1
|
Zhao QG, Ma XL, Xu Q, Song ZT, Bu F, Li K, Han BX, Yan SS, Zhang L, Luo Y, Pei YF. Integrative analysis of transcriptome and proteome wide association studies prioritized functional genes for obesity. Hum Genet 2025; 144:31-41. [PMID: 39495296 DOI: 10.1007/s00439-024-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Genome-wide association studies have identified dozens of genomic loci for obesity. However, functional genes and their detailed genetic mechanisms underlying these loci are mainly unknown. In this study, we conducted an integrative study to prioritize plausibly functional genes by combining information from genome-, transcriptome- and proteome-wide association analyses. METHODS We first conducted proteome-wide association analyses and transcriptome-wide association analyses for the six obesity-related traits. We then performed colocalization analysis on the identified loci shared between the proteome- and transcriptome-association analyses. Finally, we validated the identified genes with other plasma/blood reference panels. The highlighted genes were assessed for expression of other tissues, single-cell and tissue specificity, and druggability. RESULTS We prioritized 4 high-confidence genes (FASN, ICAM1, PDCD6IP, and YWHAB) by proteome-wide association studies, transcriptome-wide association studies, and colocalization analyses, which consistently influenced the variation of obesity traits at both mRNA and protein levels. These 4 genes were successfully validated using other plasma/blood reference panels. These 4 genes shared regulatory structures in obesity-related tissues. Single-cell and tissue-specific analyses showed that FASN and ICAM1 were explicitly expressed in metabolism- and immunity-related tissues and cells. Furthermore, FASN and ICAM1 had been developed as drug targets. CONCLUSION Our study provided novel promising protein targets for further mechanistic and therapeutic studies of obesity.
Collapse
Affiliation(s)
- Qi-Gang Zhao
- Department of Orthopedics, Taicang Affiliated Hospital of Soochow University, 58 Changsheng Rd., Suzhou Taicang City, 215400, Jiangsu Province, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Xin-Ling Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Qian Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Zi-Tong Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Fan Bu
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Kuan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Bai-Xue Han
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Shan-Shan Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, Suzhou City, Jiangsu, PR China
| | - Yuan Luo
- Department of Orthopedics, Taicang Affiliated Hospital of Soochow University, 58 Changsheng Rd., Suzhou Taicang City, 215400, Jiangsu Province, PR China.
| | - Yu-Fang Pei
- Department of Epidemiology and Biostatistics, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, 199 Ren-ai Rd., Suzhou City, 215123, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Sasaki-Hamada S, Hara A, Tainaka Y, Satoh S, Oka JI, Ishibashi H. Isoform-specific distribution of 14-3-3 proteins in the hippocampus of streptozotocin-induced diabetic rats. Neurosci Lett 2024; 843:138027. [PMID: 39471885 DOI: 10.1016/j.neulet.2024.138027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Diabetes mellitus is associated with cognitive deficits in humans and animal models. These deficits are paralleled by neurophysiological and structural changes in the central nervous system, particularly in the hippocampus, which plays an important role in memory formation. We previously reported that the magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses was significantly impaired in streptozotocin (STZ)-induced type 1 diabetic rats (STZ rats). The present study investigated the mechanisms underlying morphological changes in the hippocampus of STZ rats. We performed a proteomic analysis of the hippocampus of STZ rats using two-dimensional gel electrophoresis followed by mass spectrometry. The distribution of 14-3-3 proteins identified by the proteomic analysis was then examined using immunohistochemistry. The results obtained revealed that 14-3-3 η immunoreactivity in the dorsal hippocampus was weaker in STZ rats than in age-matched control rats. Moreover, the density of glial fibrillary acidic protein-immunoreactive astrocytes in the dorsal hippocampus of STZ rats was increased, whereas 14-3-3 η immunoreactivity in astrocytes and neurons in the dentate gyrus was significantly decreased. These results suggest that changes in 14-3-3 η expression are involved in hippocampal astrogliosis or/and neurogenesis in STZ rats.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; Regenerative Medicine and Cell Design Research Facility, Kitasato University, School of Allied Health Science, Sagamihara, Kanagawa 252-0373, Japan.
| | - Arisa Hara
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yume Tainaka
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Sho Satoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Regenerative Medicine and Cell Design Research Facility, Kitasato University, School of Allied Health Science, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
3
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Acton S, O'Donnell MM, Periyasamy K, Dixit B, Eishingdrelo H, Hill C, Paul Ross R, Chesnel L. LPA3 agonist-producing Bacillus velezensis ADS024 is efficacious in multiple neuroinflammatory disease models. Brain Behav Immun 2024; 121:384-402. [PMID: 39147172 DOI: 10.1016/j.bbi.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024] Open
Abstract
Neuroinflammation is a common component of neurological disorders. In the gut-brain-immune axis, bacteria and their metabolites are now thought to play a role in the modulation of the nervous and immune systems which may impact neuroinflammation. In this respect, commensal bacteria of humans have recently been shown to produce metabolites that mimic endogenous G-protein coupled receptor (GPCR) ligands. To date, it has not been established whether plant commensal bacteria, which may be ingested by animals including humans, can impact the gut-brain-immune axis via GPCR agonism. We screened an isopropanol (IPA) extract of the plant commensal Bacillus velezensis ADS024, a non-engrafting live biotherapeutic product (LBP) with anti-inflammatory properties isolated from human feces, against a panel of 168 GPCRs and identified strong agonism of the lysophosphatidic acid (LPA) receptor LPA3. The ADS024 IPA extracted material (ADS024-IPA) did not agonize LPA2, and only very weakly agonized LPA1. The agonism of LPA3 was inhibited by the reversible LPA1/3 antagonist Ki16425. ADS024-IPA signaled downstream of LPA3 through G-protein-induced calcium release, recruitment of β-arrestin, and recruitment of the neurodegeneration-associated proteins 14-3-3γ, ε and ζ but did not recruit the β isoform. Since LPA3 agonism was previously indirectly implicated in the reduction of pathology in models of Parkinson's disease (PD) and multiple sclerosis (MS) by use of the nonselective antagonist Ki16425, and since we identified an LPA3-specific agonist within ADS024, we sought to examine whether LPA3 might indeed be part of a broad underlying mechanism to control neuroinflammation. We tested oral treatment of ADS024 in multiple models of neuroinflammatory diseases using three models of PD, two models of MS, and a model each of amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and chemo-induced peripheral neuropathy (CIPN). ADS024 treatment improved model-specific functional effects including improvements in motor movement, breathing and swallowing, and allodynia suggesting that ADS024 treatment impacted a universal underlying neuroinflammatory mechanism regardless of the initiating cause of disease. We used the MOG-EAE mouse model to examine early events after disease initiation and found that ADS024 attenuated the increase in circulating lymphocytes and changes in neutrophil subtypes, and ADS024 attenuated the early loss of cell-surface LPA3 receptor expression on circulating white blood cells. ADS024 efficacy was partially inhibited by Ki16425 in vivo suggesting LPA3 may be part of its mechanism. Altogether, these data suggest that ADS024 and its LPA3 agonism activity should be investigated further as a possible treatment for diseases with a neuroinflammatory component.
Collapse
Affiliation(s)
| | | | | | | | | | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | |
Collapse
|
5
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
6
|
Wan S, Wang S, Yang X, Cui Y, Guan H, Xiao W, Liu F. Regulation of H9C2 cell hypertrophy by 14-3-3η via inhibiting glycolysis. PLoS One 2024; 19:e0307696. [PMID: 39038022 PMCID: PMC11262655 DOI: 10.1371/journal.pone.0307696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
It has been reported that Ywhah (14-3-3η) reduces glycolysis. However, it remains unclear about the downstream mechanism by which glycolysis is regulated by 14-3-3η in cardiac hypertrophy. As an important regulator, Yes-associated protein (YAP) interacts with 14-3-3η to participate in the initiation and progression of various diseases in vivo. In this study, the model of H9C2 cardiomyocyte hypertrophy was established by triiodothyronine (T3) or rotenone stimulation to probe into the action mechanism of 14-3-3η. Interestingly, the overexpression of 14-3-3η attenuated T3 or rotenone induced cardiomyocyte hypertrophy and decreased glycolysis in H9C2 cardiomyocytes, whereas the knockdown of 14-3-3η had an opposite effect. Mechanistically, 14-3-3η can reduce the expression level of YAP and bind to it to reduce its nuclear translocation. In addition, changing YAP may affect the expression of lactate dehydrogenase A (LDHA), a glycolysis-related protein. Meanwhile, LDHA is also a possible target for 14-3-3η to mediate glycolysis based on changes in pyruvate, a substrate of LDHA. Collectively, 14-3-3η can suppress cardiomyocyte hypertrophy via decreasing the nucleus translocation of YAP and glycolysis, which indicates that 14-3-3η could be a promising target for inhibiting cardiac hypertrophy.
Collapse
Affiliation(s)
- Sha Wan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Songhao Wang
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Xianfei Yang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Yalan Cui
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
- Clinical Pathology Department, The Second People’s Hospital of Yichang, Yichang, China
| | - Heng Guan
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Wenping Xiao
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin, China
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, China
| |
Collapse
|
7
|
Somsen BA, Cossar PJ, Arkin MR, Brunsveld L, Ottmann C. 14-3-3 Protein-Protein Interactions: From Mechanistic Understanding to Their Small-Molecule Stabilization. Chembiochem 2024; 25:e202400214. [PMID: 38738787 DOI: 10.1002/cbic.202400214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/14/2024]
Abstract
Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.
Collapse
Affiliation(s)
- Bente A Somsen
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Peter J Cossar
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California, 94143, United States
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513, MB Eindhoven, 5600, Eindhoven, The Netherlands
| |
Collapse
|
8
|
Tao W, Li X, Fu X, Shao Y, Guo M, Li C. Akirin2 enhances antibacterial ability via interacting with 14-3-3ζ in V. splendidus-challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109592. [PMID: 38685443 DOI: 10.1016/j.fsi.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Akirin2 is pivotal for regulating host immunological responses in vertebrates, including antibacterial immunity and inflammation. However, the functional significance of Akirin2 in invertebrates remains largely unexplored. In this study, we cloned the complete cDNA sequence of Akirin2 from A. japonicus (AjAkirin2) and elucidated its immunological mechanism upon pathogen infection. The whole AjAkirin2 cDNA sequence spanned 1014 bp, which comprised a 630 bp open reading frame encoding 209 amino acids, a 230 bp 5'-untranslated region (UTR), and a 154 bp 3'-UTR. Spatial expression analysis displayed constitutive expression of AjAkirin2 in all examined tissues. Both mRNA and protein expression abundance of the AjAkirin2 showed considerably high in coelomocytes of sea cucumbers challenged with Vibrio splendidus or stimulated with lipopolysaccharide. In addition, we found that sea cucumbers with 107 CFU/mL V. splendidus infection had a lower survival rate upon AjAkirin2 knockdown. Mechanistically, the result of GST-pull down and co-IP assays indicated that AjAkirin2 directly interacted with Aj14-3-3ζ. Moreover, we also detected that AjAkirin2 positively regulated Aj14-3-3ζ expression in sea cucumber coelomocytes. Furthermore, the knockdown of AjAkirin2 or Aj14-3-3ζ resulted in increasing intracellular bacteria load and suppressed the expression of key genes of the NF-κB signaling pathway (p65 and p105) and inflammatory cytokines including IL-17, VEGF, and MMP-1. In summary, these results confirmed the critical role of AjAkirin2 in mediating innate immune responses against V. splendidus infection via interaction with Aj14-3-3ζ and thereby exerting antibacterial function.
Collapse
Affiliation(s)
- Wenjun Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Xianmu Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
9
|
Varlı M, Bhosle SR, Kim E, Yang Y, Taş İ, Zhou R, Pulat S, Gamage CDB, Park SY, Ha HH, Kim H. Usnic Acid Targets 14-3-3 Proteins and Suppresses Cancer Progression by Blocking Substrate Interaction. JACS AU 2024; 4:1521-1537. [PMID: 38665668 PMCID: PMC11040559 DOI: 10.1021/jacsau.3c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The anticancer therapeutic effects of usnic acid (UA), a lichen secondary metabolite, have been demonstrated in vitro and in vivo. However, the mechanism underlying the anticancer effect of UA remains to be clarified. In this study, the target protein of UA was identified using a UA-linker-Affi-Gel molecule, which showed that UA binds to the 14-3-3 protein. UA binds to 14-3-3, causing the degradation of proteasomal and autophagosomal proteins. The interaction of UA with 14-3-3 isoforms modulated cell invasion, cell cycle progression, aerobic glycolysis, mitochondrial biogenesis, and the Akt/mTOR, JNK, STAT3, NF-κB, and AP-1 signaling pathways in colorectal cancer. A peptide inhibitor of 14-3-3 blocked or regressed the activity of UA and inhibited its effects. The results suggest that UA binds to 14-3-3 isoforms and suppresses cancer progression by affecting 14-3-3 targets and phosphorylated proteins.
Collapse
Affiliation(s)
- Mücahit Varlı
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Suresh R. Bhosle
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Eunae Kim
- College
of Pharmacy, Chosun University, 146 Chosundae-gil, Gwangju 61452, Republic of Korea
| | - Yi Yang
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - İsa Taş
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Rui Zhou
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Sultan Pulat
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Chathurika D. B. Gamage
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - So-Yeon Park
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyung-Ho Ha
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hangun Kim
- College
of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Republic of Korea
| |
Collapse
|
10
|
Sardi JDCO, Derissi Braz Carlton J, Marcos CM, Fusco Almeida AM, Mendes Giannini MJS. Unveiling the functional significance of the 14.3.3 protein: A key player in Paracoccidioides brasiliensis biofilm formation. Microb Pathog 2024; 188:106537. [PMID: 38211834 DOI: 10.1016/j.micpath.2024.106537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic mycosis caused by Paracoccidioides spp. The interaction mediated by the presence of adhesins on the fungal surface and receptors in the extracellular matrix of the host, as well as the biofilm formation, is essential in its pathogenesis. Adhesins such as gp43, enolase, GAPDH (glyceraldehyde-3-phosphate dehydrogenase), and 14-3-3 have been demonstrated in the Paracoccidioides brasiliensis (Pb18) strain and recognized as necessary in the fungus-host interaction. The Pb 18 strain silenced to 14-3-3 showed changes in morphology, virulence, and adhesion capacity. The study aimed to evaluate the role of adhesin 14-3-3 in P. brasiliensis biofilm formation and the differential expression of genes related to adhesins, comparing planktonic and biofilm forms. The presence of biofilm was also verified in sutures in vitro and in vivo. The silenced strain (Pb14-3-3 aRNA) was compared with the wild type Pb18, determining the differential metabolic activity between the strains by the XTT reduction assay; the biomass by violet crystal and the polysaccharides by safranin, even as morphological differences by microscopic techniques. Differential gene expression for adhesins was also analyzed, comparing the relative expression of these in planktonic and biofilm forms at different times. The results suggested that the silencing of 14-3-3 protein altered the ability to form biofilm and its metabolism. The quantity of biomass was similar in both strains; however, the formation of exopolymeric substances and polysaccharide material was lower in the silenced strain. Our results showed increased expression of enolase, GAPDH, and 14-3-3 genes in the first periods of biofilm formation in the Pb18 strain. In contrast, the silenced strain showed a lower expression of these genes, indicating that gene silencing can influence the expression of other genes and be involved in the biofilm formation of P. brasiliensis. In vitro and in vivo assays using sutures confirmed this yeast's ability to form biofilm and may be implicated in the pathogenesis of paracoccidioidomycosis.
Collapse
Affiliation(s)
- Janaina de Cássia Orlandi Sardi
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil; Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Jaqueline Derissi Braz Carlton
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil
| | - Caroline Maria Marcos
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil
| | - Ana Marisa Fusco Almeida
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil
| | - Maria José Soares Mendes Giannini
- Department of Clinical Analysis, Laboratory of Clinical Mycology, Faculty of Pharmaceutical Sciences, UNESP - Univ Estadual Paulista, Araraquara, SP, 14801-902, Brazil.
| |
Collapse
|
11
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
12
|
Serrath SN, Pontes AS, Paloschi MV, Silva MDS, Lopes JA, Boeno CN, Silva CP, Santana HM, Cardozo DG, Ugarte AVE, Magalhães JGS, Cruz LF, Setubal SS, Soares AM, Cavecci-Mendonça B, Santos LD, Zuliani JP. Exosome Liberation by Human Neutrophils under L-Amino Acid Oxidase of Calloselasma rhodostoma Venom Action. Toxins (Basel) 2023; 15:625. [PMID: 37999488 PMCID: PMC10674320 DOI: 10.3390/toxins15110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 μg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.
Collapse
Affiliation(s)
- Suzanne N. Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Adriana S. Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Mauro V. Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Milena D. S. Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Jéssica A. Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Charles N. Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Carolina P. Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Hallison M. Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Daniel G. Cardozo
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Andrey V. E. Ugarte
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - João G. S. Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Larissa F. Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Sulamita S. Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Andreimar M. Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT), National Institute of Science and Technology in Epidemiology of the Occidental Amazonia0 (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho 76801-059, RO, Brazil;
| | - Bruna Cavecci-Mendonça
- Biotechonology Institute (IBTEC), São Paulo State University, Botucatu 01049-010, SP, Brazil; (B.C.-M.); (L.D.S.)
| | - Lucilene D. Santos
- Biotechonology Institute (IBTEC), São Paulo State University, Botucatu 01049-010, SP, Brazil; (B.C.-M.); (L.D.S.)
- Graduate Program in Tropical Diseases and Graduate Program in Medical Biotechnology, Botucatu Medical School (FMB), São Paulo State University, Botucatu 18618-687, SP, Brazil
| | - Juliana P. Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
- Departamento de Medicina, Universidade Federal de Rondônia, Porto Velho 76801-059, RO, Brazil
| |
Collapse
|
13
|
Sreekumar A, Simmons MN, Lee TJ, Sharma A, Saini S. Therapeutic potential of pomegranate juice-derived nanovesicles in nude mouse benign prostatic hyperplasia (BPH) xenograft model. Sci Rep 2023; 13:12427. [PMID: 37528206 PMCID: PMC10394011 DOI: 10.1038/s41598-023-39511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
Benign prostatic hyperplasia (BPH) and associated lower urinary tract symptoms affect a large percentage of the male population and places a substantial burden on the world health system. Current therapies include 5-alpha reductase inhibitors and alpha-blockers that are only partially effective and pose a huge economic burden, emphasizing the urgent need for effective, economical therapies. We isolated nanovesicles from pomegranate juice (Punica Granatum) (referred to as 'POM-NVs') and report to our knowledge for the first time, that these vesicles possess therapeutic potential against BPH. Following extensive characterization of POM-NVs, we tested their therapeutic potential in vitro using BPH1 cell line and identified a potential anti-proliferative and pro-apoptotic effect. We further tested these vesicles using a clinically relevant xenograft mouse BPH model derived from human BPH tissues. Remarkably, POM-NVs could reverse the BPH phenotype conferred by TGF-β mediated signaling and induced epithelial-to-mesenchymal (EMT) reversal, leading to the restoration of prostate epithelial states in vivo and in vitro. Furthermore, these vesicles attenuated bone morphogenic protein 5 (BMP5) signaling, a cardinal alteration that is instrumental in driving BPH. Considering the large incidences of BPH and its associated economic burdens, our study has important implications and can potentially improve the clinical management of BPH.
Collapse
Affiliation(s)
- Amritha Sreekumar
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA
| | | | - Tae Jin Lee
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Ashok Sharma
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Augusta University, 1410 Laney Walker Boulevard, Augusta, GA, 30912, USA.
| |
Collapse
|
14
|
Zohora FT, Aliyu M, Saboor-Yaraghi AA. Secretome-based acellular therapy of bone marrow-derived mesenchymal stem cells in degenerative and immunological disorders: A narrative review. Heliyon 2023; 9:e18120. [PMID: 37496898 PMCID: PMC10366432 DOI: 10.1016/j.heliyon.2023.e18120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The bone marrow (BM) plays a pivotal role in homeostasis by supporting hematopoiesis and immune cells' activation, maturation, interaction, and deployment. "BMSC-derived secretome" refers to the complete repertoire of secreted molecules, including nucleic acids, chemokines, growth factors, cytokines, and lipids from BM-derived mesenchymal stem cells (BMSCs). BMSC-derived secretomes are the current molecular platform for acellular therapy. Secretomes are highly manipulable and can be synthesised in vast quantities using commercially accessible cell lines in the laboratory. Secretomes are less likely to elicit an immunological response because they contain fewer surface proteins. Moreover, the delivery of BMSC-derived secretomes has been shown in numerous studies to be an effective, cell-free therapy method for alleviating the symptoms of inflammatory and degenerative diseases. As a result, secretome delivery from BMSCs has the same therapeutic effects as BMSCs transplantation but may have fewer adverse effects. Additionally, BMSCs' secretome has therapeutic promise for organoids and parabiosis studies. This review focuses on recent advances in secretome-based cell-free therapy, including its manipulation, isolation, characterisation, and delivery systems. The diverse bioactive molecules of secretomes that successfully treat inflammatory and degenerative diseases of the musculoskeletal, cardiovascular, nervous, respiratory, reproductive, gastrointestinal, and anti-ageing systems were also examined in this review. However, secretome-based therapy has some unfavourable side effects that may restrict its uses. Some of the adverse effects of this modal therapy were briefly mentioned in this review.
Collapse
Affiliation(s)
- Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Ali Akbar Saboor-Yaraghi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
| |
Collapse
|
15
|
Carabulea AL, Janeski JD, Naik VD, Chen K, Mor G, Ramadoss J. A multi-organ analysis of the role of mTOR in fetal alcohol spectrum disorders. FASEB J 2023; 37:e22897. [PMID: 37000494 PMCID: PMC10841000 DOI: 10.1096/fj.202201865r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 04/01/2023]
Abstract
Alcohol exposure during gestation can lead to fetal alcohol spectrum disorders (FASD), an array of cognitive and physical developmental impairments. Over the past two and a half decades, Mammalian Target of Rapamycin (mTOR) has emerged at the nexus of many fields of study, and has recently been implicated in FASD etiology. mTOR plays an integral role in modulating anabolic and catabolic activities, including protein synthesis and autophagy. These processes are vital for proper development and can have long lasting effects following alcohol exposure, such as impaired hippocampal and synapse formation, reduced brain size, as well as cognitive, behavioral, and memory impairments. We highlight recent advances in the field of FASD, primarily with regard to animal model discoveries and discuss the interaction between alcohol and mTOR in the context of various tissues, including brain, placenta, bone, and muscle, with respect to developmental alcohol exposure paradigms. The current review focuses on novel FASD research within the context of the mTOR signaling and sheds light on mechanistic etiologies at various biological levels including molecular, cellular, and functional, across multiple stages of development and illuminates the dichotomy between the different mTOR complexes and their unique signaling roles.
Collapse
Affiliation(s)
- Alexander L. Carabulea
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Joseph D. Janeski
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Vishal D. Naik
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Kang Chen
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Barbara Ann Karmanos Cancer InstituteWayne State UniversityDetroitMichiganUSA
| | - Gil Mor
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Department of Physiology, School of MedicineWayne State UniversityDetroitMichiganUSA
| | - Jayanth Ramadoss
- Department of Obstetrics & Gynecology, C.S. Mott Center for Human growth and Development, School of MedicineWayne State UniversityDetroitMichiganUSA
- Department of Physiology, School of MedicineWayne State UniversityDetroitMichiganUSA
| |
Collapse
|
16
|
Basu L, Bhagat V, Ching MEA, Di Giandomenico A, Dostie S, Greenberg D, Greenberg M, Hahm J, Hilton NZ, Lamb K, Jentz EM, Larsen M, Locatelli CAA, Maloney M, MacGibbon C, Mersali F, Mulchandani CM, Najam A, Singh I, Weisz T, Wong J, Senior PA, Estall JL, Mulvihill EE, Screaton RA. Recent Developments in Islet Biology: A Review With Patient Perspectives. Can J Diabetes 2023; 47:207-221. [PMID: 36481263 PMCID: PMC9640377 DOI: 10.1016/j.jcjd.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Navigating the coronavirus disease-2019 (COVID-19, now COVID) pandemic has required resilience and creativity worldwide. Despite early challenges to productivity, more than 2,000 peer-reviewed articles on islet biology were published in 2021. Herein, we highlight noteworthy advances in islet research between January 2021 and April 2022, focussing on 5 areas. First, we discuss new insights into the role of glucokinase, mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase and mitochondrial function on insulin secretion from the pancreatic β cell, provided by new genetically modified mouse models and live imaging. We then discuss a new connection between lipid handling and improved insulin secretion in the context of glucotoxicity, focussing on fatty acid-binding protein 4 and fetuin-A. Advances in high-throughput "omic" analysis evolved to where one can generate more finely tuned genetic and molecular profiles within broad classifications of type 1 diabetes and type 2 diabetes. Next, we highlight breakthroughs in diabetes treatment using stem cell-derived β cells and innovative strategies to improve islet survival posttransplantation. Last, we update our understanding of the impact of severe acute respiratory syndrome-coronavirus-2 infection on pancreatic islet function and discuss current evidence regarding proposed links between COVID and new-onset diabetes. We address these breakthroughs in 2 settings: one for a scientific audience and the other for the public, particularly those living with or affected by diabetes. Bridging biomedical research in diabetes to the community living with or affected by diabetes, our partners living with type 1 diabetes or type 2 diabetes also provide their perspectives on these latest advances in islet biology.
Collapse
Affiliation(s)
- Lahari Basu
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Vriti Bhagat
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Ma Enrica Angela Ching
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Sylvie Dostie
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Dana Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Marley Greenberg
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jiwon Hahm
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - N Zoe Hilton
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Krista Lamb
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Emelien M Jentz
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - Matt Larsen
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Cassandra A A Locatelli
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - MaryAnn Maloney
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Farida Mersali
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Adhiyat Najam
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ishnoor Singh
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Tom Weisz
- Diabetes Action Canada, Toronto General Hospital, Toronto, Ontario, Canada
| | - Jordan Wong
- Alberta Diabetes Institute and Department of Pharmacology, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada; Alberta Diabetes Institute and Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Senior
- Alberta Diabetes Institute and Department of Medicine, Edmonton, Alberta, Canada
| | - Jennifer L Estall
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada; Institut de recherches cliniques de Montréal, Center for Cardiometabolic Health, Montréal, Québec, Canada
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Energy Substrate Laboratory, Ottawa, Ontario, Canada; Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert A Screaton
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Syed F, Singhal D, Raedschelders K, Krishnan P, Bone RN, McLaughlin MR, Van Eyk JE, Mirmira RG, Yang ML, Mamula MJ, Wu H, Liu X, Evans-Molina C. A discovery-based proteomics approach identifies protein disulphide isomerase (PDIA1) as a biomarker of β cell stress in type 1 diabetes. EBioMedicine 2023; 87:104379. [PMID: 36463755 PMCID: PMC9719098 DOI: 10.1016/j.ebiom.2022.104379] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Stress responses within the β cell have been linked with both increased β cell death and accelerated immune activation in type 1 diabetes (T1D). At present, information on the timing and scope of these responses as well as disease-related changes in islet β cell protein expression during T1D development is lacking. METHODS Data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. FINDINGS In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in stress mitigation and maintenance of β cell function, followed by loss of expression of protective proteins that heralded diabetes onset. EIF2 signalling and the unfolded protein response, mTOR signalling, mitochondrial function, and oxidative phosphorylation were commonly modulated pathways in both NOD mice and NOD-SCID mice rendered acutely diabetic by T cell adoptive transfer. Protein disulphide isomerase A1 (PDIA1) was upregulated in NOD islets and pancreatic sections from human organ donors with autoantibody positivity or T1D. Moreover, PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to non-diabetic controls. INTERPRETATION We identified a core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D. FUNDING NIH (R01DK093954, DK127308, U01DK127786, UC4DK104166, R01DK060581, R01GM118470, and 5T32DK101001-09). VA Merit Award I01BX001733. JDRF (2-SRA-2019-834-S-B, 2-SRA-2018-493-A-B, 3-PDF-20016-199-A-N, 5-CDA-2022-1176-A-N, and 3-PDF-2017-385-A-N).
Collapse
Affiliation(s)
- Farooq Syed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Divya Singhal
- Department of Biochemistry and Molecular Biology, University of Calgary, 2500 University Drive NW, Alberta, Canada, T2N1N4
| | - Koen Raedschelders
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Preethi Krishnan
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Robert N Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202
| | - Madeline R McLaughlin
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202
| | - Jennifer E Van Eyk
- Advanced Clinical Biosystems Research Institute, Precision Health, Barbra Streisand Women's Heart Center at the Smidt Heart Institute, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Suite A9227, Los Angeles, CA, USA, 90048
| | - Raghavendra G Mirmira
- Kovler Diabetes Center, University of Chicago, 900 E 57th St, Chicago, IL, USA, 60637
| | - Mei-Ling Yang
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Mark J Mamula
- Department of Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA, 06510
| | - Huanmei Wu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, 535 W. Michigan Street, Indianapolis, IN, USA, 46202; Department of Health Services Administration and Policy, Temple University College of Public Health, 1101 W. Montgomery Ave, Philadelphia, PA, USA, 19122
| | - Xiaowen Liu
- Deming Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA, 70112
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA, 46202; Department of Pediatrics and the Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, IN, USA, 46202; Department of Medicine, Indiana University School of Medicine, 340 W 10th St, Indianapolis, IN, USA, 46202; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN, USA, 46202; Richard L. Roudebush VA Medical Center, Indiana University School of Informatics and Computing, 1481 W 10th St, Indianapolis, IN, USA, 46202.
| |
Collapse
|
18
|
Heslin KP, Haruna A, George RA, Chen S, Nobel I, Anderson KB, Faraone SV, Zhang-James Y. Association Between ADHD and COVID-19 Infection and Clinical Outcomes: A Retrospective Cohort Study From Electronic Medical Records. J Atten Disord 2023; 27:169-181. [PMID: 36264064 PMCID: PMC9596686 DOI: 10.1177/10870547221129305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Though psychiatric illnesses have been associated with increased COVID-19 infection risk, limited information exists about the relationship between ADHD and COVID-19. METHODS Using the TriNetX COVID-19 Research Network, we examined the impact of ADHD diagnosis and treatment on COVID-19 infection rates and outcomes. RESULTS ADHD patients had greater risk of COVID-19 (risk ratio (RR) 1.11, 95% CI [1.09, 1.12]). Increased risk was higher in females than males, and highest among Asian and Black patients. Within 60 days after COVID-19 diagnosis, ADHD patients had lower rates of hospitalization (RR 0.91, 95% CI [0.86, 0.96]) and mechanical ventilation (RR 0.69, 95% CI [0.58, 0.83]), and a nonsignificant reduced death rate (RR 0.65, 95% CI [0.42, 1.02]). Patients who recently received ADHD medication had higher rates of COVID-19 (RR 1.13; 95% CI [1.10, 1.15]). CONCLUSION ADHD poses increased risk for COVID-19, but may reduce risk of severe outcomes. ADHD medications modestly impacted COVID-19 risk.
Collapse
Affiliation(s)
- Kathleen P. Heslin
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Aminat Haruna
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Regina A. George
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA
| | - Shiyu Chen
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Ishak Nobel
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Kathryn B. Anderson
- Institute for Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York
| | - Stephen V. Faraone
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Yanli Zhang-James
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
19
|
Suhda S, Yamamoto Y, Wisesa S, Sada R, Sakisaka T. The 14-3-3γ isoform binds to and regulates the localization of endoplasmic reticulum (ER) membrane protein TMCC3 for the reticular network of the ER. J Biol Chem 2022; 299:102813. [PMID: 36549645 PMCID: PMC9860497 DOI: 10.1016/j.jbc.2022.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The reticular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions and undergoes constant remodeling through formation and loss of the three-way junctions. Transmembrane and coiled-coil domain family 3 (TMCC3), an ER membrane protein localizing at three-way junctions, has been shown to positively regulate formation of the reticular ER network. However, elements that negatively regulate TMCC3 localization have not been characterized. In this study, we report that 14-3-3γ, a phospho-serine/phospho-threonine-binding protein involved in various signal transduction pathways, is a negative regulator of TMCC3. We demonstrate that overexpression of 14-3-3γ reduced localization of TMCC3 to three-way junctions and decreased the number of three-way junctions. TMCC3 bound to 14-3-3γ through the N terminus and had deduced 14-3-3 binding motifs. Additionally, we determined that a TMCC3 mutant substituting alanine for serine to be phosphorylated in the binding motif reduced binding to 14-3-3γ. The TMCC3 mutant was more prone than wildtype TMCC3 to localize at three-way junctions in the cells overexpressing 14-3-3γ. Furthermore, the TMCC3 mutant rescued the ER sheet expansion caused by TMCC3 knockdown less than wild-type TMCC3. Taken together, these results indicate that 14-3-3γ binding negatively regulates localization of TMCC3 to the three-way junctions for the proper reticular ER network, implying that the negative regulation of TMCC3 by 14-3-3γ would underlie remodeling of the reticular network of the ER.
Collapse
Affiliation(s)
- Saihas Suhda
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Yasunori Yamamoto
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Sindhu Wisesa
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Risa Sada
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Toshiaki Sakisaka
- Division of Membrane Dynamics, Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan.
| |
Collapse
|
20
|
Torres FF, Bernardo VS, de Paula CP, da Silva JPMDO, de Almeida EA, da Cunha AF, da Silva DGH. Influence of Melatonin Treatment on Cellular Mechanisms of Redox Adaptation in K562 Erythroleukemic Cells. Genes (Basel) 2022; 13:genes13122337. [PMID: 36553603 PMCID: PMC9778059 DOI: 10.3390/genes13122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Melatonin (MEL) presents well-documented pleiotropic actions against oxidative stress (OS), acting indirectly through activation of transcription factors, e.g., FoxO3 and Nrf2. Thus, this study aimed to investigate the possible modulating effects of MEL on the redox signaling pathways PI3K/AKT/FoxO3 and Keap1/Nrf2/ARE in K562 erythroleukemic cells subjected to OS induction. For this, the viability, and transcript levels of genes involved in redox adaptation were evaluated in K562 cells in different periods of erythroid differentiation: under OS induction by hydrogen peroxide (100 µM H2O2); treated with 1 nM (C1) and 1 mM (C2) MEL; and associated or not with stress induction. We observed a restoration of physiological levels of Nrf2 in both MEL concentrations under OS. The C1 was related to enhanced expression of antioxidant and proteasome genes through the Nrf2-ARE pathway, while C2 to the induction of FOXO3 expression, suggesting an involvement with apoptotic pathway, according to BIM transcript levels. The effects of MEL administration in these cells showed a period and dose-dependent pattern against induced-OS, with direct and indirect actions through different pathways of cellular adaptation, reinforcing the importance of this indolamine in the regulation of cellular homeostasis, being a promising therapeutic alternative for diseases that present an exacerbated OS.
Collapse
Affiliation(s)
- Flaviene Felix Torres
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Victoria Simões Bernardo
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil
| | - Carla Peres de Paula
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Eduardo Alves de Almeida
- Department of Natural Sciences, Fundação Universidade Regional de Blumenau (FURB), Blumenau 89030-000, SC, Brazil
| | - Anderson Ferreira da Cunha
- Department of Genetics and Evolution, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Danilo Grünig Humberto da Silva
- Campus de Três Lagoas, Universidade Federal de Mato Grosso do Sul (CPTL/UFMS), Três Lagoas 79613-000, MS, Brazil
- Correspondence:
| |
Collapse
|
21
|
Qu JH, Tarasov KV, Chakir K, Tarasova YS, Riordon DR, Lakatta EG. Proteomic Landscape and Deduced Functions of the Cardiac 14-3-3 Protein Interactome. Cells 2022; 11:cells11213496. [PMID: 36359893 PMCID: PMC9654263 DOI: 10.3390/cells11213496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Rationale: The 14-3-3 protein family is known to interact with many proteins in non-cardiac cell types to regulate multiple signaling pathways, particularly those relating to energy and protein homeostasis; and the 14-3-3 network is a therapeutic target of critical metabolic and proteostatic signaling in cancer and neurological diseases. Although the heart is critically sensitive to nutrient and energy alterations, and multiple signaling pathways coordinate to maintain the cardiac cell homeostasis, neither the structure of cardiac 14-3-3 protein interactome, nor potential functional roles of 14-3-3 protein–protein interactions (PPIs) in heart has been explored. Objective: To establish the comprehensive landscape and characterize the functional role of cardiac 14-3-3 PPIs. Methods and Results: We evaluated both RNA expression and protein abundance of 14-3-3 isoforms in mouse heart, followed by co-immunoprecipitation of 14-3-3 proteins and mass spectrometry in left ventricle. We identified 52 proteins comprising the cardiac 14-3-3 interactome. Multiple bioinformatic analyses indicated that more than half of the proteins bound to 14-3-3 are related to mitochondria; and the deduced functions of the mitochondrial 14-3-3 network are to regulate cardiac ATP production via interactions with mitochondrial inner membrane proteins, especially those in mitochondrial complex I. Binding to ribosomal proteins, 14-3-3 proteins likely coordinate protein synthesis and protein quality control. Localizations of 14-3-3 proteins to mitochondria and ribosome were validated via immunofluorescence assays. The deduced function of cardiac 14-3-3 PPIs is to regulate cardiac metabolic homeostasis and proteostasis. Conclusions: Thus, the cardiac 14-3-3 interactome may be a potential therapeutic target in cardiovascular metabolic and proteostatic disease states, as it already is in cancer therapy.
Collapse
|
22
|
Sun W, Xu J, Wang L, Jiang Y, Cui J, Su X, Yang F, Tian L, Si Z, Xing Y. Non-coding RNAs in cancer therapy-induced cardiotoxicity: Mechanisms, biomarkers, and treatments. Front Cardiovasc Med 2022; 9:946137. [PMID: 36082126 PMCID: PMC9445363 DOI: 10.3389/fcvm.2022.946137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
As a result of ongoing breakthroughs in cancer therapy, cancer patients' survival rates have grown considerably. However, cardiotoxicity has emerged as the most dangerous toxic side effect of cancer treatment, negatively impacting cancer patients' prognosis. In recent years, the link between non-coding RNAs (ncRNAs) and cancer therapy-induced cardiotoxicity has received much attention and investigation. NcRNAs are non-protein-coding RNAs that impact gene expression post-transcriptionally. They include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). In several cancer treatments, such as chemotherapy, radiotherapy, and targeted therapy-induced cardiotoxicity, ncRNAs play a significant role in the onset and progression of cardiotoxicity. This review focuses on the mechanisms of ncRNAs in cancer therapy-induced cardiotoxicity, including apoptosis, mitochondrial damage, oxidative stress, DNA damage, inflammation, autophagy, aging, calcium homeostasis, vascular homeostasis, and fibrosis. In addition, this review explores potential ncRNAs-based biomarkers and therapeutic strategies, which may help to convert ncRNAs research into clinical practice in the future for early detection and improvement of cancer therapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Wanli Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juping Xu
- The Second People's Hospital of Jiaozuo, Jiaozuo, China
| | - Li Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, China
| | - Yuchen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingrun Cui
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Si
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Taiyuan, China
- Zeyu Si
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yanwei Xing
| |
Collapse
|
23
|
Lankford C, Houtman J, Baker SA. Identification of HCN1 as a 14-3-3 client. PLoS One 2022; 17:e0268335. [PMID: 35679272 PMCID: PMC9182292 DOI: 10.1371/journal.pone.0268335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization activated cyclic nucleotide-gated channel 1 (HCN1) is expressed throughout the nervous system and is critical for regulating neuronal excitability, with mutations being associated with multiple forms of epilepsy. Adaptive modulation of HCN1 has been observed, as has pathogenic dysregulation. While the mechanisms underlying this modulation remain incompletely understood, regulation of HCN1 has been shown to include phosphorylation. A candidate phosphorylation-dependent regulator of HCN1 channels is 14-3-3. We used bioinformatics to identify three potential 14-3-3 binding sites in HCN1. We confirmed that 14-3-3 could pull down HCN1 from multiple tissue sources and used HEK293 cells to detail the interaction. Two sites in the intrinsically disordered C-terminus of HCN1 were necessary and sufficient for a phosphorylation-dependent interaction with 14-3-3. The same region of HCN1 containing the 14-3-3 binding peptides is required for phosphorylation-independent protein degradation. We propose a model in which phosphorylation of mouse S810 and S867 (human S789 and S846) recruits 14-3-3 to inhibit a yet unidentified factor signaling for protein degradation, thus increasing the half-life of HCN1.
Collapse
Affiliation(s)
- Colten Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon Houtman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
24
|
Repton C, Cullen CF, Costa MFA, Spanos C, Rappsilber J, Ohkura H. The phospho-docking protein 14-3-3 regulates microtubule-associated proteins in oocytes including the chromosomal passenger Borealin. PLoS Genet 2022; 18:e1009995. [PMID: 35666772 PMCID: PMC9203013 DOI: 10.1371/journal.pgen.1009995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Global regulation of spindle-associated proteins is crucial in oocytes due to the absence of centrosomes and their very large cytoplasmic volume, but little is known about how this is achieved beyond involvement of the Ran-importin pathway. We previously uncovered a novel regulatory mechanism in Drosophila oocytes, in which the phospho-docking protein 14-3-3 suppresses microtubule binding of Kinesin-14/Ncd away from chromosomes. Here we report systematic identification of microtubule-associated proteins regulated by 14-3-3 from Drosophila oocytes. Proteins from ovary extract were co-sedimented with microtubules in the presence or absence of a 14-3-3 inhibitor. Through quantitative mass-spectrometry, we identified proteins or complexes whose ability to bind microtubules is suppressed by 14-3-3, including the chromosomal passenger complex (CPC), the centralspindlin complex and Kinesin-14/Ncd. We showed that 14-3-3 binds to the disordered region of Borealin, and this binding is regulated differentially by two phosphorylations on Borealin. Mutations at these two phospho-sites compromised normal Borealin localisation and centromere bi-orientation in oocytes, showing that phospho-regulation of 14-3-3 binding is important for Borealin localisation and function.
Collapse
Affiliation(s)
- Charlotte Repton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - C. Fiona Cullen
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mariana F. A. Costa
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Chair of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
25
|
Elagamey E, Abellatef MA, Arafat MY. Proteomic insights of chitosan mediated inhibition of Fusarium oxysporum f. sp. cucumerinum. J Proteomics 2022; 260:104560. [DOI: 10.1016/j.jprot.2022.104560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/28/2022]
|
26
|
Antunes ASLM, Saia-Cereda VM, Crunfli F, Martins-de-Souza D. 14-3-3 proteins at the crossroads of neurodevelopment and schizophrenia. World J Biol Psychiatry 2022; 23:14-32. [PMID: 33952049 DOI: 10.1080/15622975.2021.1925585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The 14-3-3 family comprises multifunctional proteins that play a role in neurogenesis, neuronal migration, neuronal differentiation, synaptogenesis and dopamine synthesis. 14-3-3 members function as adaptor proteins and impact a wide variety of cellular and physiological processes involved in the pathophysiology of neurological disorders. Schizophrenia is a psychiatric disorder and knowledge about its pathophysiology is still limited. 14-3-3 have been proven to be linked with the dopaminergic, glutamatergic and neurodevelopmental hypotheses of schizophrenia. Further, research using genetic models has demonstrated the role played by 14-3-3 proteins in neurodevelopment and neuronal circuits, however a more integrative and comprehensive approach is needed for a better understanding of their role in schizophrenia. For instance, we still lack an integrated assessment of the processes affected by 14-3-3 proteins in the dopaminergic and glutamatergic systems. In this context, it is also paramount to understand their involvement in the biology of brain cells other than neurons. Here, we present previous and recent research that has led to our current understanding of the roles 14-3-3 proteins play in brain development and schizophrenia, perform an assessment of their functional protein association network and discuss the use of protein-protein interaction modulators to target 14-3-3 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- André S L M Antunes
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Verônica M Saia-Cereda
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
27
|
Floros J, Tsotakos N. Differential Regulation of Human Surfactant Protein A Genes, SFTPA1 and SFTPA2, and Their Corresponding Variants. Front Immunol 2021; 12:766719. [PMID: 34917085 PMCID: PMC8669794 DOI: 10.3389/fimmu.2021.766719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/02/2021] [Indexed: 11/26/2022] Open
Abstract
The human SFTPA1 and SFTPA2 genes encode the surfactant protein A1 (SP-A1) and SP-A2, respectively, and they have been identified with significant genetic and epigenetic variability including sequence, deletion/insertions, and splice variants. The surfactant proteins, SP-A1 and SP-A2, and their corresponding variants play important roles in several processes of innate immunity as well in surfactant-related functions as reviewed elsewhere [1]. The levels of SP-A have been shown to differ among individuals both under baseline conditions and in response to various agents or disease states. Moreover, a number of agents have been shown to differentially regulate SFTPA1 and SFTPA2 transcripts. The focus in this review is on the differential regulation of SFTPA1 and SFTPA2 with primary focus on the role of 5′ and 3′ untranslated regions (UTRs) and flanking sequences on this differential regulation as well molecules that may mediate the differential regulation.
Collapse
Affiliation(s)
- Joanna Floros
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Nikolaos Tsotakos
- School of Science, Engineering, and Technology, The Pennsylvania State University - Harrisburg, Middletown, PA, United States
| |
Collapse
|
28
|
Rajendra J, Ghorai A, Dutt S. 14-3-3ζ negatively regulates mitochondrial biogenesis in GBM residual cells. Heliyon 2021; 7:e08371. [PMID: 34825085 PMCID: PMC8605068 DOI: 10.1016/j.heliyon.2021.e08371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/25/2021] [Accepted: 11/10/2021] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumour with a median survival of only 15 months. We have previously demonstrated the generation of an in vitro therapy resistance model that captures the residual resistant (RR) disease cells of GBM post-radiation. We also reported the proteomic landscape of parent, residual, and relapse cells using iTRAQ based quantitative proteomics of glioma cells. The proteomics data revealed significant up-regulation (fold change >1.5) of 14-3-3ζ, specifically in GBM RR cells. This was further confirmed by western blots in residual cells generated from GBM cell lines and patient sample-derived short-term primary culture. ShRNA-mediated knockdown of 14-3-3ζ radio-sensitized GBM cells and further stimulated therapy-induced senescence (TIS) and multinucleated giant cells (MNGCs) phenotype in RR cells. Intriguingly, 14-3-3ζ knockdown residual cells also showed a significantly higher number of mitochondria and increased mtDNA content. Indeed, in vitro GST pull-down mass spectrometry analysis of GST tagged 14-3-3ζ from RR cells identified novel interacting partners of 14-3-3ζ involved in cellular metabolism. Taken together, here we identified novel interacting partners of 14-3-3ζ and proposed an unconventional function of 14-3-3ζ as a negative regulator of TIS and mitochondrial biogenesis in residual resistant cells and loss of which also radio-sensitize GBM cells. 14-3-3ζ is up-regulated in residual disease cells of GBM. 14-3-3ζ knockdown radiosensitizes GBM cells. 14-3-3ζ knockdown increases MNGCs formation and senescence in residual cells. 14-3-3ζ negatively regulates mitochondrial biogenesis of residual disease cells. Novel interacting partners of 14-3-3ζ from residual cells are involved in cellular metabolism.
Collapse
Affiliation(s)
- Jacinth Rajendra
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Atanu Ghorai
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| |
Collapse
|
29
|
Upadhyay S, Krishna A, Singh A. Role of 14-3-3β protein on ovarian folliculogenesis, steroidogenesis and its correlation in the pathogenesis of PCOS in mice. Gen Comp Endocrinol 2021; 313:113900. [PMID: 34506788 DOI: 10.1016/j.ygcen.2021.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/28/2021] [Accepted: 09/05/2021] [Indexed: 11/24/2022]
Abstract
This study was designed to assess for the first time the circulating and ovarian level of 14-3-3β protein in the PCOS mice and the possible correlation between 14-3-3β protein with PCOS related increase in testosterone (HA), insulin levels (HI) and reduced insulin sensitivity in the ovary. PCOS was induced in mice using treatment of letrozole (by oral gavage) for 21 days. Immunohistochemical study showed increased expression of 14-3-3β protein in PCOS ovary compared to the control ovary. The circulating testosterone and insulin levels, together with circulating and ovarian levels of 14-3-3β protein also showed significant increase in PCOS mice compared to the control mice. An increase in 14-3-3β protein was observed positively correlated with circulating testosterone and insulin levels but showed a negative correlation with ovarian expression of insulin receptor protein in PCOS mice. The treatment of 14-3-3β protein in vitro to the normal ovary showed a significant increase in testosterone synthesis but a significant decline in insulin receptor protein expression compared to the vehicle-treated ovary of adult mice. The present study showed the direct role of 14-3-3β protein in increasing testosterone synthesis along with decreasing insulin sensitivity. Thus, 14-3-3β protein may be playing possible role in PCOS pathogenesis.
Collapse
Affiliation(s)
- Shatrudhan Upadhyay
- Reproductive Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Amitabh Krishna
- Reproductive Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ajit Singh
- Reproductive Endocrinology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
30
|
Sun RJ, Yin DM, Yuan D, Liu SY, Zhu JJ, Shan NN. Quantitative LC-MS/MS uncovers the regulatory role of autophagy in immune thrombocytopenia. Cancer Cell Int 2021; 21:548. [PMID: 34663331 PMCID: PMC8524881 DOI: 10.1186/s12935-021-02249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune haemorrhagic disease whose pathogenesis is associated with bone marrow megakaryocyte maturation disorder and destruction of the haematopoietic stem cell microenvironment. METHODS In this study, we report the qualitative and quantitative profiles of the ITP proteome. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to elucidate the protein profiles of clinical bone marrow mononuclear cell (BMMC) samples from ITP patients and healthy donors (controls). Gene Ontology (GO) and Kyoto Encyclopaedia Genes and Genome (KEGG) pathway analyses were performed to annotate the differentially expressed proteins. A protein-protein interaction (PPI) network was constructed with the BLAST online database. Target proteins associated with autophagy were quantitatively identified by parallel reaction monitoring (PRM) analysis. RESULTS Our approaches showed that the differentially expressed autophagy-related proteins, namely, HSPA8, PARK7, YWHAH, ITGB3 and CSF1R, were changed the most. The protein expression of CSF1R in ITP patients was higher than that in controls, while other autophagy-related proteins were expressed at lower levels in ITP patients than in controls. CONCLUSION Bioinformatics analysis indicated that disruption of the autophagy pathway is a potential pathological mechanism of ITP. These results can provide a new direction for exploring the molecular mechanism of ITP.
Collapse
Affiliation(s)
- Rui-Jie Sun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dong-Mei Yin
- Department of Blood Transfusion, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Shu-Yan Liu
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jing-Jing Zhu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China
| | - Ning-Ning Shan
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing Wu Rd, Jinan, 250021, Shandong, China.
| |
Collapse
|
31
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
32
|
Leysen S, Burnley RJ, Rodriguez E, Milroy LG, Soini L, Adamski CJ, Nitschke L, Davis R, Obsil T, Brunsveld L, Crabbe T, Zoghbi HY, Ottmann C, Davis JM. A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1. J Mol Biol 2021; 433:167174. [PMID: 34302818 PMCID: PMC8505757 DOI: 10.1016/j.jmb.2021.167174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein - including its AXH domain and a phosphorylation on residue serine 776 - also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or "chaperone" effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology.
Collapse
Affiliation(s)
- Seppe Leysen
- Global Chemistry, UCB Biopharma UK, Slough SL1 3WE, UK
| | | | | | - Lech-Gustav Milroy
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | - Lorenzo Soini
- Global Chemistry, UCB Biopharma UK, Slough SL1 3WE, UK; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | - Carolyn J Adamski
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Larissa Nitschke
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rachel Davis
- Global Chemistry, UCB Biopharma UK, Slough SL1 3WE, UK
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Lucas Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | - Tom Crabbe
- Immuno-Bone Discovery, UCB Biopharma UK, Slough SL1 3WE, UK
| | - Huda Yahya Zoghbi
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven 5600 MB, the Netherlands
| | | |
Collapse
|
33
|
Skerrett-Byrne DA, Anderson AL, Hulse L, Wass C, Dun MD, Bromfield EG, De Iuliis GN, Pyne M, Nicolson V, Johnston SD, Nixon B. Proteomic analysis of koala (phascolarctos cinereus) spermatozoa and prostatic bodies. Proteomics 2021; 21:e2100067. [PMID: 34411425 DOI: 10.1002/pmic.202100067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022]
Abstract
The aims of this study were to investigate the proteome of koala spermatozoa and that of the prostatic bodies with which they interact during ejaculation. For this purpose, spermatozoa and prostatic bodies were fractionated from the semen of four male koalas and analysed by HPLC MS/MS. This strategy identified 744 sperm and 1297 prostatic body proteins, which were subsequently attributed to 482 and 776 unique gene products, respectively. Gene ontology curation of the sperm proteome revealed an abundance of proteins mapping to the canonical sirtuin and 14-3-3 signalling pathways. By contrast, protein ubiquitination and unfolded protein response pathways dominated the equivalent analysis of proteins uniquely identified in prostatic bodies. Koala sperm proteins featured an enrichment of those mapping to the functional categories of cellular compromise/inflammatory response, whilst those of the prostatic body revealed an over-representation of molecular chaperone and stress-related proteins. Cross-species comparisons demonstrated that the koala sperm proteome displays greater conservation with that of eutherians (human; 93%) as opposed to reptile (crocodile; 39%) and avian (rooster; 27%) spermatozoa. Together, this work contributes to our overall understanding of the core sperm proteome and has identified biomarkers that may contribute to the exceptional longevity of koala spermatozoa during ex vivo storage.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Lyndal Hulse
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Caillin Wass
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, New South Wales, Australia
| | - Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Michael Pyne
- Currumbin Wildlife Sanctuary, Currumbin, Queensland, Australia
| | - Vere Nicolson
- Dreamworld, Dreamworld Parkway, Coomera, Queensland, Australia
| | - Stephen D Johnston
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
34
|
Overexpression of Human Syndecan-1 Protects against the Diethylnitrosamine-Induced Hepatocarcinogenesis in Mice. Cancers (Basel) 2021; 13:cancers13071548. [PMID: 33801718 PMCID: PMC8037268 DOI: 10.3390/cancers13071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Syndecan-1 is a Janus-faced proteoglycan: depending on the type of cancer, it can promote or inhibit the development of tumors. Our previous in vitro experiments revealed that transfection of human syndecan-1 (hSDC1) into hepatoma cells, initiating hepatocyte-like differentiation. To further confirm the antitumor action of hSDC1 in the context of liver carcinogenesis, mice transgenic for albumin promoter-driven hSDC1 were created with exclusive expression of hSDC1 in the liver. Indeed, hSDC1 interfered with the development of liver cancer in diethylnitrosamine (DEN)-induced hepatocarcinogenesis experiments. The mechanism was found to be related to lipid metabolism that plays an important role in the induction of nonalcoholic liver cirrhosis. Nonalcoholic fatty liver disease is known to promote the development of cancer; therefore, the oncoprotective effect of hSDC1 may be mediated by a beneficial modulation of lipid metabolism. Abstract Although syndecan-1 (SDC1) is known to be dysregulated in various cancer types, its implication in tumorigenesis is poorly understood. Its effect may be detrimental or protective depending on the type of cancer. Our previous data suggest that SDC1 is protective against hepatocarcinogenesis. To further verify this notion, human SDC1 transgenic (hSDC1+/+) mice were generated that expressed hSDC1 specifically in the liver under the control of the albumin promoter. Hepatocarcinogenesis was induced by a single dose of diethylnitrosamine (DEN) at an age of 15 days after birth, which resulted in tumors without cirrhosis in wild-type and hSDC1+/+ mice. At the experimental endpoint, livers were examined macroscopically and histologically, as well as by immunohistochemistry, Western blot, receptor tyrosine kinase array, phosphoprotein array, and proteomic analysis. Liver-specific overexpression of hSDC1 resulted in an approximately six month delay in tumor formation via the promotion of SDC1 shedding, downregulation of lipid metabolism, inhibition of the mTOR and the β-catenin pathways, and activation of the Foxo1 and p53 transcription factors that lead to the upregulation of the cell cycle inhibitors p21 and p27. Furthermore, both of them are implicated in the regulation of intermediary metabolism. Proteomic analysis showed enhanced lipid metabolism, activation of motor proteins, and loss of mitochondrial electron transport proteins as promoters of cancer in wild-type tumors, inhibited in the hSDC1+/+ livers. These complex mechanisms mimic the characteristics of nonalcoholic steatohepatitis (NASH) induced human liver cancer successfully delayed by syndecan-1.
Collapse
|
35
|
Folylpoly-ɣ-glutamate synthetase association to the cytoskeleton: Implications to folate metabolon compartmentalization. J Proteomics 2021; 239:104169. [PMID: 33676037 DOI: 10.1016/j.jprot.2021.104169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 11/23/2022]
Abstract
Folates are essential for nucleotide biosynthesis, amino acid metabolism and cellular proliferation. Following carrier-mediated uptake, folates are polyglutamylated by folylpoly-ɣ-glutamate synthetase (FPGS), resulting in their intracellular retention. FPGS appears as a long isoform, directed to mitochondria via a leader sequence, and a short isoform reported as a soluble cytosolic protein (cFPGS). However, since folates are labile and folate metabolism is compartmentalized, we herein hypothesized that cFPGS is associated with the cytoskeleton, to couple folate uptake and polyglutamylation and channel folate polyglutamates to metabolon compartments. We show that cFPGS is a cytoskeleton-microtubule associated protein: Western blot analysis revealed that endogenous cFPGS is associated with the insoluble cellular fraction, i.e., cytoskeleton and membranes, but not with the cytosol. Mass spectrometry analysis identified the putative cFPGS interactome primarily consisting of microtubule subunits and cytoskeletal motor proteins. Consistently, immunofluorescence microscopy with cytosol-depleted cells demonstrated the association of cFPGS with the cytoskeleton and unconventional myosin-1c. Furthermore, since anti-microtubule, anti-actin cytoskeleton, and coatomer dissociation-inducing agents yielded perinuclear pausing of cFPGS, we propose an actin- and microtubule-dependent transport of cFPGS between the ER-Golgi and the plasma membrane. These novel findings support the coupling of folate transport with polyglutamylation and folate channeling to intracellular metabolon compartments. SIGNIFICANCE: FPGS, an essential enzyme catalyzing intracellular folate polyglutamylation and efficient retention, was described as a soluble cytosolic enzyme in the past 40 years. However, based on the lability of folates and the compartmentalization of folate metabolism and nucleotide biosynthesis, we herein hypothesized that cytoplasmic FPGS is associated with the cytoskeleton, to couple folate transport and polyglutamylation as well as channel folate polyglutamates to biosynthetic metabolon compartments. Indeed, using complementary techniques including Mass-spectrometry proteomics and fluorescence microscopy, we show that cytoplasmic FPGS is associated with the cytoskeleton and unconventional myosin-1c. This novel cytoskeletal localization of cytoplasmic FPGS supports the dynamic channeling of polyglutamylated folates to metabolon compartments to avoid oxidation and intracellular dilution of folates, while enhancing folate-dependent de novo biosynthesis of nucleotides and DNA/protein methylation.
Collapse
|
36
|
YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood 2021; 136:468-479. [PMID: 32187357 DOI: 10.1182/blood.2019004147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/04/2020] [Indexed: 02/05/2023] Open
Abstract
High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.
Collapse
|
37
|
Perić I, Costina V, Gass P, Findeisen P, Filipović D. Hippocampal synaptoproteomic changes of susceptibility and resilience of male rats to chronic social isolation. Brain Res Bull 2020; 166:128-141. [PMID: 33238171 DOI: 10.1016/j.brainresbull.2020.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/07/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022]
Abstract
The susceptibility of an individual to chronic social isolation (CSIS) stress may cause major depression (MD) whereby some individuals are resistant to the stress. Recent studies relate MD with altered expression of synaptic proteins in specific brain regions. To explore the neurobiological underpinnings and identify candidate biomarkers of susceptibility or resilience to CSIS, a comparative proteomic approach was used to map hippocampal synaptic protein alterations of rats exposed to 6 weeks of CSIS, an animal model of depression. This model generates two stress-response phenotypes: CSIS-sensitive (depressive-like behaviour) and CSIS-resilience assessed by means of sucrose preference and forced swim tests. Our aim was to characterize the synaptoproteome changes representative of potential long-term changes in protein expression underlying susceptibility or resilience to stress. Proteomic data showed increased expression of glycolytic enzymes, the energy-related mitochondrial proteins, actin cytoskeleton, signalling transduction and synaptic transmission proteins in CSIS-sensitive rats. Protein levels of glutamate-related enzymes such as glutamate dehydrogenase and glutamine synthetase were also increased. CSIS-resilient rats showed similar proteome changes, however with a weaker increase compared to CSIS-sensitive rats. The main difference was observed in the level of protein expression of vesicle-mediated transport proteins. Nonetheless, only few proteins were uniquely up-regulated in the CSIS-resilient rats, whereby Cytochrome b-c1 complex subunit 2, mitochondrial (Uqcrc2) and Voltage-dependent anion-selective channel protein 1 (Vdac1) were uniquely down-regulated. Identified altered activated pathways and potential protein biomarkers may help us better understand the molecular mechanisms underlying synaptic neurotransmission in MD or resilience, crucial for development of new therapeutics.
Collapse
Affiliation(s)
- Ivana Perić
- Molecular Biology and Endocrinology MBE-090, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Peter Gass
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, Mannheim, Germany
| | - Dragana Filipović
- Molecular Biology and Endocrinology MBE-090, "VINČA", Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
38
|
Lee SH, Du J, Hwa J, Kim WH. Parkin Coordinates Platelet Stress Response in Diabetes Mellitus: A Big Role in a Small Cell. Int J Mol Sci 2020; 21:E5869. [PMID: 32824240 PMCID: PMC7461561 DOI: 10.3390/ijms21165869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Increased platelet activation and apoptosis are characteristic of diabetic (DM) platelets, where a Parkin-dependent mitophagy serves a major endogenous protective role. We now demonstrate that Parkin is highly expressed in both healthy platelets and diabetic platelets, compared to other mitochondria-enriched tissues such as the heart, muscle, brain, and liver. Abundance of Parkin in a small, short-lived anucleate cell suggest significance in various key processes. Through proteomics we identified 127 Parkin-interacting proteins in DM platelets and compared them to healthy controls. We assessed the 11 highest covered proteins by individual IPs and confirmed seven proteins that interacted with Parkin; VCP/p97, LAMP1, HADHA, FREMT3, PDIA, ILK, and 14-3-3. Upon further STRING analysis using GO and KEGG, interactions were divided into two broad groups: targeting platelet activation through (1) actions on mitochondria and (2) actions on integrin signaling. Parkin plays an important role in mitochondrial protection through mitophagy (VCP/p97), recruiting phagophores, and targeting lysosomes (with LAMP1). Mitochondrial β-oxidation may also be regulated by the Parkin/HADHA interaction. Parkin may regulate platelet aggregation and activation through integrin signaling through interactions with proteins like FREMT3, PDIA, ILK, and 14-3-3. Thus, platelet Parkin may regulate the protection (mitophagy) and stress response (platelet activation) in DM platelets. This study identified new potential therapeutic targets for platelet mitochondrial dysfunction and hyperactivation in diabetes mellitus.
Collapse
Affiliation(s)
- Seung Hee Lee
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju-si 28159, Chungbuk, Korea;
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - Jing Du
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; (J.D.); (J.H.)
| | - Won-Ho Kim
- Division of Cardiovascular Diseases, Center for Biomedical Sciences, National Institute of Health, Cheongju-si 28159, Chungbuk, Korea;
| |
Collapse
|
39
|
Kannen V, Bader M, Sakita JY, Uyemura SA, Squire JA. The Dual Role of Serotonin in Colorectal Cancer. Trends Endocrinol Metab 2020; 31:611-625. [PMID: 32439105 DOI: 10.1016/j.tem.2020.04.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/18/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Serotonin (5-HT) has complex effects on the central nervous system (CNS), neuroendocrine mechanisms, immunological reactions, intestinal microbiome, and cancer. It has been associated with more severe signs and symptoms of colitis, as well as promoting colorectal cancer (CRC) cells toward expansion. However, recent findings revealed that impairments in 5-HT synthesis lead to high levels of DNA damage in colonocytes, which is linked with inflammatory reactions promoting the development of CRC. Here, we review the diverse roles of 5-HT in intestinal homeostasis and in CRC and discuss how improved understanding of the modulation of the 5-HT pathway could be helpful for the design of novel anticancer therapies.
Collapse
Affiliation(s)
- Vinicius Kannen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; Department of Genetics, University of Sao Paulo, Ribeirao Preto, Brazil.
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Charité, University Medicine Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany
| | - Juliana Y Sakita
- Department of Genetics, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Sergio A Uyemura
- Department of Toxicology, Bromatology, and Clinical Analysis, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Jeremy A Squire
- Department of Genetics, University of Sao Paulo, Ribeirao Preto, Brazil; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
40
|
TMCC3 localizes at the three-way junctions for the proper tubular network of the endoplasmic reticulum. Biochem J 2020; 476:3241-3260. [PMID: 31696206 DOI: 10.1042/bcj20190359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 01/26/2023]
Abstract
The tubular network of the endoplasmic reticulum (ER) is formed by connecting ER tubules through three-way junctions. Two classes of the conserved ER membrane proteins, atlastins and lunapark, have been shown to reside at the three-way junctions so far and be involved in the generation and stabilization of the three-way junctions. In this study, we report TMCC3 (transmembrane and coiled-coil domain family 3), a member of the TEX28 family, as another ER membrane protein that resides at the three-way junctions in mammalian cells. When the TEX28 family members were transfected into U2OS cells, TMCC3 specifically localized at the three-way junctions in the peripheral ER. TMCC3 bound to atlastins through the C-terminal transmembrane domains. A TMCC3 mutant lacking the N-terminal coiled-coil domain abolished localization to the three-way junctions, suggesting that TMCC3 localized independently of binding to atlastins. TMCC3 knockdown caused a decrease in the number of three-way junctions and expansion of ER sheets, leading to a reduction of the tubular ER network in U2OS cells. The TMCC3 knockdown phenotype was partially rescued by the overexpression of atlastin-2, suggesting that TMCC3 knockdown would decrease the activity of atlastins. These results indicate that TMCC3 localizes at the three-way junctions for the proper tubular ER network.
Collapse
|
41
|
14-3-3ζ mediates an alternative, non-thermogenic mechanism in male mice to reduce heat loss and improve cold tolerance. Mol Metab 2020; 41:101052. [PMID: 32668300 PMCID: PMC7394917 DOI: 10.1016/j.molmet.2020.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/03/2022] Open
Abstract
Objective Adaptive thermogenesis, which is partly mediated by sympathetic input on brown adipose tissue (BAT), is a mechanism of heat production that confers protection against prolonged cold exposure. Various endogenous stimuli, for example, norepinephrine and FGF-21, can also promote the conversion of inguinal white adipocytes to beige adipocytes, which may represent a secondary cell type that contributes to adaptive thermogenesis. We previously identified an essential role of the molecular scaffold 14-3-3ζ in adipogenesis, but one of the earliest, identified functions of 14-3-3ζ is its regulatory effects on the activity of tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of norepinephrine. Herein, we examined whether 14-3-3ζ could influence adaptive thermogenesis via actions on BAT activation or the beiging of white adipocytes. Methods Transgenic mice over-expressing a TAP-tagged human 14-3-3ζ molecule or heterozygous mice without one allele of Ywhaz, the gene encoding 14-3-3ζ, were used to explore the contribution of 14-3-3ζ to acute (3 h) and prolonged (3 days) cold (4 °C) exposure. Metabolic caging experiments, PET-CT imaging, and laser Doppler imaging were used to determine the effect of 14-3-3ζ over-expression on thermogenic and vasoconstrictive mechanisms in response to cold. Results Transgenic over-expression of 14-3-3ζ (TAP) in male mice significantly improved tolerance to acute and prolonged cold. In response to cold, body temperatures in TAP mice did not decrease to the same extent when compared to wildtype (WT) mice, and this was associated with increased UCP1 expression in beige inguinal white tissue (iWAT) and BAT. Of note was the paradoxical finding that cold-induced changes in body temperatures of TAP mice were associated with significantly decreased energy expenditure. The marked improvements in tolerance to prolonged cold were not due to changes in sensitivity to β-adrenergic stimulation or BAT or iWAT oxidative metabolism; instead, over-expression of 14-3-3ζ significantly decreased thermal conductance and heat loss in mice via increased peripheral vasoconstriction. Conclusions Despite being associated with elevations in cold-induced UCP1 expression in brown or beige adipocytes, these findings suggest that 14-3-3ζ regulates an alternative, non-thermogenic mechanism via vasoconstriction to minimize heat loss during cold exposure. 14-3-3ζ over-expression in male mice improves tolerance to acute and prolonged cold. Increasing 14-3-3ζ expression promotes beiging of inguinal white adipose tissue. Cold-induced changes in body temperature can be dissociated from energy expenditure. 14-3-3ζ-dependent decreases in heat loss are associated with vasoconstriction.
Collapse
|
42
|
Oppong AK, Diallo K, Robillard Frayne I, Des Rosiers C, Lim GE. Reducing 14-3-3ζ expression influences adipocyte maturity and impairs function. Am J Physiol Endocrinol Metab 2020; 319:E117-E132. [PMID: 32369418 DOI: 10.1152/ajpendo.00093.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the primary metabolic functions of a mature adipocyte is to supply energy via lipolysis, or the catabolism of stored lipids. Adipose triacylglycerol lipase (ATGL) and hormone-sensitive lipase (HSL) are critical lipolytic enzymes, and their phosphorylation generates phospho-binding sites for 14-3-3 proteins, a ubiquitously expressed family of molecular scaffolds. Although we previously identified essential roles of the 14-3-3ζ isoform in murine adipogenesis, the presence of 14-3-3 protein binding sites on ATGL and HSL suggests that 14-3-3ζ could also influence mature adipocyte processes like lipolysis. Here we demonstrate that 14-3-3ζ is necessary for lipolysis in male mice and fully differentiated 3T3-L1 adipocytes, as depletion of 14-3-3ζ significantly impaired glycerol and free fatty acid (FFA) release. Unexpectedly, reducing 14-3-3ζ expression was found to significantly impact adipocyte maturity, as observed by reduced abundance of peroxisome proliferator-activated receptor (PPAR)γ2 protein and expression of mature adipocyte genes and those associated with de novo triglyceride synthesis and lipolysis. The impact of 14-3-3ζ depletion on adipocyte maturity was further examined with untargeted lipidomics, which revealed that reductions in 14-3-3ζ abundance promoted the acquisition of a lipidomic signature that resembled undifferentiated preadipocytes. Collectively, these findings reveal a novel aspect of 14-3-3ζ in adipocytes, as reducing 14-3-3ζ was found to have a negative effect on adipocyte maturity and adipocyte-specific processes like lipolysis.
Collapse
Affiliation(s)
- Abel K Oppong
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Kadidia Diallo
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | | - Christine Des Rosiers
- Montreal Heart Institute, Research Centre, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Gareth E Lim
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Cardiometabolic axis, Centre de recherche de Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Edwards MR, Hoad M, Tsimbalyuk S, Menicucci AR, Messaoudi I, Forwood JK, Basler CF. Henipavirus W Proteins Interact with 14-3-3 To Modulate Host Gene Expression. J Virol 2020; 94:e00373-20. [PMID: 32321809 PMCID: PMC7343215 DOI: 10.1128/jvi.00373-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/12/2020] [Indexed: 01/21/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus in the Paramyxoviridae family, are recently emerged, highly lethal zoonotic pathogens. The NiV and HeV nonsegmented, negative-sense RNA genomes encode nine proteins, including the W protein. Expressed from the P gene through mRNA editing, W shares a common N-terminus with P and V but has a unique C-terminus. Expressed alone, W modulates innate immune responses by several mechanisms, and elimination of W from NiV alters the course of infection in experimentally infected ferrets. However, the specific host interactions that allow W to modulate innate immunity are incompletely understood. This study demonstrates that the NiV and HeV W proteins interact with all seven isoforms of the 14-3-3 family, regulatory molecules that preferentially bind phosphorylated target proteins to regulate a wide range of cellular functions. The interaction is dependent on the penultimate amino acid residue in the W sequence, a conserved, phosphorylated serine. The cocrystal structure of the W C-terminal binding motif with 14-3-3 provides only the second structure of a complex containing a mode III interactor, which is defined as a 14-3-3 interaction with a phosphoserine/phosphothreonine at the C-termini of the target protein. Transcriptomic analysis of inducible cell lines infected with an RNA virus and expressing either wild-type W or W lacking 14-3-3 binding, identifies new functions for W. These include the regulation of cellular metabolic processes, extracellular matrix organization, and apoptosis.IMPORTANCE Nipah virus (NiV) and Hendra virus (HeV), members of the Henipavirus genus, are recently emerged, highly lethal zoonotic pathogens that cause yearly outbreaks. NiV and HeV each encode a W protein that has roles in regulating host signaling pathways, including antagonism of the innate immune response. However, the mechanisms used by W to regulate these host responses are not clear. Here, characterization of the interaction of NiV and HeV W with 14-3-3 identifies modulation of 14-3-3-regulated host signaling pathways not previously associated with W, suggesting new avenues of research. The cocrystal structure of the NiV W:14-3-3 complex, as only the second structure of a 14-3-3 mode III interactor, provides further insight into this less-well-understood 14-3-3 binding motif.
Collapse
Affiliation(s)
- Megan R Edwards
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Mikayla Hoad
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Andrea R Menicucci
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Ilhem Messaoudi
- Department of Molecular Biology and Biochemistry, College of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Torrico B, Antón-Galindo E, Fernàndez-Castillo N, Rojo-Francàs E, Ghorbani S, Pineda-Cirera L, Hervás A, Rueda I, Moreno E, Fullerton JM, Casadó V, Buitelaar JK, Rommelse N, Franke B, Reif A, Chiocchetti AG, Freitag C, Kleppe R, Haavik J, Toma C, Cormand B. Involvement of the 14-3-3 Gene Family in Autism Spectrum Disorder and Schizophrenia: Genetics, Transcriptomics and Functional Analyses. J Clin Med 2020; 9:E1851. [PMID: 32545830 PMCID: PMC7356291 DOI: 10.3390/jcm9061851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The 14-3-3 protein family are molecular chaperones involved in several biological functions and neurological diseases. We previously pinpointed YWHAZ (encoding 14-3-3ζ) as a candidate gene for autism spectrum disorder (ASD) through a whole-exome sequencing study, which identified a frameshift variant within the gene (c.659-660insT, p.L220Ffs*18). Here, we explored the contribution of the seven human 14-3-3 family members in ASD and other psychiatric disorders by investigating the: (i) functional impact of the 14-3-3ζ mutation p.L220Ffs*18 by assessing solubility, target binding and dimerization; (ii) contribution of common risk variants in 14-3-3 genes to ASD and additional psychiatric disorders; (iii) burden of rare variants in ASD and schizophrenia; and iv) 14-3-3 gene expression using ASD and schizophrenia transcriptomic data. We found that the mutant 14-3-3ζ protein had decreased solubility and lost its ability to form heterodimers and bind to its target tyrosine hydroxylase. Gene-based analyses using publicly available datasets revealed that common variants in YWHAE contribute to schizophrenia (p = 6.6 × 10-7), whereas ultra-rare variants were found enriched in ASD across the 14-3-3 genes (p = 0.017) and in schizophrenia for YWHAZ (meta-p = 0.017). Furthermore, expression of 14-3-3 genes was altered in post-mortem brains of ASD and schizophrenia patients. Our study supports a role for the 14-3-3 family in ASD and schizophrenia.
Collapse
Affiliation(s)
- Bàrbara Torrico
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Eva Rojo-Francàs
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Sadaf Ghorbani
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Laura Pineda-Cirera
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| | - Amaia Hervás
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
- IGAIN, Global Institute of Integral Attention to Neurodevelopment, 08007 Barcelona, Spain
| | - Isabel Rueda
- Child and Adolescent Mental Health Unit, Hospital Universitari Mútua de Terrassa, 08221 Terrassa, Spain; (A.H.); (I.R.)
| | - Estefanía Moreno
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Janice M. Fullerton
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vicent Casadó
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Jan K. Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Centre, 6525 GC Nijmegen, The Netherlands;
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands;
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 HR Nijmegen, The Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Andreas G. Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Christine Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Autism Research and Intervention Center of Excellence Frankfurt, JW Goethe University, 60323 Frankfurt am Main, Germany; (A.G.C.); (C.F.)
| | - Rune Kleppe
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Centre for Neuropsychiatric Disorders, Department of Biomedicine, University of Bergen, N5009 Bergen, Norway; (S.G.); (R.K.); (J.H.)
| | - Claudio Toma
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Neuroscience Research Australia, Sydney, NSW 2031, Australia;
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid/CSIC, C/Nicolás Cabrera, 1, Campus UAM, 28049 Madrid, Spain
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Prevosti Building, floor 2, Av. Diagonal 643, 08028 Barcelona, Spain; (B.T.); (E.A.-G.); (N.F.-C.); (E.R.-F.); (L.P.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain; (E.M.); (V.C.)
- Institut de Recerca Sant Joan de Déu (IR-SJD), 08950 Esplugues de Llobregat, Spain
| |
Collapse
|
45
|
Hofer P, Taschler U, Schreiber R, Kotzbeck P, Schoiswohl G. The Lipolysome-A Highly Complex and Dynamic Protein Network Orchestrating Cytoplasmic Triacylglycerol Degradation. Metabolites 2020; 10:E147. [PMID: 32290093 PMCID: PMC7240967 DOI: 10.3390/metabo10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022] Open
Abstract
The catabolism of intracellular triacylglycerols (TAGs) involves the activity of cytoplasmic and lysosomal enzymes. Cytoplasmic TAG hydrolysis, commonly termed lipolysis, is catalyzed by the sequential action of three major hydrolases, namely adipose triglyceride lipase, hormone-sensitive lipase, and monoacylglycerol lipase. All three enzymes interact with numerous protein binding partners that modulate their activity, cellular localization, or stability. Deficiencies of these auxiliary proteins can lead to derangements in neutral lipid metabolism and energy homeostasis. In this review, we summarize the composition and the dynamics of the complex lipolytic machinery we like to call "lipolysome".
Collapse
Affiliation(s)
- Peter Hofer
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| | - Petra Kotzbeck
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriele Schoiswohl
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; (P.H.); (U.T.); (R.S.)
| |
Collapse
|
46
|
Kang JB, Lee SY, Park DJ, Koh PO. Decrease of 14-3-3 proteins by glutamate exposure in the cerebral cortex of newborn rats. Lab Anim Res 2020; 36:8. [PMID: 32257920 PMCID: PMC7119159 DOI: 10.1186/s42826-020-00041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/12/2020] [Indexed: 11/10/2022] Open
Abstract
Glutamate is a representative excitatory neurotransmitter. However, excessive glutamate exposure causes neuronal cell damage by generating neuronal excitotoxicity. Excitotoxicity in neonates caused by glutamate treatment induces neurological deficits in adults. The 14-3-3 family proteins are conserved proteins that are expressed ubiquitously in a variety of tissues. These proteins contribute to cellular processes, including signal transduction, protein synthesis, and cell cycle control. We proposed that glutamate induces neuronal cell damage by regulating 14-3-3 protein expression in newborn animals. In this study, we investigated the histopathological changes and 14-3-3 proteins expressions as a result of glutamate exposure in the neonatal cerebral cortex. Rat pups at post-natal day 7 were intraperitoneally administrated with vehicle or glutamate (10 mg/kg). Animals were sacrificed 4 h after treatment, and brain tissues were fixed for histological study. Cerebral cortices were isolated and frozen for proteomic study. We observed serious histopathological damages including shrunken dendrites and atypical neurons in glutamate-treated cerebral cortices. In addition, we identified that 14-3-3 family proteins decreased in glutamate-exposed cerebral cortices using a proteomic approach. Moreover, Western blot analysis provided results that glutamate treatment in neonates decreased 14-3-3 family proteins expressions, including the β/α, ζ/δ, γ, ε, τ, and η isoforms. 14-3-3 proteins are involved in signal transduction, metabolism, and anti-apoptotic functions. Thus, our findings suggest that glutamate induces neonatal neuronal cell damage by modulating 14-3-3 protein expression.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Seung-Yun Lee
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
47
|
Wang C, Zhang S, Liu J, Tian Y, Ma B, Xu S, Fu Y, Luo Y. Secreted Pyruvate Kinase M2 Promotes Lung Cancer Metastasis through Activating the Integrin Beta1/FAK Signaling Pathway. Cell Rep 2020; 30:1780-1797.e6. [PMID: 32049010 DOI: 10.1016/j.celrep.2020.01.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/01/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer cell-derived secretomes have been documented to play critical roles in cancer progression. Intriguingly, alternative extracellular roles of intracellular proteins are involved in various steps of tumor progression, which can offer strategies to fight cancer. Herein, we identify lung cancer progression-associated secretome signatures using mass spectrometry analysis. Among them, PKM2 is verified to be highly expressed and secreted in lung cancer cells and clinical samples. Functional analyses demonstrates that secreted PKM2 facilitates tumor metastasis. Furthermore, mass spectrometry analysis and functional validation identify integrin β1 as a receptor of secreted PKM2. Mechanistically, secreted PKM2 directly bound to integrin β1 and subsequently activated the FAK/SRC/ERK axis to promote tumor metastasis. Collectively, our findings suggest that PKM2 is a potential serum biomarker for diagnosing lung cancer and that targeting the secreted PKM2-integrin β1 axis can inhibit lung cancer development, which provides evidence of a potential therapeutic strategy in lung cancer.
Collapse
Affiliation(s)
- Caihong Wang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Shaosen Zhang
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Jie Liu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Boyuan Ma
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Siran Xu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; The National Engineering Laboratory for Anti-Tumor Protein Therapeutics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Zhan Y, Liu L, Zhao T, Sun J, Cui D, Li Y, Chang Y. MicroRNAs involved in innate immunity regulation in the sea cucumber: A review. FISH & SHELLFISH IMMUNOLOGY 2019; 95:297-304. [PMID: 31669896 DOI: 10.1016/j.fsi.2019.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The sea cucumber is one of the most economically significant echinoderms. The immunity against exogenous stimulation of sea cucumber is of great academic and economic importance. MicroRNAs (miRNAs) are a class of short endogenous non-coding RNAs (ncRNAs) that are considered as vital regulators of both innate and adaptive immune responses in most eukaryotes. In sea cucumbers, some miRNAs (such as miR-133, miR-137, and miR-2008, among others) that participate in the regulation of innate immunity have been recently identified and characterized. This review focuses on those known miRNAs and their corresponding target genes that participate in the regulation of the complement system, Toll-like receptor (TLR) pathway, reactive oxygen species (ROS) production and apoptosis pathways in sea cucumbers. Moreover, we cover immune-related miRNA investigations in sea cucumbers that provide insights into developing more miRNA-based biomarkers and therapeutic strategies for sea cucumber diseases.
Collapse
Affiliation(s)
- Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Li Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Jingxian Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning, 116023, PR China.
| |
Collapse
|
49
|
Wang Q, Li Z, Wang D, Yang S, Feng Y. Myocardial protection properties of parishins from the roots of Gastrodia elata Bl. Biomed Pharmacother 2019; 121:109645. [PMID: 31739164 DOI: 10.1016/j.biopha.2019.109645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 11/01/2019] [Indexed: 01/13/2023] Open
Abstract
Parishins, important constituents of Gastrodia elata (G. elata), are known to exhibit a number of biological and pharmacological properties. However, their role and mechanisms of action in myocardial ischemia are unknown. The present study investigated the potential protective effects and mechanisms of parishins extracted from G. elata on hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. The results demonstrated that parishins had significant protective effects on myocardial cells with parishins J and B providing greater cardioprotection through down-regulation of the level of cleaved-caspase-3 and cytochrome c in the cytoplasm and Bax, and up-regulation of cytochrome c in the mitochondria and Bcl-2 than induced by the positive control gastrodin. Additional study of the mechanisms of action indicated that the myocardial protection provided by parishin J was due to inhibition of JNK1 phosphorylation levels, down-regulation of c-jun and ATF-2 phosphorylation levels, a decrease in the phosphorylation of 14-3-3 and an increase in its binding to Bax. Therefore, parishin J was revealed to be a promising candidate as a novel treatment for myocardial protection.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China
| | - Zhifeng Li
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Dongxu Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China
| | - Shinlin Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| |
Collapse
|
50
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|