1
|
Muraoka S, Baba T, Akazawa T, Katayama KI, Kusumoto H, Yamashita S, Kohjimoto Y, Iwabuchi S, Hashimoto S, Hara I, Inoue N. Tumor-derived lactic acid promotes acetylation of histone H3K27 and differentiation of IL-10-producing regulatory B cells through direct and indirect signaling pathways. Int J Cancer 2025; 156:840-852. [PMID: 39482832 DOI: 10.1002/ijc.35229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
Tumor cells are known to enhance glycolysis, even under normoxic conditions, via the Warburg effect, producing excess lactic acid in the tumor microenvironment. Lactic acid enhances the IL-23/IL-17 pathway and induces chronic inflammation. The acidic microenvironment formed by lactic acid suppresses immune cell proliferation and activation. In the present study, we clarified that lactic acid had two novel activities for immune cells. First, lactic acid specifically enhanced acetylation at lysine 27 of histone H3 (H3K27ac) in splenic B cells and monocytes/macrophages, and this epigenetically up-regulates the expression of genes. Acetylation and methylation of other residues of histone H3 were rarely induced. Second, lactic acid induced a particularly-marked enhancement of Il10 gene expression in B cells, leading to an increase in IL-10-producing regulatory B (Breg) cells. Furthermore, two pathways should be involved in both the enhancement of H3K27ac and the induction of Breg cells by lactic acid: a direct pathway that enhances the CD40 signal in B cells, and an indirect pathway that affects B cells by activating the exchange protein directly activated by cAMP (EPAC) 1/2 in non-B cells. In tumor-bearing mice, the levels of H3K27ac of tumor-infiltrating B cells were significantly higher than splenic B cells and were suppressed by intraperitoneal injection of the EPAC1/2 inhibitor. In conclusion, tumor-derived lactic acid increases H3K27ac and IL-10-producing Breg cells, causing the suppression of anti-tumor immunity.
Collapse
Affiliation(s)
- Satoshi Muraoka
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Takashi Baba
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Takashi Akazawa
- Department of Cancer Drug Discovery and Development, Research Center, Osaka International Cancer Institute, Chuo-ku, Osaka, Japan
| | - Kei-Ichi Katayama
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Kusumoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | | | - Yasuo Kohjimoto
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Wakayama Medical University, Wakayama, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Norimitsu Inoue
- Department of Molecular Genetics, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
2
|
Long Y, Huang F, Zhang J, Zhang J, Cheng R, Zhu L, Chen Q, Yang D, Pan X, Yang W, Qin M, Huang J. Identification of SUMOylation-related signature genes associated with immune infiltration in ulcerative colitis through bioinformatics analysis and experimental validation. Gene 2025; 935:148996. [PMID: 39395728 DOI: 10.1016/j.gene.2024.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
OBJECTIVE Ulcerative colitis (UC) is a chronic inflammatory disorder challenging to diagnose clinically. We focused on identifying and validating SUMOylation-related signature genes in UC and their association with immune infiltration. METHODS Five eligible gene expression profiles were selected from the Gene Expression Omnibus (GEO) database and merged into a single dataset comprising 260 UC patients and 76 healthy controls (HC). Differentially expressed genes (DEGs) were identified, and these were intersected with SUMOylation-related genes to obtain differentially expressed SUMOylation-related genes (DESRGs). Next, we identify the signature genes and validate them through comprehensive analyses employing GO, KEGG, GSVA, Lasso-cox regression, ROC curves, and clustering analysis. The infiltrating immune cells were analyzed using the CIBERSORT algorithm and Pearson correlation analysis. Finally, in vitro and in vivo experiments validated the identified signature genes. RESULTS PALMD, THRB, MAGED1, PARP1, and SLC16A1 were identified. Next, an excellent predictive model for UC was established and distinct subgroups of patients associated with SUMOylation were identified. Moreover, the NF-κB signaling pathway likely plays a pivotal role in the regulation of SUMOylation in UC. Additionally, we validated that the alterations in PALMD, THRB, and MAGED1 expression in LPS-induced Caco-2 cells concurred with our bioinformatics findings, particularly demonstrating statistically significant differences in PALMD and THRB expression. Finally, in a DSS-induced mouse colitis model, we observed a significant upregulation of PALMD expression. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation. CONCLUSION This study comprehensively elucidates the biological roles of SUMOylation-related genes in UC, identifying PALMD, MAGED1, THRB, PARP1, and SLC16A1 as signature genes that represent promising biomarkers for UC diagnosis and prognosis.
Collapse
Affiliation(s)
- Ying Long
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China; Department of Gastroenterology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545006, People's Republic of China
| | - Feihong Huang
- Spine and Osteopathy Ward, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Juan Zhang
- Department of Pediatrics, Zhuzhou Central Hospital, Zhuzhou 412000, People's Republic of China
| | - Jinxiu Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Ruoxi Cheng
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Liye Zhu
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Qiuling Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Dan Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Xiaoping Pan
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Wenfang Yang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China
| | - Mengbin Qin
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| | - Jiean Huang
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, People's Republic of China.
| |
Collapse
|
3
|
Zhang Q, Pan G, Zhang L, Xu Y, Hao J. The Predictive Value of Monocarboxylate Transporter 4 (MCT4) on Lung Adenocarcinoma Patients Treated with PD-1 Inhibitors. J Inflamm Res 2024; 17:10515-10531. [PMID: 39659754 PMCID: PMC11630727 DOI: 10.2147/jir.s493632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Monocarboxylate transporter 4 (MCT4) can influence the amount of lactate in the tumor microenvironment and further control cancer cell proliferation, migration, and angiogenesis. This study aimed to evaluate the predictive value of MCT4 for prognosis and immunotherapy efficacy in advanced lung adenocarcinoma (LUAD). Patients and methods First, bioinformatics analysis was used to assess the relevance of MCT4 for survival and immunotherapy outcomes in LUAD. Subsequently, we performed a retrospective study involving 126 patients with stage IIIb to IV LUAD treated with programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors. MCT4 expression in LUAD tissues was detected by immunohistochemistry (IHC), then the patients were divided into high and low expression groups. The differences in the medical records of the two groups were compared using the X2 test. Kaplan-Meier (K-M) method was used for survival analysis. Univariate and multivariate analysis were used to pinpoint independent predictors, and a nomogram was developed based on the significant factors for overall survival (OS) in the multivariate analysis. The predictive ability of the nomogram was evaluated through C-index, receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Results Both bioinformatics analysis and clinical study revealed that low MCT4 expression was associated with better prognosis and immunotherapy efficacy. Multivariate analysis of clinical characteristics showed that age >65 years, stage IV, high MCT4 expression, neutrophil-to-lymphocyte ratio (NLR)>3, lactate dehydrogenase (LDH)>250 (U/L) and carcinoembryonic antigen (CEA)>5 (ng/mL) were significantly associated with poor prognosis on immunotherapy. These factors were subsequently incorporated into the nomogram model. The C-index value of the model stood at 0.735 (95% CI= 0.662 ~ 0.807), indicating robust predictive performance of the model. The DCA curve showed that the model had a notable clinical application value. Conclusion High expression of MCT4 is associated with poor prognosis and reduced efficacy of immunotherapy in patients with advanced LUAD.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Guizhen Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Lu Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Jiqing Hao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
4
|
Muhammad SNH, Ramli RR, Nik Mohamed Kamal NNS, Fauzi AN. Terpenoids: Unlocking Their Potential on Cancer Glucose Metabolism. Phytother Res 2024; 38:5626-5640. [PMID: 39300823 DOI: 10.1002/ptr.8346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Cancer incidence has increased globally and has become the leading cause of death in the majority of countries. Many cancers have altered energy metabolism pathways, such as increased glucose uptake and glycolysis, as well as decreased oxidative phosphorylation. This is known as the Warburg effect, where cancer cells become more reliant on glucose to generate energy and produce lactate as an end product, even when oxygen is present. These are attributed to the overexpression of key glycolytic enzymes, glucose transporters, and related signaling pathways that occur in cancer cells. Therefore, overcoming metabolic alterations in cancer cells has recently become a target for therapeutic approaches. Natural products have played a key role in drug discovery, especially for cancer and infectious diseases. In this review, we are going to focus on terpenoids, which are gradually gaining popularity among drug researchers due to their reported anti-cancer effects via cell cycle arrest, induction of apoptosis, reduction of proliferation, and metastasis. This review summarizes the potential of 13 terpenoid compounds as anti-glycolytic inhibitors in different cancer models, primarily by inhibiting the glucose uptake and the generation of lactate, as well as by downregulating enzymes associated to glycolysis. As a conclusion, disruption of cancer cell glycolysis may be responsible for the anti-cancer activity of terpenoids.
Collapse
Affiliation(s)
- Siti Nur Hasyila Muhammad
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Redzyque Ramza Ramli
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Nik Nur Syazni Nik Mohamed Kamal
- Department of Toxicology, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Agustine Nengsih Fauzi
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
5
|
Zhou Y, Lou J, Tian Y, Ding J, Wang X, Tang B. How lactate affects immune strategies in lymphoma. Front Mol Biosci 2024; 11:1480884. [PMID: 39464313 PMCID: PMC11502318 DOI: 10.3389/fmolb.2024.1480884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
Tumor cells undergo metabolic reprogramming through shared pathways, resulting in a hypoxic, acidic, and highly permeable internal tumor microenvironment (TME). Lactate, once only regarded as a waste product of glycolysis, has an inseparable dual role with tumor immunity. It can not only provide a carbon source for immune cells to enhance immunity but also help the immune escape through a variety of ways. Lymphoma also depends on the proliferation signal of TME. This review focuses on the dynamic process of lactate metabolism and immune function changes in lymphoma and aims to comprehensively summarize and explore which genes, transcription factors, and pathways affect the biological changes and functions of immune cells. To deeply understand the complex and multifaceted role of lactate metabolism and immunity in lymphoma, the combination of lactate targeted therapy and classical immunotherapy will be a promising development direction in the future.
Collapse
Affiliation(s)
- Yuehan Zhou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinzhan Lou
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuqin Tian
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinlei Ding
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaobo Wang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Tang
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Cai X, Chen F, Tang H, Chao D, Kang R, Tang D, Liu J. ITCH inhibits alkaliptosis in human pancreatic cancer cells through YAP1-dependent SLC16A1 activation. Int J Biochem Cell Biol 2024; 175:106646. [PMID: 39179170 DOI: 10.1016/j.biocel.2024.106646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Alkaliptosis is a type of pH-dependent cell death and plays an emerging role in tumor suppression. However, the key modulation mechanism of alkaliptosis remains largely unknown. In particular, the nucleus, as the centre of genetic and metabolic regulation, is crucial for the regulation of cellular life. It is not known whether nuclear proteins are involved in the regulation of alkaliptosis. Here, we isolated nuclear proteins to perform a proteomics that identified itchy E3 ubiquitin protein ligase (ITCH) as a natural inhibitor of alkaliptosis in human pancreatic ductal adenocarcinoma (PDAC) cells. The downregulation of ITCH protein is associated with the induction of alkaliptosis in three human PDAC cell lines (SW1990, MiaPaCa2, and PANC1). Functionally, increasing ITCH expression reduces JTC801-induced growth inhibition and cell death. In contrast, knocking down ITCH using specific shRNA increases JTC801-induced cell growth inhibition in the short or long term, resulting in increased cell death. Mechanistically, JTC801-induced ITCH inhibition blocks large tumor suppressor kinase 1 (LATS1) ubiquitination, which in turn suppresses Yes1 associated transcriptional regulator (YAP1)-dependent the transcriptional activation of solute carrier family 16 member 1 (SLC16A1), a proton-linked monocarboxylate transporter that inhibits JTC801-induced alkaliptosis. Additionally, decreased expression of ITCH is associated with longer survival times in patients with PDAC. Collectively, our results establish an ITCH-dependent pathway that regulates alkaliptotic sensitivity in PDAC cells and deepen the understanding of alkaliptosis in targeted therapy.
Collapse
Affiliation(s)
- Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Dandan Chao
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA..
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510150, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, Guangdong 510150, China.
| |
Collapse
|
7
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
8
|
Maurya P, Kumar M, Jain R, Thaer Abdulhameed Almuqdadi H, Singh H, Gupta A, Arenz C, Gaur NA, Singh S. Expression of Plasmodium major facilitator superfamily protein in transporters - Δ Candida identifies a drug transporter. Future Microbiol 2024; 19:1293-1307. [PMID: 39235058 PMCID: PMC11485967 DOI: 10.1080/17460913.2024.2389750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: To assess the functional relevance of a putative Major Facilitator Superfamily protein (PF3D7_0210300; 'PfMFSDT') as a drug transporter, using Candida glabrata for orthologous protein expression.Methods: Complementary Determining Sequence encoding PfMFSDT was integrated into the genome of genetically engineered C. glabrata strain MSY8 via homologous recombination, followed by assessing its functional relevance as a drug transporter.Results & conclusion: The modified C. glabrata strain exhibited plasma membrane localization of PfMFSDT and characteristics of an Major Facilitator Superfamily transporter, conferring resistance to antifungals, ketoconazole and itraconazole. The nanomolar inhibitory effects of the drugs on the intra-erythrocytic growth of Plasmodium falciparum highlight their antimalarial properties. This study proposes PfMFSDT as a drug transporter, expanding the repertoire of the currently known antimalarial 'resistome'.
Collapse
Affiliation(s)
- Preeti Maurya
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Ravi Jain
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Haider Thaer Abdulhameed Almuqdadi
- Medicinal Chemistry Laboratory, Department of Bioscience, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Harshita Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, 12489, Germany
| | - Aashima Gupta
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Christoph Arenz
- Institut für Chemie, Humboldt-Universität zu Berlin, Berlin, 12489, Germany
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
9
|
Rani R, Kumar V. Thematic issue 'tumor glycolysis'. Semin Cancer Biol 2024; 104-105:16-17. [PMID: 39025345 DOI: 10.1016/j.semcancer.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Affiliation(s)
- Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, UP 201306, India.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research Amity University, Sector-125, Noida, UP 201313, India.
| |
Collapse
|
10
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
11
|
Zhang M, Zhong J, Song Z, Xu Q, Chen Y, Zhang Z. Regulatory mechanisms and potential therapeutic targets in precancerous lesions of gastric cancer: A comprehensive review. Biomed Pharmacother 2024; 177:117068. [PMID: 39018877 DOI: 10.1016/j.biopha.2024.117068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Precancerous lesions of gastric cancer (PLGC) represent a critical pathological stage in the transformation from normal gastric mucosa to gastric cancer (GC). The global incidence of PLGC has been rising over the past few decades, with a trend towards younger onset ages. Increasing evidence suggests that early prevention and treatment of PLGC can effectively reverse the malignant development of gastric mucosal epithelial cells. However, there is currently a lack of effective therapeutic drugs and methods. Recent years have witnessed substantial advancements in PLGC research, with the elucidation of novel regulatory mechanisms offering promising avenues for clinical intervention and drug development. This review aims to delineate potential targets for early prevention and diagnosis of GC while exploring innovative approaches to PLGC management. This article focuses on elucidating the regulatory mechanisms of the inflammatory microenvironment, bile acids (BA), glycolysis, autophagy, apoptosis, ferroptosis, and cellular senescence. We pay particular attention to potential therapeutic targets for PLGC, with the goal of providing insights and theoretical basis for clinical research on PLGC.
Collapse
Affiliation(s)
- Maofu Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jialin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhongyang Song
- Department of Oncology, Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730020, China
| | - Qian Xu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yuchan Chen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Zhiming Zhang
- Department of Oncology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, Gansu 730050, China.
| |
Collapse
|
12
|
Ni X, Lu CP, Xu GQ, Ma JJ. Transcriptional regulation and post-translational modifications in the glycolytic pathway for targeted cancer therapy. Acta Pharmacol Sin 2024; 45:1533-1555. [PMID: 38622288 PMCID: PMC11272797 DOI: 10.1038/s41401-024-01264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer cells largely rely on aerobic glycolysis or the Warburg effect to generate essential biomolecules and energy for their rapid growth. The key modulators in glycolysis including glucose transporters and enzymes, e.g. hexokinase 2, enolase 1, pyruvate kinase M2, lactate dehydrogenase A, play indispensable roles in glucose uptake, glucose consumption, ATP generation, lactate production, etc. Transcriptional regulation and post-translational modifications (PTMs) of these critical modulators are important for signal transduction and metabolic reprogramming in the glycolytic pathway, which can provide energy advantages to cancer cell growth. In this review we recapitulate the recent advances in research on glycolytic modulators of cancer cells and analyze the strategies targeting these vital modulators including small-molecule inhibitors and microRNAs (miRNAs) for targeted cancer therapy. We focus on the regulation of the glycolytic pathway at the transcription level (e.g., hypoxia-inducible factor 1, c-MYC, p53, sine oculis homeobox homolog 1, N6-methyladenosine modification) and PTMs (including phosphorylation, methylation, acetylation, ubiquitination, etc.) of the key regulators in these processes. This review will provide a comprehensive understanding of the regulation of the key modulators in the glycolytic pathway and might shed light on the targeted cancer therapy at different molecular levels.
Collapse
Affiliation(s)
- Xuan Ni
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China
| | - Cheng-Piao Lu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China
| | - Guo-Qiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Jing-Jing Ma
- Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Yu Y, Jiang Y, Glandorff C, Sun M. Exploring the mystery of tumor metabolism: Warburg effect and mitochondrial metabolism fighting side by side. Cell Signal 2024; 120:111239. [PMID: 38815642 DOI: 10.1016/j.cellsig.2024.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Collapse
Affiliation(s)
- Yongxin Yu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yulang Jiang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Christian Glandorff
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; University Clinic of Hamburg at the HanseMerkur Center of TCM, Hamburg, Germany
| | - Mingyu Sun
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
14
|
Qiu D, He Y, Feng Y, Lin M, Lin Z, Zhang Z, Xiong Y, Hu Z, Ma S, Jin H, Liu J. Tumor perfusion enhancement by microbubbles ultrasonic cavitation reduces tumor glycolysis metabolism and alleviate tumor acidosis. Front Oncol 2024; 14:1424824. [PMID: 39091919 PMCID: PMC11291205 DOI: 10.3389/fonc.2024.1424824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The tumor microenvironment is increasingly acknowledged as a critical contributor to cancer progression, mediating genetic and epigenetic alterations. Beyond diverse cellular interactions from the microenvironment, physicochemical factors such as tumor acidosis also significantly affect cancer dynamics. Recent research has highlighted that tumor acidosis facilitates invasion, immune escape, metastasis, and resistance to therapies. Thus, noninvasive measurement of tumor acidity and the development of targeted interventions represent promising strategies in oncology. Techniques like contrast-enhanced ultrasound (CEUS) can effectively assess blood perfusion, while ultrasound-stimulated microbubble cavitation (USMC) has proven to enhance tumor blood perfusion. We therefore aimed to determine whether CEUS assesses tumor acidity and whether USMC treatment can modulate tumor acidity. Firstly, we tracked CEUS perfusion parameters in MCF7 tumor models and compared them with in vivo tumor pH recorded by pH microsensors. We found that the peak intensity and area under curve of tumor contrast-enhanced ultrasound correlated well with tumor pH. We further conducted USMC treatment on MCF7 tumor-bearing mice, tracked changes of tumor blood perfusion and tumor pH in different perfusion regions before and after the USMC treatment to assess its impact on tumor acidity and optimize therapeutic ultrasound pressure. We discovered that USMC with 1.0 Mpa significantly improved tumor blood perfusion and tumor pH. Furthermore, tumor vascular pathology and PGI2 assays indicated that improved tumor perfusion was mainly due to vasodilation rather than angiogenesis. More importantly, analysis of glycolysis-related metabolites and enzymes demonstrated USMC treatment can reduce tumor acidity by reducing tumor glycolysis. These findings support that CEUS may serve as a potential biomarker to assess tumor acidity and USMC is a promising therapeutic modality for reducing tumor acidosis.
Collapse
Affiliation(s)
- Danxia Qiu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yangcheng He
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuyi Feng
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Minhua Lin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zekai Lin
- Department of Radiology, The Second Clinical College, Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Zhang
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ying Xiong
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiwen Hu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Suihong Ma
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hai Jin
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jianhua Liu
- Department of Medical Ultrasound, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
15
|
Xu K, Zhang K, Wang Y, Gu Y. Comprehensive review of histone lactylation: Structure, function, and therapeutic targets. Biochem Pharmacol 2024; 225:116331. [PMID: 38821374 DOI: 10.1016/j.bcp.2024.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Histone lysine lactylation (Kla) has emerged as a distinct epigenetic modification that differs markedly from established acylation modifications through the unique addition of a lactyl group to a lysine residue. Such modifications not only alter nucleosome structure but also significantly impact chromatin dynamics and gene expression, thus playing a crucial role in cellular metabolism, inflammatory responses, and embryonic development. The association of histone Kla with various metabolic processes, particularly glycolysis and glutamine metabolism, underscores its pivotal role in metabolic reprogramming, including in cancerous tissues, where it contributes to tumorigenesis, immune evasion, and angiogenesis. In addition, histone Kla is involved in the pathogenesis of various diseases, particularly several cancers and neurodegenerative diseases. The identification of histone Kla opens new avenues for therapeutic interventions targeting specific Kla sites. In this review, we summarize the differences between histone Kla modifications and other acylation modifications, discuss the mechanisms and roles of histone Kla in disease, and conclude by describing existing drugs and potential targets. This study provides new insights into the mechanisms linking histone Kla to diseases and into the discovery of new drugs and targets.
Collapse
Affiliation(s)
- Kaiwen Xu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Keyi Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yanshuang Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
17
|
Zygmunt A, Gubernator J. Metabolism and structure of PDA as the target for new therapies: possibilities and limitations for nanotechnology. Expert Opin Drug Deliv 2024; 21:845-865. [PMID: 38899424 DOI: 10.1080/17425247.2024.2370492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Certainly, pancreatic ductal adenocarcinoma poses one of the greatest challenges in current oncology. The dense extracellular matrix and low vessel density in PDA tumor impede the effective delivery of drugs, primarily due to the short pharmacokinetics of most drugs and potential electrostatic interactions with stroma components. AREA COVERED Owing to the distinctive metabolism of PDA and challenges in accessing nutrients, there is a growing interest in cell metabolism inhibitors as a potential means to inhibit cancer development. However, even if suitable combinations of inhibitors are identified, the question about their administration remains, as the same hindrances that impede effective treatment with conventional drugs will also hinder the delivery of inhibitors. Methods including nanotechnology to increase drugs in PDA penetrations are reviewed and discussed. EXPERT OPINION Pancreatic cancer is one of the most difficult tumors to treat due to the small number of blood vessels, high content of extracellular matrix, and specialized resistance mechanisms of tumor cells. One possible method of treating this tumor is the use of metabolic inhibitors in combinations that show synergy. Despite promising results in in vitro tests, their effect is uncertain due to the tumor's structure. In the case of pancreatic cancer, priming of the tumor tissue is required through the sequential administration of drugs that generate blood vessels, increase blood flow, and enhance vascular permeability and extracellular matrix. The use of drug carriers with a size of 10-30 nm may be crucial in the therapy of this cancer.
Collapse
Affiliation(s)
- Adrianna Zygmunt
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
18
|
Hu Y, He Z, Li Z, Wang Y, Wu N, Sun H, Zhou Z, Hu Q, Cong X. Lactylation: the novel histone modification influence on gene expression, protein function, and disease. Clin Epigenetics 2024; 16:72. [PMID: 38812044 PMCID: PMC11138093 DOI: 10.1186/s13148-024-01682-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Lactic acid, traditionally considered as a metabolic waste product arising from glycolysis, has undergone a resurgence in scientific interest since the discovery of the Warburg effect in tumor cells. Numerous studies have proved that lactic acid could promote angiogenesis and impair the function of immune cells within tumor microenvironments. Nevertheless, the precise molecular mechanisms governing these biological functions remain inadequately understood. Recently, lactic acid has been found to induce a posttranslational modification, lactylation, that may offer insight into lactic acid's non-metabolic functions. Notably, the posttranslational modification of proteins by lactylation has emerged as a crucial mechanism by which lactate regulates cellular processes. This article provides an overview of the discovery of lactate acidification, outlines the potential "writers" and "erasers" responsible for protein lactylation, presents an overview of protein lactylation patterns across different organisms, and discusses the diverse physiological roles of lactylation. Besides, the article highlights the latest research progress concerning the regulatory functions of protein lactylation in pathological processes and underscores its scientific significance for future investigations.
Collapse
Affiliation(s)
- Yue Hu
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zhenglin He
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, China
| | - Zongjun Li
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, China
| | - Yihan Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, China
| | - Nan Wu
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Hongyan Sun
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Zilong Zhou
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Qianying Hu
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xianling Cong
- Department of Tissues Bank, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
19
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
20
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
21
|
Afonso J, Barbosa-Matos C, Silvestre R, Pereira-Vieira J, Gonçalves SM, Mendes-Alves C, Parpot P, Pinto J, Carapito Â, Guedes de Pinho P, Santos L, Longatto-Filho A, Baltazar F. Cisplatin-Resistant Urothelial Bladder Cancer Cells Undergo Metabolic Reprogramming beyond the Warburg Effect. Cancers (Basel) 2024; 16:1418. [PMID: 38611096 PMCID: PMC11010907 DOI: 10.3390/cancers16071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Advanced urothelial bladder cancer (UBC) patients are tagged by a dismal prognosis and high mortality rates, mostly due to their poor response to standard-of-care platinum-based therapy. Mediators of chemoresistance are not fully elucidated. This work aimed to study the metabolic profile of advanced UBC, in the context of cisplatin resistance. Three isogenic pairs of parental cell lines (T24, HT1376 and KU1919) and the matching cisplatin-resistant (R) sublines were used. A set of functional assays was used to perform a metabolic screening on the cells. In comparison to the parental sublines, a tendency was observed towards an exacerbated glycolytic metabolism in the cisplatin-resistant T24 and HT1376 cells; this glycolytic phenotype was particularly evident for the HT1376/HT1376R pair, for which the cisplatin resistance ratio was higher. HT1376R cells showed decreased basal respiration and oxygen consumption associated with ATP production; in accordance, the extracellular acidification rate was also higher in the resistant subline. Glycolytic rate assay confirmed that these cells presented higher basal glycolysis, with an increase in proton efflux. While the results of real-time metabolomics seem to substantiate the manifestation of the Warburg phenotype in HT1376R cells, a shift towards distinct metabolic pathways involving lactate uptake, lipid biosynthesis and glutamate metabolism occurred with time. On the other hand, KU1919R cells seem to engage in a metabolic rewiring, recovering their preference for oxidative phosphorylation. In conclusion, cisplatin-resistant UBC cells seem to display deep metabolic alterations surpassing the Warburg effect, which likely depend on the molecular signature of each cell line.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joana Pereira-Vieira
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Samuel Martins Gonçalves
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Camille Mendes-Alves
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
| | - Pier Parpot
- CQUM, Centre of Chemistry, Chemistry Department, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.M.-A.); (P.P.)
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ângela Carapito
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (Â.C.); (P.G.d.P.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal;
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (C.B.-M.); (R.S.); (J.P.-V.); (S.M.G.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
22
|
Zhou Q, Liu Q, Wang Y, Chen J, Schmid O, Rehberg M, Yang L. Bridging Smart Nanosystems with Clinically Relevant Models and Advanced Imaging for Precision Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308659. [PMID: 38282076 PMCID: PMC11005737 DOI: 10.1002/advs.202308659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Indexed: 01/30/2024]
Abstract
Intracellular delivery of nano-drug-carriers (NDC) to specific cells, diseased regions, or solid tumors has entered the era of precision medicine that requires systematic knowledge of nano-biological interactions from multidisciplinary perspectives. To this end, this review first provides an overview of membrane-disruption methods such as electroporation, sonoporation, photoporation, microfluidic delivery, and microinjection with the merits of high-throughput and enhanced efficiency for in vitro NDC delivery. The impact of NDC characteristics including particle size, shape, charge, hydrophobicity, and elasticity on cellular uptake are elaborated and several types of NDC systems aiming for hierarchical targeting and delivery in vivo are reviewed. Emerging in vitro or ex vivo human/animal-derived pathophysiological models are further explored and highly recommended for use in NDC studies since they might mimic in vivo delivery features and fill the translational gaps from animals to humans. The exploration of modern microscopy techniques for precise nanoparticle (NP) tracking at the cellular, organ, and organismal levels informs the tailored development of NDCs for in vivo application and clinical translation. Overall, the review integrates the latest insights into smart nanosystem engineering, physiological models, imaging-based validation tools, all directed towards enhancing the precise and efficient intracellular delivery of NDCs.
Collapse
Affiliation(s)
- Qiaoxia Zhou
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Forensic PathologyWest China School of Preclinical and Forensic MedicineSichuan UniversityNo. 17 Third Renmin Road NorthChengdu610041China
- Burning Rock BiotechBuilding 6, Phase 2, Standard Industrial Unit, No. 7 LuoXuan 4th Road, International Biotech IslandGuangzhou510300China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
- Department of Thoracic SurgeryShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080China
| | - Yan Wang
- Qingdao Central HospitalUniversity of Health and Rehabilitation Sciences (Qingdao Central Medical Group)Qingdao266042China
| | - Jie Chen
- Department of Respiratory MedicineNational Key Clinical SpecialtyBranch of National Clinical Research Center for Respiratory DiseaseXiangya HospitalCentral South UniversityChangshaHunan410008China
- Center of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaHunan410008China
- Clinical Research Center for Respiratory Diseases in Hunan ProvinceChangshaHunan410008China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory DiseaseChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008P. R. China
| | - Otmar Schmid
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| | - Lin Yang
- Institute of Lung Health and Immunity (LHI), Helmholtz MunichComprehensive Pneumology Center (CPC‐M)Member of the German Center for Lung Research (DZL)85764MunichGermany
| |
Collapse
|
23
|
Pedersen SHF. Acid-base transporters in the context of tumor heterogeneity. Pflugers Arch 2024; 476:689-701. [PMID: 38332178 DOI: 10.1007/s00424-024-02918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
The copious metabolic acid production and -extrusion by cancer cells render poorly vascularized regions of solid tumors highly acidic. A growing list of proton - and bicarbonate transporters has been suggested to contribute to net acid extrusion from cancer cells, and/or been shown to be dysregulated and favor malignant development in various cancers. The great majority of these roles have been studied at the level of the cancer cells. However, recent advances in understanding of the cellular and physicochemical heterogeneity of solid tumors both enable and necessitate a reexamination of the regulation and roles of acid-base transporters in such malignancies. This review will briefly summarize the state-of-the-art, with a focus on the SLC9A and SLC4A families, for which most evidence is available. This is followed by a discussion of key concepts and open questions arising from recent insights and of the challenges that need to be tackled to address them. Finally, opportunities and challenges in therapeutic targeting of the acid-base transportome in cancers will be addressed.
Collapse
Affiliation(s)
- Stine Helene Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark.
| |
Collapse
|
24
|
Wang Q, Li X, Cao Z, Feng W, Chen Y, Jiang D. Enzyme-Mediated Bioorthogonal Cascade Catalytic Reaction for Metabolism Intervention and Enhanced Ferroptosis on Neuroblastoma. J Am Chem Soc 2024; 146:8228-8241. [PMID: 38471004 DOI: 10.1021/jacs.3c13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
It remains a tremendous challenge to explore effective therapeutic modalities against neuroblastoma, a lethal cancer of the sympathetic nervous system with poor prognosis and disappointing treatment outcomes. Considering the limitations of conventional treatment modalities and the intrinsic vulnerability of neuroblastoma, we herein develop a pioneering sequential catalytic therapeutic system that utilizes lactate oxidase (LOx)/horseradish peroxidase (HRP)-loaded amorphous zinc metal-organic framework, named LOx/HRP-aZIF, in combination with a 3-indole-acetic acid (IAA) prodrug. On the basis of abnormal lactate accumulation that occurs in the tumor microenvironment, the cascade reaction of LOx and HRP consumes endogenous glutathione and a reduced form of nicotinamide adenine dinucleotide to achieve the first stage of killing cancer cells via antioxidative incapacitation and electron transport chain interference. Furthermore, the generation of reactive oxygen species induced by HRP and IAA through bioorthogonal catalysis promotes ferritin degradation and lipid peroxidation, ultimately provoking self-enhanced ferroptosis with positive feedback by initiating an endogenous Fenton reaction. This work highlights the superiority of the natural enzyme-dependent cascade and bioorthogonal catalytic reaction, offering a paradigm for synergistically enzyme-based metabolism-ferroptosis anticancer therapy.
Collapse
Affiliation(s)
- Qi Wang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xiangze Li
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhiyao Cao
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Wenzhou, Zhejiang 325088, P. R. China
| | - Dapeng Jiang
- Department of General Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| |
Collapse
|
25
|
Zhang Y, Song H, Li M, Lu P. Histone lactylation bridges metabolic reprogramming and epigenetic rewiring in driving carcinogenesis: Oncometabolite fuels oncogenic transcription. Clin Transl Med 2024; 14:e1614. [PMID: 38456209 PMCID: PMC10921234 DOI: 10.1002/ctm2.1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024] Open
Abstract
Heightened lactate production in cancer cells has been linked to various cellular mechanisms such as angiogenesis, hypoxia, macrophage polarisation and T-cell dysfunction. The lactate-induced lactylation of histone lysine residues is noteworthy, as it functions as an epigenetic modification that directly augments gene transcription from chromatin. This epigenetic modification originating from lactate effectively fosters a reliance on transcription, thereby expediting tumour progression and development. Herein, this review explores the correlation between histone lactylation and cancer characteristics, revealing histone lactylation as an innovative epigenetic process that enhances the vulnerability of cells to malignancy. Moreover, it is imperative to acknowledge the paramount importance of acknowledging innovative therapeutic methodologies for proficiently managing cancer by precisely targeting lactate signalling. This comprehensive review illuminates a crucial yet inadequately investigated aspect of histone lactylation, providing valuable insights into its clinical ramifications and prospective therapeutic interventions centred on lactylation.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Clinical MedicineXuzhou Medical UniversityXuzhouJiangsuChina
| | - Hang Song
- Department of OphthalmologyPeking Union Medical College HospitalBeijingChina
| | - Meili Li
- Department of OphthalmologyEye Disease Prevention and Treatment Institute of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical UniversityXuzhou First People's HospitalXuzhouJiangsuChina
| | - Peirong Lu
- Department of OphthalmologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
26
|
Manisha DS, Ratheesh AK, Benny S, Presanna AT. Heterocyclic and non-heterocyclic arena of monocarboxylate transporter inhibitors to battle tumorigenesis. Chem Biol Drug Des 2023; 102:1604-1617. [PMID: 37688395 DOI: 10.1111/cbdd.14342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Monocarboxylate transporters (MCTs) have gained significant attention in cancer research due to their critical role in tumour metabolism. MCTs are legends for transporting lactate molecules in cancer cells, an oncometabolite and waste product of glycolysis, acting as an indispensable factor of tumour proliferation. Targeting MCTs with inhibitors has emerged as a promising strategy to combat tumorigenesis. This article summarizes the most recent research on MCT inhibitors in preventing carcinogenesis, covering both heterocyclic and non-heterocyclic compounds. Heterocyclic and non-heterocyclic compounds such as pteridine, pyrazole, indole, flavonoids, coumarin derivatives and cyanoacetic acid derivatives have been reported as potent MCT inhibitors. We examine the molecular underpinnings of MCTs in cancer metabolism, the design and synthesis of heterocyclic and non-heterocyclic MCT inhibitors, their impact on tumour cells and the microenvironment and their potential as therapeutic agents. Moreover, we explore the challenges associated with MCT inhibitor development and propose future directions for advancing this field. This write-up aims to provide researchers, scientists and clinicians with a comprehensive understanding of the heterocyclic and non-heterocyclic MCT inhibitors and their potential in combating tumorigenesis.
Collapse
Affiliation(s)
- Deepthi S Manisha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Anandu Kizhakkedath Ratheesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Aneesh Thankappan Presanna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| |
Collapse
|
27
|
Silva A, Félix A, Cerqueira M, Gonçalves CS, Sampaio-Marques B, Longatto-Filho A, Baltazar F, Afonso J. Effects of Lactate Transport Inhibition by AZD3965 in Muscle-Invasive Urothelial Bladder Cancer. Pharmaceutics 2023; 15:2688. [PMID: 38140029 PMCID: PMC10747642 DOI: 10.3390/pharmaceutics15122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The Warburg Effect is characterized by high rates of glucose uptake and lactate production. Monocarboxylate transporters (MCTs) are crucial to avoid cellular acidosis by internal lactate accumulation, being largely overexpressed by cancer cells and associated with cancer aggressiveness. The MCT1-specific inhibitor AZD3965 has shown encouraging results in different cancer models. However, it has not been tested in urothelial bladder cancer (UBC), a neoplasm where rates of recurrence, progression and platinum-based resistance are generally elevated. We used two muscle-invasive UBC cell lines to study AZD3965 activity regarding lactate production, UBC cells' viability and proliferation, cell cycle profile, and migration and invasion properties. An "in vivo" assay with the chick chorioallantoic membrane model was additionally performed, as well as the combination of the compound with cisplatin. AZD3965 demonstrated anticancer activity upon low levels of MCT4, while a general lack of sensitivity was observed under MCT4 high expression. Cell viability, proliferation and migration were reduced, cell cycle was arrested, and tumor growth "in vivo" was inhibited. The compound sensitized these MCT4-low-expressing cells to cisplatin. Thus, AZD3965 seems to display anticancer properties in UBC under a low MCT4-expression setting, but additional studies are necessary to confirm AZD3965 activity in this cancer model.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Félix
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Cerqueira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Céline S. Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, SP, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.S.); (A.F.); (M.C.); (C.S.G.); (B.S.-M.); (A.L.-F.); (F.B.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
28
|
Zhao H, Jiang R, Feng Z, Wang X, Zhang C. Transcription factor LHX9 (LIM Homeobox 9) enhances pyruvate kinase PKM2 activity to induce glycolytic metabolic reprogramming in cancer stem cells, promoting gastric cancer progression. J Transl Med 2023; 21:833. [PMID: 37980488 PMCID: PMC10657563 DOI: 10.1186/s12967-023-04658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023] Open
Abstract
BACKGROUND Glycolytic metabolic reprogramming is a phenomenon in which cells undergo altered metabolic patterns during malignant transformation, mainly involving various aspects of glycolysis, electron transport chain, oxidative phosphorylation, and pentose phosphate pathway. This reprogramming phenomenon can be used as one of the markers of tumorigenesis and development. Pyruvate kinase is the third rate-limiting enzyme in the sugar metabolism process by specifically catalyzing the irreversible conversion of PEP to pyruvate. PURPOSE This study aimed to reveal the critical mediator(s) that regulate glycolytic metabolism reprogramming in gastric cancer and their underlying molecular mechanism and then explore the molecular mechanisms by which LHX9 may be involved in regulating gastric cancer (GC) progression. METHODS Firstly, we downloaded the GC and glycolysis-related microarray datasets from TCGA and MSigDB databases and took the intersection to screen out the transcription factor LHX9 that regulates GC glycolytic metabolic reprogramming. Software packages were used for differential analysis, single gene predictive analysis, and Venn diagram. In addition, an enrichment analysis of the glycolytic pathway was performed. Immunohistochemical staining was performed for LHX9 and PKM2 protein expression in 90 GC patients, and the association between their expressions was evaluated by Spearman's correlation coefficient method. Three human GC cell lines (AGS, NCI-N87, HGC-27) were selected for in vitro experimental validation. Flow cytometry was utilized to determine the stem cell marker CD44 expression status in GCSCs. A sphere formation assay was performed to evaluate the sphere-forming capabilities of GCSCs. In addition, RT-qPCR and Western blot experiments were employed to investigate the tumor stem cell markers OCT4 and SOX2 expression levels in GCSCs. Furthermore, a lentiviral expression vector was constructed to assess the impact of downregulating LHX9 or PKM2 on the glycolytic metabolic reprogramming of GCSCs. The proliferation, migration, and invasion of GCSCs were then detected by CCK-8, EdU, and Transwell assays. Subsequently, the mutual binding of LHX9 and PKM2 was verified using chromatin immunoprecipitation and dual luciferase reporter genes. In vivo experiments were verified by establishing a subcutaneous transplantation tumor model in nude mice, observing the size and volume of tumors in vivo in nude mice, and obtaining fresh tissues for subsequent experiments. RESULTS Bioinformatics analysis revealed that LHX9 might be involved in the occurrence and development of GC through regulating glycolytic metabolism. High LHX9 expression could be used as a reference marker for prognosis prediction of GC patients. Clinical tissue assays revealed that LHX9 and PKM2 were highly expressed in GC tissues. Meanwhile, GC tissues also highly expressed glycolysis-associated protein GLUT1 and tumor cell stemness marker CD44. In vitro cellular assays showed that LHX9 could enhance its activity and induce glycolytic metabolic reprogramming in GCSCs through direct binding to PKM2. In addition, the knockdown of LHX9 inhibited PKM2 activity and glycolytic metabolic reprogramming and suppressed the proliferation, migration, and invasive ability of GCSCs. In vivo animal experiments further confirmed that the knockdown of LHX9 could reduce the tumorigenic ability of GCSCs in nude mice by inhibiting PKM2 activity and glycolytic metabolic reprogramming. CONCLUSION The findings suggest that both LHX9 and PKM2 are highly expressed in GCs, and LHX9 may induce the reprogramming of glycolytic metabolism through transcriptional activation of PKM2, enhancing the malignant biological properties of GCSCs and ultimately promoting GC progression.
Collapse
Affiliation(s)
- Hongying Zhao
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Jiangsu Province, Xuzhou Hospital Affiliated to Jiangsu University, No. 131, Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China.
| | - Rongke Jiang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Jiangsu Province, Xuzhou Hospital Affiliated to Jiangsu University, No. 131, Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China
| | - Zhijing Feng
- Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Xue Wang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Jiangsu Province, Xuzhou Hospital Affiliated to Jiangsu University, No. 131, Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China
| | - Chunmei Zhang
- Department of Oncology, Xuzhou City Cancer Hospital, Xuzhou Third People's Hospital, Jiangsu Province, Xuzhou Hospital Affiliated to Jiangsu University, No. 131, Huancheng Road, Gulou District, Xuzhou, 221000, People's Republic of China
| |
Collapse
|
29
|
Borde S, Matosevic S. Metabolic adaptation of NK cell activity and behavior in tumors: challenges and therapeutic opportunities. Trends Pharmacol Sci 2023; 44:832-848. [PMID: 37770314 DOI: 10.1016/j.tips.2023.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
The adaptation of natural killer (NK) cells to conditions in the microenvironment of tumors is deeply affected by their metabolic activity, itself a result of nutrient availability and the metabolism of the cancer cells themselves. Elevated rates of glycolysis and lipid metabolism in cancers not only lead to the accumulation of immunosuppressive byproducts but also contribute to an environment of elevated concentrations of extracellular metabolites. This results in altered NK cell bioenergetics through changes in transcriptional and translational profiles, ultimately affecting their pharmacology and impairing NK cell responses. However, understanding the metabolic processes that drive alterations in immunological signaling on NK cells remains both difficult and vastly underexplored. We discuss the varied and complex drivers of NK cell metabolism in homeostasis and the tumor microenvironment (TME), challenges associated with their targetability, and unexplored therapeutic opportunities.
Collapse
Affiliation(s)
- Shambhavi Borde
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA; Center for Cancer Research, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
30
|
Zhao Q, Wang L, Lv Z, Wang X, Xu Z, Wang K. Knowledge mapping and current trends of Warburg effect in the field of cancer. Front Oncol 2023; 13:1264083. [PMID: 38023133 PMCID: PMC10660690 DOI: 10.3389/fonc.2023.1264083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Since abnormal aerobic glycolysis was first identified in cancer cells, many studies have focused on its mechanisms. The purpose of this study was to analyze the global research status of the Warburg effect in cancer using bibliometrics. Methods Articles published from 01 January 2013 to 31 December 2022 (n=2,067) were retrieved from the Web of Science core collection database and analyzed using VOSviewer and CiteSpace software. Results Over the past decade, there was an overall increase in the number of annual publications. China was the most productive country with 790 articles, while the United States received the most citations, with 25,657 citations in total. Oncotarget was the most productive and most cited journal, with 99 articles and 4,191 citations, respectively. International cooperation was common, with the USA cooperating most with other countries. Lactate metabolism, citrate production, and non-coding RNAs related to the Warburg effect have received increasing attention in cancer research. These areas may become future research trends. Conclusion The study findings help summarize the research status and hotspots of the Warburg effect cancer, and will inform subsequent research.
Collapse
Affiliation(s)
- Quan Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lina Wang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Duan SL, Wu M, Zhang ZJ, Chang S. The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer. J Transl Med 2023; 21:735. [PMID: 37853445 PMCID: PMC10585934 DOI: 10.1186/s12967-023-04617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Although the incidence of thyroid cancer is increasing year by year, most patients, especially those with differentiated thyroid cancer, can usually be cured with surgery, radioactive iodine, and thyroid-stimulating hormone suppression. However, treatment options for patients with poorly differentiated thyroid cancers or radioiodine-refractory thyroid cancer have historically been limited. Altered energy metabolism is one of the hallmarks of cancer and a well-documented feature in thyroid cancer. In a hypoxic environment with extreme nutrient deficiencies resulting from uncontrolled growth, thyroid cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. This review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in thyroid cancer cells, which we expect will yield new therapeutic approaches for patients with special pathological types of thyroid cancer by targeting reprogrammed glucose metabolism.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
32
|
Ammar N, Hildebrandt M, Geismann C, Röder C, Gemoll T, Sebens S, Trauzold A, Schäfer H. Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism. Antioxidants (Basel) 2023; 12:1818. [PMID: 37891897 PMCID: PMC10604597 DOI: 10.3390/antiox12101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic compartmentalization of stroma-rich tumors, like pancreatic ductal adenocarcinoma (PDAC), greatly contributes to malignancy. This involves cancer cells importing lactate from the microenvironment (reverse Warburg cells) through monocarboxylate transporter-1 (MCT1) along with substantial phenotype alterations. Here, we report that the reverse Warburg phenotype of PDAC cells compensated for the shortage of glutamine as an essential metabolite for redox homeostasis. Thus, oxidative stress caused by glutamine depletion led to an Nrf2-dependent induction of MCT1 expression in pancreatic T3M4 and A818-6 cells. Moreover, greater MCT1 expression was detected in glutamine-scarce regions within tumor tissues from PDAC patients. MCT1-driven lactate uptake supported the neutralization of reactive oxygen species excessively produced under glutamine shortage and the resulting drop in glutathione levels that were restored by the imported lactate. Consequently, PDAC cells showed greater survival and growth under glutamine depletion when utilizing lactate through MCT1. Likewise, the glutamine uptake inhibitor V9302 and glutaminase-1 inhibitor CB839 induced oxidative stress in PDAC cells, along with cell death and cell cycle arrest that were again compensated by MCT1 upregulation and forced lactate uptake. Our findings show a novel mechanism by which PDAC cells adapt their metabolism to glutamine scarcity and by which they develop resistance against anticancer treatments based on glutamine uptake/metabolism inhibition.
Collapse
Affiliation(s)
- Nourhane Ammar
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Maya Hildebrandt
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Claudia Geismann
- Department of Internal Medicine and Gastroenterology, Carl-von-Ossietzky University Oldenburg, Philosophenweg 36, 26121 Oldenburg, Germany;
| | - Christian Röder
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
| | - Susanne Sebens
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Ania Trauzold
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Heiner Schäfer
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| |
Collapse
|
33
|
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W, Wei S. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int 2023; 23:222. [PMID: 37775731 PMCID: PMC10543265 DOI: 10.1186/s12935-023-03082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
34
|
Bingham PM, Zachar Z. Toward a Unifying Hypothesis for Redesigned Lipid Catabolism as a Clinical Target in Advanced, Treatment-Resistant Carcinomas. Int J Mol Sci 2023; 24:14365. [PMID: 37762668 PMCID: PMC10531647 DOI: 10.3390/ijms241814365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We review extensive progress from the cancer metabolism community in understanding the specific properties of lipid metabolism as it is redesigned in advanced carcinomas. This redesigned lipid metabolism allows affected carcinomas to make enhanced catabolic use of lipids in ways that are regulated by oxygen availability and is implicated as a primary source of resistance to diverse treatment approaches. This oxygen control permits lipid catabolism to be an effective energy/reducing potential source under the relatively hypoxic conditions of the carcinoma microenvironment and to do so without intolerable redox side effects. The resulting robust access to energy and reduced potential apparently allow carcinoma cells to better survive and recover from therapeutic trauma. We surveyed the essential features of this advanced carcinoma-specific lipid catabolism in the context of treatment resistance and explored a provisional unifying hypothesis. This hypothesis is robustly supported by substantial preclinical and clinical evidence. This approach identifies plausible routes to the clinical targeting of many or most sources of carcinoma treatment resistance, including the application of existing FDA-approved agents.
Collapse
Affiliation(s)
- Paul M. Bingham
- Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA;
| | | |
Collapse
|
35
|
Xie Q, Qin F, Luo L, Deng S, Zeng K, Wu Y, Liao D, Luo L, Wang K. hsa_circ_0003596, as a novel oncogene, regulates the malignant behavior of renal cell carcinoma by modulating glycolysis. Eur J Med Res 2023; 28:315. [PMID: 37660068 PMCID: PMC10474667 DOI: 10.1186/s40001-023-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/12/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND This research was planned to analyze hsa_circ_0003596 (circCOL5A1) and glycolysis-focused mechanisms in renal cell carcinoma (RCC). METHODS circCOL5A1, miR-370-5p, and PRKCSH levels were determined in RCC tissues and selected cell lines by RT-qPCR and/or Western blot. RCC cells after corresponding transfection were tested by colony formation assay, EdU assay, Transwell assay, and flow cytometry to analyze cell proliferation, invasion, migration, and apoptosis. Meanwhile, glycolysis in cells was evaluated by measuring glucose consumption, lactic acid, and ATP production, as well as immunoblotting for HK2 and PKM2. In addition, circCOL5A1 knockdown was performed in animal experiments to observe tumor growth and glycolysis. Finally, the ceRNA network between circCOL5A1, miR-370-5p, and PRKCSH was studied by luciferase reporter assay and RIP experiment. RESULTS circCOL5A1 and PRKCSH were highly expressed and miR-370-5p was poorly expressed in RCC. circCOL5A1 knockdown depressed RCC proliferation, invasion, migration, and glycolysis, and enhanced apoptosis. circCOL5A1 competitively adsorbed miR-370-5p. Artificial upregulation of miR-370-5p saved the pro-tumor effect of circCOL5A1 on RCC cells, as evidenced by suppression of tumor malignancy and glycolysis. miR-370-5p targeted PRKCSH. PRKCSH overexpression contributed to a reversal of the anti-tumor effect of circCOL5A1 silencing. Silencing circCOL5A1 inhibited RCC tumor growth and glycolysis. CONCLUSIONS circCOL5A1 regulates the malignant behavior of RCC by modulating glycolysis.
Collapse
Affiliation(s)
- QingZhi Xie
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - FuQiang Qin
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - LiHui Luo
- Department of Personnel Section, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - ShaoQuan Deng
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Ke Zeng
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - YunChou Wu
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - DunMing Liao
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Lin Luo
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China
| | - KangNing Wang
- Department of Urology Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, Hunan, China.
- Department of Urology Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
36
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
37
|
Sharma D, Singh M, Joshi J, Garg M, Chaudhary V, Blankenberg D, Chandna S, Kumar V, Rani R. Design and Synthesis of Thiazole Scaffold-Based Small Molecules as Anticancer Agents Targeting the Human Lactate Dehydrogenase A Enzyme. ACS OMEGA 2023; 8:17552-17562. [PMID: 37251149 PMCID: PMC10210175 DOI: 10.1021/acsomega.2c07569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023]
Abstract
A new series of thiazole central scaffold-based small molecules of hLDHA inhibitors were designed using an in silico approach. Molecular docking analysis of designed molecules with hLDHA (PDB ID: 1I10) demonstrates that Ala 29, Val 30, Arg 98, Gln 99, Gly 96, and Thr 94 possessed strong interaction with the compounds. Compounds 8a, 8b, and 8d showed good binding affinity (-8.1 to -8.8 kcal/mol), whereas an additional interaction of NO2 at the ortho position in compounds 8c with Gln 99 through hydrogen bonding enhanced the affinity to -9.8 kcal/mol. Selected high-scored compounds were synthesized and screened for hLDHA inhibitory activities and in vitro anticancer activity in six cancer cell lines. Biochemical enzyme inhibition assays showed the highest hLDHA inhibitory activity observed with compounds 8b, 8c, and 8l. Compounds 8b, 8c, 8j, 8l, and 8m depicted significant anticancer activities, exhibiting IC50 values in the range of 1.65-8.60 μM in HeLa and SiHa cervical cancer cell lines. Compounds 8j and 8m exhibited notable anticancer activity with IC50 values of 7.90 and 5.15 μM, respectively, in liver cancer cells (HepG2). Interestingly, compounds 8j and 8m did not induce noticeable toxicity in the human embryonic kidney cells (HEK293). Insilico absorption, distribution, metabolism, and excretion profiling demonstrates that the compounds possess drug-likeness, and results may pave the way for the development of novel thiazole-based biologically active small molecules for therapeutics.
Collapse
Affiliation(s)
- Dolly Sharma
- Amity
Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Mamta Singh
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Jayadev Joshi
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Manoj Garg
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | | | - Daniel Blankenberg
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Sudhir Chandna
- Institute
of Nuclear Medicine & Allied Science, Defense Research Development Organization, Delhi 110054, India
| | - Vinit Kumar
- Amity
Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201303, Uttar
Pradesh, India
| | - Reshma Rani
- Drug Discovery,
Jubilant Biosys, Knowledge
Park-2, Greater Noida 201306, India
| |
Collapse
|
38
|
Wang M, Tang B, Huang H, Wu X, Deng H, Chen H, Mei L, Chen X, Burgering B, Lu C. Deciphering the mechanism of PSORI-CM02 in suppressing keratinocyte proliferation through the mTOR/HK2/glycolysis axis. Front Pharmacol 2023; 14:1152347. [PMID: 37089953 PMCID: PMC10119413 DOI: 10.3389/fphar.2023.1152347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Hyperplasia of epidermal keratinocytes that depend on glycolysis is a new hallmark of psoriasis pathogenesis. Our previous studies demonstrated that PSORI-CM02 could halt the pathological progression of psoriasis by targeting inflammatory response and angiogenesis, but its effect(s) and mechanism(s) on proliferating keratinocytes remained unclear. In this study, we aim to identify components of PSORI-CM02 that are absorbed into the blood and to determine the effect(s) of PSORI-CM02 on keratinocyte proliferation and its molecular mechanism(s). We used the immortalized human epidermal keratinocyte cell line, HaCaT, as an in vitro model of proliferating keratinocytes and the imiquimod-induced psoriasis mouse (IMQ) as an in vivo model. Metabolite profiles of vehicle pharmaceutic serum (VPS), PSORI-CM02 pharmaceutic serum (PPS), and water extraction (PWE) were compared, and 23 components of PSORI-CM02 were identified that were absorbed into the blood of mice. Both PPS and PWE inhibited the proliferation of HaCaT cells and consequently reduced the expression of the proliferation marker ki67. Additionally, PPS and PWE reduced phosphorylation levels of mTOR pathway kinases. Seahorse experiments demonstrated that PPS significantly inhibited glycolysis, glycolytic capacity, and mitochondrial respiration, thus reducing ATP production in HaCaT cells. Upon treatments of PPS or PWE, hexokinase 2 (HK2) expression was significantly decreased, as observed from the set of glycolytic genes we screened. Finally, in the IMQ model, we observed that treatment with PSORI-CM02 or BPTES, an inhibitor of mTOR signaling, reduced hyperproliferation of epidermal keratinocytes, inhibited the expression of p-S6 and reduced the number of proliferating cell nuclear antigen (PCNA)-positive cells in lesioned skin. Taken together, we demonstrate that PSORI-CM02 has an anti-proliferative effect on psoriatic keratinocytes, at least in part, by inhibiting the mTOR/HK2/glycolysis axis.
Collapse
Affiliation(s)
- Maojie Wang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Molecular Cancer Research, Center of Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, Utrecht, Netherlands
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Tang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Huanjie Huang
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Molecular Cancer Research, Center of Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, Utrecht, Netherlands
| | - Xiaodong Wu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Hao Deng
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Haiming Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Liyan Mei
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Xiumin Chen
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Boudewijn Burgering
- Molecular Cancer Research, Center of Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, Utrecht, Netherlands
- *Correspondence: Boudewijn Burgering, ; Chuanjian Lu,
| | - Chuanjian Lu
- The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Boudewijn Burgering, ; Chuanjian Lu,
| |
Collapse
|