1
|
Dalvi S, Roll M, Chatterjee A, Kumar LK, Bhogavalli A, Foley N, Arduino C, Spencer W, Reuben-Thomas C, Ortolan D, Pébay A, Bharti K, Anand-Apte B, Singh R. Human iPSC-based disease modeling studies identify a common mechanistic defect and potential therapies for AMD and related macular dystrophies. Dev Cell 2024; 59:3290-3305.e9. [PMID: 39362220 DOI: 10.1016/j.devcel.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/17/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Age-related macular degeneration (AMD) and related macular dystrophies (MDs) primarily affect the retinal pigment epithelium (RPE) in the eye. A hallmark of AMD/MDs that drives later-stage pathologies is drusen. Drusen are sub-RPE lipid-protein-rich extracellular deposits, but how drusen forms and accumulates is not known. We utilized human induced pluripotent stem cell (iPSC)-derived RPE from patients with AMD and three distinct MDs to demonstrate that reduced activity of RPE-secreted matrix metalloproteinase 2 (MMP2) contributes to drusen in multiple maculopathies in a genotype-agnostic manner by instigating sterile inflammation and impaired lipid homeostasis via damage-associated molecular pattern molecule (DAMP)-mediated activation of receptor for advanced glycation end-products (RAGE) and increased secretory phospholipase 2-IIA (sPLA2-IIA) levels. Therapeutically, RPE-specific MMP2 supplementation, RAGE-antagonistic peptide, and a small molecule inhibitor of sPLA2-IIA ameliorated drusen accumulation in AMD/MD iPSC-RPE. Ultimately, this study defines a causal role of the MMP2-DAMP-RAGE-sPLA2-IIA axis in AMD/MDs.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Michael Roll
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Amit Chatterjee
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Lal Krishan Kumar
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Akshita Bhogavalli
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Nathaniel Foley
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Cesar Arduino
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Whitney Spencer
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA
| | - Davide Ortolan
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Alice Pébay
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bela Anand-Apte
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, NY 14620, USA; Department of Biomedical Genetics, University of Rochester, Rochester, NY 14620, USA; Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; UR Stem Cell and Regenerative Medicine Center, Rochester, NY 14620, USA.
| |
Collapse
|
2
|
Bernaerts E, Ahmadzadeh K, De Visscher A, Malengier-Devlies B, Häuβler D, Mitera T, Martens E, Krüger A, De Somer L, Matthys P, Vandooren J. Human monocyte-derived macrophages shift subcellular metalloprotease activity depending on their activation state. iScience 2024; 27:111171. [PMID: 39569367 PMCID: PMC11576389 DOI: 10.1016/j.isci.2024.111171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024] Open
Abstract
Proteases are key effectors in macrophage function during the initiation and resolution of inflammation. Recent studies have shown that some proteases, traditionally considered extracellular, also exhibit enzymatic and non-enzymatic functions within the cell. This study explores the differential protease landscapes of macrophages based on their phenotype. Human monocytes were isolated from healthy volunteers and stimulated with M-CSF (resting macrophages), LPS/IFN-γ (inflammatory macrophages), or IL-4 (immunosuppressive macrophages). IL-4-stimulated macrophages secreted higher levels of MMPs and natural protease inhibitors compared to LPS/IFN-γ-stimulated macrophages. Increased extracellular proteolytic activity was detected in LPS/IFN-γ-stimulated macrophages while IL-4 stimulation increased cell-associated proteolytic activity, particularly for MMPs. Subcellular fractionation and confocal microscopy revealed the uptake of extracellular MMP-9 and its relocation to the nucleus in IL-4-stimulated, though not in LPS/IFN-γ-stimulated macrophages. Collectively, macrophages alter the subcellular location and activity of their MMPs based on the stimuli received, suggesting another mechanism for protease regulation in macrophage biology.
Collapse
Affiliation(s)
- Eline Bernaerts
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Amber De Visscher
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Centre for Reproductive Health and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Daniel Häuβler
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Tania Mitera
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Achim Krüger
- TUM School of Medicine and Health, Institute of Experimental Oncology and Therapy Research, Technical University of Munich, D-81676 Munich, Germany
| | - Lien De Somer
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- University Hospital Leuven, Laboratory of Pediatric Immunology, 3000 Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven Campus Kulak, 8500 Kortrijk, Belgium
| |
Collapse
|
3
|
Kim I, Min SH, Lee HW, An JN, Lee HS, Kim SG, Kim JK. Impact of Peritoneal Neutrophil Extracellular Traps on Peritoneal Characteristics and Technical Failure in Patients Undergoing Peritoneal Dialysis. Am J Nephrol 2024:1-12. [PMID: 39510040 DOI: 10.1159/000542427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
INTRODUCTION Peritoneal dialysis (PD) is an effective home therapy for end-stage kidney disease. However, continuous exposure to PD fluids with high glucose concentration and recurrent peritonitis may lead to the activation of cellular and molecular processes of peritoneal damage, including inflammation and fibrosis. In particular, recent studies have highlighted the role of neutrophils in chronic inflammation. This study explores how neutrophil extracellular traps (NETs) affect peritoneal membrane function and contribute to technical failures in PD patients. METHODS We conducted a prospective observational study involving 250 noninfectious and 30 acute peritonitis patients. NETs were measured using nucleosome and myeloperoxidase DNA levels in PD fluids. Monocyte chemoattractant protein-1 (MCP-1) and matrix metalloproteinase-8 (MMP-8) were also measured to assess peritoneal inflammation and damage. RESULTS A significant increase in peritoneal NETs, as determined by nucleosome and myeloperoxidase DNA levels, was observed in patients with acute peritonitis compared to patients without peritonitis. Even in noninfectious samples, NET levels were widely distributed and closely correlated with levels of MCP-1 and MMP-8. Higher levels of peritoneal NETs were closely associated with increased 4-h dialyzate/peritoneal (D/P) creatinine ratio and 1-h D/P sodium levels, indicating a higher prevalence of fast transport and limited free water transport. These factors were associated with a higher risk of technical failure. During a mean follow-up of 34 months, 39.2% (98 patients) switched from PD to hemodialysis, with higher NET levels significantly increasing the risk by 1.9 times (95% confidence interval: 1.27-2.83, p = 0.020). CONCLUSION This study suggests the importance of peritoneal NETs not only as markers of acute inflammation but also as significant immunological predictors of chronic peritoneal membrane inflammation and dysfunction and as potential risk factors for technical failure.
Collapse
Affiliation(s)
- Insoo Kim
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sei Hong Min
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hoi Woul Lee
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jung Nam An
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Hyung Seok Lee
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Sung Gyun Kim
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jwa-Kyung Kim
- Department of Internal Medicine and Kidney Research Institute, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| |
Collapse
|
4
|
Roy M, Sengupta R, Chakraborty BC, Chatterjee U, von Stebut E, Kaye PM, Chatterjee M. Role of neutrophils in the pathogenesis of Post Kala-azar Dermal Leishmaniasis (PKDL). PLoS Negl Trop Dis 2024; 18:e0012655. [PMID: 39602398 PMCID: PMC11602034 DOI: 10.1371/journal.pntd.0012655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Post Kala-azar Dermal Leishmaniasis (PKDL) is a dermal sequel of visceral leishmaniasis (VL), poses a significant threat to the success of ongoing kala-azar elimination program, due to its potential role in sustaining transmission cycles and complicating disease management strategies. In VL, neutrophils have been identified as the 'first line of defence', having multiple roles in disease pathogenesis, but their role in PKDL, if any, still remains elusive; presenting a critical gap in knowledge, and was the aim of this study. METHODOLOGY/PRINCIPAL FINDINGS In a cohort of PKDL patients, CD66b+ neutrophils were quantified in skin biopsies, followed by immunostaining of FFPE sections to identify activated neutrophils (CD66b+/CD64+) and degranulated (CD66b+/MPO+), along with expression of neutrophil elastase (NE), matrix metalloprotease 9 (MMP9) and collagen I. Plasma levels of neutrophil chemo-attractants CXCL8/1/2/5, CCL2 and 20 and cytokines, (IL-6, IFN-γ, IL-4, IL-10, TNF-α, IL-17 and IL-22, 23) were evaluated by a multiplex assay, while lesional expression of IL-8, IL-10 and IL-17 was evaluated by immunohistochemistry. As compared to healthy individuals (control skin samples), PKDL cases at the lesional sites had an increased number of activated CD66b+ neutrophils (positive for CD64+, MPO+ and NE+). The plasma levels of neutrophil chemo-attractants, pro-inflammatory and regulatory cytokines were raised as was circulating and lesional IL-8, along with an enhanced lesional expression of IL-10 and IL-17A. An increase in circulatory and lesional MMP9 was accompanied by decreased collagen I, suggesting disintegration of matrix integrity. CONCLUSIONS/SIGNIFICANCE Taken together, in PKDL, activated neutrophils possibly contribute towards modulating the lesional landscape. Understanding this involvement of neutrophils in patients with PKDL, particularly in the absence of an animal model, could offer better understanding of the disease pathogenesis and provide insights into novel therapeutic strategies for the ongoing elimination program.
Collapse
Affiliation(s)
- Madhurima Roy
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Ritika Sengupta
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Bidhan Chandra Chakraborty
- Multidisciplinary Research Unit (MRU) Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Uttara Chatterjee
- Pathology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| | - Esther von Stebut
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, York, United Kingdom
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
| |
Collapse
|
5
|
Lorenz EC, Smith BH, Wadei HM, Mour G, Kennedy CC, Schinstock CA, Kremers WK, Cheville AL, Hickson LJ, Atkinson EJ, White TA, Rule AD, LeBrasseur NK. Senescence Biomarkers and Trajectories of Frailty and Physical Function After Kidney Transplantation. Clin Transplant 2024; 38:e70022. [PMID: 39564682 DOI: 10.1111/ctr.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/21/2024]
Abstract
Cellular senescence is a biological mechanism of aging and age-related diseases. The aim of this study was to examine whether senescence biomarkers are associated with frailty and physical function trajectories in patients undergoing kidney transplantation (KT). We also discussed the relationship between senescence biomarkers and KT function. In this multicenter study, we prospectively assessed plasma levels of senescence biomarkers, frailty as measured by the Physical Frailty Phenotype, and physical function as measured by the Short Physical Performance Battery prior to KT. Frailty, physical function, and KT function were also measured 1 year after KT. Variable associations were assessed using Cox and relaxed least absolute shrinkage and selection operation regression. The cohort consisted of 197 participants (mean age 53 ± 13 years, 61.4% male, and 80.2% White race). Higher pre-KT levels of macrophage-derived chemokine (MDC/CCL22) and growth differentiation factor-15 (GDF-15) were independently associated with less improvement in frailty and/or physical function during the first year after KT. Higher pre-KT levels tumor necrosis factor receptor superfamily member 6 (FAS) and MMP-9 levels were independently associated with lower KT function one year after KT. Pre-KT cellular senescence may contribute to frailty, physical function, and kidney function trajectories during the first year after KT.
Collapse
Affiliation(s)
| | - Byron H Smith
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Hani M Wadei
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Girish Mour
- Division of Nephrology and Hypertension, Mayo Clinic, Scottsdale, Arizona, USA
| | - Cassie C Kennedy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Carrie A Schinstock
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrea L Cheville
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Elizabeth J Atkinson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew D Rule
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
Zhao Y, Zhang P, Zhang J. Microglia-mediated endothelial protection: the role of SHPL-49 in ischemic stroke. Biomed Pharmacother 2024; 180:117530. [PMID: 39388998 DOI: 10.1016/j.biopha.2024.117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
It was previously shown that SHPL-49, a glycoside derivative of salidroside formed through structural modification, exhibited neuroprotective effects in a rat cerebral ischemia model of permanent middle cerebral artery occlusion (pMCAO). Additionally, SHPL-49 enhanced the mRNA expression of vascular endothelial growth factor-a (Vegf-a) in macrophages. Microglia, functioning as resident macrophages within the brain, promptly respond to cerebral ischemia and engage in interactions with the cells of the Glial-Vascular Unit to orchestrate nerve injury responses. We postulated that the neuroprotective effects of SHPL-49 were mediated through microglia-dependent amelioration of endothelial dysfunction following cerebral ischemia. The present study demonstrates that SHPL-49 effectively mitigated microglia-dependent endothelial dysfunction in the pMCAO model by upregulating the expression of VEGF and suppressing the release of MMP-9 from microglia. Further MRI analyses confirmed that SHPL-49 significantly reduced nerve and endothelial function when microglia were depleted in the brains of pMCAO rats. The above phenomenon was also confirmed in the in vitro experiment investigating microglia-mediated brain endothelial cell function. Furthermore, we discovered that SHPL-49 activates the VEGFR2/Akt/eNOS pathways in endothelial cells and suppresses the p38 MAPK/MMP-9 pathways in microglia cells, thereby facilitating brain endothelial cell protection. Altogether, we have demonstrated that SHPL-49 effectively ameliorates endothelial dysfunction induced by cerebral ischemia through a microglia-dependent mechanism, thereby providing more valuable insights and references for the clinical evaluation of SHPL-49 injection for ischemic stroke.
Collapse
Affiliation(s)
- Yu Zhao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Pei Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Liu HQ, Bai X, Xiong FL, Gao MM, Zhang HB, Liu BH. Efficacy of neuroendoscopy-assisted surgery in the treatment of chronic subdural hematoma: a meta-analysis. Chin Neurosurg J 2024; 10:28. [PMID: 39385299 PMCID: PMC11462813 DOI: 10.1186/s41016-024-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Chronic subdural hematoma (CSDH) is one of the most common diseases in neurosurgery. It is the result of chronic intracranial hemorrhage that converges between the dura mater and arachnoid three weeks after externally injuring the head. Chronic subdural hematomas are a common complication in neurosurgery. With the gradual increase in the amount of hematoma, the surrounding brain tissue is pushed and compressed, resulting in corresponding clinical symptoms and signs. It is reported that the overall incidence rate of CSDH is 1.72 to 20.6 per 100,000 people every year, and the incidence rate of the elderly is particularly high. METHODS The computer retrieves eight databases to obtain controlled trials at home and abroad on the effects of neuroendoscopy-assisted surgery in patients with chronic subdural hematoma. After a rigorous literature quality evaluation, data analysis was performed using RevMan 5.3 software. RESULTS Twenty studies were ultimately included in this meta-analysis. Seventeen studies reported the Recurrence rate of the test group and the control group, which was significantly lower (OR 0.27; 95% Cl 0.18, 0.38; P < 0.01) than the control group, Recovery rate (OR 1.18; 95% Cl 1.01, 1.38; P = 0.03), Total effective rate (OR 1.11; 95% Cl 1.04, 1.17; P < 0.01), Operative time (SMD 15.78; 95% Cl 9.69, 21.86; P < 0.01), Hospital stay (SMD - 1.66; 95% Cl - 2.17, - 1.14; P < 0.01) and Complications (OR 0.48; 95% Cl 0.30, 0.78; P < 0.01). CONCLUSION The results of this study suggest that neuroendoscopy-assisted surgery may be effective in patients with chronic subdural hematoma, as evidenced by recurrence rate, recovery rate, total effective rate, operative time, hospital stay, complications, and the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Hou-Qiang Liu
- Department of Neurosurgery, the Affiliated Suqian Hospital of Xuzhou Medical University Or Suqian Hospital of Nanjing Drum Tower Hospital Group, SuqianJiangsu Province, 223800, China
| | - Xue Bai
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, 221000, China
| | - Fang-Ling Xiong
- Department of Neurosurgery, the Affiliated Suqian Hospital of Xuzhou Medical University Or Suqian Hospital of Nanjing Drum Tower Hospital Group, SuqianJiangsu Province, 223800, China
| | - Ming-Ming Gao
- Department of Neurosurgery, the Affiliated Suqian Hospital of Xuzhou Medical University Or Suqian Hospital of Nanjing Drum Tower Hospital Group, SuqianJiangsu Province, 223800, China
| | - Huai-Bing Zhang
- Department of Neurosurgery, the Affiliated Suqian Hospital of Xuzhou Medical University Or Suqian Hospital of Nanjing Drum Tower Hospital Group, SuqianJiangsu Province, 223800, China
| | - Bao-Hua Liu
- Department of Neurosurgery, the Affiliated Suqian Hospital of Xuzhou Medical University Or Suqian Hospital of Nanjing Drum Tower Hospital Group, SuqianJiangsu Province, 223800, China.
| |
Collapse
|
8
|
Dasgupta S. Systems Biology and Machine Learning Identify Genetic Overlaps Between Lung Cancer and Gastroesophageal Reflux Disease. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:492-503. [PMID: 39269895 DOI: 10.1089/omi.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
One Health and planetary health place emphasis on the common molecular mechanisms that connect several complex human diseases as well as human and planetary ecosystem health. For example, not only lung cancer (LC) and gastroesophageal reflux disease (GERD) pose a significant burden on planetary health, but also the coexistence of GERD in patients with LC is often associated with a poor prognosis. This study reports on the genetic overlaps between these two conditions using systems biology-driven bioinformatics and machine learning-based algorithms. A total of nine hub genes including IGHV1-3, COL3A1, ITGA11, COL1A1, MS4A1, SPP1, MMP9, MMP7, and LOC102723407 were found to be significantly altered in both LC and GERD as compared with controls and with pathway analyses suggesting a significant association with the matrix remodeling pathway. The expression of these genes was validated in two additional datasets. Random forest and K-nearest neighbor, two machine learning-based algorithms, achieved accuracies of 89% and 85% for distinguishing LC and GERD, respectively, from controls using these hub genes. Additionally, potential drug targets were identified, with molecular docking confirming the binding affinity of doxycycline to matrix metalloproteinase 7 (binding affinity: -6.8 kcal/mol). The present study is the first of its kind that combines in silico and machine learning algorithms to identify the gene signatures that relate to both LC and GERD and promising drug candidates that warrant further research in relation to therapeutic innovation in LC and GERD. Finally, this study also suggests upstream regulators, including microRNAs and transcription factors, that can inform future mechanistic research on LC and GERD.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- Department of Biotechnology, Center for Multidisciplinary Research and Innovations, Brainware University, Barasat, India
| |
Collapse
|
9
|
Ajoolabady A, Pratico D, Ren J. Endothelial dysfunction: mechanisms and contribution to diseases. Acta Pharmacol Sin 2024; 45:2023-2031. [PMID: 38773228 PMCID: PMC11420364 DOI: 10.1038/s41401-024-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/16/2024] [Indexed: 05/23/2024] Open
Abstract
The endothelium, lining the inner surface of blood vessels and spanning approximately 3 m2, serves as the largest organ in the body. Comprised of endothelial cells, the endothelium interacts with other bodily components including the bloodstream, circulating cells, and the lymphatic system. Functionally, the endothelium primarily synchronizes vascular tone (by balancing vasodilation and vasoconstriction) and prevents vascular inflammation and pathologies. Consequently, endothelial dysfunction disrupts vascular homeostasis, leading to vascular injuries and diseases such as cardiovascular, cerebral, and metabolic diseases. In this opinion/perspective piece, we explore the recently identified mechanisms of endothelial dysfunction across various disease subsets and critically evaluate the strengths and limitations of current therapeutic interventions at the pre-clinical level.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| |
Collapse
|
10
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
11
|
Rustamadji P, Wiyarta E, Miftahuzzakiyah M, Sukmawati D, Suryandari DA, Kodariah R. Potential of AKNA as a Predictive Biomarker for Ovarian Cancer and Its Relationship to Tumor Grading. Niger J Clin Pract 2024; 27:1089-1094. [PMID: 39348329 DOI: 10.4103/njcp.njcp_46_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/14/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Ovarian cancer exhibits a significant prevalence and incidence on a global scale. Low-grade or high-grade epithelial-type ovarian cancer can be classified by using the dualistic model. Inflammation has been associated with AKNA protein by cancer researchers. The potential of AKNA as a cancer biomarker is supported by its significance and association with ovarian carcinoma. Uninvestigated is this enormous potential. AIM This study examines the correlation between AKNA expression in low-grade and high-grade ovarian tumors and its utility as a predictive biomarker for ovarian cancer. METHODS This study examined a total of thirty-one samples, which were classified into three groups: cyst, low-grade, and high-grade ovarian carcinoma. The departmental archive was accessed for the following information: age, tumor size, nuclear grade, mitosis, ovary volume, implant tumor status, lymph vascular invasion status, lymph node metastasis, and tumor-infiltrating lymphocyte. The expression of AKNA was determined using IHC staining. The information was collected and analyzed via analysis of variance. RESULTS The AKNA H-score shows the mean difference between all three groups (P < 0.001). Cysts had the highest AKNA expression, followed by low-grade and high-grade ovarian carcinoma. CONCLUSION Higher-grade ovarian cancer expressed less AKNA compared to cysts or low-grade forms of the disease. This considerable difference suggests that AKNA might predict ovarian cancer tumor grade.
Collapse
Affiliation(s)
- P Rustamadji
- Department of Anatomic Pathology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - E Wiyarta
- Department of Medical Science, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - M Miftahuzzakiyah
- Department of Anatomic Pathology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - D Sukmawati
- Department of Histology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - D A Suryandari
- Department of Medical Biology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - R Kodariah
- Department of Anatomic Pathology, Faculty of Medicine Universitas Indonesia-Dr. Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| |
Collapse
|
12
|
Eppley SE, Pasricha ND, Seitzman GD, Joye A, Arboleda A, Qureshi A. Multimodal Imaging of Posterior Corneal Opacities in Multicentric Osteolysis Nodulosis and Arthropathy (MONA). CORNEA OPEN 2024; 3:e0044. [PMID: 39502084 PMCID: PMC11537491 DOI: 10.1097/coa.0000000000000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024]
Abstract
Purpose Multicentric osteolysis nodulosis and arthropathy (MONA) syndrome is a rare autosomal recessive skeletal dysplasia. Caused by mutations in the matrix metalloproteinase 2 gene (MMP2) on chromosome 16q12, this syndrome has infrequently been associated with ophthalmic manifestations. Corneal opacities have been reported but not described or documented in detail. Methods Complete ophthalmologic examination and multimodal anterior segment imaging were used to characterize the corneal findings in a patient with MONA syndrome. Results A 19-year-old with MONA syndrome was referred for an eye exam based upon MONA screening recommendations. Visually insignificant peripheral corneal opacities were noted. Anterior segment optical coherence tomography (AS-OCT) demonstrated posterior stromal and endothelial hyperreflectivity. Confocal microscopy demonstrated an acellular peripheral endothelium with a normal central endothelium. Conclusions Corneal opacities can occur with MONA syndrome, which is caused by mutations in the MMP2 gene. In the patient presented here, the corneal opacities are peripheral, deep stromal, with sparing of the anterior stroma and epithelium.
Collapse
Affiliation(s)
- Sarah E Eppley
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, CA, USA
| | - Neel D Pasricha
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Gerami D Seitzman
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Ashlin Joye
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Alejandro Arboleda
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Azam Qureshi
- Department of Ophthalmology, California Pacific Medical Center, San Francisco, CA, USA
- Benioff Children’s Hospital Department of Pediatric Ophthalmology, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
13
|
Munteanu C, Galaction AI, Poștaru M, Rotariu M, Turnea M, Blendea CD. Hydrogen Sulfide Modulation of Matrix Metalloproteinases and CD147/EMMPRIN: Mechanistic Pathways and Impact on Atherosclerosis Progression. Biomedicines 2024; 12:1951. [PMID: 39335465 PMCID: PMC11429404 DOI: 10.3390/biomedicines12091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory condition marked by endothelial dysfunction, lipid accumulation, inflammatory cell infiltration, and extracellular matrix (ECM) remodeling within arterial walls, leading to plaque formation and potential cardiovascular events. Key players in ECM remodeling and inflammation are matrix metalloproteinases (MMPs) and CD147/EMMPRIN, a cell surface glycoprotein expressed on endothelial cells, vascular smooth muscle cells (VSMCs), and immune cells, that regulates MMP activity. Hydrogen sulfide (H₂S), a gaseous signaling molecule, has emerged as a significant modulator of these processes including oxidative stress mitigation, inflammation reduction, and vascular remodeling. This systematic review investigates the mechanistic pathways through which H₂S influences MMPs and CD147/EMMPRIN and assesses its impact on atherosclerosis progression. A comprehensive literature search was conducted across PubMed, Scopus, and Web of Science databases, focusing on studies examining H₂S modulation of MMPs and CD147/EMMPRIN in atherosclerosis contexts. Findings indicate that H₂S modulates MMP expression and activity through transcriptional regulation and post-translational modifications, including S-sulfhydration. By mitigating oxidative stress, H₂S reduces MMP activation, contributing to plaque stability and vascular remodeling. H₂S also downregulates CD147/EMMPRIN expression via transcriptional pathways, diminishing inflammatory responses and vascular cellular proliferation within plaques. The dual regulatory role of H₂S in inhibiting MMP activity and downregulating CD147 suggests its potential as a therapeutic agent in stabilizing atherosclerotic plaques and mitigating inflammation. Further research is warranted to elucidate the precise molecular mechanisms and to explore H₂S-based therapies for clinical application in atherosclerosis.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital "Bagdasar-Arseni", 041915 Bucharest, Romania
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mădălina Poștaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy "Grigore T. Popa", 700115 Iasi, Romania
| | - Corneliu Dan Blendea
- Department of Medical-Clinical Disciplines, General Surgery, Faculty of Medicine, "Titu Maiorescu" University of Bucharest, 0400511 Bucharest, Romania
| |
Collapse
|
14
|
Riaz A, Ali S, Summer M, Noor S, Nazakat L, Aqsa, Sharjeel M. Exploring the underlying pharmacological, immunomodulatory, and anti-inflammatory mechanisms of phytochemicals against wounds: a molecular insight. Inflammopharmacology 2024:10.1007/s10787-024-01545-5. [PMID: 39138746 DOI: 10.1007/s10787-024-01545-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Numerous cellular, humoral, and molecular processes are involved in the intricate process of wound healing. PHARMACOLOGICAL RELEVANCE Numerous bioactive substances, such as ß-sitosterol, tannic acid, gallic acid, protocatechuic acid, quercetin, ellagic acid, and pyrogallol, along with their pharmacokinetics and bioavailability, have been reviewed. These phytochemicals work together to promote angiogenesis, granulation, collagen synthesis, oxidative balance, extracellular matrix (ECM) formation, cell migration, proliferation, differentiation, and re-epithelialization during wound healing. FINDINGS AND NOVELTY To improve wound contraction, this review delves into how the application of each bioactive molecule mediates with the inflammatory, proliferative, and remodeling phases of wound healing to speed up the process. This review also reveals the underlying mechanisms of the phytochemicals against different stages of wound healing along with the differentiation of the in vitro evidence from the in vivo evidence There is growing interest in phytochemicals, or plant-derived compounds, due their potential health benefits. This calls for more scientific analysis and mechanistic research. The various pathways that these phytochemicals control/modulate to improve skin regeneration and wound healing are also briefly reviewed. The current review also elaborates the immunomodulatory modes of action of different phytochemicals during wound repair.
Collapse
Affiliation(s)
- Anfah Riaz
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan.
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Nazakat
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Aqsa
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| | - Muhammad Sharjeel
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
15
|
Pak SW, Lee IS, Kim WI, Lee SJ, Kim JC, Shin IS, Kim T. Camellia sinensis L. alleviates OVA-induced allergic asthma through NF-κB and MMP-9 pathways. Anim Cells Syst (Seoul) 2024; 28:381-391. [PMID: 39100550 PMCID: PMC11295686 DOI: 10.1080/19768354.2024.2383254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/24/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024] Open
Abstract
Allergic asthma, a type of chronic airway inflammation, is a global health concern because of its increasing incidence and recurrence rates. Camellia sinensis L. yields a variety type of teas, which are also used as medicinal plants in East Asia and are known to have antioxidant, anti-inflammatory, and immune-potentiating properties. Here, we examined the constituents of C. sinensis L. extract (CSE) and evaluated the protective effects of CSE on allergic asthma by elucidating the underlying mechanism. To induce allergic asthma, we injected the sensitization solution (mixture of ovalbumin (OVA) and aluminum hydroxide) into mice intraperitoneally on days 0 and 14. Then, the mice were exposed to 1% OVA by a nebulizer on days 21 to 23, while intragastric administration of CSE (30 and 100 mg/kg) was performed each day on days 18 to 23. We detected five compounds in CSE, including (-)-epigallocatechin, caffeine, (-)-epicatechin, (-)-epigallocatechin gallate, and (-)-epicatechin gallate. Treatment with CSE remarkably decreased the airway hyperresponsiveness, OVA-specific immunoglobulin E level, and inflammatory cell and cytokine levels of mice, with a decrease in inflammatory cell infiltration and mucus production in lung tissue. Treatment with CSE also decreased the phosphorylation of nuclear factor-κB (NF-κB) and the expression of matrix-metalloproteinase (MMP)-9 in asthmatic mice. Our results demonstrated that CSE reduced allergic airway inflammation caused by OVA through inhibition of phosphorylated NF-κB and MMP-9 expression.
Collapse
Affiliation(s)
- So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Ik Soo Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, Republic of Korea
| |
Collapse
|
16
|
Ergun P, Kipcak S, Gunel NS, Bor S, Sozmen EY. Roles of Cytokines in Pathological and Physiological Gastroesophageal Reflux Exposure. J Neurogastroenterol Motil 2024; 30:290-302. [PMID: 37957115 PMCID: PMC11238103 DOI: 10.5056/jnm22186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/29/2023] [Accepted: 04/10/2023] [Indexed: 11/15/2023] Open
Abstract
Background/Aims Gastroesophageal reflux disease is frequently observed and has no definitive treatment. There are 2 main views on the pathogenesis of gastroesophageal reflux disease. The first is that epithelial damage starts from the mucosa by acidic-peptic damage and the inflammatory response of granulocytes. The other view is that T-lymphocytes attract chemoattractants from the basal layer to the mucosa, and granulocytes do not migrate until damage occurs. We aim to investigate the inflammatory processes occurring in the esophageal epithelium of the phenotypes at the molecular level. We also examined the effects of these changes on tissue integrity. Methods Patients with mild and severe erosive reflux, nonerosive reflux, reflux hypersensitivity, and functional heartburn were included. Inflammatory gene expressions (JAK/STAT Signaling and NFKappaB Primer Libraries), chemokine protein levels, and tissue integrity were examined in the esophageal biopsies. Results There was chronic inflammation in the severe erosion group, the acute response was also triggered. In the mild erosion group, these 2 processes worked together, but homeostatic cytokines were also secreted. In nonerosive groups, T-lymphocytes were more dominant. In addition, the inflammatory response was highly triggered in the reflux hypersensitivity and functional heartburn groups, and it was associated with physiological reflux exposure and sensitivity. Conclusions "Microinflammation" in physiological acid exposure groups indicates that even a mild trigger is sufficient for the initiation and progression of inflammatory activity. Additionally, the anti-inflammatory cytokines were highly increased. The results may have a potential role in the treatment of heartburn symptoms and healing of the mucosa.
Collapse
Affiliation(s)
- Pelin Ergun
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Sezgi Kipcak
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Nur S Gunel
- Departments of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Serhat Bor
- Division of Gastroenterology, Faculty of Medicine, Ege University, Ege Reflux Study Group, Izmir, Turkey
| | - Eser Y Sozmen
- Departments of Medical Biochemistry, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
17
|
Ran C, Olofsgård FJ, Wellfelt K, Steinberg A, Belin AC. Elevated cytokine levels in the central nervous system of cluster headache patients in bout and in remission. J Headache Pain 2024; 25:121. [PMID: 39044165 PMCID: PMC11267889 DOI: 10.1186/s10194-024-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Cluster headache is characterized by activation of the trigeminovascular pathway with subsequent pain signalling in the meningeal vessels, and inflammation has been suggested to play a role in the pathophysiology. To further investigate inflammation in cluster headache, inflammatory markers were analysed in patients with cluster headache and controls. METHODS We performed a case-control study, collecting cerebrospinal fluid and serum samples from healthy controls, cluster headache patients in remission, active bout, and during an attack to cover the dynamic range of the cluster headache phenotype. Inflammatory markers were quantified using Target 48 OLINK cytokine panels. RESULTS Altered levels of several cytokines were found in patients with cluster headache compared to controls. CCL8, CCL13, CCL11, CXCL10, CXCL11, HGF, MMP1, TNFSF10 and TNFSF12 levels in cerebrospinal fluid were comparable in active bout and remission, though significantly higher than in controls. In serum samples, CCL11 and CXCL11 displayed decreased levels in patients. Only one cytokine, IL-13 was differentially expressed in serum during attacks. CONCLUSION AND INTERPRETATION Our data shows signs of possible neuroinflammation occurring in biological samples from cluster headache patients. Increased cerebrospinal fluid cytokine levels are detectable in active bout and during remission, indicating neuroinflammation could be considered a marker for cluster headache and is unrelated to the different phases of the disorder.
Collapse
Affiliation(s)
- Caroline Ran
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | - Katrin Wellfelt
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anna Steinberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Carmine Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Wilkerson A, Yuksel S, Acharya R, Butovich IA. Physiological Effects of Soat1 Inactivation on Homeostasis of the Mouse Ocular Surface. Invest Ophthalmol Vis Sci 2024; 65:2. [PMID: 38953847 PMCID: PMC11221616 DOI: 10.1167/iovs.65.8.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Purpose Soat1/SOAT1 have been previously reported to be critical for the biosynthesis of cholesteryl esters (CEs) in the mouse Meibomian glands (MGs) as the loss of function led to an arrest of CE production and a substantial accumulation of nonesterified cholesterol in the meibum, causing an increase in its melting temperature. The purpose of this study was to further investigate the role of Soat1 in meibogenesis and ocular surface physiology. Methods The mouse ocular features of knockout Soat1-/- and wild type (WT) mice were studied using various ophthalmic and histological techniques, mouse lipidomes were monitored using liquid chromatography/mass spectrometry, whereas their transcriptomes were compared to characterize the effects of the mutation on the gene expression profiles in the MG and cornea. Results Soat1-/- mice displayed increased tear production and severe corneal abnormalities, such as corneal thinning, (neo)vascularization, ulceration, and opacification that progressed with aging. Transcriptomic analyses led to identification of a range of significantly disrupted pathways, which included general and specific lipid metabolism-related pathways, keratinization, angiogenesis/(neo)vascularization, muscle contraction, and several other pathways. In addition, histological and histochemical experiments revealed morphological changes in the MG, cornea, and conjunctiva in Soat1-/- mice. Notably, the mRNA microarray expression level of Soat1 in WT MGs (log2 17.5) was 1000 × of that in the mouse cornea (log2 7.5). Conclusions These findings suggest a direct involvement of Soat1/SOAT1 in MGs in maintaining ocular surface homeostasis, in general, and corneal health, specifically.
Collapse
Affiliation(s)
- Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Seher Yuksel
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Riya Acharya
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Igor A. Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
19
|
Turkel I, Tahtalioglu S, Celik E, Yazgan B, Kubat GB, Ozerklig B, Kosar SN. Time-course and muscle-specific gene expression of matrix metalloproteinases and inflammatory cytokines in response to acute treadmill exercise in rats. Mol Biol Rep 2024; 51:667. [PMID: 38780696 DOI: 10.1007/s11033-024-09637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) of skeletal muscle plays a pivotal role in tissue repair and growth, and its remodeling tightly regulated by matrix metalloproteinases (MMPs), tissue inhibitors of metalloproteinases (TIMPs), and inflammatory cytokines. This study aimed to investigate changes in the mRNA expression of MMPs (Mmp-2 and Mmp-14), TIMPs (Timp-1 and Timp-2), and inflammatory cytokines (Il-1β, Tnf-α, and Tgfβ1) in the soleus (SOL) and extensor digitorum longus (EDL) muscles of rats following acute treadmill exercise. Additionally, muscle morphology was examined using hematoxylin and eosin (H&E) staining. METHODS AND RESULTS Male rats were subjected to acute treadmill exercise at 25 m/min for 60 min with a %0 slope. The mRNA expression of ECM components and muscle morphology in the SOL and EDL were assessed in both sedentary and exercise groups at various time points (immediately (0) and 1, 3, 6, 12, and 24 h post-exercise). Our results revealed a muscle-specific response, with early upregulation of the mRNA expression of Mmp-2, Mmp-14, Timp-1, Timp-2, Il-1β, and Tnf-α observed in the SOL compared to the EDL. A decrease in Tgfβ1 mRNA expression was evident in the SOL at all post-exercise time points. Conversely, Tgfβ1 mRNA expression increased at 0 and 3 h post-exercise in the EDL. Histological analysis also revealed earlier cell infiltration in the SOL than in the EDL following acute exercise. CONCLUSIONS Our results highlight how acute exercise modulates ECM components and muscle structure differently in the SOL and EDL muscles, leading to distinct muscle-specific responses.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Sema Tahtalioglu
- Department of Biotechnology, Institute of Sciences, Amasya University, Amasya, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoğlu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Sturla Irizarry SM, Cathey AL, Rosario Pabón ZY, Vélez Vega CM, Alshawabkeh AN, Cordero JF, Watkins DJ, Meeker JD. Urinary phenol and paraben concentrations in association with markers of inflammation during pregnancy in Puerto Rico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170889. [PMID: 38360311 DOI: 10.1016/j.scitotenv.2024.170889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Exposure to phenols and parabens may contribute to increased maternal inflammation and adverse birth outcomes, but these effects are not well-studied in humans. This study aimed to investigate relationships between concentrations of 8 phenols and 4 parabens with 6 inflammatory biomarkers (C-reactive protein (CRP); matrix metalloproteinases (MMP) 1, 2, and 9; intercellular adhesion molecule-1 (ICAM-1); and vascular cell adhesion molecule-1 (VCAM-1)) measured at two time points in pregnancy in the PROTECT birth cohort in Puerto Rico. Linear mixed models were used, adjusting for covariates of interest. Results are expressed as the percent change in outcome per interquartile range (IQR) increase in exposure. Particularly among phenols, numerous significant negative associations were found, for example, between benzophenone-3 and CRP (-11.21 %, 95 % CI: -17.82, -4.07) and triclocarban and MMP2 (-9.87 %, 95 % CI: -14.05, -5.5). However, significant positive associations were also detected, for instance, between bisphenol-A (BPA) and CRP (9.77 %, 95 % CI: 0.67, 19.68) and methyl-paraben and MMP1 (10.78 %, 95 % CI: 2.17, 20.11). Significant interactions with female fetal sex and the later study visit (at 24-28 weeks gestation) showed more positive associations compared to male fetal sex and the earlier study visit (16-20 weeks gestation). Our results suggest that phenols and parabens may disrupt inflammatory processes pertaining to uterine remodeling and endothelial function, with important implications for pregnancy outcomes. More research is needed to further understand maternal inflammatory status in an effort to improve reproductive and developmental outcomes.
Collapse
Affiliation(s)
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Zaira Y Rosario Pabón
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Carmen M Vélez Vega
- Department of Social Sciences, Doctoral Program in Social Determinants of Health, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| | - Akram N Alshawabkeh
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
| | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA 30606, USA.
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Wang K, Wang S, Ding Y, Kou Z, Jiang B, Hou S. Exploring the Molecular Mechanisms and Shared Gene Signatures Between Systemic Lupus Erythematosus and Bladder Urothelial Carcinoma. Int J Gen Med 2024; 17:705-723. [PMID: 38435117 PMCID: PMC10909332 DOI: 10.2147/ijgm.s448720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with increased susceptibility to cancer, including bladder urothelial carcinoma (BLCA). This study investigates the shared molecular mechanisms and gene signatures between SLE and BLCA, shedding light on potential biomarkers and therapeutic targets. Methods We compiled gene datasets related to SLE and BLCA from various databases and identified common genes. Differential gene expression analysis, protein-protein interaction networks, and hub gene identification were performed. We studied functional enrichment, immune infiltration, and transcription factor/miRNA regulation networks. We also explored gene-disease interactions and protein-chemical/drug networks. Hub gene expression levels and diagnostic values were validated in TCGA and GEO databases. Prognostic analysis was performed on the core gene MMP9 in the TCGA-BLCA database to study its prognostic value. Finally, the mRNA expression of MMP9 was verified in bladder cancer cell lines and BLCA patient blood. The diagnostic value of MMP9 for BLCA was verified by receiver operating characteristic(ROC) curve analysis of the expression of MMP9 in patients' blood. Results We identified 524 common genes between SLE and BLCA, enriched in pathways related to apoptosis and cytokine regulation. Immune infiltration analysis for two diseases. Transcription factors and microRNAs were implicated in regulating these common genes. The gene-disease network linked hub genes with various diseases, emphasizing their roles in autoimmune disease and cancer. Protein-chemical/drug networks highlighted potential treatment options. Finally, our study found that MMP9 is a potential therapeutic target with diagnostic and prognostic value and Immune-related biomarkers in patients with BLCA and SLE. Conclusion Our study reveals shared molecular mechanisms, genetic signatures, and immune infiltrates between SLE and BLCA. MMP9 emerges as a potential diagnostic and prognostic biomarker in BLCA, warranting further investigation. These findings provide insights into the pathogenesis of SLE-associated BLCA and may guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Kongjia Wang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Shufei Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zengshun Kou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Bo Jiang
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Sichuan Hou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
22
|
Fryk E, Wilsson Å, Tompa A, Jansson PA, Faresjö M. Galectin-1 correlates with inflammatory markers and T regulatory cells in children with type 1 diabetes and/or celiac disease. Clin Exp Immunol 2024; 215:240-250. [PMID: 38088456 PMCID: PMC10876110 DOI: 10.1093/cei/uxad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024] Open
Abstract
Type 1 diabetes (T1D) and celiac disease (CeD) are common autoimmune diseases in children where the pathophysiology is not fully characterized. The autoimmune process involves a complex scenario of both inflammatory and regulatory features. Galectin-1 (GAL-1) has a wide range of biological activities e.g. interaction with immune cells. We examined the relationship between GAL-1 and soluble immune markers and T-cell subsets in a cohort of children with T1D and/or CeD relative to healthy children. GAL-1, together with several soluble immune markers [e.g. interleukins (IL)], tumor necrosis factor (TNF), acute phase proteins, and matrix metalloproteinases (MMP) were measured in sera from children with T1D and/or CeD by fluorochrome (Luminex) technique using children without these diseases as a reference. Subgroups of T cells, including T-regulatory (Treg) cells, were analysed by flow cytometry. Association between GAL-1, pro-inflammatory markers, and Treg cells differed depending on which illness combination was present. In children with both T1D and CeD, GAL-1 correlated positively with pro-inflammatory markers (IL-1β, IL-6, and TNF-α). Composite scores increased the strength of correlation between GAL-1 and pro-inflammatory markers, Th1-associated interferon (IFN)-γ, and T1D-associated visfatin. Contrary, in children diagnosed with exclusively T1D, GAL-1 was positively correlated to CD25hi and CD25hiCD101+ Treg cells. For children with only CeD, no association between GAL-1 and other immune markers was observed. In conclusion, the association observed between GAL-1, soluble immune markers, and Treg cells may indicate a role for GAL-1 in the pathophysiology of T1D and, to some extent, also in CeD.
Collapse
Affiliation(s)
- Emanuel Fryk
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Wilsson
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Andrea Tompa
- Department of Natural Science and Biomedicine, School of Health and Welfare, Jönköping University, Jönköping, Sweden
- Division of Medical Diagnostics, Department of Laboratory Medicine, Region Jönköping County, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Faresjö
- Department of Life Sciences, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
23
|
Chanda D, Del Rivero T, Ghimire R, More S, Mitrani MI, Bellio MA, Channappanavar R. Acellular Human Amniotic Fluid-Derived Extracellular Vesicles as Novel Anti-Inflammatory Therapeutics against SARS-CoV-2 Infection. Viruses 2024; 16:273. [PMID: 38400048 PMCID: PMC10892347 DOI: 10.3390/v16020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with acute respiratory distress syndrome (ARDS) and fatal pneumonia. Excessive inflammation caused by SARS-CoV-2 is the key driver of ARDS and lethal disease. Several FDA-approved drugs that suppress virus replication are in clinical use. However, despite strong evidence for the role of virus-induced inflammation in severe COVID-19, no effective anti-inflammatory drug is available to control fatal inflammation as well as efficiently clear the virus. Therefore, there is an urgent need to identify biologically derived immunomodulators that suppress inflammation and promote antiviral immunity. In this study, we evaluated acellular human amniotic fluid (acAF) containing extracellular vesicles (hAF-EVs) as a potential non-toxic and safe biologic for immunomodulation during COVID-19. Our in vitro results showed that acAF significantly reduced inflammatory cytokine production in TLR2/4/7 and SARS-CoV-2 structural protein-stimulated mouse macrophages. Importantly, an intraperitoneal administration of acAF reduced morbidity and mortality in SARS-CoV-2-infected mice. A detailed examination of SARS-CoV-2-infected lungs revealed that the increased protection in acAF-treated mice was associated with reduced viral titers and levels of inflammatory myeloid cell infiltration. Collectively, our results identify a novel biologic that has potential to suppress excessive inflammation and enhance survival following SARS-CoV-2 infection, highlighting the translational potential of acAF against COVID-19.
Collapse
Affiliation(s)
- Debarati Chanda
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Tania Del Rivero
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Roshan Ghimire
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Sunil More
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| | - Maria Ines Mitrani
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Michael A. Bellio
- Organicell Regenerative Medicine, Davie, FL 33314, USA; (T.D.R.); (M.I.M.)
| | - Rudragouda Channappanavar
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74078, USA; (D.C.); (R.G.); (S.M.)
| |
Collapse
|
24
|
van Straalen KR, Ma F, Tsou PS, Plazyo O, Gharaee-Kermani M, Calbet M, Xing X, Sarkar MK, Uppala R, Harms PW, Wasikowski R, Nahlawi L, Nakamura M, Eshaq M, Wang C, Dobry C, Kozlow JH, Cherry-Bukowiec J, Brodie WD, Wolk K, Uluçkan Ö, Mattichak MN, Pellegrini M, Modlin RL, Maverakis E, Sabat R, Kahlenberg JM, Billi AC, Tsoi LC, Gudjonsson JE. Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa. J Clin Invest 2024; 134:e169225. [PMID: 38051587 PMCID: PMC10836805 DOI: 10.1172/jci169225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease characterized by abscesses, nodules, dissecting/draining tunnels, and extensive fibrosis. Here, we integrate single-cell RNA sequencing, spatial transcriptomics, and immunostaining to provide an unprecedented view of the pathogenesis of chronic HS, characterizing the main cellular players and defining their interactions. We found a striking layering of the chronic HS infiltrate and identified the contribution of 2 fibroblast subtypes (SFRP4+ and CXCL13+) in orchestrating this compartmentalized immune response. We further demonstrated the central role of the Hippo pathway in promoting extensive fibrosis in HS and provided preclinical evidence that the profibrotic fibroblast response in HS can be modulated through inhibition of this pathway. These data provide insights into key aspects of HS pathogenesis with broad therapeutic implications.
Collapse
Affiliation(s)
| | - Feiyang Ma
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Mehrnaz Gharaee-Kermani
- Department of Dermatology and
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Marta Calbet
- Almirall SA, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | | | | | | | - Paul W. Harms
- Department of Dermatology and
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | - Cong Wang
- Laboratory for Experimental Immunodermatology, Department of Dermatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | | | - Jill Cherry-Bukowiec
- Section of General Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William D. Brodie
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kerstin Wolk
- Interdisciplinary group Molecular Immunopathology, Dermatology/Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Özge Uluçkan
- Almirall SA, R&D Center, Sant Feliu de Llobregat, Barcelona, Spain
| | - Megan N. Mattichak
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Emanual Maverakis
- Department of Dermatology, University of California, Sacramento, California, USA
| | - Robert Sabat
- Interdisciplinary group Molecular Immunopathology, Dermatology/Medical Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - J. Michelle Kahlenberg
- Department of Dermatology and
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
25
|
Derakhshan Nazari MH, Shahrokh S, Ghanbari-Maman L, Maleknia S, Ghorbaninejad M, Meyfour A. Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: A prospective study. Heliyon 2023; 9:e21154. [PMID: 37928018 PMCID: PMC10623293 DOI: 10.1016/j.heliyon.2023.e21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples. A comprehensive gene expression and functional analysis was performed and identified 313 significantly altered genes, among which IL6 and INHBA were highlighted as overexpressed genes in the baseline mucosal biopsies of UCN, whose cooperation may lead to a decrease in the Tregs population. Besides, screening the abundances of immune cell subpopulations showed neutrophils' accumulation increasing the inflammation. Furthermore, the correlation of KRAS signaling activation with unresponsiveness to anti-TNF mAb was observed using network analysis. Using 50x repeated 10-fold cross-validation LASSO feature selection and a stack ensemble machine learning algorithm, a five-mRNA prognostic panel including IL13RA2, HCAR3, CSF3, INHBA, and MMP1 was introduced that could predict the response of UC patients to anti-TNF antibodies with an average accuracy of 95.3 %. The predictive capacity of the introduced biomarker panel was also validated in two independent cohorts (44 UC patients). Moreover, we presented a distinct immune cell landscape and gene signature for UCN to anti-TNF drugs and further studies should be considered to make this predictive biomarker panel and therapeutic targets applicable in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ghanbari-Maman
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ishimura T, Ishii A, Yamada H, Osaki K, Toda N, Mori KP, Ohno S, Kato Y, Handa T, Sugioka S, Ikushima A, Nishio H, Yanagita M, Yokoi H. Matrix metalloproteinase-10 deficiency has protective effects against peritoneal inflammation and fibrosis via transcription factor NFκΒ pathway inhibition. Kidney Int 2023; 104:929-942. [PMID: 37652204 DOI: 10.1016/j.kint.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/24/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
One of the most common causes of discontinued peritoneal dialysis is impaired peritoneal function. However, its molecular mechanisms remain unclear. Previously, by microarray analysis of mouse peritoneum, we showed that MMP (matrix metalloproteinase)-10 expression is significantly increased in mice with peritoneal fibrosis, but its function remains unknown. Chlorhexidine gluconate (CG) was intraperitoneally injected to wild-type and MMP-10 knockout mice to induce fibrosis to elucidate the role of MMP-10 on peritoneal injury. We also examined function of peritoneal macrophages and mesothelial cells obtained from wild-type and MMP-10 knockout mice, MMP-10-overexpressing macrophage-like RAW 264.7 cells and MeT-5A mesothelial cells, investigated MMP-10 expression on peritoneal biopsy specimens, and the association between serum proMMP-10 and peritoneal solute transfer rates determined by peritoneal equilibration test on patients. MMP-10 was expressed in cells positive for WT1, a mesothelial marker, and for MAC-2, a macrophage marker, in the thickened peritoneum of both mice and patients. Serum proMMP-10 levels were well correlated with peritoneal solute transfer rates. Peritoneal fibrosis, inflammation, and high peritoneal solute transfer rates induced by CG were all ameliorated by MMP-10 deletion, with reduction of CD31-positive vessels and VEGF-A-positive cells. Expression of inflammatory mediators and phosphorylation of NFκΒ subunit p65 at S536 were suppressed in both MMP-10 knockout macrophages and mesothelial cells in response to lipopolysaccharide stimulation. Overexpression of MMP-10 in RAW 264.7 and MeT-5A cells upregulated pro-inflammatory cytokines with phosphorylation of NFκΒ subunit p65. Thus, our results suggest that inflammatory responses induced by MMP-10 are mediated through the NFκΒ pathway, and that systemic deletion of MMP-10 ameliorates peritoneal inflammation and fibrosis caused by NFκΒ activation of peritoneal macrophages and mesothelial cells.
Collapse
Affiliation(s)
- Takuya Ishimura
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Ishii
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Hiroyuki Yamada
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keisuke Osaki
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Naohiro Toda
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, Kansai Electric Power Hospital, Osaka, Japan
| | - Keita P Mori
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Shoko Ohno
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yukiko Kato
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaya Handa
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Nephrology and Dialysis, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-Kofukai, Osaka, Japan
| | - Sayaka Sugioka
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akie Ikushima
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruomi Nishio
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Hideki Yokoi
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
27
|
Mashaal K, Shabbir A, Shahzad M, Mobashar A, Akhtar T, Fatima T, Riaz B, Alharbi R, Fatima A, Alanezi AA, Ahmad A. Amelioration of Rheumatoid Arthritis by Fragaria nubicola (Wild Strawberry) via Attenuation of Inflammatory Mediators in Sprague Dawley Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1917. [PMID: 38003966 PMCID: PMC10672992 DOI: 10.3390/medicina59111917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Fragaria nubicola has never been evaluated scientifically for its anti-arthritic potential despite its use in folkloric systems of medicine. The research was conducted to assess the potential of F. nubicola against rheumatoid arthritis. Materials and Methods: The current study provided scientific evidence by evaluating the effects of plants using an in vivo CFA-induced model of arthritic rats and subsequent microscopic histopathological evaluation of ankle joints along with the determination of paw edema using a digital water displacement plethysmometer. The study also gave insight by determining levels of pro-inflammatory cytokines, matrix metalloproteinase enzymes (MMPs), prostaglandin E2 (PGE2), nuclear factor kappa B (NF-κB), vascular endothelial growth factor (VEGF), and biochemical and hematological parameters. GCMS analysis was also conducted for the identification of possible anti-inflammatory plant constituents. Results: The data showed that F. nubicola-treated groups attenuated the progression of arthritis and paw edema. Microscopic histopathological evaluation validated the anti-arthritic potential by showing amelioration of bone erosion, infiltration of inflammatory cells, and pannus formation. RT-PCR analysis displayed that treatment with F. nubicola down-regulated IL1β, IL6, TNFα, NF-κB, VEGF, MMP2, MMP3, and MMP9 levels. Moreover, ELISA exhibited a reduction in levels of PGE2 levels in treatment groups. The levels of RBCs, platelets, WBCs, and Hb content were found to be nearly similar to negative control in the treated group. Statistically, a non-significant difference was found when all groups were compared for urea, creatinine, ALT, and AST analysis, indicating the safety of plant extract and fractions at test doses. GCMS analysis of extract and fractions showed the existence of many anti-inflammatory and antioxidant phytochemicals. Conclusion: In conclusion, F. nubicola possessed anti-arthritic properties that might be attributed to the amelioration of MMPs and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Kiran Mashaal
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (K.M.); (A.M.)
| | - Arham Shabbir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (K.M.); (A.M.)
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore 54000, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.); (T.A.)
| | - Aisha Mobashar
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan; (K.M.); (A.M.)
| | - Tasleem Akhtar
- Department of Pharmacology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.); (T.A.)
| | - Tabinda Fatima
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia;
| | - Bushra Riaz
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia; (B.R.); (R.A.); (A.F.); (A.A.)
| | - Rana Alharbi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia; (B.R.); (R.A.); (A.F.); (A.A.)
| | - Afreen Fatima
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia; (B.R.); (R.A.); (A.F.); (A.A.)
| | - Abdulkareem A. Alanezi
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| | - Ashfaq Ahmad
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia; (B.R.); (R.A.); (A.F.); (A.A.)
| |
Collapse
|
28
|
Quaresma TC, de Aguiar Valentim L, de Sousa JR, de Souza Aarão TL, Fuzii HT, Duarte MIS, de Souza J, Quaresma JAS. Immunohistochemical Characterization of M1, M2, and M4 Macrophages in Leprosy Skin Lesions. Pathogens 2023; 12:1225. [PMID: 37887741 PMCID: PMC10610015 DOI: 10.3390/pathogens12101225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Mycobacterium leprae is the etiological agent of leprosy. Macrophages (Mφs) are key players involved in the pathogenesis of leprosy. In this study, immunohistochemical analysis was performed to examine the phenotype of Mφ subpopulations, namely M1, M2, and M4, in the skin lesions of patients diagnosed with leprosy. Based on the database of treatment-naïve patients treated between 2015 and 2019 at the Department of Dermatology of the University of the State of Pará, Belém, routine clinical screening samples were identified. The monolabeling protocol was used for M1 macrophages (iNOS, IL-6, TNF-α) and M2 macrophages (IL-10, IL-13, CD163, Arginase 1, TGF-β, FGFb), and the double-labeling protocol was used for M4 macrophages (IL-6, MMP7, MRP8, TNF-α e CD68). To confirm the M4 macrophage lineage, double labeling of the monoclonal antibodies CD68 and MRP8 was also performed. Our results demonstrated a statistically significant difference for the M1 phenotype among the Virchowian (VV) (4.5 ± 1.3, p < 0.0001), Borderline (1.6 ± 0.4, p < 0.0001), and tuberculoid (TT) (12.5 ± 1.8, p < 0.0001) clinical forms of leprosy. Additionally, the M2 phenotype showed a statistically significant difference among the VV (12.5 ± 2.3, p < 0.0001), Borderline (1.3 ± 0.2, p < 0.0001), and TT (3.2 ± 0.7, p < 0.0001) forms. For the M4 phenotype, a statistically significant difference was observed in the VV (9.8 ± 1.7, p < 0.0001), Borderline (1.2 ± 0.2, p < 0.0001), and TT (2.6 ± 0.7, p < 0.0001) forms. A significant correlation was observed between the VV M1 and M4 (r = 0.8712; p = 0.0000) and between the VV M2 × TT M1 (r = 0.834; p = 0.0002) phenotypes. The M1 Mφs constituted the predominant Mφ subpopulation in the TT and Borderline forms of leprosy, whereas the M2 Mφs showed increased immunoexpression and M4 was the predominant Mφ phenotype in VV leprosy. These results confirm the relationship of the Mφ profile with chronic pathological processes of the inflammatory response in leprosy.
Collapse
Affiliation(s)
- Tatiane Costa Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Lívia de Aguiar Valentim
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Jorge Rodrigues de Sousa
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Tinara Leila de Souza Aarão
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
| | - Hellen Thais Fuzii
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
| | | | - Juarez de Souza
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
| | - Juarez Antônio Simões Quaresma
- Health Department, Center for Biological and Health Sciences, State University of Para-CCBS, UEPA, Belem 66087-662, Brazil
- School of Medicine, Federal University of Para-UFPA, Altamira 68440-000, Brazil
- Health Department, Tropical Medicine Center, Federal University of Para-NMT-UFPA, Belem 66055-240, Brazil
- School of Medicine, Sao Paulo University, Sao Paulo 01246-903, Brazil
| |
Collapse
|
29
|
Ferreira PA. Nucleocytoplasmic transport at the crossroads of proteostasis, neurodegeneration and neuroprotection. FEBS Lett 2023; 597:2567-2589. [PMID: 37597509 DOI: 10.1002/1873-3468.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/21/2023]
Abstract
Nucleocytoplasmic transport comprises the multistep assembly, transport, and disassembly of protein and RNA cargoes entering and exiting nuclear pores. Accruing evidence supports that impairments to nucleocytoplasmic transport are a hallmark of neurodegenerative diseases. These impairments cause dysregulations in nucleocytoplasmic partitioning and proteostasis of nuclear transport receptors and client substrates that promote intracellular deposits - another hallmark of neurodegeneration. Disturbances in liquid-liquid phase separation (LLPS) between dense and dilute phases of biomolecules implicated in nucleocytoplasmic transport promote micrometer-scale coacervates, leading to proteinaceous aggregates. This Review provides historical and emerging principles of LLPS at the interface of nucleocytoplasmic transport, proteostasis, aging and noxious insults, whose dysregulations promote intracellular aggregates. E3 SUMO-protein ligase Ranbp2 constitutes the cytoplasmic filaments of nuclear pores, where it acts as a molecular hub for rate-limiting steps of nucleocytoplasmic transport. A vignette is provided on the roles of Ranbp2 in nucleocytoplasmic transport and at the intersection of proteostasis in the survival of photoreceptor and motor neurons under homeostatic and pathophysiological environments. Current unmet clinical needs are highlighted, including therapeutics aiming to manipulate aggregation-dissolution models of purported neurotoxicity in neurodegeneration.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Department of Ophthalmology, Department of Pathology, Duke University Medical Center, NC, Durham, USA
| |
Collapse
|
30
|
Kumar S, Parveen S, Swaroop S, Banerjee M. TNF-α and MMPs mediated mucus hypersecretion induced by cigarette smoke: An in vitro study. Toxicol In Vitro 2023; 92:105654. [PMID: 37495164 DOI: 10.1016/j.tiv.2023.105654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/08/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Cigarette smoke is one of the leading causes of oxidative stress due to high levels of free radicals, which in turn leads to the degradation of alveolar cell walls and development of emphysema. Cigarette smoking has been linked to chronic bronchitis, Chronic Obstructive Pulmonary Disease (COPD) and lung cancer as well. The aim of the present study was to observe the effect of cigarette smoke extract (CSE) on TNF-α and MMPs mediated mucus hypersecretion in A549 cell line. The MTT experiments showed that CSE caused a dose-dependent decline in the level of viability of A549 cells. In addition, AO/PI and Mitotracker Red staining assays demonstrated that CSE caused the A549 cells to undergo apoptosis. This was determined by observing the reduction in mitochondrial membrane potential. CSE was found to be responsible for the formation of intracellular ROS, which was observed by DCFDA staining through fluorescence microscopy. Approximately 65% migration rate was decreased in 20% CSE exposed cells. CSE exposure led to the significantly increased mRNA levels of TNF-α, MMP-7, and MMP-12, in comparison to the control cells. Additionally, the expression of MUC5AC and MUC5B was provoked by CSE as well. Human epithelial cells are stimulated by TNF-α and MMPs secreted mucus, as shown by expression of MUC5AC and MUC5B. CSE could induce mucus in lungs through TNF-α and MMPs mediated pathways.
Collapse
Affiliation(s)
- Saurabh Kumar
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India
| | - Shama Parveen
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Suchit Swaroop
- Experimental and Public Health Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India; Institute of Advanced Molecular Genetics and Infectious Diseases (IAMGID), University of Lucknow, 226007, India.
| |
Collapse
|
31
|
Panahi N, Hashemnia M, Rezaei F, Cheraghi H. Effect of Piascledine-bacterial nanocellulose combination on experimental cutaneous wound healing in rat: Histopathological, biochemical and molecular studies. Int Wound J 2023; 21:e14418. [PMID: 37779106 PMCID: PMC10825074 DOI: 10.1111/iwj.14418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
The study investigated the wound healing potential of Piascledine (an avocado/soybean mixture) alone and in combination with bacterial nanocellulose on rat cutaneous wounds. Full-thickness excisional wounds (2 cm in diameter) were induced on the backs of 60 Sprague-Dawley rats, divided into four groups, treated with daily topical application of bacterial nanocellulose (BNC), Piascledine 10% (PSD 10%) and Piascledine+bacterial nanocellulose (PSD + BNC) (10 mg/disk) and normal saline (control) for 20 days. Wounds were monitored daily, and at 10, 20 and 30 days post-injury (DPI), tissue samples were collected for biochemical, histopathological and molecular analyses. Treated rats with PSD and PSD + BNC showed a significant decrease in the wound area compared with other groups. PSD and particularly PSD + BNC modulated inflammation, improved fibroplasia and angiogenesis and scar tissue formation at short term. At the long term, they reduced the scar tissue size and improved collagen fibres alignment, tissue organization and remodelling as well as re-epithelialization. PSD enhanced matrix metalloproteinase-3 (MMP-3) gene expression, collagen and glycosaminoglycans (GAGs) synthesis and decreased tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression at various stages of wound healing. The study concluded that topical application of Piascledine, particularly in combination with bacterial nanocellulose, promotes wound healing activity by modulating inflammation, regulating MMP-3 expression and enhancing collagen and GAGs synthesis.
Collapse
Affiliation(s)
- Nastaran Panahi
- Department of Pathobiology, Veterinary Medicine FacultyRazi UniversityKermanshahIran
| | - Mohammad Hashemnia
- Department of Pathobiology, Veterinary Medicine FacultyRazi UniversityKermanshahIran
| | - Farid Rezaei
- Department of Pathobiology, Veterinary Medicine FacultyRazi UniversityKermanshahIran
| | - Hadi Cheraghi
- Department of Clinical Sciences, Veterinary Medicine FacultyRazi UniversityKermanshahIran
| |
Collapse
|
32
|
Wang RH, Lin YK, Xie HK, Li H, Li M, He D. Exploring the synergistic pharmacological mechanism of Huoxiang Drink against irritable bowel syndrome by integrated data mining and network pharmacology. Medicine (Baltimore) 2023; 102:e35220. [PMID: 37773835 PMCID: PMC10545357 DOI: 10.1097/md.0000000000035220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/01/2023] Open
Abstract
Irritable bowel syndrome (IBS) is the most common functional gastrointestinal disorder, characterized by abdominal pain, bloating, and changes in bowel habits. Huoxiang Drink (HD), derived from traditional Chinese medicine, has been reported to effectively treat digestive disorders caused by external cold and internal dampness. However, the pharmaceutical targets and mechanisms for HD against IBS remain unclear. Data mining, bioinformatics analysis, and network pharmacology were employed to explore the potential pharmacological mechanisms of HD against IBS. In this study, we screened 50 core targets to investigate the pharmacological mechanisms of HD against IBS. Enrichment analysis revealed that HD may participate in various signaling pathways, especially the inflammation-related tumor necrosis factor, signaling pathway and hypoxia-inducible factor signaling pathway. Molecular docking results confirmed that MOL000098 (Quercetin), MOL000006 (Luteolin), MOL005828 (Nobiletin), MOL005916 (Irisolidone), and MOL004328 (Naringenin), as key active ingredients in HD, bound to core targets (tumor protein P53, tumor necrosis factor, matrix metalloproteinases 9, and vascular endothelial growth factor-A) for topical treatment of IBS. This study suggested that HD offered a potential therapeutic strategy against IBS. Our findings may facilitate the efficient screening of active ingredients in HD and provide a theoretical basis for further validating the clinical therapeutic effects of HD on treating IBS.
Collapse
Affiliation(s)
- Ruo-Hui Wang
- Department of ICU, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Ke Lin
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Kai Xie
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Li
- Harbin Traditional Chinese Medicine Hospital, Harbin, China
| | - Mu Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dong He
- Department of Pharmacology, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
33
|
Ishaq T, Loid P, Ishaq HA, Seo GH, Mäkitie O, Naz S. Clinical, radiographic and molecular characterization of two unrelated families with multicentric osteolysis, nodulosis, and arthropathy. BMC Musculoskelet Disord 2023; 24:735. [PMID: 37710205 PMCID: PMC10503101 DOI: 10.1186/s12891-023-06856-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Multicentric osteolysis nodulosis and arthropathy (MONA) is a rare autosomal recessive disorder characterized by marked progressive bone loss and joint destruction resulting in skeletal deformities. MONA is caused by MMP2 deficiency. Here we report clinical and molecular analyses of four patients in two families from Pakistan and Finland. METHODS Clinical analyses including radiography were completed and blood samples were collected. The extracted DNA was subjected to whole-exome analysis or target gene sequencing. Segregation analyses were performed in the nuclear pedigree. Pathogenicity prediction scores for the selected variants and conservation analyses of affected amino acids were observed. RESULTS The phenotype in the four affected individuals was consistent with multicentric osteolysis or MONA, as the patients had multiple affected joints, osteolysis of hands and feet, immobility of knee joint and progressive bone loss. Long-term follow up of the patients revealed the progression of the disease. We found a novel MMP2 c.1336 + 2T > G homozygous splice donor variant segregating with the phenotype in the Pakistani family while a MMP2 missense variant c.1188 C > A, p.(Ser396Arg) was homozygous in both Finnish patients. In-silico analysis predicted that the splicing variant may eventually introduce a premature stop codon in MMP2. Molecular modeling for the p.(Ser396Arg) variant suggested that the change may disturb MMP2 collagen-binding region. CONCLUSION Our findings expand the genetic spectrum of Multicentric osteolysis nodulosis and arthropathy. We also suggest that the age of onset of this disorder may vary from childhood up to late adolescence and that a significant degree of intrafamilial variability may be present.
Collapse
Affiliation(s)
- Tayyaba Ishaq
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan
| | - Petra Loid
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| | | | | | - Outi Mäkitie
- Folkhälsan Research Center, Genetics Research Program, Helsinki, Finland.
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland.
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
34
|
Ribeiro Vitorino T, Ferraz do Prado A, Bruno de Assis Cau S, Rizzi E. MMP-2 and its implications on cardiac function and structure: Interplay with inflammation in hypertension. Biochem Pharmacol 2023; 215:115684. [PMID: 37459959 DOI: 10.1016/j.bcp.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Hypertension is one of the leading risk factors for the development of heart failure. Despite being a multifactorial disease, in recent years, preclinical and clinical studies suggest strong evidence of the pivotal role of inflammatory cells and cytokines in the remodeling process and cardiac dysfunction. During the heart remodeling, activation of extracellular matrix metalloproteinases (MMPs) occurs, with MMP-2 being one of the main proteases secreted by cardiomyocytes, fibroblasts, endothelial and inflammatory cells in cardiac tissue. In this review, we will address the process of cardiac remodeling and injury induced by the increase in MMP-2 and the main signaling pathways involving cytokines and inflammatory cells in the process of transcriptional, secretion and activation of MMP-2. In addition, an interaction and coordinated action between MMP-2 and inflammation are explored and significant in maintaining the cardiac cycle. These observations suggest that new therapeutic opportunities targeting MMP-2 could be used to reduce inflammatory biomarkers and reduce cardiac damage in hypertension.
Collapse
Affiliation(s)
- Thaís Ribeiro Vitorino
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil; Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, UNICAMP, Brazil
| | - Alejandro Ferraz do Prado
- Cardiovascular System Pharmacology and Toxicology, Institute of Biological Sciences, Federal University of Para, UFPA, Brazil
| | - Stefany Bruno de Assis Cau
- Department of Pharmacology, Institute of Biological Science, Federal University of Minas Gerais, UFMG, Brazil.
| | - Elen Rizzi
- Unit of Biotechnology, University of Ribeirao Preto, UNAERP, Brazil.
| |
Collapse
|
35
|
Kim C, Cathey AL, Watkins DJ, Mukherjee B, Rosario-Pabón ZY, Vélez-Vega CM, Alshawabkeh AN, Cordero JF, Meeker JD. Adverse birth outcomes are associated with circulating matrix metalloproteinases among pregnant women in Puerto Rico. J Reprod Immunol 2023; 159:103991. [PMID: 37454540 PMCID: PMC10726844 DOI: 10.1016/j.jri.2023.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 06/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Matrix metalloproteinases (MMPs) are major extracellular matrix (ECM) remodeling proteinases and regulate uterine remodeling, which is a critical process for healthy pregnancies. The goal of this study was to investigate associations between maternal blood MMPs during pregnancy and birth outcomes among 898 pregnant women in the Puerto Rico PROTECT birth cohort. MMPs (MMP1, MMP2, and MMP9) were quantified using a customized Luminex assay in blood samples collected at two gestational study visits (around 18 and 26 weeks gestation). Linear and logistic regression models were used to regress continuous and binary birth outcomes, respectively, on MMPs at each study visit separately. Sensitivity analyses were conducted to test for effect modification by fetal sex on associations between MMPs and birth outcomes. We observed significant associations between MMP2 at visit 1 and newborn length that were in the opposite direction from the associations between MMP9 at visit 3 and newborn length. MMPs were associated with increased odds of preeclampsia and gestational diabetes mellitus, though case numbers were low. We also observed significant inverse associations with gestational age for MMP9 and MMP2 at visit 1 and visit 3, respectively, and these associations were observed only in mothers carrying male fetuses. Further, MMP2 was associated with heavier female fetuses, whereas MMP9 was associated with lighter female fetuses. We observed significant associations between birth outcomes and MMPs, and the majority of these associations differed by fetal sex. This study highlighted significant MMPs-birth outcomes associations that may provide a basis to explore the impact of MMPs on endometrium health and physiology.
Collapse
Affiliation(s)
- Christine Kim
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Amber L Cathey
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Deborah J Watkins
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, MI, United States
| | - Zaira Y Rosario-Pabón
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Graduate School of Public Health, UPR Medical Sciences Campus, San Juan, Puerto Rico
| | | | - José F Cordero
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, United States
| | - John D Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI, United States.
| |
Collapse
|
36
|
Vidal CMP, Carrilho MR. Dentin Degradation: From Tissue Breakdown to Possibilities for Therapeutic Intervention. CURRENT ORAL HEALTH REPORTS 2023; 10:99-110. [PMID: 37928132 PMCID: PMC10624336 DOI: 10.1007/s40496-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 11/07/2023]
Abstract
Purpose of the Review Presently, dental materials science is driven by the search for new and improved materials that can trigger specific reactions from the affected tissue to stimulate repair or regeneration while interacting with the oral environment to promote or maintain oral health. In parallel, evidence from the past decades has challenged the exclusive role of bacteria in dentin tissue degradation in caries, questioning our understanding of caries etiopathogenesis. The goal of this review is to recapitulate the current evidence on the host and bacterial contributions to degradation, inflammation, and repair of the dentin-pulp complex in caries. Recent Findings Contrasting findings attribute dentin breakdown to the activity of endogenous enzymes, such as matrix metalloproteinases (MMPs) and cathepsins, while the role of bacteria and their by-products in the destruction of dentin organic matrix and pulp inflammation has been for decades supported as an incontestable paradigm. Aiming to better understand the mechanisms involved in collagen degradation by host enzymes in caries, studies have showed that these proteinases are expressed in the mature dentin (i.e., after dentin formation) and become activated by the low pH in the acidic environment resulted by bacterial metabolism in caries. However, different host sources other than dentin-bound proteinases seem to also contribute to caries progression, such as saliva and pulp. Interestingly, studies evaluating pulp responses to bacteria invasion and inflammation in caries report higher levels of MMPs and cathepsins in inflamed tissue, but also showed MMP potential to resolve inflammation and stimulate wound healing. Notably, as reported for other tissues, MMPs exert dual roles in the dentin-pulp complex in caries, participating or regulating both degradative and reparative mechanisms. Summary The specific roles of host and bacteria and their by-products in caries progression have yet to be clarified. The complex interactions between inflammation and repair in caries pose challenges to a clear understanding of the dentin-pulp complex responses and changes to bacteria invasion. However, it opens new venues for the development of novel therapies and dental biomaterials based on the modulation of specific mechanisms to favor tissue repair and healing.
Collapse
Affiliation(s)
- Cristina M. P. Vidal
- Department of Operative Dentistry, College of Dentistry, The University of Iowa, 801 Newton Road, DSB S245, Iowa City, IA 52242, USA
| | | |
Collapse
|
37
|
Shakhpazyan N, Mikhaleva L, Bedzhanyan A, Gioeva Z, Sadykhov N, Mikhalev A, Atiakshin D, Buchwalow I, Tiemann M, Orekhov A. Cellular and Molecular Mechanisms of the Tumor Stroma in Colorectal Cancer: Insights into Disease Progression and Therapeutic Targets. Biomedicines 2023; 11:2361. [PMID: 37760801 PMCID: PMC10525158 DOI: 10.3390/biomedicines11092361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/31/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is a major health burden worldwide and is the third most common type of cancer. The early detection and diagnosis of CRC is critical to improve patient outcomes. This review explores the intricate interplay between the tumor microenvironment, stromal interactions, and the progression and metastasis of colorectal cancer. The review begins by assessing the gut microbiome's influence on CRC development, emphasizing its association with gut-associated lymphoid tissue (GALT). The role of the Wnt signaling pathway in CRC tumor stroma is scrutinized, elucidating its impact on disease progression. Tumor budding, its effect on tumor stroma, and the implications for patient prognosis are investigated. The review also identifies conserved oncogenic signatures (COS) within CRC stroma and explores their potential as therapeutic targets. Lastly, the seed and soil hypothesis is employed to contextualize metastasis, accentuating the significance of both tumor cells and the surrounding stroma in metastatic propensity. This review highlights the intricate interdependence between CRC cells and their microenvironment, providing valuable insights into prospective therapeutic approaches targeting tumor-stroma interactions.
Collapse
Affiliation(s)
- Nikolay Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Arkady Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia;
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Nikolay Sadykhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
| | - Alexander Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | | - Alexander Orekhov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia; (N.S.); (L.M.); (Z.G.); (N.S.); (A.O.)
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Institute for Atherosclerosis Research, 121096 Moscow, Russia
| |
Collapse
|
38
|
Logan BR, Fu D, Howard A, Fei M, Kou J, Little MR, Adom D, Mohamed FA, Blazar BR, Gafken PR, Paczesny S. Validated graft-specific biomarkers identify patients at risk for chronic graft-versus-host disease and death. J Clin Invest 2023; 133:e168575. [PMID: 37526081 PMCID: PMC10378149 DOI: 10.1172/jci168575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUNDChronic graft-versus-host disease (cGVHD) is a serious complication of allogeneic hematopoietic cell transplantation (HCT). More accurate information regarding the risk of developing cGVHD is required. Bone marrow (BM) grafts contribute to lower cGVHD, which creates a dispute over whether risk biomarker scores should be used for peripheral blood (PB) and BM.METHODSDay 90 plasma proteomics from PB and BM recipients developing cGVHD revealed 5 risk markers that were added to 8 previous cGVHD markers to screen 982 HCT samples of 2 multicenter Blood and Marrow Transplant Clinical Trials Network (BMTCTN) cohorts. Each marker was tested for its association with cause-specific hazard ratios (HRs) of cGVHD using Cox-proportional-hazards models. We paired these clinical studies with biomarker measurements in a mouse model of cGVHD.RESULTSSpearman correlations between DKK3 and MMP3 were significant in both cohorts. In BMTCTN 0201 multivariate analyses, PB recipients with 1-log increase in CXCL9 and DKK3 were 1.3 times (95% CI: 1.1-1.4, P = 0.001) and 1.9 times (95%CI: 1.1-3.2, P = 0.019) and BM recipients with 1-log increase in CXCL10 and MMP3 were 1.3 times (95%CI: 1.0-1.6, P = 0.018 and P = 0.023) more likely to develop cGVHD. In BMTCTN 1202, PB patients with high CXCL9 and MMP3 were 1.1 times (95%CI: 1.0-1.2, P = 0.037) and 1.2 times (95%CI: 1.0-1.3, P = 0.009) more likely to develop cGVHD. PB patients with high biomarkers had increased likelihood to develop cGVHD in both cohorts (22%-32% versus 8%-12%, P = 0.002 and P < 0.001, respectively). Mice showed elevated circulating biomarkers before the signs of cGVHD.CONCLUSIONBiomarker levels at 3 months after HCT identify patients at risk for cGVHD occurrence.FUNDINGNIH grants R01CA168814, R21HL139934, P01CA158505, T32AI007313, and R01CA264921.
Collapse
Affiliation(s)
- Brent R. Logan
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Denggang Fu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alan Howard
- Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Mingwei Fei
- Be The Match and Center for International Blood and Marrow Transplant Research, Minneapolis, Minnesota, USA
| | - Jianqun Kou
- Division of Biostatistics and Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Morgan R. Little
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Djamilatou Adom
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Philip R. Gafken
- Proteomics & Metabolomics shared resource, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
39
|
Qian Q, Zhu N, Li W, Wan S, Wu D, Wu Y, Liu W. Human Umbilical Mesenchymal Stem Cells-Derived Microvesicles Attenuate Formation of Hypertrophic Scar through Multiple Mechanisms. Stem Cells Int 2023; 2023:1-15. [DOI: 10.1155/2023/9125265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Mesenchymal stem cells and the derived extracellular microvesicles are potential promising therapy for many disease conditions, including wound healing. Since current therapeutic approaches do not satisfactorily attenuate or ameliorate formation of hypertrophic scars, it is necessary to develop novel drugs to achieve better outcomes. In this study, we investigated the effects and the underlying mechanisms of human umbilical mesenchymal stem cells (HUMSCs)-derived microvesicles (HUMSCs-MVs) on hypertrophic scar formation using a rabbit ear model and a human foreskin fibroblasts (HFF) culture model. The results showed that HUMSCs-MVs reduced formation of hypertrophic scar tissues in the rabbit model based on appearance observation, and hematoxylin and eosin (H&E), Masson, and immunohistochemical stainings. HUMSCs-MVs inhibited invasion of HFF cells and decreased the levels of the α-SMA, N-WASP, and cortacin proteins. HUMSCs-MVs also inhibited cell proliferation of HFF cells. The MMP-1, MMP-3, and TIMP-3 mRNA levels were significantly increased, and the TIMP-4 mRNA level and the NF-kB p65/β-catenin protein levels were significantly decreased in HFF cells after HUMSCs-MVs treatment. The p-SMAD2/3 levels and the ratios of p-SMAD2/3/SMAD2/3 were significantly decreased in both the wound healing tissues and HFF cells after HUMSCs-MVs treatment. CD34 levels were significantly decreased in both wound healing scar tissues and HFF cells after HUMSCs-MVs treatment. The VEGF-A level was also significantly decreased in HFF cells after HUMSCs-MVs treatment. The magnitudes of changes in these markers by HUMSCs-MVs were mostly higher than those by dexamethasone. These results suggested that HUMSCs-MVs attenuated formation of hypertrophic scar during wound healing through inhibiting proliferation and invasion of fibrotic cells, inflammation and oxidative stress, Smad2/3 activation, and angiogenesis. HUMSCs-MVs is a potential promising drug to attenuate formation of hypertrophic scar during wound healing.
Collapse
Affiliation(s)
- Qun Qian
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Ni Zhu
- Institute of Medical Virology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wenzhe Li
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Songlin Wan
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yunhua Wu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| | - Weicheng Liu
- Zhongnan Hospital of Wuhan University, Clinical Center for Pelvic Floor Surgery, Department of Colorectal and Anal Surgery, Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Key Laboratory of Intestinal and Colorectal Diseases of Hubei Province, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
41
|
Muñoz-Sáez E, Moracho N, Learte AIR, Collignon A, Arroyo AG, Noel A, Sounni NE, Sánchez-Camacho C. Molecular Mechanisms Driven by MT4-MMP in Cancer Progression. Int J Mol Sci 2023; 24:9944. [PMID: 37373092 DOI: 10.3390/ijms24129944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
MT4-MMP (or MMP-17) belongs to the membrane-type matrix metalloproteinases (MT-MMPs), a distinct subset of the MMP family that is anchored to the cell surface, in this case by a glycosylphosphatidylinositol (GPI) motif. Its expression in a variety of cancers is well documented. However, the molecular mechanisms by which MT4-MMP contributes to tumor development need further investigation. In this review, we aim to summarize the contribution of MT4-MMP in tumorigenesis, focusing on the molecular mechanisms triggered by the enzyme in tumor cell migration, invasiveness, and proliferation, in the tumor vasculature and microenvironment, as well as during metastasis. In particular, we highlight the putative substrates processed and signaling cascades activated by MT4-MMP that may underlie these malignancy processes and compare this with what is known about its role during embryonic development. Finally, MT4-MMP is a relevant biomarker of malignancy that can be used for monitoring cancer progression in patients as well as a potential target for future therapeutic drug development.
Collapse
Affiliation(s)
- Emma Muñoz-Sáez
- Department of Health Science, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Natalia Moracho
- Department of Medicine, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana I R Learte
- Department of Dentistry, School of Biomedical Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Alice Collignon
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Alicia G Arroyo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), 28040 Madrid, Spain
| | - Agnés Noel
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Nor Eddine Sounni
- Laboratory of Biology of Tumor and Developmental Biology, GIGA Cancer, Liège University, B-4000 Liège, Belgium
- Cancer Metabolism and Tumor Microenvironment Group, GIGA Cancer, Liège University, B-4000 Liège, Belgium
| | - Cristina Sánchez-Camacho
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
42
|
Inamdar S, Suresh AP, Mangal JL, Ng ND, Sundem A, Behbahani HS, Rubino TE, Shi X, Loa ST, Yaron JR, Hitosugi T, Green M, Gu H, Curtis M, Acharya AP. Succinate based polymers drive immunometabolism in dendritic cells to generate cancer immunotherapy. J Control Release 2023; 358:541-554. [PMID: 37182805 PMCID: PMC10324539 DOI: 10.1016/j.jconrel.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Boosting the metabolism of immune cells while restricting cancer cell metabolism is challenging. Herein, we report that using biomaterials for the controlled delivery of succinate metabolite to phagocytic immune cells activates them and modulates their metabolism in the presence of metabolic inhibitors. In young immunocompetent mice, polymeric microparticles, with succinate incorporated in the backbone, induced strong pro-inflammatory anti-melanoma responses. Administration of poly(ethylene succinate) (PES MP)-based vaccines and glutaminase inhibitor to young immunocompetent mice with aggressive and large, established B16F10 melanoma tumors increased their survival three-fold, a result of increased cytotoxic T cells expressing RORγT (Tc17). Mechanistically, PES MPs directly modulate glutamine and glutamate metabolism, upregulate succinate receptor SUCNR1, activate antigen presenting cells through and HIF-1alpha, TNFa and TSLP-signaling pathways, and are dependent on alpha-ketoglutarate dehydrogenase for their activity, which demonstrates correlation of succinate delivery and these pathways. Overall, our findings suggest that immunometabolism-modifying PES MP strategies provide an approach for developing robust cancer immunotherapies.
Collapse
Affiliation(s)
- Sahil Inamdar
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Abhirami P Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Joslyn L Mangal
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Nathan D Ng
- Molecular Biosciences and Biotechnology, The College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Alison Sundem
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Hoda Shokrollahzadeh Behbahani
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Thomas E Rubino
- Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA; College of Medicine and Science, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Sharon T Loa
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jordan R Yaron
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Taro Hitosugi
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Matthew Green
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Marion Curtis
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ 85259, USA; College of Medicine and Science, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, and energy, Arizona State University, Tempe, AZ 85281, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85281, USA; Biodesign Center for Biomaterials Innovation and Translation.
| |
Collapse
|
43
|
Inoue R, Yasuma T, Fridman D’Alessandro V, Toda M, Ito T, Tomaru A, D’Alessandro-Gabazza CN, Tsuruga T, Okano T, Takeshita A, Nishihama K, Fujimoto H, Kobayashi T, Gabazza EC. Amelioration of Pulmonary Fibrosis by Matrix Metalloproteinase-2 Overexpression. Int J Mol Sci 2023; 24:ijms24076695. [PMID: 37047672 PMCID: PMC10095307 DOI: 10.3390/ijms24076695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal disease with a poor prognosis. Matrix metalloproteinase-2 is involved in the pathogenesis of organ fibrosis. The role of matrix metalloproteinase-2 in lung fibrosis is unclear. This study evaluated whether overexpression of matrix metalloproteinase-2 affects the development of pulmonary fibrosis. Lung fibrosis was induced by bleomycin in wild-type mice and transgenic mice overexpressing human matrix metalloproteinase-2. Mice expressing human matrix metalloproteinase-2 showed significantly decreased infiltration of inflammatory cells and inflammatory and fibrotic cytokines in the lungs compared to wild-type mice after induction of lung injury and fibrosis with bleomycin. The computed tomography score, Ashcroft score of fibrosis, and lung collagen deposition were significantly reduced in human matrix metalloproteinase transgenic mice compared to wild-type mice. The expression of anti-apoptotic genes was significantly increased, while caspase-3 activity was significantly reduced in the lungs of matrix metalloproteinase-2 transgenic mice compared to wild-type mice. Active matrix metalloproteinase-2 significantly decreased bleomycin-induced apoptosis in alveolar epithelial cells. Matrix metalloproteinase-2 appears to protect against pulmonary fibrosis by inhibiting apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
44
|
Cudna A, Bronisz E, Mirowska-Guzel D, Kurkowska-Jastrzębska I. Serum levels of matrix metalloproteinase 2 and its inhibitor after tonic-clonic seizures. Epilepsy Res 2023; 192:107115. [PMID: 36958106 DOI: 10.1016/j.eplepsyres.2023.107115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
Damage to the blood-brain barrier (BBB) may result from on-going neuroinflammation, which can lead to leakage of blood components, such as leukocytes and serum proteins, into the brain, resulting in disturbed brain homeostasis. The aim of the project was to examine the involvement of modulatory proteins in the processes of BBB integration after epileptic seizures. We investigated serum changes in the levels of MMP-2 and MMP-7 and its inhibitors after seizures in epilepsy patients. Concentrations of these proteins were measured by ELISA in 50 patients at 1-3, 24, and 72 h after generalized tonic-clonic seizures and once in participants of the control group. The level of MMP-2 in serum was slightly higher after seizures (at 1-3 h time point), but the difference was not statistically significant. The levels of trombospondine (TSP) - 1 and - 2 were decreased at 1-3 h after seizures. The expression of TIMP-2 was increased 1 and 24 h after seizures. There were no significant changes in the level of α2-macroglobulin and MMP-7. Changes in the expression of both specific and non-specific inhibitors indicate the initiation of repair processes of the blood-brain barrier and improvement of its integrity. Since we performed serum analysis, further studies are necessary to investigate the correlation with the expression of the investigated markers in the brain. Perhaps this will allow for the identification of new biomarkers associated with epileptic seizures.
Collapse
Affiliation(s)
- A Cudna
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland; 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland.
| | - E Bronisz
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - D Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Poland
| | | |
Collapse
|
45
|
Nurlu Temel E, Savran M, Erzurumlu Y, Hasseyid N, Buyukbayram HI, Okuyucu G, Sevuk MA, Ozmen O, Beyan AC. The β1 Adrenergic Blocker Nebivolol Ameliorates Development of Endotoxic Acute Lung Injury. J Clin Med 2023; 12:jcm12051721. [PMID: 36902508 PMCID: PMC10003295 DOI: 10.3390/jcm12051721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Acute lung injury (ALI) is a disease, with no effective treatment, which might result in death. Formations of excessive inflammation and oxidative stress are responsible for the pathophysiology of ALI. Nebivolol (NBL), a third-generation selective β1 adrenoceptor antagonist, has protective pharmacological properties, such as anti-inflammatory, anti-apoptotic, and antioxidant functions. Consequently, we sought to assess the efficacy of NBL on a lipopolysaccharide (LPS)-induced ALI model via intercellular adhesion molecule-1 (ICAM-1) expression and the tissue inhibitor of metalloproteinases-1 (TIMP-1)/matrix metalloproteinases-2 (MMP-2) signaling. Thirty-two rats were split into four categories: control, LPS (5 mg/kg, intraperitoneally [IP], single dose), LPS (5 mg/kg, IP, one dosage 30 min after last NBL treatment), + NBL (10 mg/kg oral gavage for three days), and NBL (10 mg/kg oral gavage for three days). Six hours after the administration of LPS, the lung tissues of the rats were removed for histopathological, biochemical, gene expression, and immunohistochemical analyses. Oxidative stress markers such as total oxidant status and oxidative stress index levels, leukocyte transendothelial migration markers such as MMP-2, TIMP-1, and ICAM-1 expressions in the case of inflammation, and caspase-3 as an apoptotic marker, significantly increased in the LPS group. NBL therapy reversed all these changes. The results of this study suggest that NBL has utility as a potential therapeutic agent to dampen inflammation in other lung and tissue injury models.
Collapse
Affiliation(s)
- Esra Nurlu Temel
- Department of Infectious Diseases, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
- Correspondence: ; Tel.: +90-532-551-94-39; Fax: +90-246-237-11-65
| | - Mehtap Savran
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Yalcın Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Nursel Hasseyid
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Halil Ibrahim Buyukbayram
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Gozde Okuyucu
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Mehmet Abdulkadir Sevuk
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030 Burdur, Turkey
| | - Ayse Coskun Beyan
- Department of Occupational Medicine, Faculty of Medicine, Dokuz Eylul University, 35220 İzmir, Turkey
| |
Collapse
|
46
|
Huerta-Madroñal M, Espinosa-Cano E, Aguilar MR, Vazquez-Lasa B. Antiaging properties of antioxidant photoprotective polymeric nanoparticles loaded with coenzyme-Q10. BIOMATERIALS ADVANCES 2023; 145:213247. [PMID: 36527961 DOI: 10.1016/j.bioadv.2022.213247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Skin is the most extensive organ within our body. It is continually subjected to stress factors, among which ultraviolet irradiation, a key factor responsible in skin aging since it leads to reactive oxygen species production. In order to fight against these oxidative species, the human body has an innate robust antioxidant mechanism composed of several different substances, one of which is coenzyme Q10. Its capacity to increase cellular energy production and excellent antioxidant properties have been proved, as well as its antiaging properties being able to attenuate cellular damage induced by ultraviolet irradiation in human dermal fibroblasts. However, its high hydrophobicity and photolability hampers its therapeutic potential. In this context, the objective of this work consists of the preparation of chitosan-rosmarinic acid conjugate-based nanoparticles to encapsulate coenzyme Q10 with high encapsulation efficiencies in order to improve its bioavailability and broaden its therapeutic use in skin applications. Hyaluronic acid coating was performed giving stable nanoparticles at physiological pH with 382 ± 3 nm of hydrodynamic diameter (0.04 ± 0.02 polydispersity) and - 18 ± 3 mV of surface charge. Release kinetics studies showed a maximum of 82 % mass release of coenzyme Q10 after 40 min, and radical scavenger activity assay confirmed the antioxidant character of chitosan-rosmarinic acid nanoparticles. Hyaluronic acid-coated chitosan-rosmarinic acid nanoparticles loaded with coenzyme Q10 were biocompatible in human dermal fibroblasts and exhibited interesting photoprotective properties in ultraviolet irradiated cells. In addition, nanoparticles hindered the production of reactive oxygen species, interleukin-6 and metalloproteinase-1, as well as caspase-9 activation maintaining high viability values upon irradiation of dermal fibroblasts. Overall results envision a great potential of these nanovehicles for application in skin disorders or antiaging treatments.
Collapse
Affiliation(s)
- Miguel Huerta-Madroñal
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain.
| | - Eva Espinosa-Cano
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain.
| | - Maria Rosa Aguilar
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
| | - Blanca Vazquez-Lasa
- Group of Biomaterials, Institute of Polymer Science and Technology ICTP-CSIC, Madrid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
47
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
48
|
Panda SP, Mahamat MSA, Rasool MA, Prasanth DSNBK, Ismail IA, Abasher MAA, Jena BR. Inhibitory effects of mixed flavonoid supplements on unraveled DSS-induced ulcerative colitis and arthritis. BIOIMPACTS : BI 2023; 13:73-84. [PMID: 36817000 PMCID: PMC9923810 DOI: 10.34172/bi.2022.23523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023]
Abstract
Introduction: The mixed flavonoid supplement (MFS) [Trimethoxy Flavones (TMF) + epigallocatechin-3-gallate (EGCG)] can be used to suppress inflammatory ulcers as an ethical medicine in Ayurveda. The inflammation of the rectum and anal regions is mostly attributed to nuclear factor kappa beta (NF-κB) signaling. NF-κB stimulates the expression of matrix metalloproteinase (MMP9), inflammatory cytokines tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β). Although much research targeted the NF-κB and MMP9 signaling pathways, a subsequent investigation of target mediators in the inflammatory ulcer healing and NF-κB pathway has not been done. Methods: The docking studies of compounds TMF and EGCG were performed by applying PyRx and available software to understand ligand binding properties with the target proteins. The synergistic ulcer healing and anti-arthritic effects of MFS were elucidated using dextran sulfate sodium (DSS)-induced colon ulcer in Swiss albino rats. The colon mucosal injury was analyzed by colon ulcer index (CUI) and anorectic tissue microscopy. The IL-1β, tumor necrosis factor (TNF-α), and the pERK, MMP9, and NF-κB expressions in the colon tissue were determined by ELISA and Western blotting. RT-PCR determined the mRNA expression for inflammatory marker enzymes. Results: The docking studies revealed that EGCG and TMF had a good binding affinity with MMP9 (i.e., -6.8 and -6.0 Kcal/mol) and NF-kB (-9.4 and 8.3 kcal/mol). The high dose MFS better suppressed ulcerative colitis (UC) and associated arthritis with marked low-density pERK, MMP9, and NF-κB proteins. The CUI score and inflammatory mediator levels were suppressed with endogenous antioxidant levels in MFS treated rats. Conclusion: The MFS effectively unraveled anorectic tissue inflammation and associated arthritis by suppressing NF-κB-mediated MMP9 and cytokines.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Pharmacology Research Division, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India,Corresponding author: Siva Prasad Panda,
| | - Mahamat Sami Adam Mahamat
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | - Malikyahia Abdul Rasool
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | - DSNBK Prasanth
- Department of Pharmacognosy, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, AP, India
| | - Idris Adam Ismail
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | - Moyed Abasher Ahmed Abasher
- Pharmacognosy Research Division, College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, India
| | | |
Collapse
|
49
|
García-Vargas AM, Roque-Reyes YM, Arroyo-Villegas DM, Santiago-Negron D, Sánchez-Vázquez MM, Rivera-Torres A, Reyes-Meléndez AC, Cardona-Berdecía V, García-Maldonado M, Víquez OM, Martínez-Ferrer M. HLA-BAT1 alters migration, invasion and pro-inflammatory cytokines in prostate cancer. Front Oncol 2022; 12:969396. [PMID: 36505884 PMCID: PMC9727259 DOI: 10.3389/fonc.2022.969396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer (PCa) accounts for more than 1 in 5 diagnoses and is the second cause of cancer-related deaths in men. Although PCa may be successfully treated, patients may undergo cancer recurrence and there is a need for new biomarkers to improve the prediction of prostate cancer recurrence and improve treatment. Our laboratory demonstrated that HLA-B-associated transcript 1 (BAT1) was differentially expressed in patients with high Gleason scores when compared to low Gleason scores. BAT1 is an anti-inflammatory gene but its role in PCa has not been identified. The objective of this study is to understand the role of BAT1 in prostate cancer. In vitro studies showed that BAT1 down-regulation increased cell migration and invasion. In contrast, BAT1 overexpression decreased cell migration and invasion. RT-PCR analysis showed differential expression of pro-inflammatory cytokines (TNF-α and IL-6) and cell adhesion and migration genes (MMP10, MMP13, and TIMPs) in BAT1 overexpressed cells when compared to BAT1 siRNA cells. Our in vivo studies demonstrated up-regulation of TNF-α, IL-6, and MMP10 in tumors developed from transfected BAT1 shRNA cells when compared to tumors developed from BAT1 cDNA cells. These findings indicate that BAT1 down-regulation modulates TNF-α and IL-6 expression which may lead to the secretion of MMP-10 and inhibition of TIMP2.
Collapse
Affiliation(s)
- Aileen M. García-Vargas
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
| | - Yarelis M. Roque-Reyes
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, United States
| | - Desiree M. Arroyo-Villegas
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, United States
| | - Daniel Santiago-Negron
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN, United States
| | - María M. Sánchez-Vázquez
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
| | - Alejandro Rivera-Torres
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, United States
| | - Andrea C. Reyes-Meléndez
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, United States
| | - Valerie Cardona-Berdecía
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, United States
| | - Miosotis García-Maldonado
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR, United States
| | - Olga M. Víquez
- Research Biobank, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
| | - Magaly Martínez-Ferrer
- Division of Cancer Biology, University of Puerto Rico Comprehensive Cancer Center, San Juan, PR, United States
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
50
|
Toward a Combination of Biomarkers for Molecular Characterization of Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms232214000. [PMID: 36430480 PMCID: PMC9695566 DOI: 10.3390/ijms232214000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the central nervous system associated with chronic inflammation, demyelination, and axonal damage. MS is a highly heterogeneous disease that leads to discrepancies regarding the clinical appearance, progression, and therapy response of patients. Therefore, there is a strong unmet need for clinically relevant biomarkers capable of recapitulating the features of the disease. Experimental autoimmune encephalomyelitis (EAE) is a valuable model for studying the pathophysiology of MS as it recapitulates the main hallmarks of the disease: inflammation, blood-brain barrier (BBB) disruption, gliosis, myelin damage, and repair mechanisms. In this study, we used the EAE-PLP animal model and established a molecular RNA signature for each phase of the disease (onset, peak, remission). We compared variances of expression of known biomarkers by RT-qPCR in the brain and spinal cord of sham and EAE animals monitoring each of the five hallmarks of the disease. Using magnetic cell isolation technology, we isolated microglia and oligodendrocytes of mice of each category, and we compared the RNA expression variations. We identify genes deregulated during a restricted time frame, and we provide insight into the timing and interrelationships of pathological disease processes at the organ and cell levels.
Collapse
|