1
|
Ota Y, Uomoto M, Koizume S, Sato S, Hoshino D, Yoshihara M, Nakamura Y, Tadokoro H, Myoba S, Ohtake N, Miyagi E, Miyagi Y. Tissue factor pathway inhibitor-2 inhibits integrin β1 activation and focal adhesion formation and suppresses peritoneal ovarian cancer dissemination in mice. Biochem Biophys Res Commun 2024; 736:150890. [PMID: 39461010 DOI: 10.1016/j.bbrc.2024.150890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Tissue factor pathway inhibitor-2 (TFPI2) is a Kunitz-type serine protease inhibitor and an ovarian clear cell carcinoma (CCC) biomarker. TFPI2 is expressed in several cancers and exerts tumor-suppressive effects; however, the role of TFPI2 in the CCC cell phenotype remains unclear. Therefore, in this study, we investigated the function of TFPI2 by establishing a gene knockout (KO) in ES-2 CCC cells and observed the change in phenotypes in vitro and in vivo. TFPI2 KO inhibited ES-2 cell proliferation, increased extracellular matrix protein adhesion, enhanced focal adhesion formation and activated integrin β1 cell surface clustering in vitro, and markedly increased ES-2 tumor growth and dissemination in the peritoneal cavity of a mouse xenograft model. These findings suggest a novel function of TFPI2 expression in suppressing the formation of focal adhesions in CCC cells, potentially by activating integrin β1. This function plays a role in the peritoneal growth characteristics of CCC cells.
Collapse
Affiliation(s)
- Yukihide Ota
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan; Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa Ward, Yokohama, Kanagawa, 236-0004, Japan; Cancer Biology Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Mari Uomoto
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan; Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa Ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Hiroko Tadokoro
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan
| | - Shohei Myoba
- Bioscience Division, Research and Development Department, Tosoh Corporation, 2743-1, Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Norihisa Ohtake
- Bioscience Division, Research and Development Department, Tosoh Corporation, 2743-1, Hayakawa, Ayase, Kanagawa, 252-1123, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa Ward, Yokohama, Kanagawa, 236-0004, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi Ward, Yokohama, Kanagawa, 241-8515, Japan.
| |
Collapse
|
2
|
Ren Z, Xu Z, Chang X, Liu J, Xiao W. STC1 competitively binding βPIX enhances melanoma progression via YAP nuclear translocation and M2 macrophage recruitment through the YAP/CCL2/VEGFA/AKT feedback loop. Pharmacol Res 2024; 204:107218. [PMID: 38768671 DOI: 10.1016/j.phrs.2024.107218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
This study investigates the role of Stanniocalcin-1 (STC1) in melanoma progression, with a focus on its impact on metastasis, angiogenesis, and immune evasion. Systematic bioinformatics analysis revealed the potential influence of STC1 dysregulation on prognosis, immune cell infiltration, response to immune therapy, and cellular functions. In vitro assays were conducted to assess the proliferation, invasion, migration, and angiogenesis capabilities of A375 cells. In vivo experiments utilizing C57BL/6 J mice established a lung metastasis model using B16-F10 cells to evaluate macrophage infiltration and M2 polarization. A Transwell co-culture system was employed to explore the crosstalk between melanoma and macrophages. Molecular interactions among STC1, YAP, βPIX, and CCL2 are investigated using mass spectrometry, Co-Immunoprecipitation, Dual-Luciferase Reporter Assay, and Chromatin Immunoprecipitation experiments. STC1 was found to enhance lung metastasis by promoting the recruitment and polarization of M2 macrophages, thereby fostering an immunosuppressive microenvironment. Mechanistically, STC1 competes with YAP for binding to βPIX within the KER domain in melanoma cells, leading to YAP activation and subsequent CCL2 upregulation. CCL2-induced M2 macrophages secrete VEGFA, which enhances tumor vascularization and increases STC1 expression via the AKT signaling pathway in melanoma cells, establishing a pro-metastatic feedback loop. Notably, STC1-induced YAP activation increases PD-L1 expression, promoting immune evasion. Silencing STC1 enhances the efficacy of PD-1 immune checkpoint therapy in mice. This research elucidates STC1's role in melanoma metastasis and its complex interactions with tumor-associated macrophages, proposing STC1 as a potential therapeutic target for countering melanoma metastasis and augmenting the efficacy of PD-1 immunotherapy.
Collapse
Affiliation(s)
- Zhaozhou Ren
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Zhijie Xu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Xiyue Chang
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Jie Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Wan'an Xiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Song Y, Kerr TD, Sanders C, Dai L, Baxter SS, Somerville B, Baugher RN, Mellott SD, Young TB, Lawhorn HE, Plona TM, Xu B, Wei L, Hu Q, Liu S, Hutson A, Karim B, Burkett S, Difilippantonio S, Pinto L, Gebert J, Kloor M, Lipkin SM, Sei S, Shoemaker RH. Organoids and metastatic orthotopic mouse model for mismatch repair-deficient colorectal cancer. Front Oncol 2023; 13:1223915. [PMID: 37746286 PMCID: PMC10516605 DOI: 10.3389/fonc.2023.1223915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Genome integrity is essential for the survival of an organism. DNA mismatch repair (MMR) genes (e.g., MLH1, MSH2, MSH6, and PMS2) play a critical role in the DNA damage response pathway for genome integrity maintenance. Germline mutations of MMR genes can lead to Lynch syndrome or constitutional mismatch repair deficiency syndrome, resulting in an increased lifetime risk of developing cancer characterized by high microsatellite instability (MSI-H) and high mutation burden. Although immunotherapy has been approved for MMR-deficient (MMRd) cancer patients, the overall response rate needs to be improved and other management options are needed. Methods To better understand the biology of MMRd cancers, elucidate the resistance mechanisms to immune modulation, and develop vaccines and therapeutic testing platforms for this high-risk population, we generated organoids and an orthotopic mouse model from intestine tumors developed in a Msh2-deficient mouse model, and followed with a detailed characterization. Results The organoids were shown to be of epithelial origin with stem cell features, to have a high frameshift mutation frequency with MSI-H and chromosome instability, and intra- and inter-tumor heterogeneity. An orthotopic model using intra-cecal implantation of tumor fragments derived from organoids showed progressive tumor growth, resulting in the development of adenocarcinomas mixed with mucinous features and distant metastasis in liver and lymph node. Conclusions The established organoids with characteristics of MSI-H cancers can be used to study MMRd cancer biology. The orthotopic model, with its distant metastasis and expressing frameshift peptides, is suitable for evaluating the efficacy of neoantigen-based vaccines or anticancer drugs in combination with other therapies.
Collapse
Affiliation(s)
- Yurong Song
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Travis D. Kerr
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Chelsea Sanders
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences Program, Frederick, MD, United States
| | - Lisheng Dai
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Shaneen S. Baxter
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Brandon Somerville
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Ryan N. Baugher
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Stephanie D. Mellott
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Todd B. Young
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Heidi E. Lawhorn
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Teri M. Plona
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Bingfang Xu
- Frederick National Laboratory for Cancer Research, Genomics Laboratory, Frederick, MD, United States
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra Burkett
- Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, MD, United States
| | - Simone Difilippantonio
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences Program, Frederick, MD, United States
| | - Ligia Pinto
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
4
|
Michielon E, López González M, Stolk DA, Stolwijk JGC, Roffel S, Waaijman T, Lougheed SM, de Gruijl TD, Gibbs S. A Reconstructed Human Melanoma-in-Skin Model to Study Immune Modulatory and Angiogenic Mechanisms Facilitating Initial Melanoma Growth and Invasion. Cancers (Basel) 2023; 15:2849. [PMID: 37345186 DOI: 10.3390/cancers15102849] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Invasion, immune modulation, and angiogenesis are crucial in melanoma progression. Studies based on animals or two-dimensional cultures poorly recapitulate the tumor-microenvironmental cross-talk found in humans. This highlights a need for more physiological human models to better study melanoma features. Here, six melanoma cell lines (A375, COLO829, G361, MeWo, RPMI-7951, and SK-MEL-28) were used to generate an in vitro three-dimensional human melanoma-in-skin (Mel-RhS) model and were compared in terms of dermal invasion and immune modulatory and pro-angiogenic capabilities. A375 displayed the most invasive phenotype by clearly expanding into the dermal compartment, whereas COLO829, G361, MeWo, and SK-MEL-28 recapitulated to different extent the initial stages of melanoma invasion. No nest formation was observed for RPMI-7951. Notably, the integration of A375 and SK-MEL-28 cells into the model resulted in an increased secretion of immune modulatory factors (e.g., M-CSF, IL-10, and TGFβ) and pro-angiogenic factors (e.g., Flt-1 and VEGF). Mel-RhS-derived supernatants induced endothelial cell sprouting in vitro. In addition, observed A375-RhS tissue contraction was correlated to increased TGFβ release and α-SMA expression, all indicative of differentiation of fibroblasts into cancer-associated fibroblast-like cells and reminiscent of epithelial-to-mesenchymal transition, consistent with A375's most prominent invasive behavior. In conclusion, we successfully generated several Mel-RhS models mimicking different stages of melanoma progression, which can be further tailored for future studies to investigate individual aspects of the disease and serve as three-dimensional models to assess efficacy of therapeutic strategies.
Collapse
Affiliation(s)
- Elisabetta Michielon
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Marta López González
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Dorian A Stolk
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Joeke G C Stolwijk
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Taco Waaijman
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
| | - Sinéad M Lougheed
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, 1105 AZ Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
5
|
Shen Y, Li M, Liao L, Gao S, Wang Y. Plasma exosome-derived connexin43 as a promising biomarker for melanoma patients. BMC Cancer 2023; 23:242. [PMID: 36918803 PMCID: PMC10012581 DOI: 10.1186/s12885-023-10705-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND To examine the levels of exosome-derived connexin 43 (Cx43) in plasma and estimate its forecast value in patients with melanoma. METHODS We measured the plasma exosome-derived Cx43 levels in the plasma of 112 melanoma patients and 50 healthy controls. RESULTS The plasma exosome-derived Cx43 levels in patients with melanoma were substantially downregulated as opposed to the levels in healthy controls (P < 0.001). Kaplan-Meier analysis indicated that overall survival (OS) and disease-free survival (DFS) were poorer in patients with melanoma who exhibited lower levels of plasma exosome-derived Cx43 (both P < 0.001). The levels of plasma exosome-derived Cx43 were considerably elevated in patients with melanoma whose tumor was situated in the skin, tumor size < 10 cm, with Clark level I-III, TNM stages IIb-IV, and had no lymph node metastasis as opposed to patients whose tumor was situated in the viscera or mucosa, tumor size ≥ 10 cm, Clark level IV-V, TNM stages IIb-IV and had lymph node metastasis (all P < 0.05). The receiver operating characteristic (ROC) of plasma exosome-derived Cx43 for forecasting 5-year DFS in patients with melanoma was 0.78 (95% confidence interval (CI): 0.70-0.86), with a specificity of 77.78% and a sensitivity of 81.55%. The ROC of plasma exosome-derived Cx43 for forecasting 5-year OS of patients with melanoma was 0.77 (95% CI: 0.68-0.84), with a specificity of 80.0% and sensitivity of 65.98%. CONCLUSION The overall findings indicated that the levels of plasma exosome-derived Cx43 in patients with melanoma were considerably downregulated. It can therefore be inferred that the levels of plasma exosome-derived Cx43 might be a prospective prognostic indicator for 5 5-year OS and 5-year DFS of patients with melanoma.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, China
| | - Li Liao
- Department of Dermatology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, China
| | - Suyue Gao
- Department of Dermatology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 242 Guangji Road, Suzhou, Jiangsu, 215008, China
| | - Yongzhen Wang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, 26 Daoqian Street, Suzhou, Jiangsu, 215008, China.
| |
Collapse
|
6
|
Zheng L, Cao L, Zheng XL. ADAMTS13 protease or lack of von Willebrand factor protects irradiation and melanoma-induced thrombotic microangiopathy in zebrafish. J Thromb Haemost 2022; 20:2270-2283. [PMID: 35894519 PMCID: PMC9641623 DOI: 10.1111/jth.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Severe deficiency of plasma ADAMTS13 activity may result in potentially fatal thrombotic thrombocytopenic purpura and relative deficiency of plasma ADAMTS13 activity may be associated with adverse outcomes of certain malignancies. Here, we report the role of ADAMTS13 or lack of von Willebrand factor (VWF) in reducing irradiation and melanoma-induced thrombotic microangiopathy (TMA) and mortality in zebrafish. METHODS Zebrafish melanoma cell line (ZMEL) was injected subcutaneously into wild-type (wt), adamts13-/- (a13-/- ), von Willebrand factor (vwf-/- ), and a13-/- vwf-/- zebrafish following total body irradiation; the tumor growth, its gene expression pattern, the resulting thrombocytopenia, and the mortality were determined. RESULTS Total body irradiation at 30 Gy alone resulted in a transient thrombocytopenia in both wt and a13-/- zebrafish. However, thrombocytopenia occurred earlier and more profound in a13-/- than in wt zebrafish, which was resolved 2 weeks following irradiation alone. An inoculation of ZMEL following the irradiation resulted in more severe and persistent thrombocytopenia, as well as earlier death in a13-/- than in wt zebrafish. The vwf-/- or a13-/- vwf-/- zebrafish were protected from developing severe thrombocytopenia following the same maneuvers. RNA-sequencing revealed significant differentially expressed genes associated with oxidation-reduction, metabolism, lipid, fatty acid and cholesterol metabolic processes, steroid synthesis, and phospholipid efflux in the melanoma explanted from a13-/- zebrafish compared with that from the wt controls. CONCLUSIONS Our results indicated that plasma ADAMTS13 or lack of VWF may offer a significant protection against the development of irradiation- and/or melanoma-induced TMA. Such a microenvironment may directly affect melanoma cell phenotypes via alternation in the oxidation-reduction and lipid metabolic pathways.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Liyun Cao
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - X. Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, USA
- Institute of Reproductive and Developmental Sciences, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
7
|
Ahmed MB, Alghamdi AAA, Islam SU, Lee JS, Lee YS. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach. Cells 2022; 11:cells11132020. [PMID: 35805104 PMCID: PMC9266045 DOI: 10.3390/cells11132020] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most common causes of death globally. Despite extensive research and considerable advances in cancer therapy, the fundamentals of the disease remain unclear. Understanding the key signaling mechanisms that cause cancer cell malignancy may help to uncover new pharmaco-targets. Cyclic adenosine monophosphate (cAMP) regulates various biological functions, including those in malignant cells. Understanding intracellular second messenger pathways is crucial for identifying downstream proteins involved in cancer growth and development. cAMP regulates cell signaling and a variety of physiological and pathological activities. There may be an impact on gene transcription from protein kinase A (PKA) as well as its downstream effectors, such as cAMP response element-binding protein (CREB). The position of CREB downstream of numerous growth signaling pathways implies its oncogenic potential in tumor cells. Tumor growth is associated with increased CREB expression and activation. PKA can be used as both an onco-drug target and a biomarker to find, identify, and stage tumors. Exploring cAMP effectors and their downstream pathways in cancer has become easier using exchange protein directly activated by cAMP (EPAC) modulators. This signaling system may inhibit or accelerate tumor growth depending on the tumor and its environment. As cAMP and its effectors are critical for cancer development, targeting them may be a useful cancer treatment strategy. Moreover, by reviewing the material from a distinct viewpoint, this review aims to give a knowledge of the impact of the cAMP signaling pathway and the related effectors on cancer incidence and development. These innovative insights seek to encourage the development of novel treatment techniques and new approaches.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | | | - Salman Ul Islam
- Department of Pharmacy, Cecos University, Peshawar, Street 1, Sector F 5 Phase 6 Hayatabad, Peshawar 25000, Pakistan;
| | - Joon-Seok Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
| | - Young-Sup Lee
- BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (M.B.A.); (J.-S.L.)
- Correspondence: ; Tel.: +82-53-950-6353; Fax: +82-53-943-2762
| |
Collapse
|
8
|
Frommeyer TC, Gilbert MM, Brittain GV, Wu T, Nguyen TQ, Rohan CA, Travers JB. UVB-Induced Microvesicle Particle Release and Its Effects on the Cutaneous Microenvironment. Front Immunol 2022; 13:880850. [PMID: 35603177 PMCID: PMC9120817 DOI: 10.3389/fimmu.2022.880850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects. In this review, we highlight keratinocyte MVP release in keratinocytes in response to UVB. Specifically, Platelet-activating factor receptor agonists generated by UVB result in MVP released from keratinocytes. The downstream effects of MVP release include the ability of these subcellular particles to transport agents including the glycerophosphocholine-derived lipid mediator Platelet-activating factor (PAF). Moreover, even though UVB is only absorbed in the epidermis, it appears that PAF release from MVPs also mediates systemic immunosuppression and enhances tumor growth and metastasis. Tumor cells expressing PAF receptors can use this mechanism to evade chemotherapy responses, leading to treatment resistance for advanced cancers such as melanoma. Furthermore, novel pharmacological agents provide greater insight into the UVB-induced immune response pathway and a potential target for pharmacological intervention. This review outlines the need to more clearly elucidate the mechanism linking UVB-irradiation with the cutaneous immune response and its pathological manifestations. An improved understanding of this process can result in new insights and treatment strategies for UVB-related disorders from carcinogenesis to photosensitivity.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Garrett V. Brittain
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Tongfan Wu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Trang Q. Nguyen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers,
| |
Collapse
|
9
|
Targeting GPCRs and Their Signaling as a Therapeutic Option in Melanoma. Cancers (Basel) 2022; 14:cancers14030706. [PMID: 35158973 PMCID: PMC8833576 DOI: 10.3390/cancers14030706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Sixteen G-protein-coupled receptors (GPCRs) have been involved in melanogenesis or melanomagenesis. Here, we review these GPCRs, their associated signaling, and therapies. Abstract G-protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G-proteins, which induce cellular signaling through various pathways. Such signaling modulates numerous essential cellular processes that occur during melanomagenesis, including proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden melanoma treatment options in the future.
Collapse
|
10
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:life11121437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
- Correspondence: ; Tel.: +39-08713554567
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
11
|
Takeda T, Tsubaki M, Kato N, Genno S, Ichimura E, Enomoto A, Imano M, Satou T, Nishida S. Sorafenib treatment of metastatic melanoma with c-Kit aberration reduces tumor growth and promotes survival. Oncol Lett 2021; 22:827. [PMID: 34691254 DOI: 10.3892/ol.2021.13089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Melanomas are highly malignant tumors that readily metastasize and have poor prognosis. Targeted therapy is a cornerstone of treatment for patients with melanoma. Although c-Kit gene aberration has found in 5-10% of melanoma cases, research on c-Kit inhibitors for melanoma with c-Kit aberration have been disappointing. Sorafenib is a tyrosine kinase inhibitor, whose targets include c-Kit, platelet derived growth factor receptor (PDGFR), VEGFR and RAF. The present study aimed to examine the effect of sorafenib on metastatic melanoma with c-Kit aberration. Cell viability was assessed via trypan blue assay. Migration and invasion were analyzed using cell culture inserts. The anti-metastatic effects and antitumour activity of sorafenib were determined in an in vivo model. Protein expression was detected via western blotting, and the expression of MMP and very late antigen (VLA) was detected via reverse transcription-quantitative PCR. It was identified that sorafenib decreased cell viability, migration and invasion in vitro. Furthermore, sorafenib inhibited metastasis and tumor growth in vivo. Mechanistically, sorafenib inhibited c-Kit, PDGFR, VEGFR, B-Raf and c-Raf phosphorylation both in vitro and in vivo. In addition, sorafenib reduced the expression levels of MMPs and VLA. Importantly, there was a significant effect of sorafenib treatment on overall survival in mice. Collectively, this study suggests that sorafenib may serve as a novel therapeutic option for melanoma with c-Kit dysregulation.
Collapse
Affiliation(s)
- Tomoya Takeda
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Masanobu Tsubaki
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Natsuki Kato
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shuji Genno
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Eri Ichimura
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aya Enomoto
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka 589-0014, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Osaka 589-0014, Japan
| | - Shozo Nishida
- Department of Pharmacotherapy, Kindai University School of Pharmacy, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
12
|
Deuster E, Hysenaj I, Kahaly M, Schmoeckel E, Mayr D, Beyer S, Kolben T, Hester A, Kraus F, Chelariu-Raicu A, Burges A, Mahner S, Jeschke U, Trillsch F, Czogalla B. The Platelet-Activating Factor Receptor's Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine. Cells 2021; 10:cells10092337. [PMID: 34571986 PMCID: PMC8466210 DOI: 10.3390/cells10092337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
The platelet-activating factor receptor (PAFR) and its ligand (PAF) are important inflammatory mediators that are overexpressed in ovarian cancer. The receptor is an important player in ovarian cancer development. In this study, we aimed to evaluate the prognostic value of PAFR in epithelial ovarian cancer (EOC) and the potential use of its antagonist, rupatadine, as an experimental treatment. Tissue microarrays of ovarian cancer patients, most markedly those with a non-mucinous subtype, immunohistochemically overexpressed PAFR. Elevated cytoplasmic PAFR expression was found to significantly and independently impair patients' overall and recurrence-free survival (OS: median 83.48 vs. 155.03 months; p = 0.022; RFS: median 164.46 vs. 78.03 months; p = 0.015). In vitro, the serous ovarian cancer subtypes especially displayed an elevated PAFR gene and protein expression. siRNA knockdown of PAFR decreased cell proliferation significantly, thus confirming the receptor's protumorigenic effect on ovarian cancer cells. The clinically approved PAFR antagonist rupatadine effectively inhibited in vitro cell proliferation and migration of ovarian cancer cells. PAFR is a prognostic marker in ovarian cancer patients and its inhibition through rupatadine may have important therapeutic implications in the therapy of ovarian cancer patients.
Collapse
Affiliation(s)
- Eileen Deuster
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Ivi Hysenaj
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Maja Kahaly
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Elisa Schmoeckel
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.S.); (D.M.)
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.S.); (D.M.)
| | - Susanne Beyer
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Anna Hester
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Fabian Kraus
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Anca Chelariu-Raicu
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
| | - Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, Ludwig Maximilians University (LMU) Munich, 81377 Munich, Germany; (E.D.); (I.H.); (M.K.); (S.B.); (T.K.); (A.H.); (F.K.); (A.C.-R.); (A.B.); (S.M.); (U.J.); (F.T.)
- Correspondence:
| |
Collapse
|
13
|
Li JY, Li CJ, Lin LT, Tsui KH. Multi-Omics Analysis Identifying Key Biomarkers in Ovarian Cancer. Cancer Control 2021; 27:1073274820976671. [PMID: 33297760 PMCID: PMC8480361 DOI: 10.1177/1073274820976671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ovarian cancer is one of the most common malignant tumors. Here, we aimed to study the expression and function of the CREB1 gene in ovarian cancer via the bioinformatic analyses of multiple databases. Previously, the prognosis of ovarian cancer was based on single-factor or single-gene studies. In this study, different bioinformatics tools (such as TCGA, GEPIA, UALCAN, MEXPRESS, and Metascape) have been used to assess the expression and prognostic value of the CREB1 gene. We used the Reactome and cBioPortal databases to identify and analyze CREB1 mutations, copy number changes, expression changes, and protein-protein interactions. By analyzing data on the CREB1 differential expression in ovarian cancer tissues and normal tissues from 12 studies collected from the "Human Protein Atlas" database, we found a significantly higher expression of CREB1 in normal ovarian tissues. Using this database, we collected information on the expression of 25 different CREB-related proteins, including TP53, AKT1, and AKT3. The enrichment of these factors depended on tumor metabolism, invasion, proliferation, and survival. Individualized tumors based on gene therapy related to prognosis have become a new possibility. In summary, we established a new type of prognostic gene profile for ovarian cancer using the tools of bioinformatics.
Collapse
Affiliation(s)
- Ju-Yueh Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung
| | - Li-Te Lin
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung.,Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei
| | - Kuan-Hao Tsui
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung.,Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung.,Department of Obstetrics and Gynaecology, National Yang-Ming University School of Medicine, Taipei.,Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County
| |
Collapse
|
14
|
Orellana VP, Tittarelli A, Retamal MA. Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell Melanoma Res 2021; 34:853-868. [PMID: 33140904 DOI: 10.1111/pcmr.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is the most aggressive skin cancer, and in metastatic advanced states, it is completely refractory to chemotherapy. Therefore, it is relevant to understand the molecular bases that rule their aggressiveness. Connexins (Cxs) are proteins that under normal physiological conditions participate in intercellular communication, via the exchange of signaling molecules between the cytoplasm and extracellular milieu and the exchange of ions/second messengers between the cytoplasm of contacting cells. These proteins have shown important roles in cancer progression, chemo- and radiotherapy resistance, and metastasis. Accordingly, Cx26 and Cx43 seem to play important roles in melanoma progression and metastasis. On the other hand, Cx46 is typically expressed in the eye lens, where it seems to be associated with oxidative stress protection in fiber lens cells. However, in the last decade, Cx46 expression has been associated with breast and brain cancers, due to its role in potentiation of both extracellular vesicle release and cancer stem cell-like properties. In this review, we analyzed a potential role of Cx46 as a new biomarker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Viviana P Orellana
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| |
Collapse
|
15
|
Stygar D, Pogorzelska A, Chełmecka E, Skrzep-Poloczek B, Bażanów B, Gębarowski T, Jochem J, Henych J. Graphene Oxide Normal (GO + Mn 2+) and Ultrapure: Short-Term Impact on Selected Antioxidant Stress Markers and Cytokines in NHDF and A549 Cell Lines. Antioxidants (Basel) 2021; 10:antiox10050765. [PMID: 34065001 PMCID: PMC8151183 DOI: 10.3390/antiox10050765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023] Open
Abstract
Since biological applications and toxicity of graphene-based materials are structure dependent, studying their interactions with the biological systems is very timely and important. We studied short-term (1, 24, and 48 h) effects of ultrapure (GO) and Mn2+-contaminated (GOS) graphene oxide on normal human dermal fibroblasts (NHDF) and adenocarcinomic human alveolar basal epithelial cells (A549) using selected oxidative stress markers and cytokines: glutathione reductase (GR) and catalase (CAT) activity, total antioxidative capacity (TAC), and malondialdehyde (MDA) concentration, levels of vascular endothelial growing factor (VEGF), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor-BB (PDGF-BB), and eotaxin. GOS induced higher levels of oxidative stress, measured with CAT activity, TAC, and MDA concentration than GO in both cell lines when compared to control cells. GR activity decreased in time in NHDF cells but increased in A549 cells. The levels of cytokines were related to the exposure time and graphene oxide type in both analyzed cell lines and their levels comparably increased over time. We observed higher TNF-α levels in NHDF and higher levels of VEGF and eotaxin in the A549 cell line. Both types of cells showed similar susceptibility to GO and GOS. We concluded that the short-time exposure to GOS induced the stronger response of oxidative stress markers without collapsing the antioxidative systems of analysed cells. Increased levels of inflammatory cytokines after GO and GOS exposure were similar both in NHDF and A549 cells.
Collapse
Affiliation(s)
- Dominika Stygar
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15 Street, 40-055 Katowice, Poland; (B.S.-P.); (J.J.)
- Correspondence: ; Tel.: +48-696-222-884
| | - Aleksandra Pogorzelska
- Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 Street, 50-375 Wrocław, Poland; (B.B.); (A.P.)
| | - Elżbieta Chełmecka
- Department of Statistics, Department of Instrumental Analysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Ostrogórska 30 Street, 40-055 Katowice, Poland;
| | - Bronisława Skrzep-Poloczek
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15 Street, 40-055 Katowice, Poland; (B.S.-P.); (J.J.)
| | - Barbara Bażanów
- Division of Microbiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Norwida 31 Street, 50-375 Wrocław, Poland; (B.B.); (A.P.)
| | - Tomasz Gębarowski
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Street, 50-367 Wrocław, Poland;
| | - Jerzy Jochem
- Department of Physiology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Poniatowskiego 15 Street, 40-055 Katowice, Poland; (B.S.-P.); (J.J.)
| | - Jiří Henych
- Institute of Inorganic Chemistry, Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic;
| |
Collapse
|
16
|
Smart JA, Oleksak JE, Hartsough EJ. Cell Adhesion Molecules in Plasticity and Metastasis. Mol Cancer Res 2021; 19:25-37. [PMID: 33004622 PMCID: PMC7785660 DOI: 10.1158/1541-7786.mcr-20-0595] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Prior to metastasis, modern therapeutics and surgical intervention can provide a favorable long-term survival for patients diagnosed with many types of cancers. However, prognosis is poor for patients with metastasized disease. Melanoma is the deadliest form of skin cancer, yet in situ and localized, thin melanomas can be biopsied with little to no postsurgical follow-up. However, patients with metastatic melanoma require significant clinical involvement and have a 5-year survival of only 34% to 52%, largely dependent on the site of colonization. Melanoma metastasis is a multi-step process requiring dynamic changes in cell surface proteins regulating adhesiveness to the extracellular matrix (ECM), stroma, and other cancer cells in varied tumor microenvironments. Here we will highlight recent literature to underscore how cell adhesion molecules (CAM) contribute to melanoma disease progression and metastasis.
Collapse
Affiliation(s)
- Jessica A Smart
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julia E Oleksak
- Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Edward J Hartsough
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
17
|
Steven A, Friedrich M, Jank P, Heimer N, Budczies J, Denkert C, Seliger B. What turns CREB on? And off? And why does it matter? Cell Mol Life Sci 2020; 77:4049-4067. [PMID: 32347317 PMCID: PMC7532970 DOI: 10.1007/s00018-020-03525-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Altered expression and function of the transcription factor cyclic AMP response-binding protein (CREB) has been identified to play an important role in cancer and is associated with the overall survival and therapy response of tumor patients. This review focuses on the expression and activation of CREB under physiologic conditions and in tumors of distinct origin as well as the underlying mechanisms of CREB regulation by diverse stimuli and inhibitors. In addition, the clinical relevance of CREB is summarized, including its use as a prognostic and/or predictive marker as well as a therapeutic target.
Collapse
Affiliation(s)
- André Steven
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Michael Friedrich
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Paul Jank
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Nadine Heimer
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany
| | - Jan Budczies
- Institute of Pathology, University Clinic Heidelberg, 69120, Heidelberg, Germany
| | - Carsten Denkert
- Institute of Pathology, Philipps University Marburg, 35043, Marburg, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112, Halle (Saale), Germany.
| |
Collapse
|
18
|
Bang J, Zippin JH. Cyclic adenosine monophosphate (cAMP) signaling in melanocyte pigmentation and melanomagenesis. Pigment Cell Melanoma Res 2020; 34:28-43. [PMID: 32777162 DOI: 10.1111/pcmr.12920] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
The second messenger cyclic adenosine monophosphate (cAMP) regulates numerous functions in both benign melanocytes and melanoma cells. cAMP is generated from two distinct sources, transmembrane and soluble adenylyl cyclases (tmAC and sAC, respectively), and is degraded by a family of proteins called phosphodiesterases (PDEs). cAMP signaling can be regulated in many different ways and can lead to varied effects in melanocytes. It was recently revealed that distinct cAMP signaling pathways regulate pigmentation by either altering pigment gene expression or the pH of melanosomes. In the context of melanoma, many studies report seemingly contradictory roles for cAMP in tumorigenesis. For example, cAMP signaling has been implicated in both cancer promotion and suppression, as well as both therapy resistance and sensitization. This conundrum in the field may be explained by the fact that cAMP signals in discrete microdomains and each microdomain can mediate differential cellular functions. Here, we review the role of cAMP signaling microdomains in benign melanocyte biology, focusing on pigmentation, and in melanomagenesis.
Collapse
Affiliation(s)
- Jakyung Bang
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Jonathan H Zippin
- Department of Dermatology, Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
19
|
Schmidt K, Carroll JS, Yee E, Thomas DD, Wert-Lamas L, Neier SC, Sheynkman G, Ritz J, Novina CD. The lncRNA SLNCR Recruits the Androgen Receptor to EGR1-Bound Genes in Melanoma and Inhibits Expression of Tumor Suppressor p21. Cell Rep 2020; 27:2493-2507.e4. [PMID: 31116991 PMCID: PMC6668037 DOI: 10.1016/j.celrep.2019.04.101] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 04/22/2019] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer, affecting men more frequently and severely than women. Although recent studies suggest that differences in activity of the androgen receptor (AR) underlie the observed sex bias, little is known about AR activity in melanoma. Here we show that AR and EGR1 bind to the long non-coding RNA SLNCR and increase melanoma proliferation through coordinated transcriptional regulation of several growth-regulatory genes. ChIP-seq reveals that ligand-free AR is enriched on SLNCR-regulated melanoma genes and that AR genomic occupancy significantly overlaps with EGR1 at consensus EGR1 binding sites. We present a model in which SLNCR recruits AR to EGR1-bound genomic loci and switches EGR1-mediated transcriptional activation to repression of the tumor suppressor p21Waf1/Cip1. Our data implicate the regulatory triad of SLNCR, AR, and EGR1 in promoting oncogenesis and may help explain why men have a higher incidence of and more rapidly progressive melanomas compared with women.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Johanna S Carroll
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Elaine Yee
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Dolly D Thomas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Leon Wert-Lamas
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Steven C Neier
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Justin Ritz
- Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Carl D Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA.
| |
Collapse
|
20
|
Shi S, Huang X, Ma X, Zhu X, Zhang Q. Research of the mechanism on miRNA193 in exosomes promotes cisplatin resistance in esophageal cancer cells. PLoS One 2020; 15:e0225290. [PMID: 32369495 PMCID: PMC7199973 DOI: 10.1371/journal.pone.0225290] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose Chemotherapy resistance of esophageal cancer is a key factor affecting the postoperative treatment of esophageal cancer. Among the media that transmit signals between cells, the exosomes secreted by tumor cells mediate information transmission between tumor cells, which can make sensitive cells obtain resistance. Although some cellular exosomes play an important role in tumor’s acquired drug resistance, the related action mechanism is still not explored specifically. Methods To elucidate this process, we constructed a cisplatin-resistant esophageal cancer cell line, and proved that exosomes conferring cellular resistance in esophageal cancer can promote cisplatin resistance in sensitive cells. Through high-throughput sequencing analysis of the exosome and of cells after stimulation by exosomes, we determined that the miRNA193 in exosomes conferring cellular resistance played a key role in sensitive cells acquiring resistance to cisplatin. In vitro experiments showed that miRNA193 can regulate the cell cycle of esophageal cancer cells and inhibit apoptosis, so that sensitive cells can acquire resistance to cisplatin. An in vivo experiment proved that miRNA193 can promote tumor proliferation through the exosomes, and provide sensitive cells with slight resistance to cisplatin. Results Small RNA sequencing of exosomes showed that exosomes in drug-resistant cells have 189 up-regulated and 304 down-regulated miRNAs; transcriptome results showed that drug-sensitive cells treated with drug-resistant cellular exosomes have 3446 high-expression and 1709 low-expression genes; correlation analysis showed that drug-resistant cellular exosomes mainly affect the drug resistance of sensitive cells through paths such as cytokine–cytokine receptor interaction, and the VEGF and Jak-STAT signaling pathways; miRNA193, one of the high-expression miRNAs in drug-resistant cellular exosomes, can promote drug resistance by removing cisplatin’s inhibition of the cell cycle of sensitive cells. Conclusion Sensitive cells can become resistant to cisplatin through acquired drug-resistant cellular exosomes, and miRNA193 can make tumor cells acquire cisplatin resistance by regulating the cell cycle.
Collapse
Affiliation(s)
- Shifeng Shi
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- SanQuan Medical College, Xinxiang Medical University, Xinxiang, China
| | - Xin Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyan Zhu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- * E-mail: (XZ); (QZ)
| | - Qinxian Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- * E-mail: (XZ); (QZ)
| |
Collapse
|
21
|
|
22
|
Steven A, Leisz S, Sychra K, Hiebl B, Wickenhauser C, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Hypoxia-mediated alterations and their role in the HER-2/neuregulated CREB status and localization. Oncotarget 2018; 7:52061-52084. [PMID: 27409833 PMCID: PMC5239535 DOI: 10.18632/oncotarget.10474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023] Open
Abstract
The cAMP-responsive element-binding protein (CREB) is involved in the tumorigenicity of HER-2/neu-overexpressing murine and human tumor cells, but a link between the HER-2/neu-mediated CREB activation, its posttranslational modification and localization and changes in the cellular metabolism, due to an altered (tumor) microenvironment remains to be established. The present study demonstrated that shRNA-mediated silencing of CREB in HER-2/neu-transformed cells resulted in decreased tumor formation, which was associated with reduced angiogenesis, but increased necrotic and hypoxic areas in the tumor. Hypoxia induced pCREBSer133, but not pCREBSer121 expression in HER-2/neu-transformed cells. This was accompanied by upregulation of the hypoxia-inducible genes GLUT1 and VEGF, increased cell migration and matrix metalloproteinase-mediated invasion. Treatment of HER-2/neu+ cells with signal transduction inhibitors targeting in particular HER-2/neu was able to revert hypoxia-controlled CREB activation. In addition to changes in the phosphorylation, hypoxic response of HER-2/neu+ cells caused a transient ubiquitination and SUMOylation as well as a co-localization of nuclear CREB to the mitochondrial matrix. A mitochondrial localization of CREB was also demonstrated in hypoxic areas of HER-2/neu+ mammary carcinoma lesions. This was accompanied by an altered gene expression pattern, activity and metabolism of mitochondria leading to an increased respiratory rate, oxidative phosphorylation and mitochondrial membrane potential and consequently to an enhanced apoptosis and reduced cell viability. These data suggest that the HER-2/neu-mediated CREB activation caused by a hypoxic tumor microenvironment contributes to the neoplastic phenotype of HER-2/neu+ cells at various levels.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Bernhard Hiebl
- Centre for Basic Medical Research, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
23
|
Steven A, Seliger B. Control of CREB expression in tumors: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 2018; 7:35454-65. [PMID: 26934558 PMCID: PMC5085243 DOI: 10.18632/oncotarget.7721] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The cyclic AMP response element binding (CREB) protein has pleiotropic activities in physiologic processes. Due to its central position downstream of many growth signaling pathways CREB has the ability to influence cell survival, growth and differentiation of normal, but also of tumor cells suggesting an oncogenic potential of CREB. Indeed, increased CREB expression and activation is associated with tumor progression, chemotherapy resistance and reduced patients' survival. We summarize here the different cellular functions of CREB in tumors of distinct histology as well as its use as potential prognostic marker. In addition, the underlying molecular mechanisms to achieve constitutive activation of CREB including structural alterations, such as gene amplification and chromosomal translocation, and deregulation, which could occur at the transcriptional, post-transcriptional and post-translational level, will be described. Since downregulation of CREB by different strategies resulted in inhibition of cell proliferation, invasion and induction of apoptosis, the role of CREB as a promising target for cancer therapy will be also discussed.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
24
|
Wu D, Li B, Liu H, Yuan M, Yu M, Tao L, Dong S, Tong X. In vitro inhibited effect of gap junction composed of Cx43 in the invasion and metastasis of testicular cancer resistanced to cisplatin. Biomed Pharmacother 2018; 98:826-833. [PMID: 29571253 DOI: 10.1016/j.biopha.2018.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/22/2022] Open
Abstract
The effect of gap junction intercellular communication composed of connexin on cancer invasion/metastasis has been thoroughly explored; however, its effect on testicular cancer resistanced to chemotherapy is still unclear. In this study, we found that the capability of invasion and migration of I-10/DDP (cisplatin (DDP)-resistance) cells were elevated. Furthermore, the expression of Cx43 and the function of gap junction (GJ) in I-10/DDP cells were decreased compared with parental I-10 cells. Pharmacological inhibition of GJs by oleamide (Olea) enhanced invasion and migration. However, enhancement of GJs by retinoic acid (RA) decreased invasion and migration of I-10/DDP cells. To further clarify the invasion/migration inhibited effect of GJ in the testicular cancer resistanced to DDP, GJ function was modulated by overexpression and knockdown of Cx43 expression. Overexpression of Cx43 reduced invasion and migration of I-10/DDP cells. Conversely, knockdown of Cx43 expression increased invasion and migration of I-10/DDP cells. In summary, GJ composed of Cx43 inhibits I-10/DDP cells invasion and migration, and it may become the potential therapeutic target for testicular cancer chemotherapy.
Collapse
Affiliation(s)
- Dandan Wu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Beibei Li
- Department of Pharmacy, The People's Hospital of Lixin County, Anhui, Bozhou, 236700, PR China
| | - Haofeng Liu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Min Yuan
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Anhui, Bengbu, 233004, PR China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, PR China
| | - Shuying Dong
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, PR China.
| | - Xuhui Tong
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
25
|
Rodríguez CI, Castro-Pérez E, Prabhakar K, Block L, Longley BJ, Wisinski JA, Kimple ME, Setaluri V. EPAC-RAP1 Axis-Mediated Switch in the Response of Primary and Metastatic Melanoma to Cyclic AMP. Mol Cancer Res 2017; 15:1792-1802. [PMID: 28851815 PMCID: PMC6309370 DOI: 10.1158/1541-7786.mcr-17-0067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 11/16/2022]
Abstract
Cyclic AMP (cAMP) is an important second messenger that regulates a wide range of physiologic processes. In mammalian cutaneous melanocytes, cAMP-mediated signaling pathways activated by G-protein-coupled receptors (GPCR), like melanocortin 1 receptor (MC1R), play critical roles in melanocyte homeostasis including cell survival, proliferation, and pigment synthesis. Impaired cAMP signaling is associated with increased risk of cutaneous melanoma. Although mutations in MAPK pathway components are the most frequent oncogenic drivers of melanoma, the role of cAMP in melanoma is not well understood. Here, using the Braf(V600E)/Pten-null mouse model of melanoma, topical application of an adenylate cyclase agonist, forskolin (a cAMP inducer), accelerated melanoma tumor development in vivo and stimulated the proliferation of mouse and human primary melanoma cells, but not human metastatic melanoma cells in vitro The differential response of primary and metastatic melanoma cells was also evident upon pharmacologic inhibition of the cAMP effector protein kinase A. Pharmacologic inhibition and siRNA-mediated knockdown of other cAMP signaling pathway components showed that EPAC-RAP1 axis, an alternative cAMP signaling pathway, mediates the switch in response of primary and metastatic melanoma cells to cAMP. Evaluation of pERK levels revealed that this phenotypic switch was not correlated with changes in MAPK pathway activity. Although cAMP elevation did not alter the sensitivity of metastatic melanoma cells to BRAF(V600E) and MEK inhibitors, the EPAC-RAP1 axis appears to contribute to resistance to MAPK pathway inhibition. These data reveal a MAPK pathway-independent switch in response to cAMP signaling during melanoma progression.Implications: The prosurvival mechanism involving the cAMP-EPAC-RAP1 signaling pathway suggest the potential for new targeted therapies in melanoma. Mol Cancer Res; 15(12); 1792-802. ©2017 AACR.
Collapse
Affiliation(s)
- Carlos I Rodríguez
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgardo Castro-Pérez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Laura Block
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Jaclyn A Wisinski
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
| | - Michelle E Kimple
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
- Interdisciplinary Graduate Program in Nutritional Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Medicine, Division of Endocrinology, School of Medicine and Public Health, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
26
|
Affiliation(s)
- Suzie Chen
- Susan Lehman Cullman Laboratory for Cancer Research, Ernest Marion School of Pharmacy, Rutgers University, Piscataway, NJ, United States.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
27
|
Steven A, Leisz S, Wickenhauser C, Schulz K, Mougiakakos D, Kiessling R, Denkert C, Seliger B. Linking CREB function with altered metabolism in murine fibroblast-based model cell lines. Oncotarget 2017; 8:97439-97463. [PMID: 29228623 PMCID: PMC5722575 DOI: 10.18632/oncotarget.22135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/26/2017] [Indexed: 01/31/2023] Open
Abstract
The cAMP-responsive element binding protein CREB is frequently overexpressed and activated in tumors of distinct histology, leading to enhanced proliferation, migration, invasion and angiogenesis as well as reduced apoptosis. The de-regulated expression of CREB might be linked with transcriptional as well as post-transcriptional regulation mechanisms. We show here that altered CREB expression levels and function are associated with changes in the cellular metabolism. Using comparative proteome-based analysis an altered expression pattern of proteins involved in the cellular metabolism in particular in glycolysis was found upon CREB down-regulation in HER-2/neu-transfected cell lines. This was associated with diminished expression levels of the glucose transporter 1, reduced glucose uptake and reduced glycolytic activity in HER-2/neu-transfected cells with down-regulated CREB when compared to HER-2/neu+ cells. Furthermore, hypoxia-induced CREB activity resulted in changes of the metabolism in HER-2/neu transfected cells. Low pH values in the supernatant of HER-2/neu transformants were restored by CREB down-regulation, but further decreased by hypoxia. The altered intracellular pH values were associated with a distinct expression of lactate dehydrogenase, and its substrate lactate. Moreover, enhanced phosphorylation of CREB on residue Ser133 was accompanied by a down-regulation of pERK and an up-regulation of pAKT. CREB promotes the detoxification of ROS by catalase, therefore protecting the mitochondrial activity under oxidative stress. These data suggest that there might exists a link between CREB function and the altered metabolism in HER-2/neu-transformed cells. Thus, targeting these altered metabolic pathways might represent an attractive therapeutic approach at least for the treatment of patients with HER-2/neu overexpressing tumors.
Collapse
Affiliation(s)
- André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Sandra Leisz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristin Schulz
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology and Oncology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
Wouters J, Vizoso M, Martinez-Cardus A, Carmona FJ, Govaere O, Laguna T, Joseph J, Dynoodt P, Aura C, Foth M, Cloots R, van den Hurk K, Balint B, Murphy IG, McDermott EW, Sheahan K, Jirström K, Nodin B, Mallya-Udupi G, van den Oord JJ, Gallagher WM, Esteller M. Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Med 2017; 15:101. [PMID: 28578692 PMCID: PMC5458482 DOI: 10.1186/s12916-017-0851-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses. METHODS We performed a comprehensive DNA methylation analysis during all progression stages of melanoma using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene expression data. We validated the discovered biomarkers in three independent validation cohorts by pyrosequencing and immunohistochemistry. RESULTS We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g., HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein expression as biomarkers with prognostic information independent of tumor thickness and ulceration. CONCLUSIONS Our data underscores the importance of epigenomic regulation in triggering metastatic dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.
Collapse
Affiliation(s)
- Jasper Wouters
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven (University of Leuven), Leuven, Belgium
| | - Miguel Vizoso
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Anna Martinez-Cardus
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - F Javier Carmona
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Olivier Govaere
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Teresa Laguna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | - Claudia Aura
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Mona Foth
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Cancer Research UK, Beatson Institute, Glasgow, G61 1BD, UK
| | - Roy Cloots
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karin van den Hurk
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Balazs Balint
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Ian G Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Enda W McDermott
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Kieran Sheahan
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | - Bjorn Nodin
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | | | - Joost J van den Oord
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - William M Gallagher
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland.
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
29
|
Jiang MC. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy. Tumour Biol 2016; 37:13077-13090. [PMID: 27596143 DOI: 10.1007/s13277-016-5301-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
CSE1L (chromosome segregation 1-like protein), also named as CAS (cellular apoptosis susceptibility protein), is highly expressed in most cancer types. CSE1L/CAS is a multiple functional protein that plays roles in apoptosis, cell survival, chromosome assembly, nucleocytoplasmic transport, microvesicle formation, and cancer metastasis; some of the functions are explicitly correlated. CSE1L is also a cancer serum biomarker. The phosphorylation of CAS is regulated by the extracellular signal-regulated kinase (ERK). The RAS/RAF/MAPK/ERK signaling pathways are the essential targets of most targeted cancer drugs, thus serum phosphorylated CSE1L may be a potential biomarker for monitoring drug resistance in targeted therapy. CSE1L can regulate Ras-induced ERK phosphorylation. CSE1L also regulates the expression and phosphorylation of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) and is thus involved in the melanogenesis and progression of melanoma. CAS is an exosome/microvesicle membrane protein. Tumor cells consistently secrete microvesicles and tumor-derived microvesicles may be accumulated around tumors. Therefore, microvesicle membrane CSE1L may be a potential target for the development of high-efficacy antibody-drug conjugates (ADCs) for cancer therapy. This review will focus on CSE1L expression in cancers, its relationship to Ras/ERK and cAMP/PKA signaling pathways in melanoma development, its potential for the development of ADCs and tumor imaging reagents, and secretory phosphorylated CSE1L for monitoring the emergence of drug resistance in targeted cancer therapy.
Collapse
Affiliation(s)
- Ming-Chung Jiang
- Targetrust Biotech. Ltd., No. 510 Zhongzheng Rd, Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
30
|
Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol 2016; 146:205-17. [PMID: 27102177 DOI: 10.1007/s00418-016-1433-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 12/25/2022]
Abstract
Tumour microenvironment plays a critical role in cell invasion and metastasis. To investigate the role of cancer-associated fibroblasts (CAFs) in melanoma cell invasiveness, we used 3D spheroid invasion assay. The effect of conditioned media from normal fibroblasts and CAFs cultivated alone or co-cultivated with melanoma cells on BLM or A2058 melanoma spheroid invasion was analysed. We found that conditioned media from CAFs and CAFs co-cultured with melanoma cells, especially, promote invasion and migration, without significant effect on melanoma cell proliferation. We further analysed the expression of pro-invasive cytokines IL-8 and IL-6 in media and found that melanoma cells are dominant producers of IL-8 and fibroblasts are dominant producers of IL-6 in 2D monocultures, while co-cultivation of CAFs with melanoma cells induces production/secretion of IL-6 and IL-8 into the media. The analyses of IL-6 levels in 3D cultures and human melanoma samples, however, revealed that at least in some cases IL-6 is also produced directly by melanoma cells. Analysis of the role of IL-6 and IL-8 in CAF-induced melanoma invasion, using neutralising antibodies, revealed that simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. In summary, these experiments indicate the important role of CAFs and IL-8 and IL-6 cytokines in melanoma cell invasiveness.
Collapse
|
31
|
Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016; 159:83-92. [PMID: 26808163 PMCID: PMC4779708 DOI: 10.1016/j.pharmthera.2016.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | | | | | | |
Collapse
|
32
|
AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene 2015; 35:3016-26. [PMID: 26434590 PMCID: PMC4908437 DOI: 10.1038/onc.2015.357] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126* in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126*, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse expression pattern of miR-126&126*-targeted genes that were induced by miR-221&222. Looking for a central player in this complex network, we revealed the dual regulation of AP2α, on one side directly targeted by miR-221&222 and on the other a transcriptional activator of miR-126&126*. We showed the chance of restoring miR-126&126* expression in metastatic melanoma to reduce the amount of mature intracellular heparin-binding EGF like growth factor, thus preventing promyelocytic leukemia zinc finger delocalization and maintaining its repression on miR-221&222 promoter. Thus, the low-residual quantity of these two miRs assures the release of AP2α expression, which in turn binds to and induces miR-126&126* transcription. All together these results point to an unbalanced ratio functional to melanoma malignancy between these two couples of miRs. During progression this balance gradually moves from miR-126&126* toward miR-221&222. This circuitry, besides confirming the central role of AP2α in orchestrating melanoma development and/or progression, further displays the significance of these miRs in cancer and the option of utilizing them for novel therapeutics.
Collapse
|
33
|
Lee WR, Shen SC, Wu PR, Chou CL, Shih YH, Yeh CM, Yeh KT, Jiang MC. CSE1L Links cAMP/PKA and Ras/ERK pathways and regulates the expressions and phosphorylations of ERK1/2, CREB, and MITF in melanoma cells. Mol Carcinog 2015; 55:1542-1552. [PMID: 26331446 DOI: 10.1002/mc.22407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/13/2022]
Abstract
The Ras/ERK (extracellular signal-regulated protein kinase) and cAMP/PKA (protein kinase A) pathways are essential for the transcriptional activities of CREB (cAMP response element binding protein) and MITF (microphthalmia-associated transcription factor) in melanogenesis and the progression of melanoma. However, the interaction between Ras/ERK and cAMP/PKA pathways in the melanogenesis and progression of melanoma is not fully known. Here, we report that CSE1L (chromosome segregation 1-like protein) regulates cAMP/PKA-induced CREB and MITF expressions as well as Ras-induced ERK1/2 phosphorylation. IBMX, a cAMP/PKA activator, treatment induced CSE1L phosphorylation and augmented Ras-induced ERK1/2 phosphorylation. CSE1L knockdown by CSE1L shRNA expression vectors inhibited Ras-induced ERK1/2 phosphorylation and melanogenesis in melanoma cells. CSE1L overexpression increased phospho-CREB expression; CSE1L knockdown also inhibited Ras-induced phospho-CREB, MITF, and tyrosinase expressions, regardless of the presence of IBMX. This study identifies CSE1L links and controls the Ras/ERK and cAMP/PKA pathways in the melanogenesis of melanoma cells. Melanomas frequently develop drug resistance via paradoxical activation of Ras/Raf/MEK/ERK or alternatively activated Ras/ERK and cAMP/PKA pathways. Thus CSE1L may be a potential target for treating melanomas that harbor Ras mutations or are resistant to drugs targeting Raf/MEK/ERK. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Woan-Ruoh Lee
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shing-Chuan Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ru Wu
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Chia-Lun Chou
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chung-Min Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Kun-Tu Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chung Jiang
- Department of Dermatology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
34
|
Yamada T, Amann JM, Fukuda K, Takeuchi S, Fujita N, Uehara H, Iwakiri S, Itoi K, Shilo K, Yano S, Carbone DP. Akt Kinase-Interacting Protein 1 Signals through CREB to Drive Diffuse Malignant Mesothelioma. Cancer Res 2015; 75:4188-97. [PMID: 26294214 DOI: 10.1158/0008-5472.can-15-0858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Diffuse malignant mesothelioma (DMM) is a tumor of serosal membranes with propensity for progressive local disease. Because current treatment options are largely ineffective, novel therapeutic strategies based on molecular mechanisms and the disease characteristics are needed to improve the outcomes of patients with this disease. Akt kinase interacting protein 1 (Aki1; Freud-1/CC2D1A) is a scaffold protein for the PI3K-PDK1-Akt signaling module that helps determine receptor signal selectivity for EGFR. Aki1 has been suggested as a therapeutic target, but its potential has yet to be evaluated in a tumor setting. Here, we report evidence supporting its definition as a therapeutic target in DMM. In cell-based assays, Aki1 silencing decreased cell viability and caused cell-cycle arrest of multiple DMM cell lines via effects on the PKA-CREB1 signaling pathway. Blocking CREB activity phenocopied Aki1 silencing. Clinically, Aki1 was expressed in most human DMM specimens where its expression correlated with phosphorylated CREB1. Notably, Aki1 siRNA potently blocked tumor growth in an orthotopic implantation model of DMM when administered directly into the pleural cavity of tumor-bearing mice. Our findings suggest an important role for the Aki1-CREB axis in DMM pathogenesis and provide a preclinical rationale to target Aki1 by intrathoracic therapy in locally advanced tumors.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio. Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Joseph M Amann
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hisanori Uehara
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Shotaro Iwakiri
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Kazumi Itoi
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
35
|
Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol 2015; 388:1317-31. [PMID: 26285646 DOI: 10.1007/s00210-015-1165-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023]
Abstract
Complex interactions between tumor cells and their surrounding compartment are strongly influenced by the host in which the tumor grows. In melanoma, for instance, stress-associated norephinephrine (NE), acting at β-adrenergic receptors (β-ARs), stimulates melanoma cell proliferation and tumor angiogenesis. Among β-ARs, β3-ARs play a role acting not only at tumor cells but also at non-neoplastic stromal cells within the melanoma. In the present study, we used a murine model of B16 melanoma to evaluate the role of the host β1- and β2-ARs in melanoma growth and we determined whether the role of β3-ARs can be influenced by the absence of stromal β1- and β2-ARs. As compared to wild-type mice, β1/2-AR knockout mice displayed (i) increased intratumoral levels of both NE and β3-ARs, as evidentiated at both messenger and protein levels; (ii) increased tumor vascularization; (iii) decreased tumor cell proliferation but increased tumor cell apoptosis; and (iv) increased responsiveness to intratumoral injection of the β3-AR blocker L-748,337 in terms of decrease in tumor growth, tumor vascular response, tumor cell proliferation, and increase in tumor cell death. These findings together validate the role of β-AR signaling in melanoma microenvironment suggesting that non-neoplastic stromal cells may be targeted by β-AR-related drugs. The additional fact that β3-ARs play an important role in melanoma growth suggests selective β3-AR antagonists as important proapoptotic agents.
Collapse
|
36
|
Palmieri G, Ombra M, Colombino M, Casula M, Sini M, Manca A, Paliogiannis P, Ascierto PA, Cossu A. Multiple Molecular Pathways in Melanomagenesis: Characterization of Therapeutic Targets. Front Oncol 2015; 5:183. [PMID: 26322273 PMCID: PMC4530319 DOI: 10.3389/fonc.2015.00183] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
Molecular mechanisms involved in pathogenesis of malignant melanoma have been widely studied and novel therapeutic treatments developed in recent past years. Molecular targets for therapy have mostly been recognized in the RAS–RAF–MEK–ERK and PI3K–AKT signaling pathways; small-molecule inhibitors were drawn to specifically target key kinases. Unfortunately, these targeted drugs may display intrinsic or acquired resistance and various evidences suggest that inhibition of a single effector of the signal transduction cascades involved in melanoma pathogenesis may be ineffective in blocking the tumor growth. In this sense, a wider comprehension of the multiple molecular alterations accounting for either response or resistance to treatments with targeted inhibitors may be helpful in assessing, which is the most effective combination of such therapies. In the present review, we summarize the known molecular mechanisms underlying either intrinsic and acquired drug resistance either alternative roads to melanoma pathogenesis, which may become targets for innovative anticancer approaches.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - MariaNeve Ombra
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche , Avellino , Italy
| | - Maria Colombino
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Milena Casula
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - MariaCristina Sini
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Antonella Manca
- Unità di Genetica dei Tumori, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , Sassari , Italy
| | - Panagiotis Paliogiannis
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche, Università di Sassari , Sassari , Italy
| | | | - Antonio Cossu
- Dipartimento di Scienze Chirurgiche, Microchirurgiche e Mediche, Università di Sassari , Sassari , Italy
| |
Collapse
|
37
|
Prodromidou K, Papastefanaki F, Sklaviadis T, Matsas R. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells 2015; 32:1674-87. [PMID: 24497115 DOI: 10.1002/stem.1663] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/20/2013] [Accepted: 01/11/2014] [Indexed: 12/15/2022]
Abstract
Cellular prion protein (PrP) is prominently expressed in brain, in differentiated neurons but also in neural stem/precursor cells (NPCs). The misfolding of PrP is a central event in prion diseases, yet the physiological function of PrP is insufficiently understood. Although PrP has been reported to associate with the neural cell adhesion molecule (NCAM), the consequences of concerted PrP-NCAM action in NPC physiology are unknown. Here, we generated NPCs from the subventricular zone (SVZ) of postnatal day 5 wild-type and PrP null (-/-) mice and observed that PrP is essential for proper NPC proliferation and neuronal differentiation. Moreover, we found that PrP is required for the NPC response to NCAM-induced neuronal differentiation. In the absence of PrP, NCAM not only fails to promote neuronal differentiation but also induces an accumulation of doublecortin-positive neuronal progenitors at the proliferation stage. In agreement, we noted an increase in cycling neuronal progenitors in the SVZ of PrP-/- mice compared with PrP+/+ mice, as evidenced by double labeling for the proliferation marker Ki67 and doublecortin as well as by 5-bromo-2'-deoxyuridine incorporation experiments. Additionally, fewer newly born neurons were detected in the rostral migratory stream of PrP-/- mice. Analysis of the migration of SVZ cells in microexplant cultures from wild-type and PrP-/- mice revealed no differences between genotypes or a role for NCAM in this process. Our data demonstrate that PrP plays a critical role in neuronal differentiation of NPCs and suggest that this function is, at least in part, NCAM-dependent.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
38
|
Westbom CM, Shukla A, MacPherson MB, Yasewicz EC, Miller JM, Beuschel SL, Steele C, Pass HI, Vacek PM, Shukla A. CREB-induced inflammation is important for malignant mesothelioma growth. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2816-27. [PMID: 25111229 DOI: 10.1016/j.ajpath.2014.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/15/2014] [Accepted: 06/05/2014] [Indexed: 12/25/2022]
Abstract
Malignant mesothelioma (MM) is an aggressive tumor with no treatment regimen. Previously we have demonstrated that cyclic AMP response element binding protein (CREB) is constitutively activated in MM tumor cells and tissues and plays an important role in MM pathogenesis. To understand the role of CREB in MM tumor growth, we generated CREB-inhibited MM cell lines and performed in vitro and in vivo experiments. In vitro experiments demonstrated that CREB inhibition results in significant attenuation of proliferation and drug resistance of MM cells. CREB-silenced MM cells were then injected into severe combined immunodeficiency mice, and tumor growth in s.c. and i.p. models of MM was followed. We observed significant inhibition in MM tumor growth in both s.c. and i.p. models and the presence of a chemotherapeutic drug, doxorubicin, further inhibited MM tumor growth in the i.p. model. Peritoneal lavage fluids from CREB-inhibited tumor-bearing mice showed a significantly reduced total cell number, differential cell counts, and pro-inflammatory cytokines and chemokines (IL-6, IL-8, regulated on activation normal T cell expressed and secreted, monocyte chemotactic protein-1, and vascular endothelial growth factor). In vitro studies showed that asbestos-induced inflammasome/inflammation activation in mesothelial cells was CREB dependent, further supporting the role of CREB in inflammation-induced MM pathogenesis. In conclusion, our data demonstrate the involvement of CREB in the regulation of MM pathogenesis by regulation of inflammation.
Collapse
Affiliation(s)
- Catherine M Westbom
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont
| | - Anurag Shukla
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont
| | | | - Elizabeth C Yasewicz
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont
| | - Jill M Miller
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont
| | - Stacie L Beuschel
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Harvey I Pass
- Langone Medical Center, NYU School of Medicine, New York, New York
| | - Pamela M Vacek
- Department of Medical Biostatistics, College of Medicine, University of Vermont, Burlington, Vermont
| | - Arti Shukla
- Department of Pathology, College of Medicine, University of Vermont, Burlington, Vermont.
| |
Collapse
|
39
|
Yu Y, Zhang X, Hong S, Zhang M, Cai Q, Zhang M, Jiang W, Xu C. The expression of platelet-activating factor receptor modulates the cisplatin sensitivity of ovarian cancer cells: a novel target for combination therapy. Br J Cancer 2014; 111:515-24. [PMID: 24921917 PMCID: PMC4119987 DOI: 10.1038/bjc.2014.323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/09/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Ovarian cancer has the highest mortality rate of the gynaecological cancers. Although cisplatin (CDDP) is an effective treatment for ovarian cancer, recurrence is frequent and leads to death. The objective was to explore the role and possible mechanisms of platelet-activating factor receptor (PAFR) signalling in CDDP-treated ovarian cancer cells. METHODS The upregulation of PAFR in CDDP-treated ovarian cancer cells was observed using realtime PCR and Western blot. The potential role of PAFR in modulating the CDDP sensitivity was assessed using a pharmacological inhibitor and siRNA knockdown. The PAFR-activated signalling pathways involved in cell responses to CDDP were assessed. RESULTS Cisplatin induced increased PAFR expression in two ovarian cancer cell lines. The upregulation of PAFR by CDDP correlated with the time-dependent accumulation of NF-κB and HIF-1α in the nucleus. The inhibition of PAFR sensitised the ovarian cancer cells to CDDP. The PI3K and ERK pathways lie downstream of activated PAFR in CDDP-treated cells and their inhibition enhanced CDDP sensitivity. Finally, co-treatment with a PAFR antagonist (Ginkgolide B) and CDDP markedly reduced tumour growth in an in vivo model of ovarian cancer. CONCLUSIONS Together, these findings suggest that PAFR is a novel and promising therapeutic target for sensitising ovarian cancer cells to CDDP.
Collapse
Affiliation(s)
- Y Yu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
| | - X Zhang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
| | - S Hong
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
| | - M Zhang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
| | - Q Cai
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
| | - M Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology, Hospital 411 of CPLA, Shanghai 200081, China
| | - W Jiang
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
| | - C Xu
- Obstetrics and Gynecology Hospital, Fudan University, No.419, Fang-Xie Road, Shanghai 200011, China
- Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138, Yi-Xueyuan Road, Shanghai 200032, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413, Zhao-Jiabang Road, Shanghai 200011, China
- Institute of Biomedical Sciences, Fudan University, Shanghai 200032, No.138, Yi-Xueyuan Road, Shanghai 200032, China
| |
Collapse
|
40
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
41
|
Ribeiro-Pereira C, Moraes JA, Souza MDJ, Laurindo FR, Arruda MA, Barja-Fidalgo C. Redox modulation of FAK controls melanoma survival--role of NOX4. PLoS One 2014; 9:e99481. [PMID: 24911159 PMCID: PMC4050056 DOI: 10.1371/journal.pone.0099481] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 05/15/2014] [Indexed: 01/08/2023] Open
Abstract
Studies have demonstrated that reactive oxygen species (ROS) generated by NADPH oxidase are essential for melanoma proliferation and survival. However, the mechanisms by which NADPH oxidase regulates these effects are still unclear. In this work, we investigate the role of NADPH oxidase-derived ROS in the signaling events that coordinate melanoma cell survival. Using the highly metastatic human melanoma cell line MV3, we observed that pharmacological NADPH oxidase inhibition reduced melanoma viability and induced dramatic cellular shape changes. These effects were accompanied by actin cytoskeleton rearrangement, diminished FAKY397 phosphorylation, and decrease of FAK-actin and FAK-cSrc association, indicating disassembly of focal adhesion processes, a phenomenon that often results in anoikis. Accordingly, NADPH oxidase inhibition also enhanced hypodiploid DNA content, and caspase-3 activation, suggesting activation of the apoptotic machinery. NOX4 is likely to be involved in these effects, since silencing of NOX4 significantly inhibited basal ROS production, reduced FAKY397 phosphorylation and decreased tumor cell viability. Altogether, the results suggest that intracellular ROS generated by the NADPH oxidase, most likely NOX4, transmits cell survival signals on melanoma cells through the FAK pathway, maintaining adhesion contacts and cell viability.
Collapse
Affiliation(s)
- Cristiane Ribeiro-Pereira
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Alfredo Moraes
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariele de Jesus Souza
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Francisco R. Laurindo
- Laboratory of Vascular Biology, Instituto do Coração, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Augusta Arruda
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Vice-Diretoria de Ensino, Pesquisa e Inovação, Farmanguinhos, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
42
|
CXC and CC chemokines as angiogenic modulators in nonhaematological tumors. BIOMED RESEARCH INTERNATIONAL 2014; 2014:768758. [PMID: 24971349 PMCID: PMC4058128 DOI: 10.1155/2014/768758] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/08/2014] [Indexed: 12/26/2022]
Abstract
Chemokines are a superfamily of structurally homologous heparin-binding proteins that includes potent inducers and inhibitors of angiogenesis. The imbalance between angiogenic and angiostatic chemokine activities can lead to abnormalities, such as chronic inflammation, dysplastic transformation, and even tumor development and spreading. In this review, we summarize the current literature regarding the role of chemokines as modulators of tumor angiogenesis and their potential role as therapeutic targets in patients with nonhaematological tumors.
Collapse
|
43
|
Yu Y, Zhang M, Zhang X, Cai Q, Hong S, Jiang W, Xu C. Synergistic effects of combined platelet-activating factor receptor and epidermal growth factor receptor targeting in ovarian cancer cells. J Hematol Oncol 2014; 7:39. [PMID: 24886678 PMCID: PMC4028110 DOI: 10.1186/1756-8722-7-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023] Open
Abstract
Background Genetic alterations, including the overexpression of epidermal growth factor receptor (EGFR), play a crucial role in ovarian carcinogenesis. To date, EGFR targeting has shown limited antitumor effects in ovarian cancer when administered as monotherapy. We previously identified platelet-activating factor receptor (PAFR) as being overexpressed in ovarian cancer and found that its ligand PAF evoked EGFR phosphorylation. To determine whether PAFR targeting can enhance the antitumor efficacy of EGFR inhibition, we investigated the effects of a PAFR antagonist (WEB2086) in conjunction with an EGFR inhibitor (AG1478). Methods The expression of EGFR and PAFR in CAOV-3 and SKOV-3 ovarian cancer cell lines was measured by Western blot and immunocytochemistry. Synergy was determined using isobologram analysis. The effects of combined PAFR and EGFR targeting on both cells were assessed by using CCK-8, transwell, flow cytometry, western blot analysis. In vivo studies were conducted using CAOV-3 cells xenografted in nu/nu mice. Results Treatment with combination WEB2086 and AG1478 resulted in significantly greater inhibition of proliferation and invasion compared to either drug alone. When examining equipotent combinations of WEB2086 and AG1478 to determine potential synergy, a combination index (CI) of 0.49 was identified for CAOV-3 cells and a CI of 0.58 for SKOV-3 cells indicating synergy. This co-inhibition induced significantly more apoptosis and arrested the cells at G0/G1 phase in both cell lines. The activation of PAFR and/or EGFR induced phosphorylation of the mTOR, AKT, and MAPK pathways. Combined PAFR and EGFR targeting synergistically diminished the expression of PAFR and EGFR phosphorylation and downstream signaling. In vivo studies further verified the antitumor effects of combined PAFR and EGFR targeting in a CAOV-3 xenograft model. Conclusions These results suggest that WEB2086 and AG1478 are synergistic in ovarian cancer cells with high expression of both PAFR and EGFR. The presented approach may have important therapeutic implications in the treatment of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Jiang
- Obstetrics and Gynecology Hospital, Fudan University, No,419 Fang-Xie Road, Shanghai, 200011, People's Republic of China.
| | | |
Collapse
|
44
|
Yu Y, Zhang X, Hong S, Zhang M, Cai Q, Jiang W, Xu C. Epidermal growth factor induces platelet-activating factor production through receptors transactivation and cytosolic phospholipase A2 in ovarian cancer cells. J Ovarian Res 2014; 7:39. [PMID: 24721622 PMCID: PMC4005630 DOI: 10.1186/1757-2215-7-39] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/08/2014] [Indexed: 11/17/2022] Open
Abstract
Background Among the pro-inflammatory lipid mediators, platelet-activating factor (PAF) is a major primary and secondary messenger that binds to the PAF-receptor (PAFR). Epidermal growth factor (EGF) is a polypeptide growth factor that binds to the EGF-receptor (EGFR). Evidence suggests that both PAF and EGF play a significant role in oncogenic transformation, tumor growth, neoangiogenesis and metastasis, including ovarian cancer. PAF has the potential to transactivate EGFR in ovarian cancer cells. This study explores the mechanisms involved in EGF-induced PAF production. Methods The effect of EGF on PAF production in ovarian cancer cells was observed using enzyme-linked immunosorbent assay. The receptors transactivation and the role of cytosolic phospholipase A2 (cPLA2) in modulating PAF production induced by EGF was assessed using pharmacological inhibitors, si-RNA knockdown, targeted gene overexpression and immunocytochemistry. The signaling pathways invovled in PAF production induced by EGF in ovarian cancer cells were assessed. Results We demonstrate that EGF increases the production of PAF in CAOV3 and SKOV3 ovarian cancer cell lines. EGF induces the transactivation of PAFR, which can be blocked by an EGFR inhibitor. Inhibition of EGFR and/or PAFR blocks PAF production in response to EGF. EGF-induced PAF production involves the phosphorylation of extracellular-regulated protein kinase (ERK) and cytosolic phospholipase A2 (cPLA2). A cPLA2 inhibitor blocks EGF-induced PAF production as well as si-cPLA2, while overexpression of cPLA2 increases PAF production. Conclusions These results indicate that EGF stimulates PAF production in ovarian cancer cells in a manner that requires cPLA2. We have also determined that crosstalk can occur bidirectionally between EGFR and PAFR, suggesting that EGF-induced PAF production could result in positive feedback that acts on the PAF-receptor to promote ovarian cancer progression.
Collapse
Affiliation(s)
- Yi Yu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China
| | - Shanshan Hong
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China
| | - Mingxing Zhang
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China
| | - Qingqing Cai
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China
| | - Wei Jiang
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, No.419 Fang-Xie Road, Shanghai 200011, People's Republic of China ; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China ; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, No. 413 Zhao-Jiabang Road, Shanghai 200011, People's Republic of China ; Institute of Biomedical Sciences, Fudan University, No.138 Yi-Xueyuan Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
45
|
Flasiński M, Hąc-Wydro K, Wydro P, Dynarowicz-Łątka P. Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level. J R Soc Interface 2014; 11:20131103. [PMID: 24694892 DOI: 10.1098/rsif.2013.1103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three structurally related but differing in biological activities single-chained ether phospholipids (PAF (platelet-activating factor) and lyso-PAF) and an anti-cancer drug (edelfosine (ED)) were investigated in Langmuir monolayers imitating natural membranes. The aim of the undertaken experiments was to study the influence of these lipids on monolayers mimicking plasma membranes of cell lines differing in susceptibility to the anti-cancer activity of ED, i.e. promyelocytic leukaemia cells (HL-60) and promyeloblastic leukaemia cells (K-562). As these cells differ essentially in the cholesterol/phospholipid ratio and plasmalogen concentration in the membrane, we have carried out systematic investigations in artificial systems of various compositions. The results for model leukaemia cell membrane were compared with data acquired for systems imitating normal leucocytes. Our results show that the level of plasmalogens significantly modulates the influence of the single-chained phospholipids on the investigated systems. The experiments confirmed also that the interactions of ether lipids with a model membrane of HL-60 cells (in biological tests sensitive to ED) have opposite character when compared with K-562, being resistant to ED. Moreover, the values of the parameters characterizing monolayers serving as membrane models (strength of interactions, monolayers fluidity and morphology) proved both sensitivity of these cells to ED and lack of their susceptibility towards PAF. Interestingly, it has been found that lyso-PAF, which is usually described as an inactive precursor of PAF, displays a stronger effect on HL-60 model membranes than ED.
Collapse
Affiliation(s)
- Michał Flasiński
- Faculty of Chemistry, Department of Environmental Chemistry, Jagiellonian University, , Gronostajowa 3, 30-387 Kraków, Poland
| | | | | | | |
Collapse
|
46
|
Golubkov VS, Strongin AY. Downstream signaling and genome-wide regulatory effects of PTK7 pseudokinase and its proteolytic fragments in cancer cells. Cell Commun Signal 2014; 12:15. [PMID: 24618420 PMCID: PMC4007575 DOI: 10.1186/1478-811x-12-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 02/25/2014] [Indexed: 01/08/2023] Open
Abstract
Background The full-length membrane protein tyrosine kinase 7 (PTK7) pseudokinase, an important component of the planar cell polarity and the Wnt canonical and non-canonical pathways, is a subject of step-wise proteolysis in cells and tissues. The proteolysis of PTK7 involves membrane type-matrix metalloproteinase (MT1-MMP), members of the Disintegrin Domain and Metalloproteinase (ADAM) family, and γ-secretase. This multi-step proteolysis results in the generation of the digest fragments of PTK7. These fragments may be either liberated into the extracellular milieu or retained on the plasma membrane or released into the cytoplasm and then transported into the nucleus. Results We employed the genome-wide transcriptional and kinome array analyses to determine the role of the full-length membrane PTK7 and its proteolytic fragments in the downstream regulatory mechanisms, with an emphasis on the cell migration-related genes and proteins. Using fibrosarcoma HT1080 cells stably expressing PTK7 and its mutant and truncated species, the structure of which corresponded to the major PTK7 digest fragments, we demonstrated that the full-length membrane 1–1070 PTK7, the N-terminal 1–694 soluble ectodomain fragment, and the C-terminal 622–1070 and 726–1070 fragments differentially regulate multiple genes and signaling pathways in our highly invasive cancer cell model. Immunoblotting of the selected proteins were used to validate the results of our high throughput assays. Conclusions Our results suggest that PTK7 levels need to be tightly controlled to enable migration and that the anti-migratory effect of the full-length membrane PTK7 is linked to the down-regulation of multiple migration-related genes and to the activation of the Akt and c-Jun pathway. In turn, the C-terminal fragments of PTK7 act predominantly via the RAS-ERK and CREB/ATF1 pathway and through the up-regulation of cadherin-11. In general, our data correlate well with the distinct functionality of the full-length receptor tyrosine kinases and their respective intracellular domain (ICD) proteolytic fragments.
Collapse
Affiliation(s)
- Vladislav S Golubkov
- Cancer Research Center, Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
| | | |
Collapse
|
47
|
Nikitovic D, Mytilinaiou M, Berdiaki A, Karamanos NK, Tzanakakis GN. Heparan sulfate proteoglycans and heparin regulate melanoma cell functions. Biochim Biophys Acta Gen Subj 2014; 1840:2471-81. [PMID: 24486410 DOI: 10.1016/j.bbagen.2014.01.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The solid melanoma tumor consists of transformed melanoma cells, and the associated stromal cells including fibroblasts, endothelial cells, immune cells, as well as, soluble macro- and micro-molecules of the extracellular matrix (ECM) forming the complex network of the tumor microenvironment. Heparan sulfate proteoglycans (HSPGs) are an important component of the melanoma tumor ECM. Importantly, there appears to be both a quantitative and a qualitative shift in the content of HSPGs, in parallel to the nevi-radial growth phase-vertical growth phase melanoma progression. Moreover, these changes in HSPG expression are correlated to modulations of key melanoma cell functions. SCOPE OF REVIEW This review will critically discuss the roles of HSPGs/heparin in melanoma development and progression. MAJOR CONCLUSIONS We have correlated HSPGs' expression and distribution with melanoma cell signaling and functions as well as angiogenesis. GENERAL SIGNIFICANCE The current knowledge of HSPGs/heparin biology in melanoma provides a foundation we can utilize in the ongoing search for new approaches in designing anti-tumor therapy. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- D Nikitovic
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - M Mytilinaiou
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Ai Berdiaki
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - N K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - G N Tzanakakis
- Department of Anatomy, Histology, Embryology, Medical School, University of Crete, Heraklion 71003, Greece.
| |
Collapse
|
48
|
Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, Bar-Eli M. Why is melanoma so metastatic? Pigment Cell Melanoma Res 2014; 27:19-36. [PMID: 24106873 DOI: 10.1111/pcmr.12172] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/19/2013] [Indexed: 02/03/2023]
Abstract
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of 'stemness' than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.
Collapse
Affiliation(s)
- Russell R Braeuer
- Department of Cancer Biology, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Regad T. Molecular and cellular pathogenesis of melanoma initiation and progression. Cell Mol Life Sci 2013; 70:4055-65. [PMID: 23532409 PMCID: PMC11113476 DOI: 10.1007/s00018-013-1324-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/12/2022]
Abstract
Melanoma is a malignant tumor of melanocytes that can spread to other organs of the body, resulting in severe and/or lethal malignancies. Melanocytes are pigment-producing cells found in the deep layer of the epidermis and are originated from melanocytes stem cells through a cellular process called melanogenesis. Several genes and epigenetic and micro-environmental factors are involved in this process via the regulation and maintenance of the balance between melanocytes stem cells proliferation and their differentiation into melanocytes. Dysregulation of this balance through gain or loss of function of key genes implicated in the control and regulation of cell cycle progression and/or differentiation results in melanoma initiation and progression. This review aims to provide a comprehensive overview about the origin of melanocytes, the oncogenic events involved in melanocytes stem cells transformation, and the mechanisms implicated in the perpetuation of melanoma malignant phenotype.
Collapse
Affiliation(s)
- Tarik Regad
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK,
| |
Collapse
|
50
|
Aladowicz E, Ferro L, Vitali GC, Venditti E, Fornasari L, Lanfrancone L. Molecular networks in melanoma invasion and metastasis. Future Oncol 2013; 9:713-26. [PMID: 23647299 DOI: 10.2217/fon.13.9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metastatic melanoma accounts for approximately 80% of skin cancer-related deaths. Up to now there has been no effective treatment for stage IV melanoma patients due to the complexity and dissemination potential of this disease. Melanomas are heterogeneous tumors in which conventional therapies fail to improve overall survival. Targeted therapies are being developed, but the final outcome can be hampered by the incomplete knowledge of the process of melanoma progression. Even if the intracellular pathways are similar, the interaction of the cells with the surrounding environment should be taken into consideration. This article seeks to highlight some of the advances in the understanding of the molecular mechanisms underlying melanoma dissemination.
Collapse
Affiliation(s)
- Ewa Aladowicz
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan, Italy
| | | | | | | | | | | |
Collapse
|