) gene. RESULTS A single haplotype was recovered from the eight specimens, being identical to a haplotype reported in India, where this species naturally occurs, and in Mozambique, where the rainbow shrimp is considered an invasive species. The present analyses indicated a putative invasive route (i.e., India-Mozambique-Brazil) mediated by shipping trade. CONCLUSIONS This study presents the first record of Mierspenaeopsis sculptilis in Brazil, in areas of extractive reserves on the Amazon coast. Notably exotic species can cause imbalance in the ecosystem, harming native species. In view of this, the registration of new invasions is essential as they contribute to the implementation of control plans.
Collapse
Affiliation(s)
| | - David Carvalho de Mesquita
- Laboratory of Fisheries and Navigation, Institute of Coastal Studies, Federal University of Pará, Bragança, PA, Brazil
| | | | | | - Thaís Sousa Martins
- Laboratory of Applied Genetics, Institute of Coastal Studies, Federal University of Pará, Bragança, PA, Brazil
| | | | | | - Jefferson Miranda de Sousa
- Laboratory of Applied Genetics, Institute of Coastal Studies, Federal University of Pará, Bragança, PA, Brazil
| | | | | | - Maria Iracilda da Cunha Sampaio
- Laboratory of Genetics and Molecular Biology, Institute of Coastal Studies, Federal University of Pará, Bragança, PA, Brazil
| | | |
Collapse
|
32
|
Ahmed DA, Haubrock PJ, Cuthbert RN, Bang A, Soto I, Balzani P, Tarkan AS, Macêdo RL, Carneiro L, Bodey TW, Oficialdegui FJ, Courtois P, Kourantidou M, Angulo E, Heringer G, Renault D, Turbelin AJ, Hudgins EJ, Liu C, Gojery SA, Arbieu U, Diagne C, Leroy B, Briski E, Bradshaw CJA, Courchamp F. Recent advances in availability and synthesis of the economic costs of biological invasions. Bioscience 2023; 73:560-574. [PMID: 37680688 PMCID: PMC10481418 DOI: 10.1093/biosci/biad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023] Open
Abstract
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
Collapse
Affiliation(s)
- Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Phillip J Haubrock
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt,Gelnhausen, Germany
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences at Queen's University Belfast, Belfast, NorthernIreland
| | - Alok Bang
- School of Arts and Sciences at Azim Premji University, Bangalore, India
- School of Arts and Sciences, Azim Premji University, Bhopal, India
- Society for Ecology, Evolution, and Development, Wardha, India
| | - Ismael Soto
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Paride Balzani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Basic Sciences in the Faculty of Fisheries at Muğla Sıtkı Koçman University, in Muğla, Turkey
- Department of Life and Environmental Sciences in the Faculty of Science and Technology at Bournemouth University, Poole, Dorset, England, United Kingdom
| | - Rafael L Macêdo
- Graduate Program in Conservation and Ecotourism at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brazil
- Institute of Biology at Freie Universität Berlin, Berlin, Germany
- Neotropical Limnology Group, at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brasil
| | - Laís Carneiro
- Laboratório de Ecologia e Conservação in the Departamento de Engenharia Ambiental, Setor de Tecnologia, at the Universidade Federal do Paraná, in Curitiba, Paraná, Brazil
| | - Thomas W Bodey
- School of Biological Sciences at King's College, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Francisco J Oficialdegui
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Pierre Courtois
- Centre for Environmental Economics—Montpellier, National Institute for Research in Agriculture and the Environment, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Esbjerg Ø, Denmark
- Université de Bretagne Occidentale, Plouzané, France
| | | | - Gustavo Heringer
- Departamento de Ecologia e Conservação in the Instituto de Ciências Naturais at the Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Nürtingen-Geislingen University, Nürtingen, Germany
| | - David Renault
- Centre National de Recherche Scientifique's Ecosystèmes, Biodiversité, Evolution, University of Rennes, Rennes, France
| | - Anna J Turbelin
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Great Lakes Forestry Centre at Canadian Forestry Services, part of Natural Resources Canada, Sault Ste Marie, Ontario, Canada
| | - Emma J Hudgins
- Department of Biology at Carleton University, Ottawa, Ontario, Canada
| | - Chunlong Liu
- College of Fisheries at the Ocean University of China, Qingdao, China
- Institute of Hydrobiology at the Chinese Academy of Sciences, Wuhan, China
| | - Showkat A Gojery
- Department of Botany at the University of Kashmir, Kashmir, India
| | - Ugo Arbieu
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Smithsonian Conservation Biology Institute, at the National Zoological Park, Front Royal, Virginia, United States
| | - Christophe Diagne
- Centre de Biologie pour la Gestion des Populations, at Institut de Recherche pour le Développement, Montferrier-sur-Lez Cedex, France
| | - Boris Leroy
- Unité Biologie des Organismes et des Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, in Paris, France
| | | | - Corey J A Bradshaw
- Global Ecology Laboratory, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Franck Courchamp
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
| |
Collapse
|
33
|
Lorenzo P, Morais MC. Strategies for the Management of Aggressive Invasive Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:2482. [PMID: 37447043 DOI: 10.3390/plants12132482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Current control methods for invasive alien plants (IAPs) have acceptable short-term outcomes but have proven to be unfeasible or unaffordable in the long-term or for large invaded areas. For these reasons, there is an urgent need to develop sustainable approaches to control or restrict the spread of aggressive IAPs. The use of waste derived from IAP control actions could contribute to motivating the long-term management and preservation of local biodiversity while promoting some economic returns for stakeholders. However, this strategy may raise some concerns that should be carefully addressed before its implementation. In this article, we summarize the most common methods to control IAPs, explaining their viability and limitations. We also compile the potential applications of IAP residues and discuss the risks and opportunities associated with this strategy.
Collapse
Affiliation(s)
- Paula Lorenzo
- University of Coimbra, Department of Life Sciences, Centre for Functional Ecology (CFE)-Science for People & the Planet, TERRA Associate Laboratory, 3000-456 Coimbra, Portugal
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-of-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
34
|
Courtois P, Martinez C, Thomas A. Spatial priorities for invasive alien species control in protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162675. [PMID: 36933722 DOI: 10.1016/j.scitotenv.2023.162675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 05/13/2023]
Abstract
Given the limited funds available for the management of invasive alien species (IASs), there is a need to design cost-effective strategies to prioritize their control. In this paper, we propose a cost-benefit optimization framework that incorporates the spatially explicit costs and benefits of invasion control, as well as the spatial invasion dynamics. Our framework offers a simple yet operational priority-setting criterion for the spatially explicit management of IASs under budget constraints. We applied this criterion to the control of the invasion of primrose willow (genus Ludwigia) in a protected area in France. Using a unique geographic information system panel dataset on control costs and invasion levels through space for a 20-year period, we estimated the costs of invasion control and a spatial econometric model of primrose willow invasion dynamics. Next, we used a field choice experiment to estimate the spatially explicit benefits of invasion control. Applying our priority criterion, we show that, unlike the current management strategy that controls the invasion in a spatially homogeneous manner, the criterion recommends targeted control on heavily invaded areas that are highly valued by users. We also show that the returns on investment are high, justifying the need to increase the allocated budgets and to treat the invasion more drastically. We conclude with policy recommendations and possible extensions, including the development of operational cost-benefit decision-support tools to assist local decision-makers in setting management priorities.
Collapse
Affiliation(s)
- Pierre Courtois
- CEE-M, Université de Montpellier, CNRS, INRAE, Instit Agro, 34000 Montpellier, France.
| | - César Martinez
- CEE-M, Université de Montpellier, CNRS, INRAE, Instit Agro, 34000 Montpellier, France; INRAE, BioSP, 84914 Avignon, France.
| | - Alban Thomas
- Paris-Saclay Applied Economics, Université Paris-Saclay, INRAE, AgroParisTech, 91120 Palaiseau, France.
| |
Collapse
|
35
|
Sharma P, Garai P, Banerjee P, Saha S, Chukwuka AV, Chatterjee S, Saha NC, Faggio C. Behavioral toxicity, histopathological alterations and oxidative stress in Tubifex tubifex exposed to aromatic carboxylic acids- acetic acid and benzoic acid: A comparative time-dependent toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162739. [PMID: 36906024 DOI: 10.1016/j.scitotenv.2023.162739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated Acetic acid (AA) and Benzoic acid's (BA) acute and sublethal toxicity by observing mortality, behavioral responses, and changes in the levels of oxidative stress enzymes in Tubifex tubifex. Exposure-induced changes in antioxidant activity (Catalase, Superoxide dismutase), oxidative stress (Malondialdehyde concentrations), and histopathological alterations in the tubificid worms were also noted across exposure intervals. The 96 h LC50 values of AA and BA to T. tubifex were 74.99 and 37.15 mg/l, respectively. Severity in behavioral alterations (including increased mucus production, wrinkling, and reduction in clumping) and autotomy showed concentration-dependent trends for both toxicants. Although histopathological effects also showed marked degeneration in the alimentary and integumentary systems in highest exposure groups (worms exposed to 14.99 mg/l for AA and 7.42 mg/l for BA) for both toxicants. Antioxidant enzymes (catalase and superoxide dismutase) also showed a marked increase of up to 8-fold and 10-fold for the highest exposure group of AA and BA respectively. While species sensitivity distribution analysis revealed T. tubifex as most sensitive to AA and BA compared to other freshwater vertebrates and invertebrates, General Unified Threshold model of Survival (GUTS) predicted individual tolerance effects (GUTS-IT), with slower potential for toxicodynamic recovery, as a more likely pathway for population mortality. Study findings demonstrate BA with greater potential for ecological effects compared to AA within 24 h of exposure. Furthermore, ecological risks to critical detritus feeders like T. tubifex may have severe implications for ecosystem services and nutrient availability within freshwater habitats.
Collapse
Affiliation(s)
- Pramita Sharma
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Pramita Garai
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Priyajit Banerjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shubhajit Saha
- Department of Zoology, Sundarban Hazi Desarat College, Pathankhali, South 24, Parganas 743611, West Bengal, India
| | - Azubuike V Chukwuka
- National Environmental Standards and Regulations Enforcement Agency, Osogbo, Osun State, Nigeria
| | - Soumendranath Chatterjee
- Parasitology & Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal 713 104, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
36
|
Henry M, Leung B, Cuthbert RN, Bodey TW, Ahmed DA, Angulo E, Balzani P, Briski E, Courchamp F, Hulme PE, Kouba A, Kourantidou M, Liu C, Macêdo RL, Oficialdegui FJ, Renault D, Soto I, Tarkan AS, Turbelin AJ, Bradshaw CJA, Haubrock PJ. Unveiling the hidden economic toll of biological invasions in the European Union. ENVIRONMENTAL SCIENCES EUROPE 2023; 35:43. [PMID: 37325080 PMCID: PMC10249565 DOI: 10.1186/s12302-023-00750-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Background Biological invasions threaten the functioning of ecosystems, biodiversity, and human well-being by degrading ecosystem services and eliciting massive economic costs. The European Union has historically been a hub for cultural development and global trade, and thus, has extensive opportunities for the introduction and spread of alien species. While reported costs of biological invasions to some member states have been recently assessed, ongoing knowledge gaps in taxonomic and spatio-temporal data suggest that these costs were considerably underestimated. Results We used the latest available cost data in InvaCost (v4.1)-the most comprehensive database on the costs of biological invasions-to assess the magnitude of this underestimation within the European Union via projections of current and future invasion costs. We used macroeconomic scaling and temporal modelling approaches to project available cost information over gaps in taxa, space, and time, thereby producing a more complete estimate for the European Union economy. We identified that only 259 out of 13,331 (~ 1%) known invasive alien species have reported costs in the European Union. Using a conservative subset of highly reliable, observed, country-level cost entries from 49 species (totalling US$4.7 billion; 2017 value), combined with the establishment data of alien species within European Union member states, we projected unreported cost data for all member states. Conclusions Our corrected estimate of observed costs was potentially 501% higher (US$28.0 billion) than currently recorded. Using future projections of current estimates, we also identified a substantial increase in costs and costly species (US$148.2 billion) by 2040. We urge that cost reporting be improved to clarify the economic impacts of greatest concern, concomitant with coordinated international action to prevent and mitigate the impacts of invasive alien species in the European Union and globally. Supplementary Information The online version contains supplementary material available at 10.1186/s12302-023-00750-3.
Collapse
Affiliation(s)
- Morgane Henry
- Department of Biology, McGill University, Montréal, QC Canada
| | - Brian Leung
- Department of Biology, McGill University, Montréal, QC Canada
| | - Ross N. Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, BT9 5DL UK
| | - Thomas W. Bodey
- School of Biological Sciences, King’s College, University of Aberdeen, Aberdeen, AB24 3FX UK
| | - Danish A. Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Avda. Americo Vespucio 26, 41092 Seville, Spain
| | - Paride Balzani
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif sur Yvette, France
| | - Philip E. Hulme
- Bioprotection Aotearoa, Lincoln University, Lincoln Canterbury, 7647 New Zealand
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705 Esbjerg Ø, Denmark
- UMR 6308, AMURE, Université de Bretagne Occidentale, IUEM, rue Dumont d’Urville, 29280 Plouzané, France
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 USA
| | - Chunlong Liu
- College of Fisheries, Ocean University of China, Qingdao, 266003 China
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Rafael L. Macêdo
- Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State, Rio de Janeiro, RJ Brazil
- Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, Rio de Janeiro, RJ 22290-240 Brazil
| | - Francisco J. Oficialdegui
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Evolution), UMR, 6553 Rennes, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset UK
| | - Anna J. Turbelin
- Bioprotection Aotearoa, Lincoln University, Lincoln Canterbury, 7647 New Zealand
| | - Corey J. A. Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, SA 5001 Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (EpicAustralia.org.au), Wollongong, NSW Australia
| | - Phillip J. Haubrock
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
37
|
Fernandez RD, Haubrock PJ, Cuthbert RN, Heringer G, Kourantidou M, Hudgins EJ, Angulo E, Diagne CA, Courchamp F, Nuñez MA. Underexplored and growing economic costs of invasive alien trees. Sci Rep 2023; 13:8945. [PMID: 37268662 DOI: 10.1038/s41598-023-35802-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
The high ecological impacts of many invasive alien trees have been well documented. However, to date, we lacked synthesis of their economic impacts, hampering management actions. Here, we summarize the cost records of invasive trees to (I) identify invasive trees with cost information and their geographic locations, (II) investigate the types of costs recorded and sectors impacted by invasive trees and (III) analyze the relationships between categories of uses of invasive trees and the invasion costs attributed to these uses. We found reliable cost records only for 72 invasive trees, accumulating a reported total cost of $19.2 billion between 1960 and 2020. Agriculture was the sector with the highest cost records due to invasive trees. Most costs were incurred as resource damages and losses ($3.5 billion). Close attention to the ornamental sector is important for reducing the economic impact of invasive trees, since most invasive trees with cost records were introduced for that use. Despite massive reported costs of invasive trees, there remain large knowledge gaps on most invasive trees, sectors, and geographic scales, indicating that the real cost is severely underestimated. This highlights the need for further concerted and widely-distributed research efforts regarding the economic impact of invasive trees.
Collapse
Affiliation(s)
- Romina D Fernandez
- Instituto de Ecología Regional, Universidad Nacional de Tucumán-CONICET, CC. 34, 4107, Yerba Buena, Tucumán, Argentina.
| | - Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571, Gelnhausen, Germany.
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hallawy, Kuwait.
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Gustavo Heringer
- Department of Ecology and Conservation, Institute of Natural Sciences, Universidade Federal de Lavras - UFLA, Lavras, Minas Gerais, 37200-900, Brazil
- Nürtingen-Geislingen University (HfWU), Schelmenwasen 4-8, 72622, Nürtingen, Germany
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Degnevej 14, 6705, Esbjerg Ø, Denmark
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Elena Angulo
- Estación Biológica de Doñana (CSIC), Avda. Americo Vespucio 26, 41092, Sevilla, Spain
| | - Christophe A Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif sur Yvette, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91190, Gif sur Yvette, France
| | - Martin A Nuñez
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
38
|
Zamora-Marín JM, Herrero-Reyes AA, Ruiz-Navarro A, Oliva-Paterna FJ. Non-indigenous aquatic fauna in transitional waters from the Spanish Mediterranean coast: A comprehensive assessment. MARINE POLLUTION BULLETIN 2023; 191:114893. [PMID: 37027964 DOI: 10.1016/j.marpolbul.2023.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 05/13/2023]
Abstract
Understanding drivers of spatial variation in non-indigenous species (NIS) is a key goal in invasion biology, but comprehensive assessments providing high-resolution data are extremely scarce. Anthropogenic modifications to transitional waters facilitate the invasion of NIS where they cause both ecological and economic important damage. By screening validated data sources, we conducted a comprehensive assessment of non-indigenous aquatic fauna in Spanish Mediterranean transitional waters (30 sites), as well as assessed introduction pathways, native regions, NIS assemblage patterns and temporal introduction rate. One hundred and twenty-nine NIS were inventoried, with 72 % established and more than half listed before 1980. Two intentional (release, escape) and two unintentional (contaminant, stowaway) introduction pathways were dominant. Recorded NIS originated mostly from North America and Asia. A clear nested pattern in NIS assemblages was observed across sites, suggesting secondary spread from the most invaded waters placed in the northern regions. Our updated inventory should be pivotal for designing prevention protocols and informing specific management plans on non-indigenous fauna in transitional waters.
Collapse
Affiliation(s)
- José M Zamora-Marín
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain; Department of Applied Biology, Centro de Investigación e Innovación Agroalimentaria (CIAGRO-UMH), Miguel Hernández University of Elche, Elche, Spain.
| | - Antonio A Herrero-Reyes
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| | - Ana Ruiz-Navarro
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain; Department of Didactics of Experimental Sciences, Faculty of Education, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
39
|
Gao H, Qian Q, Liu L, Xu D. Predicting the Distribution of Sclerodermus sichuanensis (Hymenoptera: Bethylidae) under Climate Change in China. INSECTS 2023; 14:insects14050475. [PMID: 37233103 DOI: 10.3390/insects14050475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Sclerodermus sichuanensis is the natural enemy of the longicorn beetle due to its strong attack ability and high parasitic rate. Its good resistance and fecundity make it have significant biological control value. The Maxent model and ArcGIS software were used to simulate the current distribution of S. sichuanensis in China by combining the known distribution information and environmental variables and predict the suitable area of the 2050s (2041-2060) and 2090s (2081-2000) under three climate scenarios (SSP1-2.6, SSP2-4.5. and SSP5-8.5). The results showed that the Mean Diurnal Range (bio2), Min Temperature of the Coldest Month (bio6), Precipitation of the Warmest Quarter (bio18), and Max Temperature of the Warmest Month (bio5) were the key environmental variables affecting the distribution of S. sichuanensis. Southwest China and part of North China are the main concentrations of the current high-suitability areas of S. sichuanensis. The moderately suitable areas are concentrated in South China and Central China. Under the SSP5-8.5 scenario, the suitable area predicted in the 2050s will expand significantly to North China and Northwest China, with a total increase of 81,295 km2. This work provides an essential reference for future research on S. sichuanensis and the application of forestry pest control.
Collapse
Affiliation(s)
- Hui Gao
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Qianqian Qian
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Lijuan Liu
- Nanchong Gaoping District Urban and Rural Construction Bureau, Nanchong 637002, China
| | - Danping Xu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China
- College of Life Science, China West Normal University, Nanchong 637002, China
| |
Collapse
|
40
|
Soto I, Ahmed DA, Balzani P, Cuthbert RN, Haubrock PJ. Sigmoidal curves reflect impacts and dynamics of aquatic invasive species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:161818. [PMID: 36801313 DOI: 10.1016/j.scitotenv.2023.161818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Identifying general patterns and trends underlying the impacts and dynamics of biological invasions has proven elusive for scientists. Recently, the impact curve was proposed as a means to predict temporal impacts of invasive alien species, characterised by a sigmoidal growth pattern with an initial exponential increase, followed by a subsequent rate of decline and approaching a saturation level in the long-term where impact is maximised. While the impact curve has been empirically demonstrated with monitoring data of a single invasive alien species (the New Zealand mud snail, Potamopyrgus antipodarum), broadscale applicability remains to be tested for other taxa. Here, we examined whether the impact curve can adequately describe the invasion dynamics of 13 other aquatic species (within Amphipoda, Bivalvia, Gastropoda, Hirudinea, Isopoda, Mysida, and Platyhelminthes) at the European level, employing multi-decadal time series of macroinvertebrate cumulative abundances from regular benthic monitoring efforts. For all except one tested species (the killer shrimp, Dikerogammarus villosus), the sigmoidal impact curve was strongly supported (R2 > 0.95) on a sufficiently long time-scale. For D. villosus, the impact had not yet reached saturation, likely reflecting the ongoing European invasion. The impact curve facilitated estimation of introduction years and lag phases, as well as parameterisation of growth rates and carrying capacities, providing strong support for the boom-bust dynamics typically observed in several invader populations. These findings suggest that impact can grow rapidly before saturating at a high level, with timely monitoring often lacking for the detection of invasive alien species post-introduction. We further confirm the applicability of the impact curve to determine trends in invasion stages, population dynamics, and impacts of pertinent invaders, ultimately helping inform the timing of management interventions. We hence call for improved monitoring and reporting of invasive alien species over broad spatio-temporal scales to permit further testing of large-scale impact consistencies across various habitat types.
Collapse
Affiliation(s)
- Ismael Soto
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Kuwait
| | - Paride Balzani
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, Northern Ireland, United Kingdom of Great Britain
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Kuwait; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| |
Collapse
|
41
|
Rossiter-Rachor NA, Adams VM, Canham CA, Dixon DJ, Cameron TN, Setterfield SA. The cost of not acting: Delaying invasive grass management increases costs and threatens assets in a national park, northern Australia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:116785. [PMID: 36758396 DOI: 10.1016/j.jenvman.2022.116785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/18/2023]
Abstract
Globally, invasive grasses are a major threat to protected areas (PAs) due to their ability to alter community structure and function, reduce biodiversity, and alter fire regimes. However, there is often a mismatch between the threat posed by invasive grasses and the management response. We document a case study of the spread and management of the ecosystem-transforming invasive grass, Andropogon gayanus Kunth. (gamba grass), in Litchfield National Park; an iconic PA in northern Australia that contains significant natural, cultural and social values. We undertook helicopter-based surveys of A. gayanus across 143,931 ha of Litchfield National Park in 2014 and 2021-2022. We used these data to parametrise a spatially-explicit spread model, interfaced with a management simulation model to predict 10-year patterns of spread, and associated management costs, under three scenarios. Our survey showed that between 2014 and 2021-22 A. gayanus spread by 9463 ha, and 47%. The gross A. gayanus infestation covered 29,713 ha of the total survey area, making it the largest national park infestation in Australia. A. gayanus had not been locally eradicated within the Park's small existing 'gamba grass eradication zone', and instead increased by 206 ha over the 7-year timeframe. Our modelled scenarios predict that without active management A. gayanus will continue spreading, covering 42,388 ha of Litchfield within a decade. Alternative scenarios predict that: (i) eradicating A. gayanus in the small existing eradication zone would likely protect 18% of visitor sites, and cost ∼AU$825,000 over 5 years - more than double the original predicted cost in 2014; or (ii) eradicating A. gayanus in a much larger eradication zone would likely protect 86% of visitor sites and several species of conservation significance, and cost ∼AU$6.6 million over 5 years. Totally eradicating A. gayanus from the Park is no longer viable due to substantial spread since 2014. Our study demonstrates the value of systematic landscape-scale surveys and costed management scenarios to enable assessment and prioritisation of weed management. It also demonstrates the increased environmental and financial costs of delaying invasive grass management, and the serious threat A. gayanus poses to PAs across northern Australia.
Collapse
Affiliation(s)
- Natalie A Rossiter-Rachor
- National Environmental Science Programme (NESP) Northern Australia Environmental Resources Hub, Charles Darwin University, Darwin, Northern Territory, Australia; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Vanessa M Adams
- National Environmental Science Programme (NESP) Northern Australia Environmental Resources Hub, Charles Darwin University, Darwin, Northern Territory, Australia; School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Caroline A Canham
- National Environmental Science Programme (NESP) Northern Australia Environmental Resources Hub, Charles Darwin University, Darwin, Northern Territory, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Dan J Dixon
- School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| | - Thorsteinn N Cameron
- School of Geography, Planning, and Spatial Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Samantha A Setterfield
- National Environmental Science Programme (NESP) Northern Australia Environmental Resources Hub, Charles Darwin University, Darwin, Northern Territory, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
42
|
Griffith RM, Cuthbert RN, Johnson JV, Hardiman G, Dick JTA. Resilient amphipods: Gammarid predatory behaviour is unaffected by microplastic exposure and deoxygenation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163582. [PMID: 37086992 DOI: 10.1016/j.scitotenv.2023.163582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Microplastics are a ubiquitous and persistent form of pollution globally, with impacts cascading from the cellular to ecosystem level. However, there is a paucity in understanding interactions between microplastic pollution with other environmental stressors, and how these could affect ecological functions and services. Freshwater ecosystems are subject to microplastic input from anthropogenic activities (eg. wastewater), but are also simultaneously exposed to many other stressors, particularly reduced dissolved oxygen availability associated with climatic warming and pollutants, as well as biological invasions. Here, we employ the comparative functional response method (CFR; quantifying and comparing organism resource use as a function of resource density) to investigate the relative impact of different microplastic concentrations and oxygen regimes on predatory trophic interactions of a native and an invasive alien gammarid (Gammarus duebeni and Gammarus pulex). No significant effect on trophic interaction strengths was found from very high concentrations of microplastics (200 mp/L and 200,000 mp/L) or low oxygen (40 %) stressors on either species. Additionally, both gammarid species exhibited significant Type II functional responses, with attack rates and handling times not significantly affected by microplastics, oxygen or gammarid invasion status. Thus, both species showed resistance to the simultaneous effects of microplastics and deoxygenation in terms of feeding behaviour. Based on these findings, we suggest that the trophic function, in terms of predation rate, of Gammarus spp. may be sustained under acute bouts of microplastic pollution even in poorly‑oxygenated waters. This is the first study to investigate microplastic and deoxygenation interactions and to find no evidence for an interaction on a key invertebrate ecosystem service. We argue that our CFR methods can help understand and predict the future ecological ramifications of microplastics and other stressors across taxa and habitats.
Collapse
Affiliation(s)
- Rose M Griffith
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK.
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK; Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Jack V Johnson
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK
| | - Gary Hardiman
- Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Jaimie T A Dick
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK; Queen's Marine Laboratory, Queen's University Belfast, 12-13 The Strand, Portaferry, BT22 1PF, Northern Ireland, UK; Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| |
Collapse
|
43
|
Oficialdegui FJ, Zamora-Marín JM, Guareschi S, Anastácio PM, García-Murillo P, Ribeiro F, Miranda R, Cobo F, Gallardo B, García-Berthou E, Boix D, Arias A, Cuesta JA, Medina L, Almeida D, Banha F, Barca S, Biurrun I, Cabezas MP, Calero S, Campos JA, Capdevila-Argüelles L, Capinha C, Casals F, Clavero M, Encarnação J, Fernández-Delgado C, Franco J, Guillén A, Hermoso V, Machordom A, Martelo J, Mellado-Díaz A, Morcillo F, Oscoz J, Perdices A, Pou-Rovira Q, Rodríguez-Merino A, Ros M, Ruiz-Navarro A, Sánchez MI, Sánchez-Fernández D, Sánchez-González JR, Sánchez-Gullón E, Teodósio MA, Torralva M, Vieira-Lanero R, Oliva-Paterna FJ. A horizon scan exercise for aquatic invasive alien species in Iberian inland waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161798. [PMID: 36702272 DOI: 10.1016/j.scitotenv.2023.161798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
As the number of introduced species keeps increasing unabatedly, identifying and prioritising current and potential Invasive Alien Species (IAS) has become essential to manage them. Horizon Scanning (HS), defined as an exploration of potential threats, is considered a fundamental component of IAS management. By combining scientific knowledge on taxa with expert opinion, we identified the most relevant aquatic IAS in the Iberian Peninsula, i.e., those with the greatest geographic extent (or probability of introduction), severe ecological, economic and human health impacts, greatest difficulty and acceptability of management. We highlighted the 126 most relevant IAS already present in Iberian inland waters (i.e., Concern list) and 89 with a high probability of being introduced in the near future (i.e., Alert list), of which 24 and 10 IAS, respectively, were considered as a management priority after receiving the highest scores in the expert assessment (i.e., top-ranked IAS). In both lists, aquatic IAS belonging to the four thematic groups (plants, freshwater invertebrates, estuarine invertebrates, and vertebrates) were identified as having been introduced through various pathways from different regions of the world and classified according to their main functional feeding groups. Also, the latest update of the list of IAS of Union concern pursuant to Regulation (EU) No 1143/2014 includes only 12 top-ranked IAS identified for the Iberian Peninsula, while the national lists incorporate the vast majority of them. This fact underlines the great importance of taxa prioritisation exercises at biogeographical scales as a step prior to risk analyses and their inclusion in national lists. This HS provides a robust assessment and a cost-effective strategy for decision-makers and stakeholders to prioritise the use of limited resources for IAS prevention and management. Although applied at a transnational level in a European biodiversity hotspot, this approach is designed for potential application at any geographical or administrative scale, including the continental one.
Collapse
Affiliation(s)
- Francisco J Oficialdegui
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain.
| | - José M Zamora-Marín
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Simone Guareschi
- Geography and Environment Division, Loughborough University, Loughborough, United Kingdom; Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - Pedro M Anastácio
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Pablo García-Murillo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Filipe Ribeiro
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Rafael Miranda
- Instituto de Biodiversidad y Medioambiente (BIOMA), Universidad de Navarra, Pamplona, Spain
| | - Fernando Cobo
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Belinda Gallardo
- Departamento de Biodiversidad y Restauración, Instituto Pirenaico de Ecología (IPE)-CSIC, Zaragoza, Spain
| | | | - Dani Boix
- GRECO, Institut d'Ecologia Aquàtica, Universitat de Girona, Girona, Spain
| | - Andrés Arias
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, Asturias, Spain
| | - Jose A Cuesta
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN)-CSIC, Cádiz, Spain
| | | | - David Almeida
- Department of Basic Medical Sciences, School of Medicine, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Filipe Banha
- Departamento de Paisagem, Ambiente e Ordenamento, MARE-Centro de Ciências do Mar e do Ambiente, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Sandra Barca
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Idoia Biurrun
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - M Pilar Cabezas
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Calero
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Juan A Campos
- Departamento de Biología Vegetal y Ecología, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | | | - César Capinha
- Centre of Geographical Studies, Institute of Geography and Spatial Planning, University of Lisbon, Lisboa, Portugal
| | - Frederic Casals
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Centre Tecnològic Forestal de Catalunya (CTFC), Solsona, Lleida, Spain
| | - Miguel Clavero
- Departamento de Biología de la Conservación, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | - João Encarnação
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Javier Franco
- AZTI, Marine Research, Marine and Coastal Environmental Management, Pasaia, Gipuzkoa, Spain
| | - Antonio Guillén
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Virgilio Hermoso
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Annie Machordom
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | - Joana Martelo
- MARE-Centro de Ciências do Mar e do Ambiente, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Andrés Mellado-Díaz
- Planificación y Gestión Hídrica, Tragsatec, Grupo Tragsa-SEPI, Madrid, Spain
| | - Felipe Morcillo
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Oscoz
- Departamento de Biología Ambiental, Universidad de Navarra, Pamplona, Spain
| | - Anabel Perdices
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN)-CSIC, Madrid, Spain
| | | | | | - Macarena Ros
- Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Ruiz-Navarro
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain; Departamento de Didáctica de las Ciencias Experimentales, Facultad de Educación, Universidad de Murcia, Murcia, Spain
| | - Marta I Sánchez
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD)-CSIC, Sevilla, Spain
| | | | - Jorge R Sánchez-González
- Departament de Ciència Animal, Universitat de Lleida, Lleida, Spain; Sociedad Ibérica de Ictiología, Departamento de Biología Ambiental, Universidad de Navarra, Pamplona/Iruña, Spain
| | - Enrique Sánchez-Gullón
- Consejería de Sostenibilidad, Medio Ambiente y Economía Azul, Junta de Andalucía, Huelva, Spain
| | - M Alexandra Teodósio
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Mar Torralva
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| | - Rufino Vieira-Lanero
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Facultade de Bioloxía, Universidade de Santiago de Compostela, A Coruña, Spain
| | - Francisco J Oliva-Paterna
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, CEIR Campus Mare Nostrum (CMN), Murcia, Spain
| |
Collapse
|
44
|
Bodey TW, Angulo E, Bang A, Bellard C, Fantle-Lepczyk J, Lenzner B, Turbelin A, Watari Y, Courchamp F. Economic costs of protecting islands from invasive alien species. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14034. [PMID: 36349474 DOI: 10.1111/cobi.14034] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Biological invasions represent a key threat to insular systems and have pronounced impacts across environments and economies. The ecological impacts have received substantial focus, but the socioeconomic impacts are poorly synthesized across spatial and temporal scales. We used the InvaCost database, the most comprehensive assessment of published economic costs of invasive species, to assess economic impacts on islands worldwide. We analyzed socioeconomic costs across differing expenditure types and examined temporal trends across islands that differ in their political geography-island nation states, overseas territories, and islands of continental countries. Over US$36 billion in total costs (including damages and management) has occurred on islands from 1965 to 2020 due to invasive species' impacts. Nation states incurred the greatest total and management costs, and islands of continental countries incurred costs of similar magnitude, both far higher than those in overseas territories. Damage-loss costs were significantly lower, but with qualitatively similar patterns across differing political geographies. The predominance of management spending differs from the pattern found for most countries examined and suggests important knowledge gaps in the extent of many damage-related socioeconomic impacts. Nation states spent the greatest proportion of their gross domestic products countering these costs, at least 1 order of magnitude higher than other locations. Most costs were borne by authorities and stakeholders, demonstrating the key role of governmental and nongovernmental bodies in addressing island invasions. Temporal trends revealed cost increases across all island types, potentially reflecting efforts to tackle invasive species at larger, more socially complex scales. Nevertheless, the already high total economic costs of island invasions substantiate the role of biosecurity in reducing and preventing invasive species arrivals to reduce strains on limited financial resources and avoid threats to sustainable development goals.
Collapse
Affiliation(s)
- Thomas W Bodey
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, UK
| | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha, India
- School of Arts and Sciences, Azim Premji University, Bangalore, India
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Jean Fantle-Lepczyk
- School of Forestry & Wildlife Sciences, Auburn University, Auburn, Alabama, USA
| | - Bernd Lenzner
- Bioinvasions, Macroecology, Global Change Group, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Yuya Watari
- Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
45
|
The value of volunteer surveillance for the early detection of biological invaders. J Theor Biol 2023; 560:111385. [PMID: 36565952 DOI: 10.1016/j.jtbi.2022.111385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
Early detection of invaders requires finding small numbers of individuals across large landscapes. It has been argued that the only feasible way to achieve the sampling effort needed for early detection of an invader is to involve volunteer groups (citizen scientists, passive surveyors, etc.). A key concern is that volunteers may have a considerable false-positive and false-negative rate. The question then becomes whether verification of a report from a volunteer is worth the effort. This question is the topic of this paper. Since we are interested in early detection we calculate the Z% upper limit of the one sided confidence interval of the incidence (fraction infected) and use the term maximum expected plausible incidence for this. We compare the maximum plausible incidence when the expert samples on their own, qE∼, and the maximum plausible incidence when the expert only verifies cases reported by the volunteer surveyor to be infected, qV∼. The maximum plausible incidences qE∼ and qV∼. are related as, qV∼=θfp1-θfnqE∼ where θfp and θfn are the false positive and false negative rate of the volunteer surveyor, respectively. We also show that the optimal monitoring programme consists of verifying only the cases reported by the volunteer surveyor if, TXTN<θfp1-θfn, where TN is the time needed for a sample taken by the expert and TX is the time needed for an expert to verify a case reported by a volunteer surveyor. Our results can be used to calculate the maximum plausible incidence of a plant disease based on reports of passive surveyors that have been verified by experts and data from experts sampling on their own. The results can also be used in the development phase of a surveillance project to assess whether including passive surveyor reports is useful in the early detection of exotic invaders.
Collapse
|
46
|
Tataridas A, Travlos I, Freitas H. Agroecology and invasive alien plants: A winner-take-all game. FRONTIERS IN PLANT SCIENCE 2023; 14:1143814. [PMID: 36938062 PMCID: PMC10017749 DOI: 10.3389/fpls.2023.1143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Alexandros Tataridas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ilias Travlos
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
47
|
Turbelin AJ, Cuthbert RN, Essl F, Haubrock PJ, Ricciardi A, Courchamp F. Biological invasions are as costly as natural hazards. Perspect Ecol Conserv 2023. [DOI: 10.1016/j.pecon.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/31/2023] Open
|
48
|
Uden DR, Mech AM, Havill NP, Schulz AN, Ayres MP, Herms DA, Hoover AM, Gandhi KJK, Hufbauer RA, Liebhold AM, Marsico TD, Raffa KF, Thomas KA, Tobin PC, Allen CR. Phylogenetic risk assessment is robust for forecasting the impact of European insects on North American conifers. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2761. [PMID: 36218183 DOI: 10.1002/eap.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/29/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Some introduced species cause severe damage, although the majority have little impact. Robust predictions of which species are most likely to cause substantial impacts could focus efforts to mitigate those impacts or prevent certain invasions entirely. Introduced herbivorous insects can reduce crop yield, fundamentally alter natural and managed forest ecosystems, and are unique among invasive species in that they require certain host plants to succeed. Recent studies have demonstrated that understanding the evolutionary history of introduced herbivores and their host plants can provide robust predictions of impact. Specifically, divergence times between hosts in the native and introduced ranges of a nonnative insect can be used to predict the potential impact of the insect should it establish in a novel ecosystem. However, divergence time estimates vary among published phylogenetic datasets, making it crucial to understand if and how the choice of phylogeny affects prediction of impact. Here, we tested the robustness of impact prediction to variation in host phylogeny by using insects that feed on conifers and predicting the likelihood of high impact using four different published phylogenies. Our analyses ranked 62 insects that are not established in North America and 47 North American conifer species according to overall risk and vulnerability, respectively. We found that results were robust to the choice of phylogeny. Although published vascular plant phylogenies continue to be refined, our analysis indicates that those differences are not substantial enough to alter the predictions of invader impact. Our results can assist in focusing biosecurity programs for conifer pests and can be more generally applied to nonnative insects and their potential hosts by prioritizing surveillance for those insects most likely to be damaging invaders.
Collapse
Affiliation(s)
- Daniel R Uden
- School of Natural Resources, Department of Agronomy and Horticulture, Center for Resilience in Agricultural Working Landscapes, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Angela M Mech
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - Ashley N Schulz
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
- Department of Forestry, Mississippi State University, Starkville, Mississippi, USA
| | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Angela M Hoover
- U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, USA
| | - Kamal J K Gandhi
- D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Ruth A Hufbauer
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| | - Andrew M Liebhold
- USDA Forest Service Northern Research Station, Morgantown, West Virginia, USA
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Travis D Marsico
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Kenneth F Raffa
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, USA
| | - Kathryn A Thomas
- U.S. Geological Survey, Southwest Biological Science Center, Tucson, Arizona, USA
| | - Patrick C Tobin
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Craig R Allen
- School of Natural Resources, Center for Resilience in Agricultural Working Landscapes, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
49
|
Rocha BS, García-Berthou E, Cianciaruso MV. Non-native fishes in Brazilian freshwaters: identifying biases and gaps in ecological research. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023]
|
50
|
Nahrung HF, Liebhold AM, Brockerhoff EG, Rassati D. Forest Insect Biosecurity: Processes, Patterns, Predictions, Pitfalls. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:211-229. [PMID: 36198403 DOI: 10.1146/annurev-ento-120220-010854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
The economic and environmental threats posed by non-native forest insects are ever increasing with the continuing globalization of trade and travel; thus, the need for mitigation through effective biosecurity is greater than ever. However, despite decades of research and implementation of preborder, border, and postborder preventative measures, insect invasions continue to occur, with no evidence of saturation, and are even predicted to accelerate. In this article, we review biosecurity measures used to mitigate the arrival, establishment, spread, and impacts of non-native forest insects and possible impediments to the successful implementation of these measures. Biosecurity successes are likely under-recognized because they are difficult to detect and quantify, whereas failures are more evident in the continued establishment of additional non-native species. There are limitations in existing biosecurity systems at global and country scales (for example, inspecting all imports is impossible, no phytosanitary measures are perfect, knownunknowns cannot be regulated against, and noncompliance is an ongoing problem). Biosecurity should be a shared responsibility across countries, governments, stakeholders, and individuals.
Collapse
Affiliation(s)
- Helen F Nahrung
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia;
| | - Andrew M Liebhold
- US Forest Service Northern Research Station, Morgantown, West Virginia, USA;
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Eckehard G Brockerhoff
- Forest Health and Biotic Interactions, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland;
| | - Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Italy;
| |
Collapse
|