1
|
Nomani H, Wu S, Saif A, Hwang F, Metzger J, Navetta-Modrov B, Gorevic PD, Aksentijevich I, Yao Q. Comprehensive clinical phenotype, genotype and therapy in Yao syndrome. Front Immunol 2024; 15:1458118. [PMID: 39372397 PMCID: PMC11449693 DOI: 10.3389/fimmu.2024.1458118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Objective Yao syndrome (YAOS) is formerly called nucleotide-binding oligomerization domain containing 2 (NOD2)-associated autoinflammatory disease.We report a large cohort of YAOS. Methods We conducted a retrospective analysis of a cohort of adult patients with systemic autoinflammatory diseases (SAIDs). All patients underwent testing for a periodic fever syndrome gene panel. Results A total of 194 patients carried NOD2 variants, 152 patients were diagnosed with YAOS, and 42 had mixed autoinflammatory diseases with combined variants in NOD2 and other SAID-associated genes. Demographic, clinical and molecular data were summaried. In sub-group analysis of the 194 patients, individual patients were often identified to carry two or more variants that usually included IVS8 + 158/R702W, IVS8 + 158/L1007fs, IVS8 + 158/V955I, IVS8 + 158/other, or NOD2/variants in other SAID genes. Ninety-nine patients carried single variants. Taken together, these variants contribute to the disease in combination or individually. Conclusion This largest cohort has provided comprehensive clinical and genotyping data in YAOS. Variants in the NOD2 gene can give rise to a spectrum from inflammatory bowel disease to autoinflammatory disease.This report further raises awareness of the underdiagnosed disease in the medical community.
Collapse
Affiliation(s)
- Hafsa Nomani
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Song Wu
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Ashmia Saif
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Frank Hwang
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Jane Metzger
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Brianne Navetta-Modrov
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Peter D. Gorevic
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
2
|
Khalid A, Kaell A. Yao Syndrome: An Overview of Genotypic Associations, Clinical Manifestations, Diagnosis, and Treatment. Int Arch Allergy Immunol 2024; 186:189-202. [PMID: 39278218 DOI: 10.1159/000540188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Yao syndrome (YAOS) is a rare systemic autoinflammatory disorder (AID) of the innate immune system. It was recently categorized as genetically transitional disease (GTD) and is associated with NOD2 variants located at multiple NOD2 gene loci. Unlike most other periodic fever syndromes, the estimated disease prevalence is 1-10/100,000 with a predominance for females and white adult population. In this review, we aimed to provide a detailed analysis of different aspects of this syndrome to help better understand the underlying pathogenesis and incorporate the current evidence-based medicine published to diagnose and manage these patients. SUMMARY We conducted literature search on YAOS from 2011 to 2024 using PubMed, Embase, and Scopus databases. Thirty-two studies were included in our narrative review. A descriptive analysis was performed of both Yao and non-Yao authored records to embrace the syndrome reported from all investigators and assess differences and similarities. The most reported gene variant is the homozygous IVS8+158 followed by compound heterozygous IVS8+158 and R702W. Mean age of disease onset is between 36 and 42 years. The mean age of disease diagnosis is between 40 and 45 years with a variable disease duration. Fever is the most commonly reported symptom followed by musculoskeletal, gastrointestinal symptoms and dermatitis. On laboratory workup, patients have elevated levels of erythrocyte sedimentation rate, C-reactive protein, and serum ferritin with negative autoantibody workup. Arthritic symptoms in YAOS patients have a positive response to sulfasalazine and glucocorticoids, while nonsteroidal anti-inflammatory drugs and colchicine produce minimal response. Anti-IL1 and anti-IL6 agents (canakinumab, anakinra, and tocilizumab) are effective treatment modalities. KEY MESSAGES The evolving concept and acceptance of GTD will hopefully further our understanding about this SAID and similar disorders. We suggest developing a registry of patients with YAOS to keep track of expanding data on this subject. It is important to understand various aspects of YAOS including genetic and environmental factors, differential diagnosis, clinical manifestations, laboratory findings, and treatment options available to diagnose and manage these patients appropriately and timely.
Collapse
Affiliation(s)
- Ayesha Khalid
- Department of Internal Medicine, Mather Hospital Northwell Health, Port Jefferson, New York, New York, USA
| | - Alan Kaell
- Department of Internal Medicine, Mather Hospital Northwell Health, Port Jefferson, New York, New York, USA
| |
Collapse
|
3
|
Zhang J, Huang X, Shen M. Expanding clinical characteristics and genotypic profiling of Yao syndrome in Chinese patients. Front Immunol 2024; 15:1444542. [PMID: 39290705 PMCID: PMC11406172 DOI: 10.3389/fimmu.2024.1444542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Yao syndrome (YAOS, OMIM# 617321) is a kind of systemic autoinflammatory diseases (SAIDs) linked to the nucleotide-binding oligomerization domain containing 2 (NOD2). Clinical reports of YAOS in China are sparse. Herein, we reported the largest YAOS cohort of Chinese patients to expand the understanding of its phenotype, genotype, and therapeutic responses. Methods This study enrolled 15 adult patients diagnosed with YAOS at Peking Union Medical College Hospital from April 2015 to May 2024. Whole-exome sequencing was performed on all patients. Clinical data, genetic variations, and treatment responses were documented and compared with a Caucasian cohort. Results The mean age of disease onset was 35 ± 17 years old. The most common clinical manifestations included recurrent high-grade fever (100%), gastrointestinal symptoms (73.3%), arthralgia/arthritis, fatigue, myalgia, and lower extremity swelling (46.7%). All patients exhibited elevated acute-phase reactants during episodes. 12 heterozygous NOD2 variants were identified, with Q902K in 4 patients, R471C in 3, and variants c.-14C>T, A110T, S127L, R311W, A432V, Y514H, R541P, A661P, K818Q, A886V each found in individual patients. 90% of the patients responded well to glucocorticoids, and 55.6% to sulfasalazine. 66.7% of patients who received TNF inhibitors achieved complete resolution of symptoms. Additionally, one patient each responded favorably to canakinumab and tocilizumab. Compared to the Caucasian cohort, our cohort exhibited a more balanced gender ratio and a higher proportion of recurrent fever, proteinuria/hematuria as well as more frequent leukocytosis, elevated acute phase reactants, and anemia. Lower proportions of arthralgia/arthritis, skin rashes, headaches, and sicca-like symptoms were noted in our cohort. Moreover, a higher proportion of patients in our cohort showed a good response to TNF inhibitors. Conclusion Chinese patients with YAOS had more pronounced inflammatory manifestations compared to the Caucasian cohort. Variants c.-14C>T, A110T, S127L, A661P, K818Q, A886V, R471C, and A432V were identified as novel NOD2 variants in YAOS. TNF, IL-6, and IL-1 inhibitors are the promising treatment options. These findings expand the clinical spectrum, genetic profile, and treatment efficacy of YAOS, underscoring the need for heightened awareness of this disease in diverse populations.
Collapse
Affiliation(s)
| | | | - Min Shen
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Ahmad A, Kilian A. Canakinumab in Yao Syndrome: Insights From a Comprehensive Case Report and Literature Review . Cureus 2024; 16:e62245. [PMID: 39006711 PMCID: PMC11243700 DOI: 10.7759/cureus.62245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Yao syndrome, a rare autoinflammatory disorder linked to mutations in the nucleotide-binding oligomerization domain-containing protein-2 (NOD2) gene, manifests through periodic fever, polyarthritis, dermatitis, gastrointestinal disturbances, and sicca-like symptoms. The therapeutic landscape is limited, primarily encompassing glucocorticoids, interleukin-1 (IL-1), and IL-6 inhibitors. This report details the case of a teenager with periodic fevers, arthritis, livedo reticularis, and NOD2 gene mutations R702W and IVS8+158C consistent with Yao syndrome. The individual demonstrated significant improvement with canakinumab therapy. This case report aims to enhance recognition and understanding of Yao syndrome's clinical spectrum and management options.
Collapse
Affiliation(s)
- Anam Ahmad
- Rheumatology, Saint Louis University School of Medicine, St. Louis, USA
- Rheumatology, St. Luke's Hospital, Chesterfield, USA
| | - Adam Kilian
- Rheumatology, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
5
|
Liang B, Li W, Yang C, Su J. LGP2 Facilitates Bacterial Escape through Binding Peptidoglycan via EEK Motif and Suppressing NOD2-RIP2 Axis in Cyprinidae and Xenocyprididae Families. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1791-1806. [PMID: 38629918 DOI: 10.4049/jimmunol.2300800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/14/2024] [Indexed: 05/22/2024]
Abstract
RIG-I-like receptors and NOD-like receptors play pivotal roles in recognizing microbe-associated molecular patterns and initiating immune responses. The LGP2 and NOD2 proteins are important members of the RIG-I-like receptor and NOD-like receptor families, recognizing viral RNA and bacterial peptidoglycan (PGN), respectively. However, in some instances bacterial infections can induce LPG2 expression via a mechanism that remains largely unknown. In the current study, we found that LGP2 can compete with NOD2 for PGN binding and inhibit antibacterial immunity by suppressing the NOD2-RIP2 axis. Recombinant CiLGP2 (Ctenopharyngodon idella LGP2) produced using either prokaryotic or eukaryotic expression platform can bind PGN and bacteria in pull-down and ELISA assays. Comparative protein structure models and intermolecular interaction prediction calculations as well as pull-down and colocalization experiments indicated that CiLGP2 binds PGN via its EEK motif with species and structural specificity. EEK deletion abolished PGN binding of CiLGP2, but insertion of the CiLGP2 EEK motif into zebrafish and mouse LGP2 did not confer PGN binding activity. CiLGP2 also facilitates bacterial replication by interacting with CiNOD2 to suppress expression of NOD2-RIP2 pathway genes. Sequence analysis and experimental verification demonstrated that LGP2 having EEK motif that can negatively regulate antibacterial immune function is present in Cyprinidae and Xenocyprididae families. These results show that LGP2 containing EEK motif competes with NOD2 for PGN binding and suppresses antibacterial immunity by inhibiting the NOD2-RIP2 axis, indicating that LGP2 plays a crucial negative role in antibacterial response beyond its classical regulatory function in antiviral immunity.
Collapse
Affiliation(s)
- Bo Liang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Wenqian Li
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Su
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
6
|
Williamson KA, Yun M, Koster MJ, Arment C, Patnaik A, Chang TW, Bledsoe AC, Sae-Tia S, Shah AS, Samuels J, Davis JM, Yao Q. Susceptibility of nucleotide-binding oligomerization domain 2 mutations to Whipple's disease. Rheumatology (Oxford) 2024; 63:1291-1296. [PMID: 37467078 DOI: 10.1093/rheumatology/kead372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
OBJECTIVES Whipple's disease (WD) results from infection of the bacteria Tropheryma whipplei (TW). This disease is characterized by macrophage infiltration of intestinal mucosa and primarily affects Caucasian males. Genetic studies of host susceptibility are scarce. Nucleotide-binding oligomerization domain containing protein 2 (NOD2) is an innate immune sensor, resides mainly in monocytes/macrophages and contributes to defence against infection and inflammatory regulation. NOD2 mutations are associated with autoinflammatory diseases. We report the association of NOD2 mutations with TW and WD for the first time. METHODS A multicentre, retrospective study of three patients with WD was conducted. Patients received extensive multidisciplinary evaluations and were cared for by the authors. NOD2 and its association with infection and inflammation were schematically represented. RESULTS All patients were Caucasian men and presented with years of autoinflammatory phenotypes, including recurrent fever, rash, inflammatory arthritis, gastrointestinal symptoms and elevated inflammatory markers. All patients underwent molecular testing using a gene panel for periodic fever syndromes and were identified to carry NOD2 mutations associated with NOD2-associated autoinflammatory disease. Despite initially negative gastrointestinal evaluations, repeat endoscopy with duodenal tissue biopsy ultimately confirmed WD. After initial ceftriaxone and maintenance with doxycycline and/or HCQ, symptoms were largely controlled, though mild relapses occurred in follow-up. CONCLUSION Both NOD2 and TW/WD are intensively involved in monocytes/macrophages. WD is regarded as a macrophage disease. NOD2 leucin-rich repeat-associated mutations in monocytes/macrophages cause functional impairment of these cells and consequently may make the host susceptible for TW infection and WD, especially in the setting of immunosuppression.
Collapse
Affiliation(s)
| | - Mark Yun
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | | | | | - Asha Patnaik
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Tara W Chang
- Pathology, Boston Scientific, Alpharetta, GA, USA
| | - Adam C Bledsoe
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sutthichai Sae-Tia
- Division of Infectious Disease, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Aditya S Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - John M Davis
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
7
|
Zhang J, Luo Y, Wu B, Huang X, Zhao M, Wu N, Miao J, Li J, Zhu L, Wu D, Shen M. Identifying functional dysregulation of NOD2 variant Q902K in patients with Yao syndrome. Arthritis Res Ther 2024; 26:58. [PMID: 38395960 PMCID: PMC10885518 DOI: 10.1186/s13075-024-03286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The study investigated the pathogenesis of Yao syndrome (YAOS), a rare systemic autoinflammatory disease associated with the nucleotide-binding oligomerization domain containing 2 (NOD2) gene variants. METHODS RNA sequencing analyses were used to detect transcriptomic profile changes. Immunoblot and immunohistochemistry were used to examine the NOD2-mediated inflammatory signaling pathways and ELISA was used to detect cytokines. RESULTS Transcriptome analysis of YAOS revealed NOD-like receptor signaling pathway enrichment. Compared with HCs, P-RIP2, p-p65, p-p38, p-ERK, and p-JNK notably increased in PBMCs of a patient with YAOS. P-RIP2, p-p65, and p-p38 elevated in small intestinal mucosa tissues. P-p65 and p-p38 in synovial tissues from YAOS were higher than those in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Serum interleukin (IL)-6 level along with tumor necrosis factor (TNF)-α and IL-6 secreted from PBMCs were markedly higher in patients with YAOS in comparison to healthy controls (HCs). The supernatants of synovial cells from a patient with YAOS showed substantially higher IL-1β and IL-6 levels than those of RA and OA. Canakinumab therapy of a Q902K heterozygous patient with YAOS resulted in notable clinical improvement. CONCLUSION Overproduction of pro-inflammatory cytokines and the hyperactivation of NOD2-mediated signaling pathways were found in the NOD2 variant Q902K patient with YAOS. NOD2-RIP2-MAPK pathway might play a pivotal role in the pathogenesis of YAOS. These results provide new perspectives for targeted therapies in YAOS.
Collapse
Affiliation(s)
- Jingyuan Zhang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yi Luo
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Bingxuan Wu
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xin Huang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Mengzhu Zhao
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Na Wu
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Junke Miao
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Di Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Min Shen
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH; Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
8
|
Specht A, Kolosov G, Cederberg KLJ, Bueno F, Arrona-Palacios A, Pardilla-Delgado E, Ruiz-Herrera N, Zitting KM, Kramer A, Zeitzer JM, Czeisler CA, Duffy JF, Mignot E. Circadian protein expression patterns in healthy young adults. Sleep Health 2024; 10:S41-S51. [PMID: 38087675 PMCID: PMC11031319 DOI: 10.1016/j.sleh.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 04/20/2024]
Abstract
OBJECTIVES To explore how the blood plasma proteome fluctuates across the 24-hour day and identify a subset of proteins that show endogenous circadian rhythmicity. METHODS Plasma samples from 17 healthy adults were collected hourly under controlled conditions designed to unmask endogenous circadian rhythmicity; in a subset of 8 participants, we also collected samples across a day on a typical sleep-wake schedule. A total of 6916 proteins were analyzed from each sample using the SomaScan aptamer-based multiplexed platform. We used differential rhythmicity analysis based on a cosinor model with mixed effects to identify a subset of proteins that showed circadian rhythmicity in their abundance. RESULTS One thousand and sixty-three (15%) proteins exhibited significant daily rhythmicity. Of those, 431 (6.2%) proteins displayed consistent endogenous circadian rhythms on both a sleep-wake schedule and under controlled conditions: it included both known and novel proteins. When models were fitted with two harmonics, an additional 259 (3.7%) proteins exhibited significant endogenous circadian rhythmicity, indicating that some rhythmic proteins cannot be solely captured by a simple sinusoidal model. Overall, we found that the largest number of proteins had their peak levels in the late afternoon/evening, with another smaller group peaking in the early morning. CONCLUSIONS This study reveals that hundreds of plasma proteins exhibit endogenous circadian rhythmicity in humans. Future analyses will likely reveal novel physiological pathways regulated by circadian clocks and pave the way for improved diagnosis and treatment for patients with circadian disorders and other pathologies. It will also advance efforts to include knowledge about time-of-day, thereby incorporating circadian medicine into personalized medicine.
Collapse
Affiliation(s)
- Adrien Specht
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - German Kolosov
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Katie L J Cederberg
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Flavia Bueno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Arturo Arrona-Palacios
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Enmanuelle Pardilla-Delgado
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Noelia Ruiz-Herrera
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Achim Kramer
- Division of Chronobiology, Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, California, USA.
| |
Collapse
|
9
|
Yun M, Deng Z, Navetta-Modrov B, Xin B, Yang J, Nomani H, Aroniadis O, Gorevic PD, Yao Q. Genetic variations in NLRP3 and NLRP12 genes in adult-onset patients with autoinflammatory diseases: a comparative study. Front Immunol 2024; 14:1321370. [PMID: 38343435 PMCID: PMC10853347 DOI: 10.3389/fimmu.2023.1321370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
Objectives Cryopyrin-associated periodic syndrome or NLRP3-associated autoinflammatory disease (NLRP3-AID) and NLRP12-AID are both Mendelian disorders with autosomal dominant inheritance. Both diseases are rare, primarily reported in the pediatric population, and are thought to be phenotypically indistinguishable. We provide the largest cohort of adult-onset patients and compared these diseases and the gene variant frequency to population controls. Methods A cohort of adult patients with AIDs were retrospectively studied. All underwent molecular testing for periodic fever syndrome gene panels after extensive and negative workups for systemic autoimmune and other related diseases. Patients were divided into Group 1- NLRP3-AID patients with NLRP3 variants (N=15), Group 2- NLRP12-AID with NLRP12 variants (N=14) and Group 3- both NLRP3 and NLRP12 (N=9) variants. Exome sequence data of two large control populations including the ARIC study were used to compare gene variant distribution and frequency. Results All 38 patients were Caucasian with women accounting for 82%. Median age at diagnosis was 41 ± 23 years and the disease duration at diagnosis was 14 ± 13 years. We identified statistically significant differences between the groups, notably that gastrointestinal symptoms as well as evaluations for same were significantly more frequent in patients with NLRP12 variants, and headaches/dizziness were less common among the NLRP12 patients. Livedo reticularis was noted in four patients, exclusively among NLRP12 carriers. Over 50% of patients in Groups 1 and 2 carry low-frequency disease-associated variants, while the remaining carry rare variants. We unprecedently identified digenic variants, i.e., the coexistence of NLRP3 and NLRP12, which were either both low frequency or low frequency/rare. Allele frequencies of all variants identified in our cohort were either absent or significantly lower in the control populations, further strengthening the evidence of susceptibility of these variants to SAID phenotypes. Conclusion Our comparative study shows that both NLRP3-AID and NLRP12-AID share similar clinical phenotypes, yet there are significant differences between them with regard to gastrointestinal and neurological symptoms. A spectrum of high to low genetic variations in both genes can contribute to SAID individually or in combination.
Collapse
Affiliation(s)
- Mark Yun
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Zuoming Deng
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Brianne Navetta-Modrov
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Baozhong Xin
- Molecular Diagnostics Laboratory, DDC Clinic for Special Needs Children, Middlefield, OH, United States
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Hafsa Nomani
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Olga Aroniadis
- Division of Gastroenterology and Hepatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Peter D. Gorevic
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
10
|
Zheng C, Zhu Z, Weng S, Zhang Q, Fu Y, Cai X, Liu Z, Shi Y. NOD2 silencing promotes cell apoptosis and inhibits drug resistance in chronic lymphocytic leukemia by inhibiting the NF-κB signaling pathway. J Biochem Mol Toxicol 2023; 37:e23510. [PMID: 37700718 DOI: 10.1002/jbt.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/14/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Recent years have witnessed increasing studies on the effect of epigenetic silencing of genes in the progression of chronic lymphocytic leukemia (CLL). This study investigates whether the nucleotide binding oligomerization domain containing 2 (NOD2) participates in the cell apoptosis and drug resistance of CLL cells. Cells were treated with adriamycin (ADR), etoposide, aclacinomycin and daunorubicin. After treatment, drug resistance and cell proliferation were examined to detect the inhibitory effect of ADR on cell proliferation; flow cytometry to identify ADR accumulation, the cell cycle distribution and apoptosis after transfection, and rhodamine 123 accumulation and efflux tests to assess P-glycoprotein (P-gp) function. NOD2 silencing or inhibition of the nuclear factor kappa-B (NF-κB) signaling pathway suppressed the multidrug resistance level in CLL, the inhibition rate, and cell proliferation caused by ADR at concentrations of approximately 0.25-1.5 μmol/L. Greater accumulation of ADR was observed in the CLL-AAT cell line than in the CLL-AAT/A02 cell line, but NOD2 silencing or inhibition of the NF-κB signaling pathway further increased the accumulation of ADR drugs in the CLL-AAT cell line and inhibited the drug efflux pump function of P-gp. Additionally, NOD2 silencing or NF-κB signaling pathway inhibition increased the apoptotic rate. The results of this study indicate that NOD2 promotes cell apoptosis and reduces the drug resistance of CLL by inhibiting the NF-κB signaling pathway.
Collapse
MESH Headings
- Humans
- NF-kappa B/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Drug Resistance, Neoplasm
- Signal Transduction
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Apoptosis
- ATP Binding Cassette Transporter, Subfamily B, Member 1
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Nod2 Signaling Adaptor Protein/genetics
- Nod2 Signaling Adaptor Protein/metabolism
- Nod2 Signaling Adaptor Protein/pharmacology
Collapse
Affiliation(s)
- Cuiping Zheng
- Department of Haematology and Oncology, The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Zongsi Zhu
- Department of Haematology and Oncology, The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Shanshan Weng
- Department of Haematology and Oncology, The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Qikai Zhang
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Yixiao Fu
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Xiaoping Cai
- Department of Haematology and Oncology, The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Zhen Liu
- Department of Haematology and Oncology, The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| | - Yuejian Shi
- Department of Haematology and Oncology, The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
- The Dingli Clinical Institute of Wenzhou Medical University & Wenzhou Central Hospital, Wenzhou, P.R. China
| |
Collapse
|
11
|
Nomani H, Deng Z, Navetta-Modrov B, Yang J, Yun M, Aroniadis O, Gorevic P, Aksentijevich I, Yao Q. Implications of combined NOD2 and other gene mutations in autoinflammatory diseases. Front Immunol 2023; 14:1265404. [PMID: 37928541 PMCID: PMC10620916 DOI: 10.3389/fimmu.2023.1265404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
NOD-like receptors (NLRs) are intracellular sensors associated with systemic autoinflammatory diseases (SAIDs). We investigated the largest monocentric cohort of patients with adult-onset SAIDs for coinheritance of low frequency and rare mutations in NOD2 and other autoinflammatory genes. Sixty-three patients underwent molecular testing for SAID gene panels after extensive clinical workups. Whole exome sequencing data from the large Atherosclerosis Risk in Communities (ARIC) study of individuals of European-American ancestry were used as control. Of 63 patients, 44 (69.8%) were found to carry combined gene variants in NOD2 and another gene (Group 1), and 19 (30.2%) were carriers only for NOD2 variants (Group 2). The genetic variant combinations in SAID patients were digenic in 66% (NOD2/MEFV, NOD2/NLRP12, NOD2/NLRP3, and NOD2/TNFRSF1A) and oligogenic in 34% of cases. These variant combinations were either absent or significantly less frequent in the control population. By phenotype-genotype correlation, approximately 40% of patients met diagnostic criteria for a specific SAID, and 60% had mixed diagnoses. There were no statistically significant differences in clinical manifestations between the two patient groups except for chest pain. Due to overlapping phenotypes and mixed genotypes, we have suggested a new term, "Mixed NLR-associated Autoinflammatory Disease ", to describe this disease scenario. Gene variant combinations are significant in patients with SAIDs primarily presenting with mixed clinical phenotypes. Our data support the proposition that immunological disease expression is modified by genetic background and environmental exposure. We provide a preliminary framework in diagnosis, management, and interpretation of the clinical scenario.
Collapse
Affiliation(s)
- Hafsa Nomani
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Zuoming Deng
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Brianne Navetta-Modrov
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Jie Yang
- Department of Family, Population and Preventive Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Mark Yun
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Olga Aroniadis
- Division of Gastroenterology and Hepatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Peter Gorevic
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States
| |
Collapse
|
12
|
Dixon CL, Wu A, Fairn GD. Multifaceted roles and regulation of nucleotide-binding oligomerization domain containing proteins. Front Immunol 2023; 14:1242659. [PMID: 37869013 PMCID: PMC10585062 DOI: 10.3389/fimmu.2023.1242659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, are cytosolic receptors that recognize dipeptides and tripeptides derived from the bacterial cell wall component peptidoglycan (PGN). During the past two decades, studies have revealed several roles for NODs beyond detecting PGN fragments, including activation of an innate immune anti-viral response, NOD-mediated autophagy, and ER stress induced inflammation. Recent studies have also clarified the dynamic regulation of NODs at cellular membranes to generate specific and balanced immune responses. This review will describe how NOD1 and NOD2 detect microbes and cellular stress and detail the molecular mechanisms that regulate activation and signaling while highlighting new evidence and the impact on inflammatory disease pathogenesis.
Collapse
Affiliation(s)
| | - Amy Wu
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Gregory D. Fairn
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
13
|
Truyens M, Hoste L, Geldof J, Hoorens A, Haerynck F, Huis In 't Veld D, Lobatón T. Successful treatment of ulcerative colitis with anakinra: a case report. Acta Gastroenterol Belg 2023; 86:573-576. [PMID: 38240554 DOI: 10.51821/86.4.11246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Currently the effect of IL-1 blockade on ulcerative colitis (UC) is still ambiguous. This case report describes a patient with UC who developed severe complications after an episode of azathioprineinduced pancytopenia including cytomegalovirus pneumonitis, hemophagocytic lymphohistiocytosis, and probable pulmonary aspergillosis. Imaging after the hospitalization revealed a severe disseminated chronic candidiasis and persisting inflammation was seen. Genetic testing revealed heterozygous variants in NOD2 and NLRP12, and cytokine testing showed an increase in IL-1Ra, IL-18, CXCL9, and CXCL10. Consequently an IL-1 mediated autoinflammatory syndrome was suspected. Simultaneously, the patient developed a corticosteroid dependent UC flare-up. Treatment with anakinra was initiated for the IL-1 mediated disease which quickly induced remission of both the inflammatory syndrome and the UC.
Collapse
Affiliation(s)
- M Truyens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - L Hoste
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University, Ghent, Belgium
| | - J Geldof
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - A Hoorens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - F Haerynck
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency Ghent, Jeffrey Modell Diagnosis and Research Center, Ghent University, Ghent, Belgium
| | - D Huis In 't Veld
- Department of Internal Medicine and Infectious Diseases, University Hospital, Ghent, Belgium
| | - T Lobatón
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
14
|
Sun Y, Ho CT, Zhang X. Neuroprotection of Food Bioactives in Neurodegenerative Diseases: Role of the Gut Microbiota and Innate Immune Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2718-2733. [PMID: 36700657 DOI: 10.1021/acs.jafc.2c07742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Gut-brain connections may be mediated by an assortment of microbial molecules, which can subsequently traverse intestinal and blood-brain barriers and impact neurological function. Pattern recognition receptors (PRRs) are important innate immune proteins in the gut. Gut microbiota act in concert with the PRRs is a novel target for regulating host-microbe signaling and immune homeostasis, which may involve the pathogenesis of neurodegenerative diseases. Natural food bioactives bestow a protective advantage on neurodegenerative diseases through immunomodulatory effects of the modified gut microbiota or alterations in the landscape of microbiota-produced metabolites via PRRs modulation. In this review, we discuss the effect of natural food bioactives on the gut microbiota and the role of PRRs in the gut-brain crosstalk. We focused on the neuroprotective mechanisms of natural bioactive compounds behind the action of the gut microbiota and PRRs. Research advances in natural food bioactives as antineurodegeneration agents were also presented.
Collapse
Affiliation(s)
- Ying Sun
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, P.R. China
| |
Collapse
|
15
|
The role of NOD2 in intestinal immune response and microbiota modulation: A therapeutic target in inflammatory bowel disease. Int Immunopharmacol 2022; 113:109466. [DOI: 10.1016/j.intimp.2022.109466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
16
|
Cosme D, Soares-da-Silva P, Magro F. Effect of Toll-like receptor-2, -4, -5, -7, and NOD2 stimulation on potassium channel conductance in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2022; 323:G410-G419. [PMID: 36040119 DOI: 10.1152/ajpgi.00139.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Disproportionate activation of pattern recognition receptors plays a role in inflammatory bowel disease (IBD) pathophysiology. Diarrhea is a hallmark symptom of IBD, resulting at least in part from an electrolyte imbalance that may be caused by changes in potassium channel activity. We evaluated the impact of Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain 2 (NOD2) stimulation on potassium conductance of the basolateral membrane in human intestinal epithelial cells (IECs) and the role of potassium channels through electrophysiological assays under short-circuit current in Ussing chambers. TLRs and NOD2 were stimulated using specific agonists, and potassium channels were selectively blocked using triarylmethane-34 (TRAM-34), adenylyl-imidodiphosphate (AMP-PNP), and BaCl2. Potassium conductance of the basolateral membrane decreased upon activation of TLR2, TLR4, and TLR7 in T84 cells (means ± SE, -11.2 ± 4.5, -40.4 ± 7.2, and -19.4 ± 5.9, respectively) and in Caco-2 cells (-13.1 ± 5.7, -55.7 ± 7.4, and -29.1 ± 7.2, respectively). In contrast, activation of TLR5 and NOD2 increased basolateral potassium conductance, both in T84 cells (18.0 ± 4.1 and 18.4 ± 2.8, respectively) and in Caco-2 cells (21.2 ± 8.4 and 16.0 ± 3.6, respectively). TRAM-34 and AMP-PNP induced a decrease in basolateral potassium conductance upon TLR4 stimulation in both cell lines. Both KCa3.1- and Kir6-channels appear to be important mediators of this effect in IECs and could be potential targets for therapeutic agent development.NEW & NOTEWORTHY This study highlights that PRRs stimulation directly influences K+-channel conductance in IECs. TLR-2, -4, -7 stimulation decreased K+ conductance, whereas TLR5 and NOD2 stimulation had the opposite effect, leading to an increase of it instead. This study reports for the first time that KCa3.1- and Kir6-channels play a role in K+ transport pathways triggered by TLR4 stimulation. These findings suggest that KCa3.1- and Kir6-channels modulation may be a potential target for new therapeutic agents in IBD.
Collapse
Affiliation(s)
- Dina Cosme
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Patrício Soares-da-Silva
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,MedInUP, Center for Drug Discovery and Innovative Medicines, Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Gastroenterology, São João Hospital University Centre, Porto, Portugal.,Center for Health Technology and Services Research, Porto, Portugal.,Clinical Pharmacology Unit, São João Hospital University Centre, Porto, Portugal.,Portuguese Inflammatory Bowel Disease Group, Porto, Portugal
| |
Collapse
|
17
|
Chen Q, Zhang Q, Cao P, Shi C, Zhang L, Wang L, Gong Z. NOD2-mediated HDAC6/NF-κb signalling pathway regulates ferroptosis induced by extracellular histone H3 in acute liver failure. J Cell Mol Med 2022; 26:5528-5538. [PMID: 36226351 DOI: 10.1111/jcmm.17582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Acute liver failure (ALF) is life-threatening and often associated with high mortality rates. The aim of the present study was to investigate whether extracellular histone H3 could induce ferroptosis in hepatic macrophages in ALF and explore its potential mechanism. RAW264.7 macrophages and C57BL/6 mice were used in this study. LPS, D-galactosamine (D-Gal), histone H3, histone H3 antibody, NOD2 agonist Muramyl Dipeptide (MDP) and HDAC6-siRNA were administered in this study. The key molecules of ferroptosis, NOD2, HDAC6 and the NF-κb pathway, were detected. In vitro, histone H3 was released into the extracellular environment from cell nucleus after LPS exposure. In addition, histone H3 could induce ferroptosis in RAW264.7 macrophages with increased level of Fe2+ and ROS and decreased levels of GPX4 and GSH. MDP further aggravated ferroptosis in RAW264.7 macrophages stimulated by histone H3, which was accompanied by elevated NOD2, HDAC6, p-P65 and IκBα. HDAC6-siRNA ameliorated ferroptosis in RAW264.7 macrophages induced by histone H3, which was accompanied by decreased levels of HDAC6, p-P65 and IκBα. However, HDAC6-siRNA did not alter NOD2 levels in RAW264.7 macrophages administered histone H3. In vivo, the levels of NOD2, HDAC6 the NF-κb pathway and ferroptosis were increased in ALF mice, which were downregulated by histone H3 antibody and upregulated by histone H3. Extracellular histone H3 could induce ferroptosis in hepatic macrophages in ALF by regulating theNOD2-mediated HDAC6/NF-κb signalling pathway.
Collapse
Affiliation(s)
- Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Cao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Rivera EG, Patnaik A, Salvemini J, Jain S, Lee K, Lozeau D, Yao Q. SARS-CoV-2/COVID-19 and its relationship with NOD2 and ubiquitination. Clin Immunol 2022; 238:109027. [PMID: 35513305 PMCID: PMC9059341 DOI: 10.1016/j.clim.2022.109027] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 01/25/2023]
Abstract
COVID-19 infection activates the immune system to cause autoimmune and autoinflammatory diseases. We provide a comprehensive review of the relationship between SARS-CoV-2, NOD2 and ubiquitination. COVID-19 infection partly results from host inborn errors and genetic factors and can lead to autoinflammatory disease. The interaction between defective NOD2 and viral infection may trigger NOD2-associated disease. SARS-CoV-2 can alter UBA1 and abnormal ubiquitination leading to VEXAS syndrome. Both NOD2 and ubiquitination play important roles in controlling inflammatory process. Receptor interacting protein kinase 2 is a key component of the NOD2 activation pathway and becomes ubiquitinated to recruit downstream effector proteins. NOD2 mutations result in loss of ubiquitin binding and increase ligand-stimulated NOD2 signaling. During viral infection, mutations of either NOD2 or UBA1 genes or in combination can facilitate autoinflammatory disease. COVID-19 infection can cause autoinflammatory disease. There are reciprocal interactions between SARS-CoV-2, NOD2 and ubiquitination.
Collapse
Affiliation(s)
- Edgardo Guzman Rivera
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Asha Patnaik
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Joann Salvemini
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Sanjeev Jain
- New York Cancer and Blood Specialists, Patchogue, NY, United States of America
| | - Katherine Lee
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Daniel Lozeau
- Department of Dermatology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, United States of America.
| |
Collapse
|
19
|
Kapplusch F, Schulze F, Reinke S, Russ S, Linge M, Kulling F, Kriechling F, Höhne K, Winkler S, Hartmann H, Rösen-Wolff A, Anastassiadis K, Hedrich CM, Hofmann SR. RIP2-deficiency induces inflammation in response to SV40 Large T induced genotoxic stress through altered ROS homeostasis. Clin Immunol 2022; 238:108998. [DOI: 10.1016/j.clim.2022.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2022] [Accepted: 04/03/2022] [Indexed: 11/03/2022]
|
20
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
21
|
NOD2 is involved in regulating odontogenic differentiation of DPSCs suppressed by MDP through NF-κB/p65 signaling. Cytotechnology 2022; 74:259-270. [PMID: 35464161 PMCID: PMC8975988 DOI: 10.1007/s10616-022-00526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/28/2022] [Indexed: 11/03/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are well known for their capable of both self-renewal and multilineage differentiation. Dental tissue diseases, include caries, are often accompanied by inflammatory microenvironment, and muramyl dipeptide (MDP) is involved in the inflammatory stimuli to influence the differentiation of DPSCs. Nucleotide-binding oligomerization domain 2 (NOD2), a member of the cytosolic Nod-like receptor (NLR) family, plays a key role in inflammatory homeostasis regulation, but the role of NOD2 in DPSCs differentiation under inflammatory is still unclear. In this study, we identified that MDP suppressed odontogenic differentiation of DPSCs via NOD2/ NF-κB/p65 signaling pathway. Alizarin red staining and ALP activity showed the odontogenic differentiation was suppressed by MDP in a concentration-dependent manner, and the expression of dentin differentiation marker protein dentin matrix protein 1 (DMP-1) and dentin Sialophosphoprotein (DSPP) also indicated the same results. The expression of NOD2 increased gradually with the concentration of MDP as well as the phosphorylation and nuclear translocation of p65, which meant NF-κB signaling pathway was activated. Further, the interference of NOD2 inhibited the phosphorylation and nuclear translocation of p65 and reversed the MDP-mediated decrease of odontoblast differentiation of DPSCs. Our study showed that MDP can inhibit the odontoblast differentiation of DPSCs in a concentration-dependent manner. The NF-κB signaling pathway was activated by increasing expression of NOD2. Interference of NOD2 reversed the negative ability odontoblast differentiation of DPSCs in the inflammatory environment. Our study might provide a theoretical basis for the clinical treatment for dentinogenesis of DPSCs.
Collapse
|
22
|
Yao Q, Kontzias A. Expansion of Phenotypic and Genotypic Spectrum in Yao Syndrome: A Case Series. J Clin Rheumatol 2022; 28:e156-e160. [PMID: 33394828 DOI: 10.1097/rhu.0000000000001655] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Yao syndrome (YAOS; OMIM 617321) was formerly termed nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-associated autoinflammatory disease. This study sought to report novel findings related to this disease. METHODS A medical records review analysis of a case series was conducted, and all patients fulfilled the diagnostic criteria for YAOS and underwent comprehensive diagnostic workups, including molecular genotyping of blood specimens for periodic fever syndromes and NOD2-associated disease. RESULTS A total of 11 patients with YAOS were analyzed, and all were Whites with a median age of 25.9 years at disease onset. All patients shared the similar autoinflammatory phenotype of YAOS. Among the 11 patients, we identified 7 patients who had the known phenotype of YAOS, as well as recurring and brief eyelid swelling with or without eyelid discoloration or conjunctivitis. Molecular analysis of blood cells using periodic fever gene panel has identified the presence of NOD2 variants in all 11 patients. Apart from the known YAOS-associated common NOD2 genotype, 5 novel and unknown significance NOD2 variants were identified in patients who presented with typical phenotype of YAOS. CONCLUSIONS This study provides novel clinical and molecular data for YAOS and supports the expansion of the phenotypic and genotypic spectrum of the disease.
Collapse
Affiliation(s)
- Qingping Yao
- From the Division of Rheumatology, Allergy, and Immunology, Center of Autoinflammatory Diseases, Department of Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY
| | | |
Collapse
|
23
|
Liu Y, Liao X, Han T, Su A, Guo Z, Lu N, He C, Lu Z. Full-Length Transcriptome Sequencing of the Scleractinian Coral Montipora foliosa Reveals the Gene Expression Profile of Coral-Zooxanthellae Holobiont. BIOLOGY 2021; 10:biology10121274. [PMID: 34943189 PMCID: PMC8698432 DOI: 10.3390/biology10121274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Coral-zooxanthellae holobionts are one of the most productive ecosystems in the ocean. With global warming and ocean acidification, coral ecosystems are facing unprecedented challenges. To save the coral ecosystems, we need to understand the symbiosis of coral-zooxanthellae. Although some Scleractinia (stony corals) transcriptomes have been sequenced, the reliable full-length transcriptome is still lacking due to the short-read length of second-generation sequencing and the uncertainty of the assembly results. Herein, PacBio Sequel II sequencing technology polished with the Illumina RNA-seq platform was used to obtain relatively complete scleractinian coral M. foliosa transcriptome data and to quantify M. foliosa gene expression. A total of 38,365 consensus sequences and 20,751 unique genes were identified. Seven databases were used for the gene function annotation, and 19,972 genes were annotated in at least one database. We found 131 zooxanthellae transcripts and 18,829 M. foliosa transcripts. A total of 6328 lncRNAs, 847 M. foliosa transcription factors (TFs), and 2 zooxanthellae TF were identified. In zooxanthellae we found pathways related to symbiosis, such as photosynthesis and nitrogen metabolism. Pathways related to symbiosis in M. foliosa include oxidative phosphorylation and nitrogen metabolism, etc. We summarized the isoforms and expression level of the symbiont recognition genes. Among the membrane proteins, we found three pathways of glycan biosynthesis, which may be involved in the organic matter storage and monosaccharide stabilization in M. foliosa. Our results provide better material for studying coral symbiosis.
Collapse
Affiliation(s)
- Yunqing Liu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| | - Xin Liao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Beihai 536000, China;
| | - Tingyu Han
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| | - Ao Su
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| | - Zhuojun Guo
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| | - Na Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| | - Chunpeng He
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China; (Y.L.); (T.H.); (A.S.); (Z.G.); (N.L.)
| |
Collapse
|
24
|
Navetta-Modrov B, Yao Q. Macroglobulinemia and Autoinflammatory Disease. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:227-232. [PMID: 36467983 PMCID: PMC9524799 DOI: 10.2478/rir-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/19/2021] [Indexed: 06/17/2023]
Abstract
Macroglobulinemia is associated with Schnitzler syndrome (SchS) and Waldenstrom macroglobulinemia (WM). The aim of this article was to review the above-mentioned two diseases from clinical aspects and their potential genetic links. We performed a PubMed search using the following keywords: "SchS," "WM," "autoinflammatory disease," "periodic fever syndrome," and "nucleotide-binding oligomerization domain containing protein 2 (NOD2)." A case is exemplified. Both SchS and WM share some clinical phenotypes, and SchS can evolve into WM. Though no genetic link to SchS has been established, myeloid differentiation primary response gene 88 (MyD88) mutations are detected in one-third of SchS patients and 86% WM patients. Genetic analysis of periodic fever syndrome genes has detected NOD2 mutations in 18% SchS patients and rarely NLRP3 mutations. The literature data suggest that both MyD88 and NOD2 mutations may contribute to SchS. Both MyD88 and NOD2 are known to play important roles in innate immune response, and they may be cooperative in certain autoinflammatory diseases. Molecular analysis of NOD2 mutations may be incorporated into genetic testing for patients with suspected SchS or SchS/WM.
Collapse
Affiliation(s)
- Brianne Navetta-Modrov
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
25
|
Yao Q, Shen M, Gorevic P. NOD2 Versus MEFV: Differential Diagnosis of Yao Syndrome and Familial Mediterranean Fever. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:233-239. [PMID: 36467985 PMCID: PMC9524798 DOI: 10.2478/rir-2021-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/16/2021] [Indexed: 06/17/2023]
Abstract
OBJECTIVES Yao syndrome (YAOS, OMIM 617321) was formerly designated as nucleotide-binding oligomerization domain-containing protein-2 (NOD2)-associated autoinflammatory disease (NAID). This disorder shares similar clinical phenotypes with hereditary periodic fever syndromes (HPFS). This study aimed to compare YAOS with familial Mediterranean fever (FMF). METHODS In this retrospective study, electronic medical records of a case series of YAOS were reviewed and data were analyzed. All patients underwent genetic testing for periodic fever syndrome 6-gene panel. RESULTS A total of 6 cases were presented. These patients were initially thought to have MEditerranean FeVer (MEFV)-negative FMF and received treatment with colchicine. They were eventually diagnosed with YAOS. The differences between these diseases were illustrated. In addition, both MEFV and NOD2 mutations were detected in some patients and family members. Patients with carriage of both gene mutations may present with heterogeneous disease expression. A close correlation between phenotypes and genotypes is needed to make a diagnosis. CONCLUSIONS YAOS may mimic FMF. Molecular analysis should cover NOD2 whole gene sequencing to help distinguish these diseases. Both NOD2 and MEFV mutations may contribute to disease expression in an individual.
Collapse
Affiliation(s)
- Qingping Yao
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
| | - Min Shen
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peter Gorevic
- Department of Rheumatology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
26
|
Trueb B, Zhuang L, Keller I, Köckritz LV, Kuchen S, Dufour JF, Villiger PM. Coincidence of NOD2-Associated Autoinflammatory Disease (Yao Syndrome) and HCV Infection With Fatal Consequences: Interaction Between Genes and Environment. J Clin Rheumatol 2021; 27:S592-S594. [PMID: 30601168 DOI: 10.1097/rhu.0000000000000963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Yao Q. Systemic Autoinflammatory Disease and Genetic Testing. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:209-211. [PMID: 36467988 PMCID: PMC9524800 DOI: 10.2478/rir-2021-0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 06/17/2023]
Affiliation(s)
- Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University Renaissance School of Medicine, Stony Brook, New York11794, USA
| |
Collapse
|
28
|
Navetta-Modrov B, Ghebrehiwet B, Yao Q. Yao Syndrome: A Potential Role and Association of Vasoactive Intestinal Peptide with NOD2. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2021; 2:57-59. [PMID: 36467900 PMCID: PMC9524777 DOI: 10.2478/rir-2021-0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/17/2021] [Indexed: 06/17/2023]
Abstract
Nucleotide-binding oligomerization domain containing protein 2 (NOD2) is a cytosolic receptor. Both NOD2 and vasoactive intestinal peptide (VIP) are critical in regulation of immune and inflammatory response. Yao syndrome (YAOS, OMIM 617321) is an autoinflammatory disease associated with specified NOD2 mutations. Herein, we report a well-studied case of YAOS masquerading as mast cell disorder and neuroendocrine tumors to support the involvement of VIP in YAOS. For the first time, this case study suggests a potential relationship between NOD2 and VIP. This could provide a novel avenue for mechanistic study of NOD2-associated disease.
Collapse
Affiliation(s)
- Brianne Navetta-Modrov
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Berhane Ghebrehiwet
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Qingping Yao
- Division of Rheumatology, Allergy and Immunology, Department of Medicine, Stony Brook University, Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
29
|
Zhang Y, Lian M, Zhao X, Cao P, Xiao J, Shen S, Tang W, Zhang J, Hao J, Feng X. RICK regulates the odontogenic differentiation of dental pulp stem cells through activation of TNF-α via the ERK and not through NF-κB signaling pathway. Cell Biol Int 2021; 45:569-579. [PMID: 33169892 DOI: 10.1002/cbin.11498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/17/2020] [Accepted: 10/31/2020] [Indexed: 12/27/2022]
Abstract
Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1-10 ng/ml) of TNF-α and decreased in high concentration (50-100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.
Collapse
Affiliation(s)
- Ye Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China.,Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin Zhao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jingwen Xiao
- Department of Stomatology, Haimen People's Hospital, Nantong, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wanxian Tang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaxuan Zhang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Hao
- Department of Spine Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
30
|
Hofmann SR, Girschick L, Stein R, Schulze F. Immune modulating effects of receptor interacting protein 2 (RIP2) in autoinflammation and immunity. Clin Immunol 2020; 223:108648. [PMID: 33310070 DOI: 10.1016/j.clim.2020.108648] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/29/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Receptor-interacting protein 2 (RIP2) is a kinase that is involved in downstream signaling of nuclear oligomerization domain (NOD)-like receptors NOD1 and 2 sensing bacterial peptidoglycans. RIP2-deficiency or targeting of RIP2 by pharmaceutical inhibitors partially ameliorates inflammatory diseases by reducing pro-inflammatory signaling in response to peptidoglycans. However, RIP2 is widely expressed and interacts with several other proteins suggesting additional functions outside the NOD-signaling pathway. In this review, we discuss the immunological functions of RIP2 and its possible role in autoinflammation and immunity.
Collapse
Affiliation(s)
- Sigrun Ruth Hofmann
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Leonie Girschick
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Robert Stein
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Schulze
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Jfri A, Litvinov IV, Netchiporouk E, O'Brien E. Novel variants of MEFV and NOD2 genes in familial hidradenitis suppurativa: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20953113. [PMID: 33029352 PMCID: PMC7522817 DOI: 10.1177/2050313x20953113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We report a two-generation Canadian family of Armenian ancestry with hidradenitis suppurativa where novel mutations in MEVF and NOD2 genes were identified. The father and both children shared a mild-to-moderate hidradenitis suppurativa phenotype together with the features of follicular occlusion (e.g. acne and scalp folliculitis). Based on our findings and previous literature, we recommend considering genetic testing with a periodic fever/autoinflammatory disorder panel in patients with a strong family history of hidradenitis suppurativa and lack of common triggers such as smoking and being overweight.
Collapse
Affiliation(s)
- Abdulhadi Jfri
- Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Ivan V Litvinov
- Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Elena Netchiporouk
- Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Elizabeth O'Brien
- Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
32
|
Zhao S, Zhang Z, Xu D, Wang Y, Li L. Selective Loss of Brain-Derived Neurotrophic Factor Exacerbates Brain Injury by Enhancing Neuroinflammation in Experimental Streptococcus pneumoniae Meningitis. Front Immunol 2020; 11:1357. [PMID: 32676082 PMCID: PMC7333737 DOI: 10.3389/fimmu.2020.01357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae meningitis is a life-threatening bacterial infection of the central nervous system (CNS), and its unfavorable prognosis usually results from an intense inflammatory response. Recent studies have shown that brain-derived neurotrophic factor (BDNF) mediates anti-inflammatory and neuroprotective effects in CNS diseases; however, the distinct contribution of BDNF to pneumococcal meningitis (PM) remains unknown. In this study, we sought to investigate the effects of endogenous BDNF on the inflammatory response and brain damage in experimental PM. We used Camk2a-CreERT2 mice to delete Bdnf from the cerebral cortex and hippocampus, and meningitis was induced by intracisternal infection with S. pneumoniae. Clinical parameters were assessed during acute meningitis. At 24 h post-infection, histopathology, neutrophil granulocytes infiltration, and microglia/macrophage proliferation of brain tissues were evaluated. Additionally, cortical damage and hippocampal apoptosis were assessed using Nissl staining and terminal deoxynucleotidyl transferase dUTP-nick-end labeling (TUNEL), respectively. Pro-inflammatory cytokine levels were determined using real-time polymerase chain reaction (RT-PCR). Key molecules associated with the related signaling pathways were analyzed by RT-PCR and western blot. To investigate the role of microglia/macrophage in infected BDNF conditional knockout mice, GW2580 was used for microglia/macrophage depletion. Here, we, for the first time, found that BDNF conditional knockouts exhibited more profound clinical impairment, pathological severity, and neuron injury and enhanced microglia/macrophage proliferation than were observed in their littermate controls. Furthermore, the BDNF conditional knockouts showed an obviously increase in the expression of pro-inflammatory factors (Tnf-α, Il-1β, and Il-6). Mechanistically, loss of BDNF activated TLR2- and NOD2-mediated downstream nuclear factor kappa B (NF-κB) p65 and p38 mitogen-activated protein kinase (MAPK) pathways associated with S. pneumoniae infection. Furthermore, targeted depletion of microglia/macrophage population decreased the resistance of mice to PM with diminishing neuroinflammation in BDNF conditional knockouts. Our findings suggest that loss of BDNF may enhance the inflammatory response and contribute to brain injury during PM at least partially by modulating TLR2- and NOD2-mediated signaling pathways, thereby providing a potential therapeutic target for future interventions in bacterial meningitis pathologies.
Collapse
Affiliation(s)
- Shengnan Zhao
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhijie Zhang
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanfei Wang
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pediatric Neurology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Association of variants in selected genes mediating host immune response with duration of Staphylococcus aureus bacteremia. Genes Immun 2020; 21:240-248. [PMID: 32507857 DOI: 10.1038/s41435-020-0101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022]
Abstract
Host genetic variation may be a contributing factor to variability in Staphylococcus aureus bacteremia duration. We assessed whether 28 single nucleotide polymorphisms (SNPs) in seven genes (TLR2, TLR4, TIRAP, IRAK4, TRAF6, NOD2, and CISH) that mediate host immune response were associated with S. aureus bacteremia duration. Subjects included 158 patients with short-term (≤4 days) and 44 with persistent (>4 days) S. aureus bacteremia from an academic medical center. In single SNP analyses, the minor allele frequencies of three TIRAP SNPs (rs655540, rs563011, and rs8177376) were higher in persistent bacteremia (P < 0.05). A haplotype with all three minor alleles was also associated with persistent bacteremia (P = 0.037). The minor allele frequencies of four other TIRAP SNPs (rs8177342, rs4937114, rs3802813, and rs4937115) were higher in short-term bacteremia (P < 0.05), and a haplotype containing the four minor alleles was associated with short-term bacteremia (P = 0.045). All seven SNPs are located in binding sites for proteins or noncoding RNAs that regulate transcription. None of the associations remained statistically significant after adjustment for multiple comparisons. Further investigation is needed to understand how genetic variation in TIRAP and other host immune genes may influence the duration of S. aureus bacteremia.
Collapse
|
34
|
Mizuno N, Kume K, Nagatani Y, Matsuda S, Iwata T, Ouhara K, Kajiya M, Takeda K, Matsuda Y, Tada Y, Ohsawa R, Morino H, Mihara K, Fujita T, Kawaguchi H, Shiba H, Kawakami H, Kurihara H. Aggressive periodontitis and NOD2 variants. J Hum Genet 2020; 65:841-846. [PMID: 32424308 DOI: 10.1038/s10038-020-0777-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Aggressive periodontitis (AgP) occurs at an early age and causes rapid periodontal tissue destruction. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) encodes a protein with two caspase recruitment domains and eleven leucine-rich repeats. This protein is expressed mainly in peripheral blood leukocytes and is involved in immune response. NOD2 variants have been associated with increased susceptibility to Crohn's disease, and recently, NOD2 was reported as a causative gene in AgP. The present study aimed to identify potential NOD2 variants in an AgP cohort (a total of 101 patiens: 37 patients with positive family histories and 64 sporadic patients). In the familial group, six patients from two families had a reported heterozygous missense variant (c.C931T, p.R311W). Four patients in the sporadic group had a heterozygous missense variant (c.C1411T, p.R471C), with no reported association to the disease. Overall, two NOD2 variants, were identified in 10% of our AgP cohort. These variants were different from the major variants reported in Crohn's disease. More cases need to be investigated to elucidate the role of NOD2 variants in AgP pathology.
Collapse
Affiliation(s)
- Noriyoshi Mizuno
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Kodai Kume
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukiko Nagatani
- Department of Dental Hygiene, University of Shizuoka, Junior College, Shizuoka, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yukiko Matsuda
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yui Tada
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryosuke Ohsawa
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Keichiro Mihara
- International Regenerative Medical Center, Fujita Health University, Aichi, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroyuki Kawaguchi
- Department of General Dentistry, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
35
|
Wu XM, Zhang J, Li PW, Hu YW, Cao L, Ouyang S, Bi YH, Nie P, Chang MX. NOD1 Promotes Antiviral Signaling by Binding Viral RNA and Regulating the Interaction of MDA5 and MAVS. THE JOURNAL OF IMMUNOLOGY 2020; 204:2216-2231. [PMID: 32169843 DOI: 10.4049/jimmunol.1900667] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/07/2020] [Indexed: 12/18/2022]
Abstract
Nucleotide oligomerization domain-like receptors (NLRs) and RIG-I-like receptors (RLRs) detect diverse pathogen-associated molecular patterns to activate the innate immune response. The role of mammalian NLR NOD1 in sensing bacteria is well established. Although several studies suggest NOD1 also plays a role in sensing viruses, the mechanisms behind this are still largely unknown. In this study, we report on the synergism and antagonism between NOD1 and MDA5 isoforms in teleost. In zebrafish, the overexpression of NOD1 enhances the antiviral response and mRNA abundances of key antiviral genes involved in RLR-mediated signaling, whereas the loss of NOD1 has the opposite effect. Notably, spring viremia of carp virus-infected NOD1-/- zebrafish exhibit reduced survival compared with wild-type counterparts. Mechanistically, NOD1 targets MDA5 isoforms and TRAF3 to modulate the formation of MDA5-MAVS and TRAF3-MAVS complexes. The cumulative effects of NOD1 and MDA5a (MDA5 normal form) were observed for the binding with poly(I:C) and the formation of the MDA5a-MAVS complex, which led to increased transcription of type I IFNs and ISGs. However, the antagonism between NOD1 and MDA5b (MDA5 truncated form) was clearly observed during proteasomal degradation of NOD1 by MDA5b. In humans, the interactions between NOD1-MDA5 and NOD1-TRAF3 were confirmed. Furthermore, the roles that NOD1 plays in enhancing the binding of MDA5 to MAVS and poly(I:C) are also evolutionarily conserved across species. Taken together, our findings suggest that mutual regulation between NOD1 and MDA5 isoforms may play a crucial role in the innate immune response and that NOD1 acts as a positive regulator of MDA5/MAVS normal form-mediated immune signaling in vertebrates.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China
| | - Peng Wei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Lu Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Songying Ouyang
- Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.,Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Hong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China.,University of Chinese Academy of Sciences, Beijing 10049, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, Hubei Province, China; and
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei Province, China; .,University of Chinese Academy of Sciences, Beijing 10049, China.,Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, Hubei Province, China; and.,Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
36
|
Kumari N, Yadav S. Modulation of protein oligomerization: An overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:99-113. [DOI: 10.1016/j.pbiomolbio.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
|
37
|
Chen J, Luo Y, Zhao M, Wu D, Yang Y, Zhang W, Shen M. Effective treatment of TNFα inhibitors in Chinese patients with Blau syndrome. Arthritis Res Ther 2019; 21:236. [PMID: 31718710 PMCID: PMC6852754 DOI: 10.1186/s13075-019-2017-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives Blau syndrome (BS) is a rare dominantly inherited autoinflammatory disorder associated with mutations in the nucleotide-binding oligomerization domain containing 2 (NOD2) gene. Biologic therapy of BS yielded diverse results. We aimed to evaluate clinical features and outcomes of Chinese patients with BS who were treated with tumor necrosis factor (TNF)α inhibitors. Methods A total of four patients with BS were diagnosed and treated with infliximab (IFX) at the Peking Union Medical College Hospital during 2015 to 2018 and were followed up for 18 months. All patients were systematically studied for treatment outcomes including the clinical manifestations and inflammatory markers. We also conducted a comprehensive literature review about TNFα inhibitor therapy in BS. Results Four BS patients were all Chinese Han, and three were women. The mean age of disease onset was 4 ± 3.5 years, and the mean time of diagnosis delay was 19 ± 11 years. All patients received IFX plus methotrexate, and all achieved clinical remission of skin lesions and polyarthritis rapidly, as well as normalization of erythrocyte sedimentation rate and C-reactive protein and improvements in inflammatory cytokines, patient visual analogue scale, physician global assessment, and Short Form (SF)-36, at the first follow-up of 6 months. The disease relapsed in two patients after they lengthened the interval of IFX and discontinued methotrexate. According to the 38 English-language publications, 62 patients with BS were reported who underwent TNFα inhibitor therapy, including IFX used in 31, adalimumab in 24, and etanercept in 7. IFX was well tolerated in 27 patients, while 2 still had uveitis, and the other 2 experienced an adverse drug reaction. Conclusions Early recognition and effective treatment of BS are very important to avoid irreversible organ damage. TNFα inhibitors such as IFX may be a promising approach for BS patients who have unsatisfactory response to corticosteroids and traditional disease-modifying antirheumatic drugs.
Collapse
Affiliation(s)
- Jing Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.,Present Address: Department of Rheumatology, Chongqing Three Gorges Central Hospital, Chongqing, 404000, China
| | - Yi Luo
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Mengzhu Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Di Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yunjiao Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China. .,Department of Rheumatology, Peking Union Medical College Hospital, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
38
|
Velickovic J, Silan F, Bir FD, Silan C, Albuz B, Ozdemir O. Blau syndrome with a rare mutation in exon 9 of NOD2 gene. Autoimmunity 2019; 52:256-263. [PMID: 31556326 DOI: 10.1080/08916934.2019.1671375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Blau syndrome is an autosomal dominant rare disease caused by mutations in NOD2 gene. Less than 200 patients published with Blau Syndrome Worldwide. We reported a 41-year old female Turkish patient diagnosed as Blau syndrome. Granulomatous dermatitis and severe headache, as well as recurrent chest and pelvic pain have been present since she was 8 years old. Arthritis started when she was teenage, hypertension diagnosed when she was 20 and other symptoms also occurred during the lifetime (severe preeclampsia, ischemic stroke, recurrent hemiparesis, recurrent-transient-vision-loss and renal-artery-stenosis). Genomic DNA was isolated from peripheral blood and 12 genes sequenced in Autoinflammatory panel on IonTorrent-S5-NGS platform with Parseq-VariFind™AIPassay. NGS analysis showed 107 variants in in the index case, mainly benign with no strong association with Blau syndrome. Additionally, we identified one very rare missense mutation in NOD2 gene (c2803G>A, p.Val935Met) and in silico assessment of the mutation indicated possible pathogenic significance and strong association with Blau syndrome. In addition, we analyzed family members of the index case and identified the same mutation in NOD2 gene. The segregation analysis shows the presence of the same mutant allele in NOD2 gene in the index case affected sister, as well as in her son with arthralgia, while in her non affecter brother we didn't detect the Val935Met mutation in NOD2 gene. Blau Syndrome is known as a very rare disease, mainly caused by mutations in NOD2 gene. Missense mutation diagnosed in our case could be responsible for the phenotype of the index case. Our results indicate the importance of NGS testing and its major role in the detection of rare mutations that may responsible for the onset of autoinflammatory disorders.
Collapse
Affiliation(s)
- Jelena Velickovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Belgrade, Serbia
| | - Fatma Silan
- Faculty of Medicine, Department of Medical Genetic, COMU University, Canakkale, Turkey
| | - Firdevs Dincsoy Bir
- Faculty of Medicine, Department of Medical Genetic, COMU University, Canakkale, Turkey
| | - Coskun Silan
- Faculty of Medicine, Department of Pharmacology, COMU University, Canakkale, Turkey
| | - Burcu Albuz
- Faculty of Medicine, Department of Medical Genetic, COMU University, Canakkale, Turkey
| | - Ozturk Ozdemir
- Faculty of Medicine, Department of Medical Genetic, COMU University, Canakkale, Turkey
| |
Collapse
|
39
|
Yao Q, Li E, Shen B. Autoinflammatory disease with focus on NOD2-associated disease in the era of genomic medicine. Autoimmunity 2019; 52:48-56. [PMID: 31084224 DOI: 10.1080/08916934.2019.1613382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Systemic autoinflammatory diseases (SAIDs) represent a spectrum of genetically heterogeneous inflammatory disorders. Some SAID-associated genes are located in chromosome 16, including familial Mediterranean fever gene (MEFV) and nucleotide-binding oligomerization domain 2 [NOD2] gene that are linked to Crohn's disease, Blau syndrome, and Yao syndrome. These disorders share overlapping clinical phenotypes, and genotyping is diagnostically helpful and distinctive. Using next generation sequencing in SAIDs, digenic variants or combinations of more genetic variants in different genes can be detected, and they may be related to the MEFV and NOD2 genes. These variants may contribute to heterogeneous phenotypes in an individual, complicating the diagnosis and therapy. An awareness of the clinical significance of the digenic or combined gene variants is important in the era of genomic medicine.
Collapse
Affiliation(s)
- Qingping Yao
- a Division of Rheumatology, Allergy and Immunology , Stony Brook University , Stony Brook , NY , USA
| | - Ellen Li
- b Division of Gastroenterology , Stony Brook University , Stony Brook , NY , USA
| | - Bo Shen
- c Center for Inflammatory Bowel Disease , Digestive Disease and Surgery Institute, the Cleveland Clinic Foundation , Cleveland , OH , USA
| |
Collapse
|
40
|
Yang X, Wu D, Li J, Shen M, Zhang W. A Chinese case series of Yao syndrome and literature review. Clin Rheumatol 2018; 37:3449-3454. [PMID: 30159790 DOI: 10.1007/s10067-018-4274-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/20/2018] [Indexed: 11/28/2022]
Abstract
Yao syndrome (YAOS), formerly named NOD2-associated autoinflammatory disease, is a periodic disease characterized by fever, dermatitis, polyarthritis, distal extremity swelling, and gastrointestinal and sicca-like symptoms associated with specific NOD2 sequence variants. All patients in the literature were Caucasians. Herein, we report the first case series of YAOS in China to further expand the clinical and genetic characteristics of this disorder. A retrospective review of patients who were diagnosed with YAOS at our tertiary medical center was conducted. Three Han Chinese women with YAOS were included. Recurrent fever occurred in all patients and each febrile episode lasted several days to several weeks, and asymptomatic intervals ranged from several weeks to several months. Two patients experienced intermittent arthritis/arthralgia and abdominal pain, and one had sicca-like symptoms. None had dermatitis. Three variants in NOD2 were identified, including Q902K, R541P, and Y514H. The patients' symptoms significantly improved after treatment with glucocorticoids and/or sulfasalazine. YAOS exists in the Chinese population, and it may be a global disorder. Our patients appear to exhibit somewhat distinct clinical phenotypes from those in the Caucasian population, and three novel NOD2 variants have been identified in the disease.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Di Wu
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Ji Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Wen Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, No.1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
41
|
Girardelli M, Loganes C, Pin A, Stacul E, Decleva E, Vozzi D, Baj G, De Giacomo C, Tommasini A, Bianco AM. Novel NOD2 Mutation in Early-Onset Inflammatory Bowel Phenotype. Inflamm Bowel Dis 2018; 24:1204-1212. [PMID: 29697845 DOI: 10.1093/ibd/izy061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain 2 (NOD2) is a key intracellular protein of the innate immune system. NOD2 variants are associated with inflammatory bowel disease (IBD) and other inflammatory phenotypes. We described the case of a baby with a very early-onset IBD who is characterized by a rare homozygous variant in NOD2, found through whole-exome sequencing, Its pathogenic effect was investigated through bioinformatics and functional studies. METHODS The microbicide activity of the patient's phagocytes was analyzed using Escherichia coli. HEK293 and Caco2 cell lines were transfected with wild-type and mutated NOD2 cDNA to evaluate the NF-kB activity and the protein distribution. The functionality of the NOD2 pathway was assessed through analysis of the expression of tumor nectrosis factor alpha (TNFα) on monocytes. The levels of various cytokines were quantified in the patient plasma by a multiplex suspension array. RESULTS A missense NOD2 mutation, c.G1277A; p.R426H in homozygosis, was found. The patient's microbicide activity was comparable to that observed in controls. HEK293 cells transfected with the mutated cDNA showed a 20-fold increase of NF-kB activation in basal condition. Moreover, Caco2 immunostaining revealed a different cytoplasmic distribution of the mutated protein compared with wild-type. A higher production of TNFα by monocytes and elevated levels of plasmatic cytokines and chemokines were evidenced in the patient. CONCLUSIONS This homozygous mutation is functionally relevant and shows a different NOD2 involvement in the IBD phenotype. In our patient, this mutation caused a gain of function typical of the Blau syndrome phenotype, manifesting, however, an IBD-like phenotype.
Collapse
Affiliation(s)
- Martina Girardelli
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, 'IRCCS 'Burlo Garofolo,' Trieste, Italy
| | - Claudia Loganes
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, 'IRCCS 'Burlo Garofolo,' Trieste, Italy
| | - Alessia Pin
- Department of Medicine, Surgery, and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Eva Decleva
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Diego Vozzi
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, 'IRCCS 'Burlo Garofolo,' Trieste, Italy
| | - Gabriele Baj
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Alberto Tommasini
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, 'IRCCS 'Burlo Garofolo,' Trieste, Italy
| | - Anna Monica Bianco
- Department of Advanced Diagnostic and Clinical Trials, Institute for Maternal and Child Health, 'IRCCS 'Burlo Garofolo,' Trieste, Italy
| |
Collapse
|
42
|
Lu L, Shen M, Jiang D, Li Y, Zheng X, Li Y, Li Z, Zhang L, Tang J, Guo Y, Liu S, Zheng Z, Gao G, Kan Q. Blau syndrome with good Reponses to Tocilizumab: A case report and focused literature review. Semin Arthritis Rheum 2018; 47:727-731. [DOI: 10.1016/j.semarthrit.2017.09.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 01/15/2023]
|
43
|
Abstract
The nucleotide-binding oligomerization domain (NOD) protein, NOD2, belonging to the intracellular NOD-like receptor family, detects conserved motifs in bacterial peptidoglycan and promotes their clearance through activation of a proinflammatory transcriptional program and other innate immune pathways, including autophagy and endoplasmic reticulum stress. An inactive form due to mutations or a constitutive high expression of NOD2 is associated with several inflammatory diseases, suggesting that balanced NOD2 signaling is critical for the maintenance of immune homeostasis. In this review, we discuss recent developments about the pathway and mechanisms of regulation of NOD2 and illustrate the principal functions of the gene, with particular emphasis on its central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. Furthermore, we survey recent studies illustrating the role of NOD2 in several inflammatory diseases, in particular, inflammatory bowel disease, of which it is the main susceptibility gene.
Collapse
Affiliation(s)
- Anna Negroni
- Division of Health Protection Technologies, Territorial and Production Systems Sustainability Department, ENEA, Rome, Italy
| | - Maria Pierdomenico
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Salvatore Cucchiara
- Department of Pediatrics and Infantile Neuropsychiatry, Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Rome, Italy
| | - Laura Stronati
- Department of Cellular Biotechnology and Hematology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Hua Y, Shen M, McDonald C, Yao Q. Autophagy dysfunction in autoinflammatory diseases. J Autoimmun 2017; 88:11-20. [PMID: 29108670 DOI: 10.1016/j.jaut.2017.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/27/2023]
Abstract
Autoinflammatory diseases (AUIDs) are a genetically heterogeneous group of rheumatic diseases characterized by episodic inflammation linked with dysregulated innate immune responses. In this review, we summarize the molecular mechanisms altered by disease-associated variants in several AUIDs, including NOD2-associated diseases, TNF receptor-associated periodic syndrome (TRAPS), familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), and highlight the roles dysregulated autophagy plays in disease pathogenesis. Autophagy is a conserved eukaryotic pathway for the elimination of cellular stressors, such as misfolded proteins, damaged organelles, or intracellular microorganisms. It is now recognized that autophagy also functions to control inflammation through regulatory interactions with innate immune signaling pathways. AUID-associated genetic variants are known to directly activate inflammatory signaling pathways. Recent evidence also indicates that these variants may also cause impairment of autophagy, thus augmenting inflammatory responses indirectly. Intriguingly, these variants can impair autophagy by different mechanisms, further implicating the autophagic response pathway in AUIDs. These discoveries provide evidence that autophagy could be investigated as a new therapeutic target for AUIDs.
Collapse
Affiliation(s)
- Yichao Hua
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
45
|
Icduygu FM, Erdogan MO, Ulasli SS, Yildiz HG, Celik ZS, Unlu M, Solak M. Is There an Association Between NOD2 Gene Polymorphisms and Chronic Obstructive Pulmonary Disease Progression? INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1351118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey
| | - Mujgan Ozdemir Erdogan
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Sevinc Sarinc Ulasli
- Department of Pulmonary Diseases, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Handan Gonenli Yildiz
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Zeynep Sonmez Celik
- Department of Pulmonary Diseases, Eskisehir State Hospital, Eskisehir, 26060 Turkey
| | - Mehmet Unlu
- Department of Pulmonary Diseases, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Mustafa Solak
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| |
Collapse
|
46
|
Two Chinese pedigrees of Blau syndrome with thirteen affected members. Clin Rheumatol 2017; 37:265-270. [DOI: 10.1007/s10067-017-3758-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
47
|
Wong KW. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0001-2015. [PMID: 28513416 PMCID: PMC11687508 DOI: 10.1128/microbiolspec.tbtb2-0001-2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/27/2023] Open
Abstract
In this article, we have described several cellular pathological effects caused by the Mycobacterium tuberculosis ESX-1. The effects include induction of necrosis, NOD2 signaling, type I interferon production, and autophagy. We then attempted to suggest that these pathological effects are mediated by the cytosolic access of M. tuberculosis-derived materials as a result of the phagosome-disrupting activity of the major ESX-1 substrate ESAT-6. Such activity of ESAT-6 is most likely due to its pore-forming activity at the membrane. The amyloidogenic characteristic of ESAT-6 is reviewed here as a potential mechanism of membrane pore formation. In addition to ESAT-6, the ESX-1 substrate EspB interferes with membrane-mediated innate immune mechanisms such as efferocytosis and autophagy, most likely through its ability to bind phospholipids. Overall, the M. tuberculosis ESX-1 secretion system appears to be a specialized system for the deployment of host membrane-targeting proteins, whose primary function is to interrupt key steps in innate immune mechanisms against pathogens. Inhibitors that block the ESX-1 system or block host factors critical for ESX-1 toxicity have been identified and should represent attractive potential new antituberculosis drugs.
Collapse
Affiliation(s)
- Ka-Wing Wong
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
48
|
Yao Q, Shen B. A Systematic Analysis of Treatment and Outcomes of NOD2-Associated Autoinflammatory Disease. Am J Med 2017; 130:365.e13-365.e18. [PMID: 27984003 DOI: 10.1016/j.amjmed.2016.09.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Yao syndrome, formerly named NOD2-associated autoinflammatory disease, is a periodic disease characterized by fever, dermatitis, polyarthritis/leg swelling, and gastrointestinal and sicca-like symptoms associated with specific NOD2 sequence variants. Our aim was to evaluate the treatment and outcomes of the disease. METHODS A total of 52 adult patients with autoinflammatory disease phenotype were diagnosed with Yao syndrome and enrolled at the Cleveland Clinic between November 2009 and May 2015. All patients were genotyped for the NOD2 variants, and systematically studied for treatment outcomes. RESULTS Among the 52 Yao syndrome patients, all were white, and 72% were women. The mean age at diagnosis was 38.0 ± 12.0 years, and the disease duration was 8.8 ± 5.8 years. In the multi-organ disease, more common and typical manifestations were recurrent dermatitis and inflammatory arthritis with or without distal leg swelling besides recurrent fever. It was genotypically associated with the NOD2 IVS8+158 or R702W. Therapeutically, glucocorticoids markedly decreased the disease severity and duration of flares in 19 patients (36.6%), sulfasalazine treatment achieved a significant symptomatic improvement in 22 (42%) patients, and 3 patients received canakinumab or tocilizumab with benefits. Prognostically, 13% of the 52 patients had somewhat physical impairment, and there was no mortality during the follow-up. Associated comorbidities were fibromyalgia, asthma, renal stones, and ventricular hypertrophy. CONCLUSIONS As a systemic disease, Yao syndrome uncommonly affects the solid internal organs, but it can be complicated with chronic pain syndrome and even disability. Glucocorticoids or sulfasalazine may be considered as the first-line treatment option, and interleukin (IL)-1/IL-6 inhibitors may be tried for refractory cases. The potential associations between certain comorbidities and Yao syndrome deserve further study.
Collapse
Affiliation(s)
- Qingping Yao
- Department of Rheumatic and Immunologic Disease, Cleveland Clinic, Ohio; Division of Rheumatology, Allergy and Immunology, Stony Brook University, NY.
| | - Bo Shen
- Department of Gastroenterology/Hepatology, Cleveland Clinic, Ohio
| |
Collapse
|
49
|
Decock A, Van Assche G, Vermeire S, Wuyts W, Ferrante M. Sarcoidosis-Like Lesions: Another Paradoxical Reaction to Anti-TNF Therapy? J Crohns Colitis 2017; 11:378-383. [PMID: 27591675 DOI: 10.1093/ecco-jcc/jjw155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Since the introduction of anti-tumour necrosis factor [TNF] therapy in inflammatory diseases, paradoxical reactions are increasingly being reported. One of these paradoxical reactions is the development of sarcoidosis-like lesions. This presentation is paradoxical since anti-TNF therapy can also be therapeutic in refractory cases of sarcoidosis. METHODS We report two cases of sarcoidosis-like lesions under anti-TNF therapy. Both were patients with inflammatory bowel disease [IBD], treated successfully with adalimumab. Next, we reviewed the literature for similar cases. Medical subject heading terms 'adalimumab', 'infliximab', 'etanercept', 'golimumab' or 'certolizumab', and 'sarcoidosis' were used to perform key word searches of the PubMed database. RESULTS We identified 90 reported cases of sarcoidosis-like lesions, which developed during anti-TNF therapy. In most cases, the anti-TNF drug involved was etanercept. The median age was 43 years and there was a predominance of female patients. The underlying disease was rheumatoid arthritis in most cases, followed by ankylosing spondylitis and psoriasiform arthritis. In six cases, the underlying disease was IBD. In 71 cases there was at least a partial resolution by discontinuation of the anti-TNF treatment, initiation of steroids or both. Re-initiation of anti-TNF therapy gave relapse in seven out of 20 cases. CONCLUSION Sarcoidosis-like lesions are increasingly reported during anti-TNF treatment. Vigilance is appropriate when patients present with symptoms compatible with sarcoidosis.
Collapse
Affiliation(s)
- Amelie Decock
- Department of Internal Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Department of Gastroenterology and Hepatology, UZ Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology and Hepatology, UZ Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Wim Wuyts
- Department of Respiratory Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, UZ Leuven, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Case of NOD2-Associated Autoinflammatory Disease Successfully Treated With Sulfasalazine. J Clin Rheumatol 2016; 23:58-59. [PMID: 27851691 DOI: 10.1097/rhu.0000000000000468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|