1
|
Ma X, Yan S, Wang M. Spent mushroom substrate: A review on present and future of green applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123970. [PMID: 39754812 DOI: 10.1016/j.jenvman.2024.123970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution. The content of organic matter in SMS can range from 40% to 60%, and it also contains various beneficial elements such as trace minerals, making it a valuable resource for biomass. This review initially explores the unique characteristics of SMS and then summarizes the main methods of utilizing its resources. Presently, common resource utilization techniques for SMS include using it as a second-generation cultivation substrate, preparing animal feed and soil fertilizer, producing methane, bioethanol, hydrogen, bio-oil, and electrodes of energy storage devices, extracting enzymes and polysaccharides, and creating bioremediation materials for heavy metals and organic pollutants removal. While research has been conducted on these utilization methods, there are still relatively few large-scale industrial applications. This review also highlights existing challenges and potential solutions in the SMS utilization. Upcycling SMS via innovative and practical technologies presents a promising approach to transforming organic waste into economic value.
Collapse
Affiliation(s)
- Xiaoyu Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Siyu Yan
- School of Mathematical Sciences, East China Normal University, Shanghai, 200241, China
| | - Menglu Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
2
|
Chen L, Zhou W, Bao Y, He X, Deng L. Speciation characteristics of heavy metal(loid)s in maize-wheat farmland with applying spent mushroom substrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117329. [PMID: 39546867 DOI: 10.1016/j.ecoenv.2024.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Spent mushroom substrates (SMS) have been increasingly applied as organic fertilizer worldwide. However, the effects of various SMS on the accumulation and speciation characteristics of soil heavy metal(loid)s (HMs) are generally overlooked. Three types of SMS, including Flammulina velutipes residue (FVR), Agaricus bisporus residue (ABR), and Auricularia auricula residue (AAR), were applied to replace 25 % and 50 % of chemical fertilizer (based on nitrogen application) used in maize-wheat farmland. Compared to chemical fertilizer, the soil Cd, Pb, and As concentrations were decreased by 20.41 %, 5.97 %, and 10.09 %, respectively. And the residual fractions of soil HMs were increased through the application of SMS, indicating a reduction in their bioavailability. Notably, 50 % ABR replacement significantly increased the proportion of residual fraction in soil Cd, Pb, and As by 23.03 %, 15.15 %, and 4.85 %, respectively (P<0.05). A significant negative correlation was observed between the concentrations of HMs in grains and the residual fractions of soil HMs. Thus, compared with chemical fertilizers, the residual fractions of soil HMs were increased by the application of SMS, thereby reducing the concentrations of HMs in grains. Ingestion of crops is the primary route for human exposure to HMs. Therefore, the application of SMS (especially ABR) reduced the accumulation and bioavailability of HMs in soil, which in turn limited the transfer of HMs to crops, resulting in lowered human health risk indices.
Collapse
Affiliation(s)
- Ludan Chen
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuhai Bao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| | - Xiubin He
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
3
|
Pintarič M, Štuhec A, Tratnik E, Langerholc T. Spent Mushroom Substrate Improves Microbial Quantities and Enzymatic Activity in Soils of Different Farming Systems. Microorganisms 2024; 12:1521. [PMID: 39203364 PMCID: PMC11356570 DOI: 10.3390/microorganisms12081521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Organic fertilizers, such as spent mushroom substrate (SMS), improve soil fertility, but studies comparing their effects on different agricultural soils are limited. In this study, the effects of standard, SMS and composed fertilizers on soils from conventional-integrated, organic and biodynamic farming were investigated. Soil samples were analyzed for microorganisms and the activity of β-glucosidase (β-GLU), β-1,4-N-acetylglucosaminidase (NAG), urease (URE), arylamidase (ARN), phosphatase (PHOS), acid phosphatase (PAC), alkaline phosphatase (PAH) and arylsulphatase (ARS). Biodynamic soil showed the highest microbial counts and enzyme activities, followed by organic and conventional soils. SMS significantly increased the number of microorganisms and enzyme activities, especially in biodynamic and organic soils. Seasonal variations affected all microorganisms and most enzymes in all soils, except NAG in conventional and organic soils. Biodynamic soil showed stable activity of enzymes and microorganisms throughout the year, indicating greater stability. This study concludes that soil microorganisms and enzyme activities respond differently to fertilization depending on the soil type, with SMS demonstrating beneficial effects in all tested soils.
Collapse
Affiliation(s)
- Maša Pintarič
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia; (A.Š.); (E.T.); (T.L.)
| | | | | | | |
Collapse
|
4
|
Hao H, Yue Y, Wang Q, Xiao T, Zhao Z, Zhang J, Chen H. Effects of the rice-mushroom rotation pattern on soil properties and microbial community succession in paddy fields. Front Microbiol 2024; 15:1449922. [PMID: 39113843 PMCID: PMC11303333 DOI: 10.3389/fmicb.2024.1449922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Currently, straw biodegradation and soil improvement in rice-mushroom rotation systems have attracted much attention. However, there is still a lack of studies on the effects of rice-mushroom rotation on yield, soil properties and microbial succession. Methods In this study, no treatment (CK), green manure return (GM) and rice straw return (RS) were used as controls to fully evaluate the effect of Stropharia rugosoannulata cultivation substrate return (SRS) on soil properties and microorganisms. Results The results indicated that rice yield, soil nutrient (organic matter, organic carbon, total nitrogen, available nitrogen and available potassium) and soil enzyme (urease, saccharase, lignin peroxidase and laccase) activities had positive responses to the rice-mushroom rotation. At the interannual level, microbial diversity varied significantly among treatments, with the rice-mushroom rotation significantly increasing the relative alpha diversity index of soil bacteria and enriching beneficial microbial communities such as Rhizobium, Bacillus and Trichoderma for rice growth. Soil nutrients and enzymatic activities were significantly correlated with microbial communities during rice-mushroom rotation. The fungal-bacterial co-occurrence networks were modular, and Latescibacterota, Chloroflexi, Gemmatimonadota and Patescibacteria were closely related to the accumulation of nutrients in the soil. The structural equation model (SEM) showed that fungal diversity responded more to changes in soil nutrients than did bacterial diversity. Discussion Overall, the rice-mushroom rotation model improved soil nutrients and rice yields, enriched beneficial microorganisms and maintained microbial diversity. This study provides new insights into the use of S. rugosoannulata cultivation substrates in the sustainable development of agroecosystems.
Collapse
Affiliation(s)
- Haibo Hao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yihong Yue
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qian Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tingting Xiao
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zelong Zhao
- Shanghai Biozeron Biotechnology Co., Ltd., Shanghai, China
| | - Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
5
|
Conde Molina D, Di Gregorio V. Enhancing biodegradation of vegetable oil-contaminated soil with soybean texturized waste, spent mushroom substrate, and stabilized poultry litter in microcosm systems. World J Microbiol Biotechnol 2024; 40:237. [PMID: 38853194 DOI: 10.1007/s11274-024-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.
Collapse
Affiliation(s)
- Debora Conde Molina
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, 2804, Campana, Buenos Aires, Argentina.
| | - Vanina Di Gregorio
- Grupo de Biotecnología y Nanotecnología Aplicada, Facultad Regional Delta, Universidad Tecnológica Nacional, San Martín 1171, 2804, Campana, Buenos Aires, Argentina
| |
Collapse
|
6
|
He J, Zeng G, Liu Z, Guo Z, Zhang W, Li Y, Zhou Y, Xu H. Replacing traditional nursery soil with spent mushroom substrate improves rice seedling quality and soil substrate properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39625-39636. [PMID: 38824472 DOI: 10.1007/s11356-024-33723-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
Currently, large quantities of spent mushroom substrate (SMS) are produced annually. Because SMS has high water retention and nutrients, it has great potential to replace traditional topsoil for raising seedlings in agricultural production. However, few studies have examined the effects of substituting SMS for paddy soil on rice seedling growth and soil nutrients. SMS was mixed with rice soil in different proportions (20%, 50%, and 80%), and chemical fertilizer, organic fertilizer, and peat substrate were added in addition to equivalent nitrogen as a traditional seedling nursery method for comparison. Compared to traditional paddy soil (CK), the seedling qualities of the three SMS ratio treatments were all higher. Adding SMS at different ratios promoted rice seedling root growth, elevated the soluble protein concentration, and amplified the superoxide dismutase (SOD) enzymatic action in rice seedlings. Total porosity and aeration porosity of the soil increased by 17.40% and 32.90%, respectively. Soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) increased by 21.26-118.48%, 50.44-71.68%, and 23.08-80.17%, respectively. Besides, the relative abundance of Bacillus, Bacteroidetes, and other bacteria as well as the abundance of Ascomycota were all significantly increased. Adding 50% SMS increased the abundance of Pseudomonas by 8.42 times. The seedling quality of the 50% SMS treatment was even higher than chemical fertilizer and organic fertilizer treatments, only second to the peat substrate treatment. In summary, partial substitution of paddy soil with SMS can ameliorate substrate properties, improve seedling quality, and increase microbial diversity, indicating the suitability of SMS as a replacement for rice soil in seedling substrates. The 50% SMS ratio is the best. This study provides a basis for SMS to replace traditional rice soil in seedling cultivation.
Collapse
Affiliation(s)
- Jinfeng He
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Guiyang Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Zhihui Liu
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Zhangliang Guo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenzhuo Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Yici Li
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Huaqin Xu
- College of Environment and Ecology, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China.
| |
Collapse
|
7
|
Wang H, Liu H, Su R, Chen Y. Phytostabilization of Heavy Metals and Fungal Community Response in Manganese Slag under the Mediation of Soil Amendments and Plants. TOXICS 2024; 12:333. [PMID: 38787112 PMCID: PMC11125594 DOI: 10.3390/toxics12050333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The addition of soil amendments and plants in heavy metal-contaminated soil can result in a significant impact on physicochemical properties, microbial communities and heavy metal distribution, but the specific mechanisms remain to be explored. In this study, Koelreuteria paniculata was used as a test plant, spent mushroom compost (SMC) and attapulgite (ATP) were used as amendments, and manganese slag was used as a substrate. CK (100% slag), M0 (90% slag + 5% SMC + 5% ATP) and M1 (90% slag + 5% SMC + 5% ATP, planting K. paniculata) groups were assessed in a pilot-scale experiment to explore their different impacts on phytoremediation. The results indicated that adding the amendments significantly improved the pH of the manganese slag, enhancing and maintaining its fertility and water retention. Adding the amendments and planting K. paniculata (M1) significantly reduced the bioavailability and migration of heavy metals (HMs). The loss of Mn, Pb and Zn via runoff decreased by 15.7%, 8.4% and 10.2%, respectively, compared to CK. K. paniculata recruited and enriched beneficial fungi, inhibited pathogenic fungi, and a more stable fungal community was built. This significantly improved the soil quality, promoted plant growth and mitigated heavy metal toxicity. In conclusion, this study demonstrated that the addition of SMC-ATP and planting K. paniculata showed a good phytostabilization effect in the manganese slag and further revealed the response process of the fungal community in phytoremediation.
Collapse
Affiliation(s)
| | | | | | - Yonghua Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (H.W.); (H.L.)
| |
Collapse
|
8
|
Tang Q, Liu W, Huang H, Peng Z, Deng L. Responses of Crop Yield, Soil Fertility, and Heavy Metals to Spent Mushroom Residues Application. PLANTS (BASEL, SWITZERLAND) 2024; 13:663. [PMID: 38475509 DOI: 10.3390/plants13050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Waste mushroom residues are often returned to fields as organic amendments. Here, we estimated the effects of the continuous applications of different spent mushroom substrates for 2 years on crop yields, soil nutrients, and heavy metals in paddy fields. The study comprised seven treatments: no fertilization (CK) and mineral NPK fertilizer (CF), as well as NPK fertilizer combined with Enoki mushroom residue (EMR50), Oyster mushroom residue (OMR50), Auricularia polytricha mushroom residue (APR50), Shiitake mushroom residue (SMR50), and Agaricus bisporus residue (ABR50). The grain yield was highest under the APR50 treatment. The short-term application of waste mushroom residue significantly increased SOC, TN, TP, and TK content relative to the CK treatment. The SOC, TP, and TK were highest under ABR50. Both total Cr and Cd contents were highest under CF treatment. The highest cumulative ecological risk was observed under OMR50 treatment. In addition, crop yield was positively correlated with SOC, TN, TP, and TP. Our results highlight that further research and innovation are needed to optimize the benefits and overcome the challenges of mushroom residue application.
Collapse
Affiliation(s)
- Qichao Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Weijia Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Han Huang
- College of Economics and Management, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhaohui Peng
- Institute of Agricultural Bioenvironment and Energy, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China
| | - Liangji Deng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Dong WJ, He SX, Li XY, Zeng JY, Li MY, Guan DX, Ma LQ. Chromium contents, distribution and bioaccessibility in cultivated mushrooms from market: Health implications for human consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132643. [PMID: 37774608 DOI: 10.1016/j.jhazmat.2023.132643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Mushrooms are consumed worldwide as they constitute a part of traditional cuisine culture in many countries. However, chromium (Cr) accumulation in mushrooms may constitute a potential pathway for its chronical exposure to humans. In this work, the Cr contents, distribution and bioaccessibility in 140 cultivated mushrooms from 14 species in 10 top-producing provinces in China were examined. Total Cr contents were 0.09-4.71 mg·kg-1 dw (mean 0.74 mg kg-1), with 59% exceeding the 0.5 mg kg-1standard. Additionally, less Cr was accumulated in the caps than stipes, with Cr ratio in caps/stipes being 0.28-2.6, averaging 0.91. Based on the Solubility Bioaccessibility Research Consortium (SBRC) assay, the mean Cr bioaccessibility in the mushrooms was 24.8% and 50.1% in the gastric phase (GP) and intestinal phase (IP). However, samples from Guizhou show the lowest Cr bioaccessibility at 12.5% in GP and 24.8% in IP. Further, a negative correlation between total Cr contents and Cr bioaccessibility suggests that Cr bioaccessibility is critical for accurate assessment of Cr exposure. In addition, drying mushrooms increased their bioaccessibility in the gastric phase. This study shows a high Cr exceeding rate of cultivated mushrooms, which may indicate a potential exposure risk, with Cr contents and bioaccessibility showing species and regional variation.
Collapse
Affiliation(s)
- Wen-Jie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Si-Xue He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xing-Yue Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing-Yu Zeng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng-Ya Li
- Jiangsu Province Engineering Research Center of Soil and Groundwater Pollution Prevention and Control, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Dong-Xing Guan
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Li A, Li A, Luo C, Liu B. Assessing heavy metal contamination in Amomum villosum Lour. fruits from plantations in Southern China: Soil-fungi-plant interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115789. [PMID: 38091669 DOI: 10.1016/j.ecoenv.2023.115789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/14/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Amomum villosum Lour. fruit is a common healthy food widely cultivated in southern China. Heavy metal contamination of farmland soils has becomes a serious environmental concern in China. Heavy metals in soil can be introduced into the food chain and pose health risks to humans. However, microbial communities may play beneficial roles in plants grown in metal-polluted soils. This study aimed to assess the potential health risks of heavy metals in soils and A. villosum fruits from different production areas and to explore the soil-microbe-plant regulation pattern for heavy metals in A. villosum fruits. Soil and A. villosum fruit samples were collected from nine planting fields in four provinces of southern China. The results showed that soils from seven areas were polluted with heavy metals to different degrees. Cr and Mn were the most serious contaminating elements. However, the accumulation of heavy metals in A. villosum fruit was negligible with no expected human health risks. Partial least squares path analysis of structural equation modeling showed that the accumulation of heavy metals in A. villosum fruits was influenced by multiple factors. More importantly, the PLS-SEM revealed that the heavy metal content in A. villosum fruits was indirectly affected by soil heavy metals through the regulation of the microbial community. Furthermore, some fungal phyla (e.g., Ascomycota and Chytridiomycota) and genera (e.g., Mucor) were related to the heavy metal content in the soil and in A. villosum fruits. The results of this study verified that soil fungal community play an important role in the accumulation of heavy metals in A. villosum fruits. Using fungi provides a potential biological strategy for reducing the health risk posed by heavy metals in food.
Collapse
Affiliation(s)
- Arong Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Aqian Li
- School of Psychology, South China Normal University, 510631 Guangzhou, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bo Liu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China; Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
11
|
Vinci G, Prencipe SA, Pucinischi L, Perrotta F, Ruggeri M. Sustainability assessment of waste and wastewater recovery for edible mushroom production through an integrated nexus. A case study in Lazio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166044. [PMID: 37572921 DOI: 10.1016/j.scitotenv.2023.166044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
With a global population of eight billion people, improving the sustainability and nutritional quality of diets has become critical. Mushrooms offer a promising solution because of their nutritional value and ability to be grown from agricultural residues, in line with the circular economy. This study, therefore, focuses on assessing the environmental compatibility of Agaricus bisporus mushroom production in Italy, the world's third largest per capita consumer, by using a Life Cycle Assessment (LCA) and an integrated Water-Energy-Nitrogen-Carbon-Food (WENCF) nexus analysis. The LCA results reveal that for a functional unit of 23,000 kg of the substrate, the production process emits 2.55 × 104 kg of CO2 eq. Sensitivity analysis shows that changing input quantities can reduce environmental impacts by about 5 %. In addition, one scenario evaluates the environmental effects of recycling resources by introducing water and ammonium sulfate from scratch instead of continuous recycling, along with water purification. The study shows that sustainable food production can mitigate resource depletion, climate-altering emissions, and intersectoral competition. Using agro residues for mushroom cultivation and optimizing resource management contribute to environmental sustainability. This approach could not only improve the resilience and efficiency of the food system but could also improve the sustainability of diets. In conclusion, this study highlights the importance of adopting sustainable and circular approaches in mushroom production to address global challenges related to food sustainability.
Collapse
Affiliation(s)
- G Vinci
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano, 9, 00161 Rome, Italy.
| | - S A Prencipe
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano, 9, 00161 Rome, Italy
| | - L Pucinischi
- Funghitex S.S. Società Agricola, Via Colle San Clemente 36, 00049 Velletri, RM, Italy
| | - F Perrotta
- Funghitex S.S. Società Agricola, Via Colle San Clemente 36, 00049 Velletri, RM, Italy
| | - M Ruggeri
- Department of Management, Sapienza University of Rome, Via del Castro Laurenziano, 9, 00161 Rome, Italy
| |
Collapse
|
12
|
Llanaj X, Törős G, Hajdú P, Abdalla N, El-Ramady H, Kiss A, Solberg SØ, Prokisch J. Biotechnological Applications of Mushrooms under the Water-Energy-Food Nexus: Crucial Aspects and Prospects from Farm to Pharmacy. Foods 2023; 12:2671. [PMID: 37509764 PMCID: PMC10379137 DOI: 10.3390/foods12142671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Mushrooms have always been an important source of food, with high nutritional value and medicinal attributes. With the use of biotechnological applications, mushrooms have gained further attention as a source of healthy food and bioenergy. This review presents different biotechnological applications and explores how these can support global food, energy, and water security. It highlights mushroom's relevance to meet the sustainable development goals of the UN. This review also discusses mushroom farming and its requirements. The biotechnology review includes sections on how to use mushrooms in producing nanoparticles, bioenergy, and bioactive compounds, as well as how to use mushrooms in bioremediation. The different applications are discussed under the water, energy, and food (WEF) nexus. As far as we know, this is the first report on mushroom biotechnology and its relationships to the WEF nexus. Finally, the review valorizes mushroom biotechnology and suggests different possibilities for mushroom farming integration.
Collapse
Affiliation(s)
- Xhensila Llanaj
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Péter Hajdú
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Neama Abdalla
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre, 33 El Buhouth St., Dokki, Giza 12622, Egypt
| | - Hassan El-Ramady
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Attila Kiss
- Knowledge Utilization Center of Agri-Food Industry, University of Debrecen, Böszörményi út 138, 4032 Debrecen, Hungary
| | - Svein Ø Solberg
- Faculty of Applied Ecology, Agriculture and Biotechnology, Inland Norway University of Applied Sciences, 2401 Elverum, Norway
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| |
Collapse
|
13
|
Zeng G, Liu Z, Guo Z, He J, Ye Y, Xu H, Hu T. Compost with spent mushroom substrate and chicken manure enhances rice seedling quality and reduces soil-borne pathogens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27681-z. [PMID: 37258808 DOI: 10.1007/s11356-023-27681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Using cultivated soils for rice seedlings can reduce the sustainability of arable land and thus giving negative impacts to food production. As a substitute, spent mushroom compost (SMC), which has high water-holding capacity and nutrient content, shows great potentials. To determine the impacts of the proportion of SMC and paddy soil on seedling quality, rhizosphere microbial characteristics, and fungal pathogens in rice seedling substrates, we conducted a 21-day pot experiment for rice seedling under five treatments: CK, 100% paddy soil; R1, 20% SMC and 80% paddy soil; R2, 50% SMC and 50% paddy soil; R3, 80% SMC and 20% paddy soil; and R4, 100% SMC. The results showed that incorporating SMC into the substrate, especially at 50% volume (R2), increased seedling growth and vitality at the seedling growth stage without external fertilization. Moreover, the SMC amendment increased microbial activity and promoted rice seedling recruitment of plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In addition, using SMC significantly reduced the abundance of pathogenic fungi, especially Magnaporthe grisea. Overall, the multi-faceted benefits exhibit the strong possibilities of using SMC in sustainable rice productions.
Collapse
Affiliation(s)
- Guiyang Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Zhihui Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Zhangliang Guo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Jinfeng He
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Yingying Ye
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| | - Huaqin Xu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha, 410128, People's Republic of China
| |
Collapse
|
14
|
Liu H, Liu M, Chen K, Shan M, Li Y. Fertilization can modify the enantioselective persistence of penthiopyrad in relation to the co-influence on soil ecological health. ENVIRONMENTAL RESEARCH 2023; 224:115514. [PMID: 36801231 DOI: 10.1016/j.envres.2023.115514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Penthiopyrad is a widely used chiral fungicide for controlling rust and Rhizoctonia diseases. Development of optically pure monomers is an important strategy to realize amount reduction and increment effects of penthiopyrad, wherein, fertilizers as the co-exiting nutrient supplement may alter the enantioselective residues of penthiopyrad in soil. In our study, influences of urea, phosphate, potash, NPK compound, organic granular, vermicompost and soya bean cake fertilizers on enantioselective persistence of penthiopyrad were fully evaluated. This study demonstrated that R-(-)-penthiopyrad dissipated faster than S-(+)-penthiopyrad during 120 days. High pH, available nitrogen, invertase activities and reduced available phosphorus, dehydrogenase, urease, catalase activities were situated to benefit removing the concentrations of penthiopyrad and weakening enantioselectivity in soil. With respect to the impact of different fertilizers on soil ecological indicators, vermicompost contributed to enhanced pH. Urea and compound fertilizer played an absolute advantage in promoting available nitrogen. All fertilizers didn't go against available phosphorus. Dehydrogenase responded negatively to phosphate, potash and organic fertilizers. Urea increased invertase, besides, it and compound fertilizer both diminished urease activity. The catalase activity was not activated by organic fertilizer. Based on all the findings, soil application of urea and phosphate fertilizers was recommended and considered as a better option to exhibit high efficiency for the dissipation of penthiopyrad. The combined environmental safety estimation can effectively guide the treatment of fertilization soils in line with the nutrition requirements and pollution regulation from penthiopyrad.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongye Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
15
|
Qin S, Zhang H, He Y, Chen Z, Yao L, Han H. Improving radish phosphorus utilization efficiency and inhibiting Cd and Pb uptake by using heavy metal-immobilizing and phosphate-solubilizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161685. [PMID: 36682543 DOI: 10.1016/j.scitotenv.2023.161685] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Phosphate-solubilizing bacteria play a key role in increasing plant growth as potential suppliers of soluble phosphorus and have great potential for the remediation of heavy metal-polluted soils. However, the soil and microbiological mechanisms by which phosphate-solubilizing bacteria prevent heavy metal absorption in radish have not been adequately studied. Here, the mechanisms of phosphorus solubilization, Cd and Pb immobilization, and the inhibition of heavy metal absorption by phosphate-solubilizing bacteria were studied in radish through solution adsorption and pot experiments. Two phosphate-solubilizing bacteria with high Cd and Pb removal rates (46.9-97.12 %), Klebsiella sp. M2 and Kluyvera sp. M8, were isolated. The soluble phosphorus content released by strains M2 and M8 was 265-277 mg L-1, achieved by secreting oxalic acid, ascorbic acid, citric acid, and succinic acid in an inorganic phosphorus medium containing 3 mg L-1 Cd and 5 mg L-1 Pb. Furthermore, these two functional strains induced the formation of Pb2(PO4)2, Cd(PO3)2, Fe2Pb3(PO4)2, CdS, and PbS precipitates that immobilized Cd and Pb in the solution. In general, strains M2 and M8 inhibited the absorption of Cd and Pb by radish by the following mechanisms: i) bacterial cell wall adsorption, ii) induction of Pb2(PO4)2, Cd(PO3)2, Fe2Pb3(PO4)2, CdS, and PbS precipitation in the solution/soil, iii) increases in the Ca2P and FeP contents in the radish rhizosphere, and iv) the promotion of bacterial community enrichment toward phosphorus-solubilizing and plant growth-promoting properties (Ramlibacter, Enterobacter, Bacillus, Gemmatimonas, and Lysinibacillusin) in the radish rhizosphere. These results provide bacterial resources and technical approaches to heavy metal pollution amelioration and efficient phosphorus fertilizer use in farmland.
Collapse
Affiliation(s)
- Shanmei Qin
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Heyun Zhang
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Yonghong He
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Zhaojin Chen
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Lunguang Yao
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| | - Hui Han
- Collaborative Innovation of Water Security for the Water Source Region of Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China.
| |
Collapse
|