1
|
Su H, Huang L, Zhou J, Yang G. Prostate cancer stem cells and their targeted therapies. Front Cell Dev Biol 2024; 12:1410102. [PMID: 39175878 PMCID: PMC11338935 DOI: 10.3389/fcell.2024.1410102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PCa) is the most common malignancy among men worldwide. Through androgen receptor signaling inhibitor (ARSI) treatment, patients eventually succumb to castration-resistant prostate cancer (CRPC). For this, the prostate cancer stem cells (PCSCs), as a minor population of tumor cells that can promote tumor relapse, ARSI resistance, and disease progression, are gaining attention. Therefore, specific therapy targeting PCSCs has momentum. This study reviewed the identification and characterization of PCSCs and PCSC-based putative biomarkers and summarized their mechanisms of action. We further discussed clinical trials of novel therapeutic interventions focused on PCSC-related pathways, the PCSC microenvironment, cutting-edge miRNA therapy, and immunotherapy approaches from a mechanistic standpoint. This review provides updated insights into PCSC plasticity, identifying new PCSC biomarkers and optimized treatments for patients with advanced PCa.
Collapse
Affiliation(s)
- Huilan Su
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guosheng Yang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kaveh Zenjanab M, Hashemzadeh N, Alimohammadvand S, Sharifi-Azad M, Dalir Abdolahinia E, Jahanban-Esfahlan R. Notch Signaling Suppression by Golden Phytochemicals: Potential for Cancer Therapy. Adv Pharm Bull 2024; 14:302-313. [PMID: 39206407 PMCID: PMC11347744 DOI: 10.34172/apb.2024.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/09/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is one of the main causes of mortality worldwide. Cancer cells are characterized by unregulated cellular processes, including proliferation, progression, and angiogenesis. The occurrence of these processes is due to the dysregulation of various signaling pathways such as NF-κB (nuclear factor-κB), Wnt/beta-catenin, Notch signaling and MAPK (mitogen-activated protein kinases). Notch signaling pathways cause the progression of various types of malignant tumors. Among the phytochemicals for cancer therapy, several have attracted great interest, including curcumin, genistein, quercetin, silibinin, resveratrol, cucurbitacin and glycyrrhizin. Given the great cellular and molecular heterogeneity within tumors and the high toxicity and side effects of synthetic chemotherapeutics, natural products with pleiotropic effects that simultaneously target numerous signaling pathways appear to be ideal substitutes for cancer therapy. With this in mind, we take a look at the current status, impact and potential of known compounds as golden phytochemicals on key signaling pathways in tumors, focusing on the Notch pathway. This review may be useful for discovering new molecular targets for safe and efficient cancer therapy with natural chemotherapeutics.
Collapse
Affiliation(s)
| | - Nastaran Hashemzadeh
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Sharifi-Azad
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, US
| | - Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Saha N, Baek DS, Mendoza RP, Robev D, Xu Y, Goldgur Y, De La Cruz MJ, de Stanchina E, Janes PW, Xu K, Dimitrov DS, Nikolov DB. Fully human monoclonal antibody targeting activated ADAM10 on colorectal cancer cells. Biomed Pharmacother 2023; 161:114494. [PMID: 36917886 PMCID: PMC10499537 DOI: 10.1016/j.biopha.2023.114494] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Metastasis and chemoresistance in colorectal cancer are mediated by certain poorly differentiated cancer cells, known as cancer stem cells, that are maintained by Notch downstream signaling initiated upon Notch cleavage by the metalloprotease ADAM10. It has been shown that ADAM10 overexpression correlates with aberrant signaling from Notch, erbBs, and other receptors, as well as a more aggressive metastatic phenotype, in a range of cancers including colon, gastric, prostate, breast, ovarian, uterine, and leukemia. ADAM10 inhibition, therefore, stands out as an important and new approach to deter the progression of advanced CRC. For targeting the ADAM10 substrate-binding region, which is located outside of the catalytic domain of the protease, we generated a human anti-ADAM10 monoclonal antibody named 1H5. Structural and functional characterization of 1H5 reveals that it binds to the substrate-binding cysteine-rich domain and recognizes an activated ADAM10 conformation present on tumor cells. The mAb inhibits Notch cleavage and proliferation of colon cancer cell lines in vitro and in mouse models. Consistent with its binding to activated ADAM10, the mAb augments the catalytic activity of ADAM10 towards small peptide substrates in vitro. Most importantly, in a mouse model of colon cancer, when administered in combination with the therapeutic agent Irinotecan, 1H5 causes highly effective tumor growth inhibition without any discernible toxicity effects. Our singular approach to target the ADAM10 substrate-binding region with therapeutic antibodies could overcome the shortcomings of previous intervention strategies of targeting the protease active site with small molecule inhibitors that exhibit musculoskeletal toxicity.
Collapse
Affiliation(s)
- Nayanendu Saha
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Du-San Baek
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Rachelle P Mendoza
- Department of Pathology, University of Chicago, Chicago, IL 60637, United States
| | - Dorothea Robev
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Yan Xu
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, United States
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - M Jason De La Cruz
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Elisa de Stanchina
- Antitumor Assessment Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Peter W Janes
- Tumour Targeting Program, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kai Xu
- Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, United States; Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, United States
| | - Dimiter S Dimitrov
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
4
|
Wang Y, Sun B, Zhang C, Xia R, Sun J, Gu T, Tian Z, Li J. Genetic heterogeneity and therapeutic target detection through microdissection in solid-type adenoid cystic carcinoma. Pathology 2022; 54:580-590. [PMID: 35337667 DOI: 10.1016/j.pathol.2021.12.292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 10/18/2022]
Abstract
Solid-type adenoid cystic carcinomas (ACCs) are highly aggressive and heterogeneous tumours. Because of their rarity, therapeutic strategies guided by genetic profiles based on next generation sequencing (NGS) have not been published for these tumours. Forty-nine solid-type ACCs including 43 tumours with a predominantly solid pattern, and six tumours comprising a roughly equal mixture of cribriform/tubular and solid histological forms were included in our study. The solid components from the 49 solid ACCs were enriched for mutations of genes in the NOTCH pathway (NOTCH1 61%, SPEN 24%) and chromatin remodelling pathway and the absence of myoepithelial cell differentiation. Cases with NOTCH1 mutations exhibited strong NICD expression, which was associated with poor overall and distant metastasis free survival. BRCA2 mutation and BCOR/BCORL1 mutations were observed in 20% and 18.4% of solid ACCs, respectively. In six of the solid ACCs, intratumour heterogeneity was delineated between the cribriform/tubular and solid components. NOTCH1 and FGFR2 mutations as well as NOTCH2 amplification were restricted to the solid component, indicating clonal selection within the same tumour. In two recurrent/metastatic solid ACCs, the subclones evolved in progression for local relapse and distant metastasis, although they manifested close genomic resemblance to primary tumours. Guided by the genetic profiles, the preclinical efficiency of the gamma-secretase inhibitor BMS-906024 was evaluated in patient derived xenograft models (PDXs) with activating NOTCH1 mutations and demonstrated robust antitumour effects. Our report revealed intratumour heterogeneity among solid-types within an ACC as well as the inter-tumour evolution of dominant clones among two primary and recurrent/metastatic tumours. In contrast to cribriform/tubular ACCs, solid-type ACCs should be approached with a distinct therapeutic strategy, particularly targeting NOTCH1. Microdissecting the highest grade component guided by histology is a highly recommended tumour sampling strategy and facilitates the detection of key molecular targets.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Bao Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chunye Zhang
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ronghui Xia
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jingjing Sun
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Gu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zhen Tian
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Jiang Li
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Centre for Stomatology, Shanghai, China; National Clinical Research Centre for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
5
|
Wang W, Okajima T, Takeuchi H. Significant Roles of Notch O-Glycosylation in Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061783. [PMID: 35335147 PMCID: PMC8950332 DOI: 10.3390/molecules27061783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| |
Collapse
|
6
|
Li M, Zhang Z, Joynauth J, Zhan X, Du L. Intrauterine growth restriction neonates present with increased angiogenesis through the Notch1 signaling pathway. Microvasc Res 2022; 140:104308. [PMID: 34995552 DOI: 10.1016/j.mvr.2021.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with increased perinatal mortality and morbidity, and plays an important role in the development of adult cardiovascular diseases. This study brings forward a hypothesis that Human umbilical vein endothelial cells (HUVECs) from IUGR newborns present dysfunctions and varying changes of signaling pathways as compared to the Control group. Similar pathways may also be present in pulmonary or systemic vasculatures. HUVECs were derived from newborns. There were three groups according to the different fetal origins: normal newborns (Control), IUGR from poor maternal nutrition (IUGR1), and pregnancy-induced hypertension (IUGR2). We found that IUGR-derived HUVECs showed a proliferative phenotype compared to those from normal subjects. Interestingly, two types IUGR could cause varying degrees of cellular dysfunction. Meanwhile, the Notch1 signaling pathway showed enhanced activation in the two IUGR-induced HUVECs, with subsequent activation of Akt or extracellular signal regulated protein kinases1/2 (ERK1/2). Pharmacological inhibition or gene silencing of Notch1 impeded the proliferative phenotype of IUGR-induced HUVECs and reduced the activation of ERK1/2 and AKT. In summary, elevated Notch1 levels might play a crucial role in IUGR-induced HUVECs disorders through the activation of ERK1/2 and AKT. These pathways could be potential therapeutic targets for prevention of the progression of IUGR associated diseases later in life.
Collapse
Affiliation(s)
- Min Li
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China
| | - Zhiqun Zhang
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Jyotsnav Joynauth
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China
| | - Xueqin Zhan
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China
| | - Lizhong Du
- Department of Neonatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, China.
| |
Collapse
|
7
|
Siddharth S, Parida S, Muniraj N, Hercules S, Lim D, Nagalingam A, Wang C, Gyorffy B, Daniel JM, Sharma D. Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression. eLife 2021; 10:70729. [PMID: 34889737 PMCID: PMC8664295 DOI: 10.7554/elife.70729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Mortality from triple negative breast cancer (TNBC) is significantly higher in African American (AA) women compared to White American (WA) women emphasizing ethnicity as a major risk factor; however, the molecular determinants that drive aggressive progression of AA-TNBC remain elusive. Here, we demonstrate for the first time that AA-TNBC cells are inherently aggressive, exhibiting elevated growth, migration, and cancer stem-like phenotype compared to WA-TNBC cells. Meta-analysis of RNA-sequencing data of multiple AA- and WA-TNBC cell lines shows enrichment of GLI1 and Notch1 pathways in AA-TNBC cells. Enrichment of GLI1 and Notch1 pathway genes was observed in AA-TNBC. In line with this observation, analysis of TCGA dataset reveals a positive correlation between GLI1 and Notch1 in AA-TNBC and a negative correlation in WA-TNBC. Increased nuclear localization and interaction between GLI1 and Notch1 is observed in AA-TNBC cells. Of importance, inhibition of GLI1 and Notch1 synergistically improves the efficacy of chemotherapy in AA-TNBC cells. Combined treatment of AA-TNBC-derived tumors with GANT61, DAPT, and doxorubicin/carboplatin results in significant tumor regression, and tumor-dissociated cells show mitigated migration, invasion, mammosphere formation, and CD44+/CD24- population. Indeed, secondary tumors derived from triple-therapy-treated AA-TNBC tumors show diminished stem-like phenotype. Finally, we show that TNBC tumors from AA women express significantly higher level of GLI1 and Notch1 expression in comparison to TNBC tumors from WA women. This work sheds light on the racial disparity in TNBC, implicates the GLI1 and Notch1 axis as its functional mediators, and proposes a triple-combination therapy that can prove beneficial for AA-TNBC.
Collapse
Affiliation(s)
- Sumit Siddharth
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Sheetal Parida
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Nethaji Muniraj
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Shawn Hercules
- Department of Biology, MacMaster University, Hamilton, Canada
| | - David Lim
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Arumugam Nagalingam
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Chenguang Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| | - Balazs Gyorffy
- MTA TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary.,Semmelweis University, Department of Bioinformatics and 2nd Dept. of Pediatrics, Budapest, Hungary
| | - Juliet M Daniel
- Department of Biology, MacMaster University, Hamilton, Canada
| | - Dipali Sharma
- Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States
| |
Collapse
|
8
|
Xu H, Wang L. The Role of Notch Signaling Pathway in Non-Alcoholic Fatty Liver Disease. Front Mol Biosci 2021; 8:792667. [PMID: 34901163 PMCID: PMC8652134 DOI: 10.3389/fmolb.2021.792667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, and progressive NAFLD can develop into non-alcoholic steatohepatitis (NASH), liver cirrhosis, or hepatocellular carcinoma (HCC). NAFLD is a kind of metabolic disordered disease, which is commonly associated with lipid metabolism, insulin resistance, oxidative stress, inflammation, and fibrogenesis, as well as autophagy. Growing studies have shown Notch signaling pathway plays a pivotal role in the regulation of NAFLD progression. Here, we review the profile of the Notch signaling pathway, new evidence of Notch signaling involvement in NAFLD, and describe the potential of Notch as a biomarker and therapeutic target for NAFLD treatment.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
9
|
Ahmad A, Tiwari RK, Saeed M, Ahmad I, Ansari IA. Glycyrrhizin Mediates Downregulation of Notch Pathway Resulting in Initiation of Apoptosis and Disruption in the Cell Cycle Progression in Cervical Cancer Cells. Nutr Cancer 2021; 74:622-639. [PMID: 33691557 DOI: 10.1080/01635581.2021.1895234] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing emphasis on exploring the antiproliferative potential of natural compounds has gathered momentum for the formulation of anticancer drugs. In the present study, the anticancer and apoptotic potential of glycyrrhizin (GLY) was studied on HPV- C33A cervical cancer (CCa) cells. Our results indicated that GLY exerted antiproliferative effects in the C33A cells by inducing significant cytotoxicity. Treatment with GLY substantially increases the apoptosis in a dose-dependent manner via disrupting the mitochondrial membrane potential. GLY induced apoptosis in C33A cells via activation of capsase-9 (intrinsic pathway) and caspase-8 (extrinsic pathway) along with the modulation of pro- and antiapoptotic protein expression. Moreover, GLY also exerted cell cycle arrest in C33A cells at G0/G1 phase which was associated with the decreased expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the increased expression of CDK inhibitor p21Cip1. Furthermore, GLY treated CCa cells exhibited significant downregulation of Notch signaling pathway which may be associated with increased apoptosis as well as cell cycle arrest in C33A CCa cells. Thus, GLY could be an appendage in the prevention and management of CCa.
Collapse
Affiliation(s)
- Afza Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Rohit Kumar Tiwari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia.,Research Centre for Advanced Materials Science, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
10
|
Parida S, Wu S, Siddharth S, Wang G, Muniraj N, Nagalingam A, Hum C, Mistriotis P, Hao H, Talbot CC, Konstantopoulos K, Gabrielson KL, Sears CL, Sharma D. A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-Catenin Axes. Cancer Discov 2021; 11:1138-1157. [PMID: 33408241 DOI: 10.1158/2159-8290.cd-20-0537] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/03/2020] [Accepted: 12/07/2020] [Indexed: 11/16/2022]
Abstract
The existence of distinct breast microbiota has been recently established, but their biological impact in breast cancer remains elusive. Focusing on the shift in microbial community composition in diseased breast compared with normal breast, we identified the presence of Bacteroides fragilis in cancerous breast. Mammary gland as well as gut colonization with enterotoxigenic Bacteroides fragilis (ETBF), which secretes B. fragilis toxin (BFT), rapidly induces epithelial hyperplasia in the mammary gland. Breast cancer cells exposed to BFT exhibit "BFT memory" from the initial exposure. Intriguingly, gut or breast duct colonization with ETBF strongly induces growth and metastatic progression of tumor cells implanted in mammary ducts, in contrast to nontoxigenic Bacteroides fragilis. This work sheds light on the oncogenic impact of a procarcinogenic colon bacterium ETBF on breast cancer progression, implicates the β-catenin and Notch1 axis as its functional mediators, and proposes the concept of "BFT memory" that can have far-reaching biological implications after initial exposure to ETBF. SIGNIFICANCE: B. fragilis is an inhabitant of breast tissue, and gut or mammary duct colonization with ETBF triggers epithelial hyperplasia and augments breast cancer growth and metastasis. Short-term exposure to BFT elicits a "BFT memory" with long-term implications, functionally mediated by the β-catenin and Notch1 pathways.This article is highlighted in the In This Issue feature, p. 995.
Collapse
Affiliation(s)
- Sheetal Parida
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sumit Siddharth
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guannan Wang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nethaji Muniraj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arumugam Nagalingam
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina Hum
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Panagiotis Mistriotis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Haiping Hao
- Johns Hopkins Transcriptomics and Deep Sequencing Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - C Conover Talbot
- Johns Hopkins Transcriptomics and Deep Sequencing Core, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Konstantinos Konstantopoulos
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen L Gabrielson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dipali Sharma
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
11
|
Bazzichetto C, Luchini C, Conciatori F, Vaccaro V, Di Cello I, Mattiolo P, Falcone I, Ferretti G, Scarpa A, Cognetti F, Milella M. Morphologic and Molecular Landscape of Pancreatic Cancer Variants as the Basis of New Therapeutic Strategies for Precision Oncology. Int J Mol Sci 2020; 21:E8841. [PMID: 33266496 PMCID: PMC7700259 DOI: 10.3390/ijms21228841] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
To date, pancreatic cancer is still one of the most lethal cancers in the world, mainly due to the lack of early diagnosis and personalized treatment strategies. In this context, the possibility and the opportunity of identifying genetic and molecular biomarkers are crucial to improve the feasibility of precision medicine. In 2019, the World Health Organization classified pancreatic ductal adenocarcinoma cancer (the most common pancreatic tumor type) into eight variants, according to specific histomorphological features. They are: colloid carcinoma, medullary carcinoma, adenosquamous carcinoma, undifferentiated carcinoma, including also rhabdoid carcinoma, undifferentiated carcinoma with osteoclast-like giant cells, hepatoid carcinoma, and signet-ring/poorly cohesive cells carcinoma. Interestingly, despite the very low incidence of these variants, innovative high throughput genomic/transcriptomic techniques allowed the investigation of both somatic and germline mutations in each specific variant, paving the way for their possible classification according also to specific alterations, along with the canonical mutations of pancreatic cancer (KRAS, TP53, CDKN2A, SMAD4). In this review, we aim to report the current evidence about genetic/molecular profiles of pancreatic cancer variants, highlighting their role in therapeutic and clinical impact.
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.L.); (I.D.C.); (P.M.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Vanja Vaccaro
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Ilaria Di Cello
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.L.); (I.D.C.); (P.M.)
| | - Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy; (C.L.); (I.D.C.); (P.M.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Aldo Scarpa
- Department ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Michele Milella
- Division of Oncology, University of Verona, 37126 Verona, Italy;
| |
Collapse
|
12
|
López-Nieva P, González-Sánchez L, Cobos-Fernández MÁ, Córdoba R, Santos J, Fernández-Piqueras J. More Insights on the Use of γ-Secretase Inhibitors in Cancer Treatment. Oncologist 2020; 26:e298-e305. [PMID: 33191568 PMCID: PMC7873333 DOI: 10.1002/onco.13595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
The NOTCH1 gene encodes a transmembrane receptor protein with activating mutations observed in many T‐cell acute lymphoblastic leukemias (T‐ALLs) and lymphomas, as well as in other tumor types, which has led to interest in inhibiting NOTCH1 signaling as a therapeutic target in cancer. Several classes of Notch inhibitors have been developed, including monoclonal antibodies against NOTCH receptors or ligands, decoys, blocking peptides, and γ‐secretase inhibitors (GSIs). GSIs block a critical proteolytic step in NOTCH activation and are the most widely studied. Current treatments with GSIs have not successfully passed clinical trials because of side effects that limit the maximum tolerable dose. Multiple γ‐secretase–cleavage substrates may be involved in carcinogenesis, indicating that there may be other targets for GSIs. Resistance mechanisms may include PTEN inactivation, mutations involving FBXW7, or constitutive MYC expression conferring independence from NOTCH1 inactivation. Recent studies have suggested that selective targeting γ‐secretase may offer an improved efficacy and toxicity profile over the effects caused by broad‐spectrum GSIs. Understanding the mechanism of GSI‐induced cell death and the ability to accurately identify patients based on the activity of the pathway will improve the response to GSI and support further investigation of such compounds for the rational design of anti‐NOTCH1 therapies for the treatment of T‐ALL. Implications for Practice γ‐secretase has been proposed as a therapeutic target in numerous human conditions, including cancer. A better understanding of the structure and function of the γ‐secretase inhibitor (GSI) would help to develop safe and effective γ‐secretase–based therapies. The ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. Toward these ends, this study focused on γ‐secretase inhibitors as a potential therapeutic target for the design of anti‐NOTCH1 therapies for the treatment of T‐cell acute lymphoblastic leukemias and lymphomas. Understanding the mechanism of γ‐secretase inhibitor (GSI)–induced cell death and the ability to accurately identify patients based on the activity of the pathway could improve the response to GSI therapy for the treatment of cancer. This article focuses on γ‐secretase inhibitors as a potential therapeutic target to treat T‐cell acute lymphoblastic leukemias and lymphomas.
Collapse
Affiliation(s)
- Pilar López-Nieva
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura González-Sánchez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - María Ángeles Cobos-Fernández
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain
| | | | - Javier Santos
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José Fernández-Piqueras
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.,IIS Fundación Jiménez Díaz, Madrid, Spain.,Consorcio de Investigación Biomédica de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
13
|
Chandra Boinpelly V, Verma RK, Srivastav S, Srivastava RK, Shankar S. α-Mangostin-encapsulated PLGA nanoparticles inhibit colorectal cancer growth by inhibiting Notch pathway. J Cell Mol Med 2020; 24:11343-11354. [PMID: 32830433 PMCID: PMC7576287 DOI: 10.1111/jcmm.15731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer‐related mortality. Recent studies have stated that Notch signalling is highly activated in cancer stem cells (CSCs) and plays an important role in the development and progression of CRC. Like normal colorectal epithelium, CRCs are organized hierarchically and include populations of CSCs. In order to enhance the biological activity of α‐mangostin, we formulated α‐mangostin‐encapsulated PLGA nanoparticles (Mang‐NPs) and examined the molecular mechanisms by which Mang‐NPs inhibit CRC cell viability, colony formation, epithelial‐mesenchymal transition (EMT) and induce apoptosis. Mang‐NPs inhibited cell viability, colony formation and induced apoptosis. Mang‐NPs also inhibited EMT by up‐regulating E‐cadherin and inhibiting N‐cadherin and transcription factors Snail, Slug and Zeb1. As dysregulated signalling through the Notch receptors promotes oncogenesis, we measured the effects of Mang‐NPs on Notch pathway. Mang‐NPs inhibited Notch signalling by suppressing the expression of Notch receptors (Notch1 and Notch2), their ligands (Jagged 1 and DLL4), γ‐secretase complex protein (Nicastrin) and downstream target (Hes‐1). Notch receptor signalling regulates cell fate determination in stem cell population. Finally, Mang‐NPs inhibited the self‐renewal capacity of CSCs, stem cell markers (CD133, CD44, Musashi and LGR5) and pluripotency maintaining factors (Oct4, Sox‐2, KLF‐4, c‐Myc and Nanog). Overall, our data suggest that Mang‐NPs can inhibit CRC growth, EMT and CSCs’ population by suppressing Notch pathway and its target. Therefore, Mang‐NPs can be used for the treatment and prevention of CRC.
Collapse
Affiliation(s)
| | | | - Sudesh Srivastav
- Department of Biostatistics and Data ScienceSchool of Public Health and Tropical MedicineTulane University School of MedicineNew OrleansLAUSA
| | - Rakesh K. Srivastava
- Kansas City VA Medical CenterKansas CityMOUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Sharmila Shankar
- Kansas City VA Medical CenterKansas CityMOUSA
- Stanley S. Scott Cancer CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of GeneticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- John W. Deming Department of MedicineTulane University School of MedicineNew OrleansLAUSA
| |
Collapse
|
14
|
Wang L, Qin W, Huo YJ, Li X, Shi Q, Rasko JEJ, Janin A, Zhao WL. Advances in targeted therapy for malignant lymphoma. Signal Transduct Target Ther 2020; 5:15. [PMID: 32296035 PMCID: PMC7058622 DOI: 10.1038/s41392-020-0113-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/24/2022] Open
Abstract
The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Wei Qin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Yu-Jia Huo
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - Qing Shi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Anne Janin
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
- U1165 Inserm/Université Paris 7, Hôpital Saint Louis, Paris, France
| | - Wei-Li Zhao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Rui Jin Er Road, Shanghai, China.
- Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China.
| |
Collapse
|
15
|
Lu HY, Chu HX, Tan YX, Qin XC, Liu MY, Li JD, Ren TS, Zhang YS, Zhao QC. Novel ADAM-17 inhibitor ZLDI-8 inhibits the metastasis of hepatocellular carcinoma by reversing epithelial-mesenchymal transition in vitro and in vivo. Life Sci 2020; 244:117343. [PMID: 31978449 DOI: 10.1016/j.lfs.2020.117343] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
AIMS Epithelial-mesenchymal transition (EMT) is one of the important regulators of metastasis in advanced hepatocellular carcinoma (HCC). Blocking the Notch signaling pathway and then reversing the EMT process is a hot spot in clinical tumor research. Here, we aimed to investigate the effect and underlying mechanisms of ADAM-17 (a key cleavage enzyme of Notch pathway) inhibitor ZLDI-8 we found before on the metastasis of hepatocellular carcinoma in vitro and in vivo. MAIN METHODS The cell viability of HCC cells was evaluated by MTT and colony formation assays. Migration and invasion were assessed respectively with wound healing and transwell assays. The expression and location of proteins were detected by western blot and immunofluorescence, respectively. The effects of ZLDI-8 on metastasis of liver cancer in vivo were investigated in a tail vein injection model. KEY FINDINGS In the present work, ZLDI-8 significantly inhibited proliferation, migration, invasion and EMT phenotype of highly aggressive MHCC97-H and LM3 cells. Moreover, ZLDI-8 could inhibit the migration and invasion of HepG2 and Bel7402 cells induced by TGF-β1. ZLDI-8 suppressed the protein expression of interstitial markers and increased that of epithelial markers. Meanwhile, ZLDI-8 decreased the expression of proteins in the Notch signaling pathway. Finally, ZLDI-8 blocks metastasis in the lung metastasis model in vivo. SIGNIFICANCE ZLDI-8 suppressed the metastasis of hepatocellular carcinoma, which was associated with reversing the EMT process and regulating Notch signaling pathway. The study laid the foundation for the discovery of drugs that reverse EMT to inhibit advanced HCC metastasis.
Collapse
Affiliation(s)
- Hong-Yuan Lu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China; Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hai-Xiao Chu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Yu-Xin Tan
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Xiao-Chun Qin
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Ming-Yue Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Jing-Da Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Tian-Shu Ren
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China
| | - Ying-Shi Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China; Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, China; Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
16
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
17
|
Taal K, Tuvikene J, Rullinkov G, Piirsoo M, Sepp M, Neuman T, Tamme R, Timmusk T. Neuralized family member NEURL1 is a ubiquitin ligase for the cGMP-specific phosphodiesterase 9A. Sci Rep 2019; 9:7104. [PMID: 31068605 PMCID: PMC6506465 DOI: 10.1038/s41598-019-43069-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/01/2019] [Indexed: 11/15/2022] Open
Abstract
Neuralized functions as a positive regulator of the Notch pathway by promoting ubiquitination of Notch ligands via its E3 ligase activity, resulting in their efficient endocytosis and signaling. Using a yeast two-hybrid screen, we have identified a cGMP-hydrolysing phosphodiesterase, PDE9A, as a novel interactor and substrate of Neuralized E3 ubiquitin protein ligase 1 (NEURL1). We confirmed this interaction with co-immunoprecipitation experiments and show that both Neuralized Homology Repeat domains of NEURL1 can interact with PDE9A. We also demonstrate that NEURL1 can promote polyubiquitination of PDE9A that leads to its proteasome-mediated degradation mainly via lysine residue K27 of ubiquitin. Our results suggest that NEURL1 acts as a novel regulator of protein levels of PDE9A.
Collapse
Affiliation(s)
- Kati Taal
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Grete Rullinkov
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Marko Piirsoo
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Mari Sepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.,Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | | | - Richard Tamme
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
18
|
Cheng Z, Yang Y, Duan F, Lou B, Zeng J, Huang Y, Luo Y, Lin X. Inhibition of Notch1 Signaling Alleviates Endotoxin-Induced Inflammation Through Modulating Retinal Microglia Polarization. Front Immunol 2019; 10:389. [PMID: 30930891 PMCID: PMC6423918 DOI: 10.3389/fimmu.2019.00389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microglial cells are resident immune cells and play an important role in various cerebral and retinal inflammatory diseases. Notch1 signaling is involved in the microglia polarization and the control of cerebral inflammatory reactions. However, its role in endotoxin-induced uveitis (EIU) remains unknown. This study aimed to investigate the role of Notch1 signaling on retinal microglia polarization and inflammation in the cultured retinal microglial cells and EIU rat model. We found that Notch1 signaling blockade with N-[N-(3, 5-difluorophenacetyl)-1-alany1-S-phenyglycine t-butyl ester (DAPT) shifted retinal microglia phenotype from pro-inflammatory M1 phenotype (COX2+ and iNOS+) to anti-inflammatory M2 phenotype (Arg-1+) and reduced the release of pro-inflammatory cytokines both in vivo and in vitro. Moreover, DAPT treatment contributed to prevent retinal ganglion cells from apoptosis, reduce the intraocular infiltrating cells, and attenuate the impairment of retinal function. Taken together, these results suggest that inhibition of Notch1 signaling could alleviate the inflammatory response in EIU rat mainly through regulating the polarization of retinal microglia. Therefore, Notch1 signaling might be a promising therapeutic target in the treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Zhixing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yanqiao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
19
|
Xu Y, Zhang Q, Miao C, Dongol S, Li Y, Jin C, Dong R, Li Y, Yang X, Kong B. CCNG1 (Cyclin G1) regulation by mutant-P53 via induction of Notch3 expression promotes high-grade serous ovarian cancer (HGSOC) tumorigenesis and progression. Cancer Med 2018; 8:351-362. [PMID: 30565428 PMCID: PMC6346265 DOI: 10.1002/cam4.1812] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
TP53 mutation is considerably common in advanced high-grade serous ovarian cancer (HGSOC) and significantly associated with a poor prognosis. In this study, we investigated the role of Cyclin G1 (CCNG1), a target gene of wild-type TP53 (P53wt), in HGSOC and the possible regulatory mechanism between TP53 mutant (P53mt) and CCNG1 in the progression of HGSOC. High expression level of CCNG1 was found in 61.3% of HGSOC tissues and only 18.2% in fimbriae of fallopian tubes. Additionally, overexpression of CCNG1 was significantly associated with a shorter overall survival (P < 0.0001) and progression-free survival (P < 0.0004) in HGSOC patients. In vitro, CCNG1 promoted both tumor cell motility by inducing epithelial-mesenchymal transition (EMT) and resistance to cisplatin (CDDP). In vivo, knockdown expression of CCNG1 inhibited cancer metastasis. Furthermore, P53mt increased the expression of CCNG1 by regulating Notch3 expression, and a positive correlation between CCNG1 and Notch3 protein expression was observed by Immunohistochemistry (IHC) (r = 0.39, P: 0.01528). In conclusion, the activation of P53mt-Notch3-CCNG1 pathway was responsible for tumor progression to advanced disease with correlation with worse prognosis in patients with HGSOC. These data suggest a possible molecular mechanism of disease and highlights CCNG1's potential role as a therapeutic target in HGSOC.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chunying Miao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chenjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Ruifeng Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| |
Collapse
|
20
|
Bartolome A, Zhu C, Sussel L, Pajvani UB. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest 2018; 129:268-280. [PMID: 30375986 DOI: 10.1172/jci98098] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/25/2018] [Indexed: 12/13/2022] Open
Abstract
Notch signaling regulates differentiation of the pancreatic endocrine lineage during embryogenesis, but the role of Notch in mature β cells is unclear. We found that islets derived from lean mice show modest β cell Notch activity, which increases in obesity and in response to high glucose. This response appeared maladaptive, as mice with β cell-specific-deficient Notch transcriptional activity showed improved glucose tolerance when subjected to high-fat diet feeding. Conversely, mice with β cell-specific Notch gain of function (β-NICD) had a progressive loss of β cell maturity, due to proteasomal degradation of MafA, leading to impaired glucose-stimulated insulin secretion and glucose intolerance with aging or obesity. Surprisingly, Notch-active β cells had increased proliferative capacity, leading to increased but dysfunctional β cell mass. These studies demonstrate a dynamic role for Notch in developed β cells for simultaneously regulating β cell function and proliferation.
Collapse
Affiliation(s)
- Alberto Bartolome
- Department of Medicine, Columbia University, New York, New York, USA
| | - Changyu Zhu
- Department of Medicine, Columbia University, New York, New York, USA
| | - Lori Sussel
- Department of Pediatrics, University of Colorado, Denver, Colorado, USA
| | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, New York, USA
| |
Collapse
|
21
|
Arruga F, Vaisitti T, Deaglio S. The NOTCH Pathway and Its Mutations in Mature B Cell Malignancies. Front Oncol 2018; 8:550. [PMID: 30534535 PMCID: PMC6275466 DOI: 10.3389/fonc.2018.00550] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The systematic application of next-generation sequencing to large cohorts of oncologic samples has opened a Pandora's box full of known and novel genetic lesions implicated in different steps of cancer development and progression. Narrowing down to B cell malignancies, many previously unrecognized genes emerged as recurrently mutated. The challenge now is to determine how the mutation in a given gene affects the biology of the disease, paving the way to functional genomics studies. Mutations in NOTCH family members are shared by several disorders of the B series, even if with variable frequencies and mutational patterns. In silico predictions, revealed that mutations occurring in NOTCH receptors, despite being qualitatively different, may have similar effects on protein processing, ultimately leading to enhanced pathway activation. The discovery of mutations occurring also in downstream players, either potentiating positive signals or compromising negative regulators, indicates that multiple mechanisms in neoplastic B cells concur to activate NOTCH pathway. These findings are supported by results obtained in chronic lymphocytic leukemia and splenic marginal zone B cell lymphoma where deregulation of NOTCH signaling has been functionally characterized. The emerging picture confirms that NOTCH signaling is finely tuned in cell- and microenvironment-dependent ways. In B cell malignancies, it contributes to the regulation of proliferation, survival and migration. However, deeper biological studies are needed to pinpoint the contribution of NOTCH in the hierarchy of events driving B cells transformation, keeping in mind its role in normal B cells development. Because of its relevance in leukemia and lymphoma biology, the NOTCH pathway might represent an appealing therapeutic target: the next few years will tell whether this potential will be fulfilled.
Collapse
Affiliation(s)
- Francesca Arruga
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Tiziana Vaisitti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| | - Silvia Deaglio
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Torino, Turin, Italy
| |
Collapse
|
22
|
Lu Z, Ren Y, Zhang M, Fan T, Wang Y, Zhao Q, Liu HM, Zhao W, Hou G. FLI-06 suppresses proliferation, induces apoptosis and cell cycle arrest by targeting LSD1 and Notch pathway in esophageal squamous cell carcinoma cells. Biomed Pharmacother 2018; 107:1370-1376. [PMID: 30257352 DOI: 10.1016/j.biopha.2018.08.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 12/15/2022] Open
Abstract
Aberrant activation of the Notch signaling plays an important role in progression of esophageal squamous cell carcinoma (ESCC) and may represent a potential therapeutic target for ESCC. FLI-06 is a novel Notch inhibitor, preventing the early secretion of Notch signaling. However, little information about the antitumor activity of FLI-06 has been reported so far. To evaluate the anti-tumor activity and possible molecular mechanism of FLI-06 to ESCC cells, the effects of FLI-06 on cell viability, apoptosis and cell cycle were evaluated by CCK-8 and flow cytometry assays, respectively, in ESCC cell lines ECa109 and EC9706, and the expressions of proteins in Notch signaling pathway and LSD1 were investigated after cells were treated with FLI-06 by Western blotting. The results showed that FLI-06 blocked proliferation, induced apoptosis and G1 phase arrest of ESCC cells in a dose-dependent manner. Mechanistically, we found FLI-06 could inhibit Notch signaling pathway by decreasing the expressions of Notch3, DTX1 and Hes1. Interestingly, we also found that the expression of LSD1 (histone lysine specific demethylase 1), which is dysregulated in multiple tumors, was also inhibited by FLI-06. In addition, inhibition of Notch pathway by γ-secretase inhibitor GSI-DAPT could also inhibit LSD1 expression. The current study demonstrated that FLI-06 exerts antitumor activity on ESCC by inhibiting both LSD1 and Notch pathway, which provides the theory support for the treatment of ESCC with FLI-06.
Collapse
Affiliation(s)
- Zhaoming Lu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of Cancer Chemoprevention, Henan Province, Zhengzhou 450001, China
| | - Yandan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengying Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianli Fan
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yang Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qi Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Wen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China
| | - Guiqin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Co-Innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
23
|
Lu Q, Lu M, Li D, Zhang S. MicroRNA‑34b promotes proliferation, migration and invasion of Ewing's sarcoma cells by downregulating Notch1. Mol Med Rep 2018; 18:3577-3588. [PMID: 30106161 PMCID: PMC6131584 DOI: 10.3892/mmr.2018.9365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/23/2018] [Indexed: 01/15/2023] Open
Abstract
Ewing's sarcoma is the second most frequent bone and soft tissue sarcoma, which is commonly driven by the Ewing's sarcoma breakpoint region 1-friend leukemia integration 1 transcription factor (EWS-FLI1) fusion gene. Since microRNAs (miRs) can act as either oncogenes or tumor suppressor genes in human cancer, and miR-34b has been reported to act as a tumor suppressor, the role of miR-34b in Ewing's sarcoma was investigated in the present study. The results demonstrated that miR-34b expression levels were higher in tumor samples compared within normal tissue samples. Notably, miR-34b expression levels were significantly higher in EWS-FLI1-positive samples compared within EWS-FLI1-negative samples. The effects of miR-34b expression on cell proliferation, migration and invasion were also examined. miR-34b expression was inhibited using small interfering (si)RNA targeting the fusion gene. Transfection of a miR-34b precursor sequence into siRNA-treated tumor cells resulted in a significant increase in cell growth, migration and invasion compared within the control group. In addition, the adhesive ability was increased in the Ewing's sarcoma cell line RD-ES, but not A673, following miR-34b upregulation. Conversely, downregulation of miR-34b expression led to a significant decrease in cell growth, migration and invasion. Notch has previously been reported to serve either oncogenic or tumor suppressive roles in human cancer. The results indicated that Notch1 and its target genes, Hes family BHLH transcription factor 1 and Hes-related family BHLH transcription factor with YRPW motif 1, were suppressed by miR-34b directly In conclusion, EWS-FLI1 may modulate miR-34b expression directly or indirectly, and miR-34b potentially has an oncogenic role in Ewing's sarcoma by downregulating Notch1.
Collapse
Affiliation(s)
- Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mei Lu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
24
|
Specific inhibitor of Notch‑3 enhances the sensitivity of NSCLC cells to gemcitabine. Oncol Rep 2018; 40:155-164. [PMID: 29781034 PMCID: PMC6059738 DOI: 10.3892/or.2018.6448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 05/03/2018] [Indexed: 12/18/2022] Open
Abstract
Notch-3 is a receptor of the Notch signaling pathway and plays an important role in regulating self-renewal, differentiation and apoptosis in cancer cells. Overexpression of Notch-3 has been proved to be associated with resistance to gemcitabine (GEM) and poor patient prognosis for various malignant tumors. In the present study, two non-small cell lung cancer (NSCLC) cell lines, H1299 and A549, were induced with GEM for two months and then were treated with various concentrations of a Notch signaling blocker, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), with the goal of reducing expression of Notch intracellular domain 3 (NICD3). Both cell lines were subsequently treated with either DAPT or DAPT combined with GEM and then viability, apoptosis, colony formation and cell count assays were performed. DAPT treatment effectively downregulated the expression of NICD3 in both cell lines. DAPT combined with GEM also significantly reduced the percentage of viable cells in both cell lines, while increasing the percentage of apoptotic cells, compared with GEM alone. In the clonogenicity assays, the combination of DAPT and GEM led to a decrease in clone numbers and significantly greater inhibition of the H1299 and A549 cells compared to treatment with DAPT or GEM alone. Meanwhile, levels of the apoptosis-related proteins, Bcl-2 and Bax, were found to be affected by the various treatments. Thus Notch-3 appears to be a promising target for gene therapy and DAPT is able to mediate a strong antitumor effect in NSCLC cells that overexpress Notch-3. Further studies of a combined treatment regimen with DAPT and GEM are warranted and may provide greater efficacy and safety in the treatment of NSCLC patients.
Collapse
|
25
|
Zilberg C, Lee MW, Yu B, Ashford B, Kraitsek S, Ranson M, Shannon K, Cowley M, Iyer NG, Palme CE, Ch'ng S, Low THH, O'Toole S, Clark JR, Gupta R. Analysis of clinically relevant somatic mutations in high-risk head and neck cutaneous squamous cell carcinoma. Mod Pathol 2018; 31:275-287. [PMID: 28984303 DOI: 10.1038/modpathol.2017.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/19/2022]
Abstract
Cutaneous squamous cell carcinoma is the second most prevalent malignancy, most frequently occurring in the head and neck (head and neck cutaneous squamous cell carcinoma). Treatment of locally advanced or metastatic disease is associated with functional morbidity and disfigurement. Underlying genetic mechanisms are poorly understood. Targeted sequencing of 48 clinically relevant genes was performed on DNA extracted from formalin-fixed and paraffin-embedded high-risk primary head and neck cutaneous squamous cell carcinomas that remained non-metastatic at minimum follow-up of 24 months. Associations of somatic mutations with clinicopathologic characteristics were evaluated and compared with those described in the literature for metastatic disease. Alterations in 44 cancer-associated genes were identified. TP53 was mutated in 100% of cases; APC, ATM, ERBB4, GNAQ, KIT, RB1 and ABL1 were altered in 60% of cases. FGFR2 mutations (40%) were exclusively seen in patients with perineural invasion. MLH1 mutations were exclusively seen in the two younger patients (<45 years). Lower incidences of NOTCH1 mutations were observed compared with that described in metastatic head and neck cutaneous squamous cell carcinoma in the literature. Somatic mutations susceptible to EGFR inhibitors, and other small molecular targeted therapeutics were seen in 60% of cases. This study provides insights into somatic mutations in non-metastatic, high-risk head and neck cutaneous squamous cell carcinoma and identifies potential therapeutic targets. Alterations in FGFR2 and NOTCH1 may have roles in local and distant disease progression.
Collapse
Affiliation(s)
- Catherine Zilberg
- Central Clinical School, The University of Sydney, Sydney, Australia
| | | | - Bing Yu
- Central Clinical School, The University of Sydney, Sydney, Australia.,Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Bruce Ashford
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, Australia.,School of Biological Sciences, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute (IHMRI), Wollongong, Australia
| | - Spiridoula Kraitsek
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, Australia
| | - Marie Ranson
- School of Biological Sciences, University of Wollongong, Wollongong, Australia.,Illawarra Health and Medical Research Institute (IHMRI), Wollongong, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Liverpool, Australia
| | - Kerwin Shannon
- The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Mark Cowley
- Kinghorn Cancer Centre and Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, Australia
| | - N Gopalakrishna Iyer
- Singhealth/Duke-NUS Head and Neck Center, National Cancer Center Singapore (NCCS), Singapore
| | - Carsten E Palme
- Central Clinical School, The University of Sydney, Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Sydney Ch'ng
- Central Clinical School, The University of Sydney, Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Tsu-Hui Hubert Low
- Central Clinical School, The University of Sydney, Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Sandra O'Toole
- Central Clinical School, The University of Sydney, Sydney, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jonathan R Clark
- Central Clinical School, The University of Sydney, Sydney, Australia.,The Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, Australia
| | - Ruta Gupta
- Central Clinical School, The University of Sydney, Sydney, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
26
|
Walter J, Kemmerling N, Wunderlich P, Glebov K. γ-Secretase in microglia - implications for neurodegeneration and neuroinflammation. J Neurochem 2017; 143:445-454. [PMID: 28940294 DOI: 10.1111/jnc.14224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an intramembrane cleaving protease involved in the generation of the Alzheimer's disease (AD)-associated amyloid β peptide (Aβ). γ-Secretase is ubiquitously expressed in different organs, and also in different cell types of the human brain. Besides the involvement in the proteolytic generation of Aβ from the amyloid precursor protein, γ-secretase cleaves many additional protein substrates, suggesting pleiotropic functions under physiological and pathophysiological conditions. Microglia exert important functions during brain development and homeostasis in adulthood, and accumulating evidence indicates that microglia and neuroinflammatory processes contribute to the pathogenesis of neurodegenerative diseases. Recent studies demonstrate functional implications of γ-secretase in microglia, suggesting that alterations in γ-secretase activity could contribute to AD pathogenesis by modulation of microglia and related neuroinflammatory processes during neurodegeneration. In this review, we discuss the involvement of γ-secretase in the regulation of microglial functions, and the potential relevance of these processes under physiological and pathophysiological conditions. This article is part of the series "Beyond Amyloid".
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
27
|
Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol 2017; 30:1338-1366. [PMID: 28664939 DOI: 10.1038/modpathol.2017.58] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll-like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
Collapse
|
28
|
Suckling RJ, Korona B, Whiteman P, Chillakuri C, Holt L, Handford PA, Lea SM. Structural and functional dissection of the interplay between lipid and Notch binding by human Notch ligands. EMBO J 2017; 36:2204-2215. [PMID: 28572448 PMCID: PMC5538765 DOI: 10.15252/embj.201796632] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/30/2022] Open
Abstract
Recent data have expanded our understanding of Notch signalling by identifying a C2 domain at the N-terminus of Notch ligands, which has both lipid- and receptor-binding properties. We present novel structures of human ligands Jagged2 and Delta-like4 and human Notch2, together with functional assays, which suggest that ligand-mediated coupling of membrane recognition and Notch binding is likely to be critical in establishing the optimal context for Notch signalling. Comparisons between the Jagged and Delta family show a huge diversity in the structures of the loops at the apex of the C2 domain implicated in membrane recognition and Jagged1 missense mutations, which affect these loops and are associated with extrahepatic biliary atresia, lead to a loss of membrane recognition, but do not alter Notch binding. Taken together, these data suggest that C2 domain binding to membranes is an important element in tuning ligand-dependent Notch signalling in different physiological contexts.
Collapse
Affiliation(s)
| | | | - Pat Whiteman
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | | - Laurie Holt
- Department of BiochemistryUniversity of OxfordOxfordUK
| | | | - Susan M Lea
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
29
|
Rodríguez-Vicente AE, Bikos V, Hernández-Sánchez M, Malcikova J, Hernández-Rivas JM, Pospisilova S. Next-generation sequencing in chronic lymphocytic leukemia: recent findings and new horizons. Oncotarget 2017; 8:71234-71248. [PMID: 29050359 PMCID: PMC5642634 DOI: 10.18632/oncotarget.19525] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
The rapid progress in next-generation sequencing technologies has significantly contributed to our knowledge of the genetic events associated with the development, progression and treatment resistance of chronic lymphocytic leukemia patients. Together with the discovery of new driver mutations, next-generation sequencing has revealed an immense degree of both intra- and inter-tumor heterogeneity and enabled us to describe marked clonal evolution. Advances in immunogenetics may be implemented to detect minimal residual disease more sensitively and to track clonal B cell populations, their dynamics and molecular characteristics. The interpretation of these aspects is indispensable to thoroughly examine the genetic background of chronic lymphocytic leukemia. We review and discuss the recent results provided by the different next-generation sequencing techniques used in studying the chronic lymphocytic leukemia genome, as well as future perspectives in the methodologies and applications.
Collapse
Affiliation(s)
- Ana E Rodríguez-Vicente
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom.,IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Vasilis Bikos
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - María Hernández-Sánchez
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jitka Malcikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Medical Faculty MU and University Hospital, Brno, Czech Republic
| | - Jesús-María Hernández-Rivas
- IBSAL, IBMCC, Centro de Investigación del Cáncer, Universidad de Salamanca, CSIC, Hospital Universitario de Salamanca, Salamanca, Spain.,Hematology Department, Hospital Universitario, Salamanca, Spain.,Department of Medicine, Universidad de Salamanca, Salamanca, Spain
| | - Sarka Pospisilova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine - Hematology and Oncology, Medical Faculty MU and University Hospital, Brno, Czech Republic
| |
Collapse
|
30
|
Tindemans I, Peeters MJW, Hendriks RW. Notch Signaling in T Helper Cell Subsets: Instructor or Unbiased Amplifier? Front Immunol 2017; 8:419. [PMID: 28458667 PMCID: PMC5394483 DOI: 10.3389/fimmu.2017.00419] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022] Open
Abstract
For protection against pathogens, it is essential that naïve CD4+ T cells differentiate into specific effector T helper (Th) cell subsets following activation by antigen presented by dendritic cells (DCs). Next to T cell receptor and cytokine signals, membrane-bound Notch ligands have an important role in orchestrating Th cell differentiation. Several studies provided evidence that DC activation is accompanied by surface expression of Notch ligands. Intriguingly, DCs that express the delta-like or Jagged Notch ligands gain the capacity to instruct Th1 or Th2 cell polarization, respectively. However, in contrast to this model it has also been hypothesized that Notch signaling acts as a general amplifier of Th cell responses rather than an instructive director of specific T cell fates. In this alternative model, Notch enhances proliferation, cytokine production, and anti-apoptotic signals or promotes co-stimulatory signals in T cells. An instructive role for Notch ligand expressing DCs in the induction of Th cell differentiation is further challenged by evidence for the involvement of Notch signaling in differentiation of Th9, Th17, regulatory T cells, and follicular Th cells. In this review, we will discuss the two opposing models, referred to as the “instructive” and the “unbiased amplifier” model. We highlight both the function of different Notch receptors on CD4+ T cells and the impact of Notch ligands on antigen-presenting cells.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | | | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
31
|
Ye Q, Qi F, Bian L, Zhang SH, Wang T, Jiang ZF. Circulating-free DNA Mutation Associated with Response of Targeted Therapy in Human Epidermal Growth Factor Receptor 2-positive Metastatic Breast Cancer. Chin Med J (Engl) 2017; 130:522-529. [PMID: 28229982 PMCID: PMC5339924 DOI: 10.4103/0366-6999.200542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The addition of anti-human epidermal growth factor receptor 2 (HER2)-targeted drugs, such as trastuzumab, lapatinib, and trastuzumab emtansine (T-DM1), to chemotherapy significantly improved prognosis of HER2-positive breast cancer patients. However, it was confused that metastatic patients vary in the response of targeted drug. Therefore, methods of accurately predicting drug response were really needed. To overcome the spatial and temporal limitations of biopsies, we aimed to develop a more sensitive and less invasive method of detecting mutations associated with anti-HER2 therapeutic response through circulating-free DNA (cfDNA). Methods: From March 6, 2014 to December 10, 2014, 24 plasma samples from 20 patients with HER2-positive metastatic breast cancer who received systemic therapy were eligible. We used a panel for detection of hot-spot mutations from 50 oncogenes and tumor suppressor genes, and then used targeted next-generation sequencing (NGS) to identify somatic mutation of these samples in those 50 genes. Samples taken before their first trastuzumab administration and subsequently proven with clinical benefit were grouped into sensitive group. The others were collected after disease progression of the trastuzumab-based therapy and were grouped into the resistant group. Results: A total of 486 single-nucleotide variants from 46 genes were detected. Of these 46 genes, phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), proto-oncogene c-Kit (KIT), and tumor protein p53 (TP53) were the most common mutated genes. Seven genes, including epidermal growth factor receptor (EGFR), G protein subunit alpha S (GNAS), HRas proto-oncogene (HRAS), mutL homolog 1 (MLH1), cadherin 1 (CDH1), neuroblastoma RAS viral oncogene homolog (NRAS), and NOTCH1, that only occurred mutations in the resistant group were associated with the resistance of targeted therapy. In addition, we detected a HER2 S855I mutation in two patients who had persistent benefits from anti-HER2 therapy. Conclusion: Targeted NGS of cfDNA has potential clinical utility to detect biomarkers from HER2-targeted therapies.
Collapse
Affiliation(s)
- Qing Ye
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Fan Qi
- Department of Respiration, Tianjin Haihe Hospital, Tianjin 300350, China
| | - Li Bian
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Shao-Hua Zhang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Tao Wang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Ze-Fei Jiang
- Department of Breast Cancer, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
32
|
Módos D, Bulusu KC, Fazekas D, Kubisch J, Brooks J, Marczell I, Szabó PM, Vellai T, Csermely P, Lenti K, Bender A, Korcsmáros T. Neighbours of cancer-related proteins have key influence on pathogenesis and could increase the drug target space for anticancer therapies. NPJ Syst Biol Appl 2017; 3:2. [PMID: 28603644 PMCID: PMC5460138 DOI: 10.1038/s41540-017-0003-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Even targeted chemotherapies against solid cancers show a moderate success increasing the need to novel targeting strategies. To address this problem, we designed a systems-level approach investigating the neighbourhood of mutated or differentially expressed cancer-related proteins in four major solid cancers (colon, breast, liver and lung). Using signalling and protein–protein interaction network resources integrated with mutational and expression datasets, we analysed the properties of the direct and indirect interactors (first and second neighbours) of cancer-related proteins, not found previously related to the given cancer type. We found that first neighbours have at least as high degree, betweenness centrality and clustering coefficient as cancer-related proteins themselves, indicating a previously unknown central network position. We identified a complementary strategy for mutated and differentially expressed proteins, where the affect of differentially expressed proteins having smaller network centrality is compensated with high centrality first neighbours. These first neighbours can be considered as key, so far hidden, components in cancer rewiring, with similar importance as mutated proteins. These observations strikingly suggest targeting first neighbours as a novel strategy for disrupting cancer-specific networks. Remarkably, our survey revealed 223 marketed drugs already targeting first neighbour proteins but applied mostly outside oncology, providing a potential list for drug repurposing against solid cancers. For the very central first neighbours, whose direct targeting would cause several side effects, we suggest a cancer-mimicking strategy by targeting their interactors (second neighbours of cancer-related proteins, having a central protein affecting position, similarly to the cancer-related proteins). Hence, we propose to include first neighbours to network medicine based approaches for (but not limited to) anticancer therapies. Cancer is considered a systems disease in which the interactors of cancer-related proteins have a key role, also as targets to fight cancer. New therapeutic approaches are needed to improve success rates and to identify suitable proteins as novel, alternative drug targets. We designed a computational approach, combining mutation and differential expression data with network information, to analyse the interactions of cancer-related proteins in colon, breast, liver and lung cancer. We found that first (direct) neighbours, not linked previously to the given cancer type, are similarly important as mutated proteins known to be involved in cancer development. We found 223 drugs already in the clinic targeting these proteins but not yet used against cancer as their oncology relevance was hidden so far. Our observations open up new strategies for target selection and anti-cancer drug discovery.
Collapse
Affiliation(s)
- Dezső Módos
- Department of Morphology and Physiology, Department of Health Science, Semmelweis University, Budapest, Hungary.,Department of Genetics, Eötvös Loránd University, Budapest, Hungary.,Earlham Institute, Norwich Research Park, Norwich, UK.,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - Krishna C Bulusu
- Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | - Dávid Fazekas
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary.,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| | - János Kubisch
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Johanne Brooks
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK.,Department of Medicine and Health, University of East Anglia, Norwich, UK.,Department of Gastroenterology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - István Marczell
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Péter M Szabó
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.,Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Katalin Lenti
- Department of Morphology and Physiology, Department of Health Science, Semmelweis University, Budapest, Hungary
| | - Andreas Bender
- Centre for Molecular Informatics, University of Cambridge, Cambridge, UK
| | - Tamás Korcsmáros
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary.,Earlham Institute, Norwich Research Park, Norwich, UK.,Gut Health and Food Safety Programme, Institute of Food Research, Norwich Research Park, Norwich, UK
| |
Collapse
|
33
|
A Novel Assay for the Identification of NOTCH1 PEST Domain Mutations in Chronic Lymphocytic Leukemia. BIOMED RESEARCH INTERNATIONAL 2017; 2016:4247908. [PMID: 28074183 PMCID: PMC5198094 DOI: 10.1155/2016/4247908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/17/2022]
Abstract
Aims. To develop a fast and robust DNA-based assay to detect insertions and deletions mutations in exon 34 that encodes the PEST domain of NOTCH1 in order to evaluate patients with chronic lymphocytic leukemia (CLL). Methods. We designed a multiplexed allele-specific polymerase chain reaction (PCR) combined with a fragment analysis assay to detect specifically the mutation c.7544_7545delCT and possibly other insertions and deletions in exon 34 of NOTCH1. Results. We evaluated our assay in peripheral blood samples from two cohorts of patients with CLL. The frequency of NOTCH1 mutations was 8.4% in the first cohort of 71 unselected CLL patients. We then evaluated a second cohort of 26 CLL patients with known cytogenetic abnormalities that were enriched for patients with trisomy 12. NOTCH1 mutations were detected in 43.7% of the patients with trisomy 12. Conclusions. We have developed a fast and robust assay combining allele-specific PCR and fragment analysis able to detect NOTCH1 PEST domain insertions and deletions.
Collapse
|
34
|
Jaagura M, Taal K, Koppel I, Tuvikene J, Timmusk T, Tamme R. Rat NEURL1 3'UTR is alternatively spliced and targets mRNA to dendrites. Neurosci Lett 2016; 635:71-76. [PMID: 27780737 DOI: 10.1016/j.neulet.2016.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/15/2016] [Accepted: 10/21/2016] [Indexed: 01/18/2023]
Abstract
Neuralized, an E3 ubiquitin ligase, interacts with and positively modulates the Notch pathway by promoting ubiquitination and subsequent endocytosis of its ligands. NEURL1 mRNA is dendritically localised in the dentate gyrus of an adult rat brain, implying that it may be locally translated, but its transport mechanisms remain unstudied. Here, we report the presence of a previously unknown, shorter splice-variant of rat NEURL1 3'UTR (1477bp in length), and identify it as a potential target of nonsense-mediated decay. We show that endogenous NEURL1 mRNAs with both longer and shorter 3'UTRs are enriched in the neurites of cultured rat primary hippocampal neurons. Both NEURL1 3'UTRs can mediate transport of reporter mRNAs into dendrites in primary hippocampal neurons. By analysing the dendritic trafficking capacity of reporter mRNAs linked to various regions of longer or shorter NEURL1 3'UTR, we localise the dendritic targeting element (DTE) of spliced version of NEURL1 3'UTR to its first half, corresponding to the nucleotides 1-148 and 416-914 of the full-length 3'UTR. In contrast, the dendritic targeting capacity of the full-length NEURL1 3'UTR is abolished by splitting its 3'UTR in two halves (nt 1-914 and nt 915-1744), suggesting that slightly different DTE might mediate dendritic transport of the two transcripts.
Collapse
Affiliation(s)
- Madis Jaagura
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Kati Taal
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Indrek Koppel
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Richard Tamme
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
35
|
Huang J, Chen Y, Li J, Zhang K, Chen J, Chen D, Feng B, Song H, Feng J, Wang R, Chen L. Notch-1 Confers Chemoresistance in Lung Adenocarcinoma to Taxanes through AP-1/microRNA-451 Mediated Regulation of MDR-1. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e375. [PMID: 27727250 PMCID: PMC5095685 DOI: 10.1038/mtna.2016.82] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/22/2016] [Indexed: 12/28/2022]
Abstract
We previously demonstrated that expression of Notch-1 is associated with poor prognosis in lung adenocarcinoma (LAD) patients. The aim of this study is to reveal whether Notch-1 was associated with Taxanes-resistant LAD and, the underlying mechanisms. We collected 39 patients of advanced LAD treated with Taxanes and found that positive Notch-1 expression is closely related to LAD lymph node metastasis, recurrence and poorer prognosis, and Notch-1 acts as an independent poor prognostic factor in LAD by multivariate analysis with Cox regression model. Then, by using the Docetaxel (DTX)-resistant LAD cell lines that we established previously, we found that Notch-1 contributes to resistance of LAD cells to DTX in vitro, and inhibition of Notch-1 sensitizes LAD to DTX in vivo. We further demonstrated that Notch-1 mediates chemoresistance response and strengthens proliferation capacity in LAD cells partially through negative regulation of miR-451 by transcription factor AP-1. Moreover, we found that MDR-1 is a direct target of miR-451 and influences chemoresistance of LAD cells. Taken together, our data revealed a novel Notch-1/AP-1/miR-451/MDR-1 signaling axis, and suggested a new therapeutic strategy of combining DTX with Notch inhibitors to treat DTX-resistant LAD.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Medical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Jiangsu Institute of Cancer Research, Jiangsu, China.,Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yitian Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Junyang Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Dongqin Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Bing Feng
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Haizhu Song
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Jiangsu Institute of Cancer Research, Jiangsu, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Campos-Parra AD, Padua-Bracho A, Pedroza-Torres A, Figueroa-González G, Fernández-Retana J, Millan-Catalan O, Peralta-Zaragoza O, Cantú de León D, Herrera LA, Pérez-Plasencia C. Comprehensive transcriptome analysis identifies pathways with therapeutic potential in locally advanced cervical cancer. Gynecol Oncol 2016; 143:406-413. [PMID: 27581326 DOI: 10.1016/j.ygyno.2016.08.327] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of the present study was to provide genomic and transcriptomic information that may improve clinical outcomes for locally advanced cervical cancer (LACC) patients by searching for therapeutic targets or potential biomarkers through the analysis of significantly altered signaling pathways in LACC. METHODS Microarray-based transcriptome profiling of 89 tumor samples from women with LACC was performed. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, significantly over-expressed genes in LACC were identified; these genes were validated by quantitative reverse transcription-polymerase chain reaction in an independent cohort, and the protein expression data were obtained from the Human Protein Atlas. RESULTS A transcriptome analysis revealed 7530 significantly over-expressed genes in LACC samples. By KEGG analysis, we found 93 dysregulated signaling pathways, including the JAK-STAT, NOTCH and mTOR-autophagy pathways, which were significantly upregulated. We confirmed the overexpression of the relevant genes of each pathway, such as NOTCH1, JAK2, STAM1, SOS1, ADAM17, PSEN1, NCSTN, RPS6, STK11/LKB1 and MLTS8/GBL in LACC compared with normal cervical tissue epithelia. CONCLUSIONS Through comprehensive genomic and transcriptomic analyses, this work provides information regarding signaling pathways with promising therapeutic targets, suggesting novel target therapies to be considered in future clinical trials for LACC patients.
Collapse
Affiliation(s)
- Alma Delia Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Alejandra Padua-Bracho
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Abraham Pedroza-Torres
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Gabriela Figueroa-González
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Jorge Fernández-Retana
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Oliver Millan-Catalan
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Oscar Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Luis A Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Av. San Fernando 22, Col. Sección XVI, C.P. 14080 Tlalpan, Ciudad de Mexico, Mexico; Unidad de Biomedicina, FES-IZTACALA, Universidad Nacional Autónoma de México (UNAM), Avenida De Los Barrios S/N, Los Reyes Iztacala, C.P. 54090 Tlanepantla, Ciudad de Mexico, Mexico.
| |
Collapse
|
37
|
Greene LM, Nathwani SM, Zisterer DM. Inhibition of γ-secretase activity synergistically enhances tumour necrosis factor-related apoptosis-inducing ligand induced apoptosis in T-cell acute lymphoblastic leukemia cells via upregulation of death receptor 5. Oncol Lett 2016; 12:2900-2905. [PMID: 27698877 DOI: 10.3892/ol.2016.5011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a rare and aggressive hematopoietic malignancy prone to relapse and drug resistance. Half of all T-ALL patients exhibit mutations in Notch1, which leads to aberrant Notch1 associated signaling cascades. Notch1 activation is mediated by the γ-secretase cleavage of the Notch1 receptor into the active intracellular domain of Notch1 (NCID). Clinical trials of γ-secretase small molecule inhibitors (GSIs) as single agents for the treatment of T-ALL have been unsuccessful. The present study demonstrated, using immunofluorescence and western blotting, that blocking γ-secretase activity in T-ALL cells with N-[(3,5-difluorophenyl) acetyl]-L-alanyl-2-phenyl] glycine-1,1-dimethylethyl ester (DAPT) downregulated NCID and upregulated the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5). Upregulation of DR5 restored the sensitivity of T-ALL cells to TRAIL. Combination index revealed that the combined treatment of DAPT and TRAIL synergistically enhanced apoptosis compared with treatment with either drug alone. TRAIL combined with the clinically evaluated γ-secretase inhibitor 3-[(1r, 4s)-4-(4-chlorophenylsulfonyl)-4-(2, 5-difluorophenyl) cyclohexyl] propanoic acid (MK-0752) also significantly enhanced TRAIL-induced cell death compared with either drug alone. DAPT/TRAIL apoptotic synergy was dependent on the extrinsic apoptotic pathway and was associated with a decrease in BH3 interacting-domain death agonist and x-linked inhibitor of apoptosis. In conclusion, γ-secretase inhibition represents a potential therapeutic strategy to overcome TRAIL resistance for the treatment of T-ALL.
Collapse
Affiliation(s)
- Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Seema M Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
38
|
Atapattu L, Saha N, Chheang C, Eissman MF, Xu K, Vail ME, Hii L, Llerena C, Liu Z, Horvay K, Abud HE, Kusebauch U, Moritz RL, Ding BS, Cao Z, Rafii S, Ernst M, Scott AM, Nikolov DB, Lackmann M, Janes PW. An activated form of ADAM10 is tumor selective and regulates cancer stem-like cells and tumor growth. J Exp Med 2016; 213:1741-57. [PMID: 27503072 PMCID: PMC4995075 DOI: 10.1084/jem.20151095] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
The transmembrane metalloprotease ADAM10 sheds a range of cell surface proteins, including ligands and receptors of the Notch, Eph, and erbB families, thereby activating signaling pathways critical for tumor initiation and maintenance. ADAM10 is thus a promising therapeutic target. Although widely expressed, its activity is normally tightly regulated. We now report prevalence of an active form of ADAM10 in tumors compared with normal tissues, in mouse models and humans, identified by our conformation-specific antibody mAb 8C7. Structure/function experiments indicate mAb 8C7 binds an active conformation dependent on disulfide isomerization and oxidative conditions, common in tumors. Moreover, this active ADAM10 form marks cancer stem-like cells with active Notch signaling, known to mediate chemoresistance. Importantly, specific targeting of active ADAM10 with 8C7 inhibits Notch activity and tumor growth in mouse models, particularly regrowth after chemotherapy. Our results indicate targeted inhibition of active ADAM10 as a potential therapy for ADAM10-dependent tumor development and drug resistance.
Collapse
Affiliation(s)
- Lakmali Atapattu
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Nayanendu Saha
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Chanly Chheang
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Moritz F Eissman
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Kai Xu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Mary E Vail
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Hii
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Carmen Llerena
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Zhanqi Liu
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Katja Horvay
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Bi-Sen Ding
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Zhongwei Cao
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Matthias Ernst
- Cancer and Inflammation Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Andrew M Scott
- Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Martin Lackmann
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Peter W Janes
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
39
|
Liu J, Shen JX, Wen XF, Guo YX, Zhang GJ. Targeting Notch degradation system provides promise for breast cancer therapeutics. Crit Rev Oncol Hematol 2016; 104:21-9. [PMID: 27263934 DOI: 10.1016/j.critrevonc.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Notch receptor signaling pathways play an important role, not only in normal breast development but also in breast cancer development and progression. As a group of ligand-induced proteins, different subtypes of mammalian Notch (Notch1-4) are sensitive to subtle changes in protein levels. Thus, a clear understanding of mechanisms of Notch protein turnover is essential for understanding normal and pathological mechanisms of Notch functions. It has been suggested that there is a close relationship between the carcinogenesis and the dysregulation of Notch degradation. However, this relationship remains mostly undefined in the context of breast cancer, as protein degradation is mediated by numerous signaling pathways as well as certain molecule modulators (activators/inhibitors). In this review, we summarize the published data regarding the regulation of Notch family member degradation in breast cancer, while emphasizing areas that are likely to provide new therapeutic modalities for mechanism-based anti-cancer drugs.
Collapse
Affiliation(s)
- Jing Liu
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Jia-Xin Shen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Xiao-Fen Wen
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Yu-Xian Guo
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| | - Guo-Jun Zhang
- Chang Jiang Scholar's Laboratory, Shantou University Medical College, Shantou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China; The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong Province, PR China.
| |
Collapse
|
40
|
Dabral S, Tian X, Kojonazarov B, Savai R, Ghofrani HA, Weissmann N, Florio M, Sun J, Jonigk D, Maegel L, Grimminger F, Seeger W, Savai Pullamsetti S, Schermuly RT. Notch1 signalling regulates endothelial proliferation and apoptosis in pulmonary arterial hypertension. Eur Respir J 2016; 48:1137-1149. [PMID: 27471204 DOI: 10.1183/13993003.00773-2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/06/2016] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterised by excessive pulmonary vascular remodelling involving deregulated proliferation of cells in intima, media as well as adventitia. Pulmonary arterial endothelial cell (PAEC) hyperproliferation and survival underlies the endothelial pathobiology of the disease.The indispensable involvement of Notch1 in the arterial endothelial phenotype and angiogenesis provides intriguing prospects for its involvement in the pathogenesis of PAH.We observed an increased expression of Notch1 in lungs of idiopathic PAH (IPAH) patients and hypoxia/SU5416 (SUHx) rats compared with healthy subjects. In vitro loss- and gain-of-function studies demonstrated that Notch1 increased proliferation of human PAECs (hPAECs) via downregulation of p21 and inhibited apoptosis via Bcl-2 and Survivin. Inhibition of Notch signalling using the γ-secretase inhibitor dibenzazepine dose-dependently decreased proliferation and migration of hPAECs. Notably, Notch1 expression and transcriptional activity were increased under hypoxia in hPAECs and knockdown of Notch1 inhibited hypoxia-induced proliferation of the cells. Furthermore, in vivo treatment with a γ-secretase inhibitor (AMG2008827) significantly reduced the right ventricular systolic pressure and right heart hypertrophy in SUHx rats.Here, we conclude that Notch1 plays a critical role in PAH and Notch inhibitors may be a promising therapeutic option for PAH.
Collapse
Affiliation(s)
- Swati Dabral
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Xia Tian
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Monica Florio
- Cardiometabolic Disorders, Amgen, Thousand Oaks, CA, USA
| | - Jan Sun
- Department of Oncology Research, Amgen, Thousand Oaks, CA, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Lavinia Maegel
- Institute of Pathology, Hannover Medical School, Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
41
|
Huguet F, Leguay T, Raffoux E, Rousselot P, Vey N, Pigneux A, Ifrah N, Dombret H. Clofarabine for the treatment of adult acute lymphoid leukemia: the Group for Research on Adult Acute Lymphoblastic Leukemia intergroup. Leuk Lymphoma 2016; 56:847-57. [PMID: 24996442 DOI: 10.3109/10428194.2014.887708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Clofarabine, a second-generation purine analog displaying potent inhibition of DNA synthesis and favorable pharmacologic profile, is approved for the treatment of acute lymphoblastic leukemia (ALL) after failure of at least two previous regimens in patients up to 21 years of age at diagnosis. Good neurologic tolerance, synergy with alkylating agents, management guidelines defined through pediatric ALL and adult acute myeloid leukemia, have also prompted its administration in more than 100 adults with Philadelphia chromosome-positive and negative B lineage and T lineage ALL, as single agent (40 mg/m(2)/ day for 5 days), or in combination. In a Group for Research on Adult Acute Lympho- blastic Leukemia (GRAALL) retrospective study of two regimens (clofarabine ± cyclophosphamide + / - etoposide (ENDEVOL) ± mitoxantrone ± asparaginase ± dexamethasone (VANDEVOL)), remission was achieved in 50% of 55 relapsed/refractory patients, and 17-35% could proceed to allogeneic stem cell. Clofarabine warrants further exploration in advanced ALL treatment and bridge-to-transplant.
Collapse
|
42
|
Sonic Hedgehog promotes proliferation of Notch-dependent monociliated choroid plexus tumour cells. Nat Cell Biol 2016; 18:418-30. [PMID: 26999738 PMCID: PMC4814324 DOI: 10.1038/ncb3327] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/09/2016] [Indexed: 12/17/2022]
Abstract
Aberrant Notch signaling has been linked to many cancers including choroid plexus (CP) tumours, a group of rare and predominantly pediatric brain neoplasms. We developed animal models of CP tumours by inducing sustained expression of Notch1 that recapitulate properties of human CP tumours with aberrant NOTCH signaling. Whole transcriptome and functional analyses showed that tumour cell proliferation is associated with Sonic Hedgehog (Shh) in the tumour microenvironment. Unlike CP epithelial cells, which have multiple primary cilia, tumour cells possess a solitary primary cilium as a result of Notch-mediated suppression of multiciliate diffferentiation. A Shh-driven signaling cascade in the primary cilium occurs in tumour cells but not in epithelial cells. Lineage studies show that CP tumours arise from mono-ciliated progenitors in the roof plate characterized by elevated Notch signaling. Abnormal SHH signaling and distinct ciliogenesis are detected in human CP tumours, suggesting SHH pathway and cilia differentiation as potential therapeutic avenues.
Collapse
|
43
|
Gil-García B, Baladrón V. The complex role of NOTCH receptors and their ligands in the development of hepatoblastoma, cholangiocarcinoma and hepatocellular carcinoma. Biol Cell 2015; 108:29-40. [DOI: 10.1111/boc.201500029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Borja Gil-García
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| | - Victoriano Baladrón
- Laboratory of Biochemistry and Molecular Biology; Department of Inorganic and Organic Chemistry and Biochemistry; Medical School/CRIB/Biomedicine Unit; University of Castilla-La Mancha (UCLM)/CSIC; 02008, Albacete Spain
| |
Collapse
|
44
|
Fang L, Zhu Q, Neuenschwander M, Specker E, Wulf-Goldenberg A, Weis WI, von Kries JP, Birchmeier W. A Small-Molecule Antagonist of the β-Catenin/TCF4 Interaction Blocks the Self-Renewal of Cancer Stem Cells and Suppresses Tumorigenesis. Cancer Res 2015; 76:891-901. [PMID: 26645562 DOI: 10.1158/0008-5472.can-15-1519] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/23/2015] [Indexed: 01/18/2023]
Abstract
Wnt/β-catenin signaling is a highly conserved pathway essential for embryogenesis and tissue homeostasis. However, deregulation of this pathway can initiate and promote human malignancies, especially of the colon and head and neck. Therefore, Wnt/β-catenin signaling represents an attractive target for cancer therapy. We performed high-throughput screening using AlphaScreen and ELISA techniques to identify small molecules that disrupt the critical interaction between β-catenin and the transcription factor TCF4 required for signal transduction. We found that compound LF3, a 4-thioureido-benzenesulfonamide derivative, robustly inhibited this interaction. Biochemical assays revealed clues that the core structure of LF3 was essential for inhibition. LF3 inhibited Wnt/β-catenin signals in cells with exogenous reporters and in colon cancer cells with endogenously high Wnt activity. LF3 also suppressed features of cancer cells related to Wnt signaling, including high cell motility, cell-cycle progression, and the overexpression of Wnt target genes. However, LF3 did not cause cell death or interfere with cadherin-mediated cell-cell adhesion. Remarkably, the self-renewal capacity of cancer stem cells was blocked by LF3 in concentration-dependent manners, as examined by sphere formation of colon and head and neck cancer stem cells under nonadherent conditions. Finally, LF3 reduced tumor growth and induced differentiation in a mouse xenograft model of colon cancer. Collectively, our results strongly suggest that LF3 is a specific inhibitor of canonical Wnt signaling with anticancer activity that warrants further development for preclinical and clinical studies as a novel cancer therapy.
Collapse
Affiliation(s)
- Liang Fang
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Qionghua Zhu
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | | | - Edgar Specker
- Screening Unit, Leibniz-Institut fuer Molekulare Pharmakologie, Berlin, Germany
| | | | - William I Weis
- Department of Structural Biology, Stanford University, Stanford, California
| | - Jens P von Kries
- Screening Unit, Leibniz-Institut fuer Molekulare Pharmakologie, Berlin, Germany
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| |
Collapse
|
45
|
Al-Rohil RN, Tarasen AJ, Carlson JA, Wang K, Johnson A, Yelensky R, Lipson D, Elvin JA, Vergilio JA, Ali SM, Suh J, Miller VA, Stephens PJ, Ganesan P, Janku F, Karp DD, Subbiah V, Mihm MC, Ross JS. Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer 2015; 122:249-57. [PMID: 26479420 DOI: 10.1002/cncr.29738] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/14/2015] [Accepted: 09/23/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND The authors hypothesized that comprehensive genomic profiling of advanced-stage cutaneous squamous cell carcinoma (cSCC) could identify genomic-derived drug targets of therapy for patients with conventional therapy-resistant disease. METHODS Comprehensive genomic profiling of 315 cancer genes was applied to 50 ng of DNA from 122 cSCC cases for the evaluation of all classes of genomic alterations (GAs). Clinically relevant genomic alterations (CRGAs) were defined as those identifying anticancer drugs on the market or in registered clinical trials. RESULTS There were 21 women (17%) and 101 men (83%) with a median age of 64.9 years (range, 21-87 years). Eleven cSCC cases (9%) were histologic AJCC grade 1, 69 (57%) were grade 2, and 42 (34%) were grade 3. The primary cSCC was used for sequencing in 77 cases (63%). Metastatic lesions were sequenced in 37% of cases. There were 1120 total GAs identified (average of 9.2 GAs per tumor), with 100% of cases harboring at least 1 alteration. Of the 122 cSCCs, 107 (88%) harbored at least 1 CRGA (2.5 CRGAs per cSCC) includingNOTCH1 (43%); patched 1 (PTCH1) (11%); BRCA2 (10%); HRAS (8%); ataxia telangiectasia mutated (ATM) (7%); erb-B2 receptor tyrosine kinase 4 (ERBB4) (7%); neurofibromatosis type 1 (NF1) (7%); erb-B2 receptor tyrosine kinase 2 (ERBB2) (6%); phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) (6%); cyclin D1 (CCND1) (6%); epidermal growth factor receptor (EGFR) (5%); and F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase (FBXW7) (5%). CONCLUSIONS In the current study, approximately 88% of patients with cSCC were found to harbor clinically relevant GAs that have the potential to guide the treatment of patients with advanced-stage tumors with targeted therapeutic agents. Cancer 2016;122:249-257. © 2015 American Cancer Society.
Collapse
Affiliation(s)
- Rami N Al-Rohil
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York.,Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ashley J Tarasen
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - J Andrew Carlson
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York
| | - Kai Wang
- Foundation Medicine Inc, Cambridge, Massachusetts
| | | | | | - Doron Lipson
- Foundation Medicine Inc, Cambridge, Massachusetts
| | | | | | - Siraj M Ali
- Foundation Medicine Inc, Cambridge, Massachusetts
| | - James Suh
- Foundation Medicine Inc, Cambridge, Massachusetts
| | | | | | - Prasanth Ganesan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Filip Janku
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel D Karp
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vivek Subbiah
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martin C Mihm
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey S Ross
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York.,Foundation Medicine Inc, Cambridge, Massachusetts
| |
Collapse
|
46
|
Liu H, Peng J, Bai Y, Guo L. [Up-regulation of DLL1 may promote the chemotherapeutic sensitivity in small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 16:282-8. [PMID: 23769341 PMCID: PMC6000567 DOI: 10.3779/j.issn.1009-3419.2013.06.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Delta-Like1 (DLL1) can combine with Notch receptor and activate the Notch signal pathway, then made a decision to cell differentiation and regulate the development of many tissues. It is proved that DLL1 was highly correlated with tumor'growth and differentiation, our previously study showed that DLL1 was associated with MDR in small cell lung cancer (SCLC). The aim of this study is to furtherly investigate the role of DLL1 gene in small cell lung multi-drug resistance. METHODS Firstly, the analysis of qRT-PCR and Western blot were used to study differential expression of DLL1 from mRNA and protein levels in both the H69 and H69AR cell lines. Then, we developed a stably DDL1 overexpressing H69AR-eGFP-DLL1 subline, by transfection with DLL1-pIRES2-EGFP. Moreover, the sensitivities of cells to chemotherapy drugs such as ADM, DDP, VP-16 were detected by CCK8 assay. The change of cell cycle and apoptosis rate were detected by flow cytometry. RESULTS The expression of DLL1 was significantly decreased in H69AR cells than that in the H69 cells. The sensitivities of H69AR cells to chemotherapy drugs were increased when up-regulated the expression of DLL1, enforced DLL1 expression increased cell apoptosis and the cell cycle arrest in G0/G1 and S phase in H69AR cells, the expression of downstream genes HES1 and HEY1 were increased after transfected with DLL1-pIRES2-EGFP. CONCLUSIONS Our results suggest that overexpression of DLL1 in small cell lung cancer may increase the sensitivity of cells to chemotherapeutic agents. DLL1 influence drug resistance of small cell lung cancer through activating transcription of downstream genes HES1 and HEY1.
Collapse
Affiliation(s)
- Huanxin Liu
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | | | | | | |
Collapse
|
47
|
Ronchi CL, Sbiera S, Altieri B, Steinhauer S, Wild V, Bekteshi M, Kroiss M, Fassnacht M, Allolio B. Notch1 pathway in adrenocortical carcinomas: correlations with clinical outcome. Endocr Relat Cancer 2015; 22:531-43. [PMID: 25979380 DOI: 10.1530/erc-15-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 01/16/2023]
Abstract
Previous SNP array analyses have revealed genomic alterations of the Notch pathway as being the most frequent abnormality in adrenocortical tumors (ACTs). The aim of the present study was to evaluate the expression of components of Notch signaling in ACTs and to correlate them with clinical outcome. The mRNA expression of JAG1, NOTCH1, and selected target genes of NOTCH1 (HES1, HES5, and HEY2) was evaluated in 80 fresh frozen samples (28 normal adrenal glands (NAGs), 24 adenomas (ACAs), and 28 carcinomas (ACCs)) by quantitative RT-PCR. Immunohistochemistry was performed in 221 tissues on paraffin slides (16 NAGs, 27 ACAs, and 178 ACCs) for JAG1, activated NOTCH1 (aNOTCH1), and HEY2. An independent ACC validation cohort (n=77) was then also investigated. HEY2 mRNA expression was higher in ACCs than it was in ACAs (P<0.05). The protein expression of all of the factors was high (H-score 2-3) in a larger proportion of ACCs as compared to ACAs and NAGs (JAG1 in 27, 15, and 10%; aNOTCH1 in 13, 8, and 0%; HEY2 in 66, 61, and 33% respectively, all P<0.001). High JAG1 expression was associated with earlier tumor stages and lower numbers of metastases in ACCs (both P=0.08) and favorably impacted overall and progression-free survival (PFS) (131 vs 30 months, hazard ratio (HR) 0.45, and 37 vs 9 months, HR 0.51, both P<0.005). This impact on overall survival (OS) was confirmed in the validation cohort. No such association was observed for aNOTCH1 or HEY2. In conclusion, different components of the Notch1 signaling pathway are overexpressed in ACCs, which suggests a role for the pathway in malignant transformation. However, JAG1 is overexpressed in a subgroup of ACCs with a better clinical outcome.
Collapse
Affiliation(s)
- Cristina L Ronchi
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Silviu Sbiera
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Barbara Altieri
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Sonja Steinhauer
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Vanessa Wild
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Michaela Bekteshi
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Matthias Kroiss
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Martin Fassnacht
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| | - Bruno Allolio
- Endocrine and Diabetes UnitDepartment of Internal Medicine I, University Hospital, University of Wuerzburg, Oberrduerrbacher-Strasse 6, 97080 Wuerzburg, GermanyCentral LaboratoryUniversity Hospital of Wuerzburg, Wuerzburg, GermanyInstitute of PathologyUniversity of Wuerzburg, Wuerzburg, GermanyComprehensive Cancer Center MainfrankenWuerzburg, Germany
| |
Collapse
|
48
|
Ramming A, Dees C, Distler JHW. From pathogenesis to therapy--Perspective on treatment strategies in fibrotic diseases. Pharmacol Res 2015; 100:93-100. [PMID: 26188266 DOI: 10.1016/j.phrs.2015.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023]
Abstract
Although fibrosis is becoming increasingly recognized as a major cause of morbidity and mortality in modern societies, there are very few treatment strategies available that specifically target the pathogenesis of fibrosis. Early in disease, inflammation and vascular changes and an increase in reactive oxygen species play pivotal roles. After inflammation has subsided, fibrosis and scarring are predominant in later phases. Fibrosis is driven by a complex, not-yet fully understood interplay between inflammatory cells on one hand and endothelium and fibroblasts on the other hand. The latter are regarded as the key players due to their extensive synthesis of extracellular matrix components which results in skin and organ fibrosis. Various cytokines orchestrate altered functions of the mentioned cell types. There are promising targets with therapeutic potential that have been extensively characterized in recent years connected with the hope to translate these preclinical results into clinical practice.
Collapse
Affiliation(s)
- Andreas Ramming
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Clara Dees
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
49
|
Loss of Presenilin 2 Function Is Associated with Defective LPS-Mediated Innate Immune Responsiveness. Mol Neurobiol 2015; 53:3428-3438. [PMID: 26081153 DOI: 10.1007/s12035-015-9285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
The importance of presenilin-dependent γ-secretase protease activities in the development, neurogenesis, and immune system is highlighted by the diversity of its substrates and characterization of Psen1- and Psen2-deficient transgenic animals. Functional differences between presenilin 1 (PS1) and presenilin 2 (PS2) are incompletely understood. In this study, we have identified a Psen2-specific function, not shared by Psen1 in Toll-like receptor signaling. We show that immortalized fibroblasts and bone marrow-derived macrophages from Psen2- but not Psen1-deficient mice display reduced responsiveness to lipopolysaccharide (LPS) with decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activity and diminished pro-inflammatory cytokine production. In whole animal in vivo responses, Psen2-deficient animals have abnormal systemic production of LPS-stimulated pro-inflammatory cytokines. Mechanistically, we demonstrate that Psen2 deficiency is paralleled by reduced transcription of tlr4 mRNA and loss of LPS-induced tlr4 mRNA transcription regulation. These observations illustrate a novel PS2-dependent means of modulating LPS-mediated immune responses and identify a functional distinction between PS1 and PS2 in innate immunity.
Collapse
|
50
|
Mohammadi-Yeganeh S, Mansouri A, Paryan M. Targeting Of miR9/NOTCH1 Interaction Reduces Metastatic Behavior in Triple-negative Breast Cancer. Chem Biol Drug Des 2015; 86:1185-91. [DOI: 10.1111/cbdd.12584] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Samira Mohammadi-Yeganeh
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; 6th Floor, 2th SBUMS Bldg., Next to Ayatollah Taleghani Hospital, Velenjak Tehran 198396-3113 Iran
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; 6th Floor, 2th SBUMS Bldg., Next to Ayatollah Taleghani Hospital, Velenjak Tehran 198396-3113 Iran
| | - Ardalan Mansouri
- Cellular and Molecular Biology Research Center; Shahid Beheshti University of Medical Sciences; 6th Floor, 2th SBUMS Bldg., Next to Ayatollah Taleghani Hospital, Velenjak Tehran 198396-3113 Iran
| | - Mahdi Paryan
- Department of Research and Development; Production and Research Complex; Pasteur Institute of Iran; km 25, Tehran-Karaj higjway Tehran 315991-5111 Iran
- Department of Molecular Biology and Genetic Engineering; Stem Cell Technology Research Center; No.9, East 2nd,, St., Farhang Blvd., Saadat Abad St. Tehran 199777-5555 Iran
| |
Collapse
|