1
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
2
|
Senko D, Efimova O, Osetrova M, Anikanov N, Boyko M, Sharaev M, Morozova A, Zorkina Y, Kislov M, Kostyuk G, Stekolshchikova E, Khaitovich P. White matter lipidome alterations in the schizophrenia brain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:123. [PMID: 39725684 DOI: 10.1038/s41537-024-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Collapse
Affiliation(s)
- Dmitry Senko
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | | | - Maria Boyko
- Skolkovo Institute of Science and Technology, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Anna Morozova
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Maksim Kislov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
3
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Karger G, Willker JE, Harders AR, Watermann P, Dringen R. ATP Restoration by ATP-Deprived Cultured Primary Astrocytes. Neurochem Res 2024; 50:13. [PMID: 39549173 PMCID: PMC11569012 DOI: 10.1007/s11064-024-04276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 11/18/2024]
Abstract
A high cellular concentration of adenosine triphosphate (ATP) is essential to fuel many important functions of brain astrocytes. Although cellular ATP depletion has frequently been reported for astrocytes, little is known on the metabolic pathways that contribute to ATP restoration by ATP-depleted astrocytes. Incubation of cultured primary rat astrocytes in glucose-free buffer for 60 min with the mitochondrial uncoupler BAM15 lowered the cellular ATP content by around 70%, the total amount of adenosine phosphates by around 50% and the adenylate energy charge (AEC) from 0.9 to 0.6. Testing for ATP restoration after removal of the uncoupler revealed that the presence of glucose as exclusive substrate allowed the cells to restore within 6 h around 80% of the initial ATP content, while coapplication of adenosine plus glucose enabled the cells to fully restore their initial ATP content within 60 min. A rapid but incomplete and transient ATP restoration was found for astrocytes that had been exposed to adenosine alone. This restoration was completely prevented by application of the pyruvate uptake inhibitor UK5099, the respiratory chain inhibitor antimycin A or by the continuous presence of BAM15. However, the presence of these compounds strongly accelerated the release of lactate from the cells, suggesting that the ribose moiety of adenosine can serve as substrate to fuel some ATP restoration via mitochondrial metabolism. Finally, the adenosine-accelerated ATP restoration in glucose-fed astrocytes was inhibited by the presence of the adenosine kinase inhibitor ABT-702. These data demonstrate that astrocytes require for a rapid and complete ATP restoration the presence of both glucose as substrate and adenosine as AMP precursor.
Collapse
Affiliation(s)
- Gabriele Karger
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Johanna Elisabeth Willker
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Patrick Watermann
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
| |
Collapse
|
5
|
Li YC, Fu JT, Tzeng SF. Exposure to lipid mixture induces intracellular lipid droplet formation and impairs mitochondrial functions in astrocytes. Neurochem Int 2024; 178:105792. [PMID: 38880230 DOI: 10.1016/j.neuint.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Astrocytes, the predominant glial cells in the central nervous system (CNS), play diverse roles including metabolic support for neurons, provision of neurotrophic factors, facilitation of synaptic neurotransmitter uptake, regulation of ion balance, and involvement in synaptic formation. The accumulation of lipids has been noted in various neurological conditions, yet the response of astrocytes to lipid-rich environments remains unclear. In this study, primary astrocytes isolated from the neonatal rat cortex were exposed to a lipid mixture (LM) comprising cholesterol and various fatty acids to explore their reaction. Our results showed that astrocyte viability remained unchanged following 24 h of 5% or 10% LM treatment. However, exposure to LM for 96 h resulted in reduced cell viability. In addition, LM treatment led to the accumulation of lipid droplets (LDs) in astrocytes, with LD size increasing over prolonged exposure periods. Following 24 h of LM treatment and then 48 h in fresh medium, a significant reduction in intracellular LD size was observed in cultures treated with 5% LM, while no change occurred in cultures exposed to 10% LM. Yet, exposure to 10% LM for 24 h significantly increased the expression of the cholesterol efflux regulatory protein/ATP-binding cassette transporter (ABCA1) gene, responsible for intracellular cholesterol efflux, resulting in reduced cholesterol content within astrocytes. Moreover, LM exposure led to decreased mitochondrial membrane potential (MMP) and increased levels of mature apoptosis-inducing factor (AIF). The smaller LDs were observed to co-localize with microtubule-associated protein 1A/1 B light chain 3 B (LC3) and lysosomal-associated membrane protein-1 (LAMP-1) in LM-treated astrocytes, coinciding with lysosomal acidification. These results indicate that the continuous buildup of LDs in astrocytes residing in lipid-enriched environments may be attributed to disruptions caused by LM in mitochondrial and lysosomal functions. Such disruptions could potentially impede the supportive role of astrocytes in neuronal function.
Collapse
Affiliation(s)
- Yi-Chen Li
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
6
|
Naveed M, Smedlund K, Zhou QG, Cai W, Hill JW. Astrocyte involvement in metabolic regulation and disease. Trends Endocrinol Metab 2024:S1043-2760(24)00220-0. [PMID: 39214743 DOI: 10.1016/j.tem.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Astrocytes, the predominant glial cell type in the mammalian brain, influence a wide variety of brain parameters including neuronal energy metabolism. Exciting recent studies have shown that obesity and diabetes can impact on astrocyte function. We review evidence that dysregulation of astrocytic lipid metabolism and glucose sensing contributes to dysregulation of whole-body energy balance, thermoregulation, and insulin sensitivity. In addition, we consider the overlooked topic of the sex-specific roles of astrocytes and their response to hormonal fluctuations that provide insights into sex differences in metabolic regulation. Finally, we provide an update on potential ways to manipulate astrocyte function, including genetic targeting, optogenetic and chemogenetic techniques, transplantation, and tailored exosome-based therapies, which may lead to improved treatments for metabolic disease.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Kathryn Smedlund
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Weikang Cai
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, School of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA; Center for Diabetes and Endocrine Research, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
7
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
8
|
Paryani F, Kwon JS, Ng CW, Jakubiak K, Madden N, Ofori K, Tang A, Lu H, Xia S, Li J, Mahajan A, Davidson SM, Basile AO, McHugh C, Vonsattel JP, Hickman R, Zody MC, Housman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-omic analysis of Huntington's disease reveals a compensatory astrocyte state. Nat Commun 2024; 15:6742. [PMID: 39112488 PMCID: PMC11306246 DOI: 10.1038/s41467-024-50626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
The mechanisms underlying the selective regional vulnerability to neurodegeneration in Huntington's disease (HD) have not been fully defined. To explore the role of astrocytes in this phenomenon, we used single-nucleus and bulk RNAseq, lipidomics, HTT gene CAG repeat-length measurements, and multiplexed immunofluorescence on HD and control post-mortem brains. We identified genes that correlated with CAG repeat length, which were enriched in astrocyte genes, and lipidomic signatures that implicated poly-unsaturated fatty acids in sensitizing neurons to cell death. Because astrocytes play essential roles in lipid metabolism, we explored the heterogeneity of astrocytic states in both protoplasmic and fibrous-like (CD44+) astrocytes. Significantly, one protoplasmic astrocyte state showed high levels of metallothioneins and was correlated with the selective vulnerability of distinct striatal neuronal populations. When modeled in vitro, this state improved the viability of HD-patient-derived spiny projection neurons. Our findings uncover key roles of astrocytic states in protecting against neurodegeneration in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Christopher W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - Kelly Jakubiak
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shengnan Xia
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Shawn M Davidson
- Northwestern Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - David E Housman
- Massachusetts Institute of Technology, Department of Biological Engineering, Cambridge, MA, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA
| | - Andrew S Yoo
- Department of Developmental Biology Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, New York, NY, USA.
| |
Collapse
|
9
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
10
|
Guerra-Cantera S, Frago LM, Espinoza-Chavarria Y, Collado-Pérez R, Jiménez-Hernaiz M, Torrecilla-Parra M, Barrios V, Belsham DD, Laursen LS, Oxvig C, Argente J, Chowen JA. Palmitic Acid Modulation of the Insulin-Like Growth Factor System in Hypothalamic Astrocytes and Neurons. Neuroendocrinology 2024; 114:958-974. [PMID: 39043147 DOI: 10.1159/000540442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Insulin-like growth factor (IGF)1 and IGF2 have neuroprotective effects, but less is known regarding how other members of the IGF system, including IGF binding proteins (IGFBPs) and the regulatory proteinase pappalysin-1 (PAPP-A) and its endogenous inhibitor stanniocalcin-2 (STC2) participate in this process. Here, we analyzed whether these members of the IGF system are modified in neurons and astrocytes in response to palmitic acid (PA), a fatty acid that induces cell stress when increased centrally. METHODS Primary hypothalamic astrocyte cultures from male and female PND2 rats and the pro-opiomelanocortin (POMC) neuronal cell line, mHypoA-POMC/GFP-2, were treated with PA, IGF1 or both. To analyze the role of STC2 in astrocytes, siRNA assays were employed. RESULTS In astrocytes of both sexes, PA rapidly increased cell stress factors followed by increased Pappa and Stc2 mRNA levels and then a decrease in Igf1, Igf2, and Igfbp2 expression and cell number. Exogenous IGF1 did not revert these effects. In mHypoA-POMC/GFP-2 neurons, PA reduced cell number and Pomc and Igf1 mRNA levels, and increased Igfbp2 and Stc2, again with no effect of exogenous IGF1. PA increased STC2 expression, but no effects of decreasing its levels by interference assays or exogenous STC2 treatment in astrocytes were found. CONCLUSIONS The response of the IGF system to PA was cell and sex specific, but no protective effects of the IGFs were found. However, the modifications in hypothalamic PAPP-A and STC2 indicate that further studies are required to determine their role in the response to fatty acids and possibly in metabolic control.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Yesenia Espinoza-Chavarria
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Torrecilla-Parra
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
11
|
Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, Pinals RL, Liu L, Truong N, Loon A, Staab C, Cerit O, Wen HL, Kellis M, Blanchard JW, Langer R, Tsai LH. Engineered 3D Immuno-Glial-Neurovascular Human miBrain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553453. [PMID: 37645757 PMCID: PMC10461996 DOI: 10.1101/2023.08.15.553453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Patient-specific, human-based cellular models integrating a biomimetic blood-brain barrier (BBB), immune, and myelinated neuron components are critically needed to enable accelerated, translationally relevant discovery of neurological disease mechanisms and interventions. By engineering a novel brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks inclusive of neuronal activity, functional connectivity, barrier function, myelin-producing oligodendrocyte engagement with neurons, multicellular interactions, and transcriptomic profiles. We implemented the model to study Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types, a feature we harnessed to identify that APOE4 in astrocytes promotes neuronal tau pathogenesis and dysregulation through crosstalk with microglia.
Collapse
|
12
|
Yang Y, Zhou D, Min S, Liu D, Zou M, Yu C, Chen L, Huang J, Hong R. Ciprofol ameliorates ECS-induced learning and memory impairment by modulating aerobic glycolysis in the hippocampus of depressive-like rats. Pharmacol Biochem Behav 2024; 239:173775. [PMID: 38657873 DOI: 10.1016/j.pbb.2024.173775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.
Collapse
Affiliation(s)
- You Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dongyu Zhou
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Di Liu
- Department of Anesthesiology, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Mou Zou
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chang Yu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lihao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jia Huang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ruiyang Hong
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Niebergall EB, Weekley D, Mazur A, Olszewski NA, DeSchepper KM, Radant N, Vijay AS, Risher WC. Abnormal Morphology and Synaptogenic Signaling in Astrocytes Following Prenatal Opioid Exposure. Cells 2024; 13:837. [PMID: 38786059 PMCID: PMC11119541 DOI: 10.3390/cells13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - W. Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (E.B.N.); (D.W.); (A.M.); (N.A.O.); (K.M.D.); (N.R.); (A.S.V.)
| |
Collapse
|
14
|
Harders AR, Spellerberg P, Dringen R. Exogenous Substrates Prevent the Decline in the Cellular ATP Content of Primary Rat Astrocytes During Glucose Deprivation. Neurochem Res 2024; 49:1188-1199. [PMID: 38341839 PMCID: PMC10991069 DOI: 10.1007/s11064-024-04104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Brain astrocytes are well known for their broad metabolic potential. After glucose deprivation, cultured primary astrocytes maintain a high cellular ATP content for many hours by mobilizing endogenous substrates, but within 24 h the specific cellular ATP content was lowered to around 30% of the initial ATP content. This experimental setting was used to test for the potential of various exogenous substrates to prevent a loss in cellular ATP in glucose deprived astrocytes. The presence of various extracellular monocarboxylates, purine nucleosides or fatty acids prevented the loss of ATP from glucose-deprived astrocytes. Of the 20 proteinogenic amino acids, only alanine, aspartate, glutamate, glutamine, lysine or proline maintained high ATP levels in starved astrocytes. Among these amino acids, proline was found to be the most potent one to prevent the ATP loss. The astrocytic consumption of proline as well as the ability of proline to maintain a high cellular ATP content was prevented in a concentration-dependent manner by the proline dehydrogenase inhibitor tetrahydro-2-furoic acid. Analysis of the concentration-dependencies obtained by considering the different carbon content of the applied substrates revealed that fatty acids and proline are more potent than glucose and monocarboxylates as exogenous substrates to prevent ATP depletion in glucose-deprived astrocytes. These data demonstrate that cultured astrocytes can utilise a wide range of extracellular substrates as fuels to support mitochondrial ATP regeneration and identify proline as potent exogenous substrate for the energy metabolism of starved astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Paul Spellerberg
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
15
|
Nam KH, Ordureau A. How does the neuronal proteostasis network react to cellular cues? Biochem Soc Trans 2024; 52:581-592. [PMID: 38488108 PMCID: PMC11613130 DOI: 10.1042/bst20230316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024]
Abstract
Even though neurons are post-mitotic cells, they still engage in protein synthesis to uphold their cellular content balance, including for organelles, such as the endoplasmic reticulum or mitochondria. Additionally, they expend significant energy on tasks like neurotransmitter production and maintaining redox homeostasis. This cellular homeostasis is upheld through a delicate interplay between mRNA transcription-translation and protein degradative pathways, such as autophagy and proteasome degradation. When faced with cues such as nutrient stress, neurons must adapt by altering their proteome to survive. However, in many neurodegenerative disorders, such as Parkinson's disease, the pathway and processes for coping with cellular stress are impaired. This review explores neuronal proteome adaptation in response to cellular stress, such as nutrient stress, with a focus on proteins associated with autophagy, stress response pathways, and neurotransmitters.
Collapse
Affiliation(s)
- Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, U.S.A
| |
Collapse
|
16
|
Li J, Jiang W, Cai Y, Ning Z, Zhou Y, Wang C, Chung SK, Huang Y, Sun J, Deng M, Zhou L, Cheng X. Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism. Neural Regen Res 2024; 19:650-656. [PMID: 37721297 PMCID: PMC10581554 DOI: 10.4103/1673-5374.380906] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/03/2023] [Accepted: 05/31/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular etiology is the second most prevalent cause of cognitive impairment globally. Endothelin-1, which is produced and secreted by endothelial cells and astrocytes, is implicated in the pathogenesis of stroke. However, the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood. Here, using mice in which astrocytic endothelin-1 was overexpressed, we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia (1 hour of ischemia; 7 days, 28 days, or 3 months of reperfusion). We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion. Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6, which were differentially expressed in the brain, were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke. Moreover, the levels of the enriched differentially expressed proteins were closely related to lipid metabolism, as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis. Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine, sphingomyelin, and phosphatidic acid. Overall, this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
Collapse
Affiliation(s)
- Jie Li
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Wen Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuefang Cai
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Zhenqiu Ning
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yingying Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Chengyi Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sookja Ki Chung
- Faculty of Medicine, Macau University of Science and Technology, Macao Special Administration Region, China
| | - Yan Huang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Jingbo Sun
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| | - Minzhen Deng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Xiao Cheng
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, Guangdong Province, China
| |
Collapse
|
17
|
Bukhari H, Nithianandam V, Battaglia RA, Cicalo A, Sarkar S, Comjean A, Hu Y, Leventhal MJ, Dong X, Feany MB. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578624. [PMID: 38352559 PMCID: PMC10862891 DOI: 10.1101/2024.02.02.578624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Rachel A. Battaglia
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Anthony Cicalo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Matthew J. Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA 02139
| | - Xianjun Dong
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
18
|
Akefe IO, Saber SH, Matthews B, Venkatesh BG, Gormal RS, Blackmore DG, Alexander S, Sieriecki E, Gambin Y, Bertran-Gonzalez J, Vitale N, Humeau Y, Gaudin A, Ellis SA, Michaels AA, Xue M, Cravatt B, Joensuu M, Wallis TP, Meunier FA. The DDHD2-STXBP1 interaction mediates long-term memory via generation of saturated free fatty acids. EMBO J 2024; 43:533-567. [PMID: 38316990 PMCID: PMC10897203 DOI: 10.1038/s44318-024-00030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024] Open
Abstract
The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Isaac O Akefe
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Academy for Medical Education, Medical School, The University of Queensland, 288 Herston Road, 4006, Brisbane, QLD, Australia
| | - Saber H Saber
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia
| | - Benjamin Matthews
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bharat G Venkatesh
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Emma Sieriecki
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | - Yann Gambin
- School of Medical Science, University of New South Wales, Randwick, NSW, 2052, Australia
- EMBL Australia, Single Molecule Node, University of New South Wales, Sydney, 2052, Australia
| | | | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 CNRS - Université de Strasbourg, Strasbourg, France
| | - Yann Humeau
- Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Université de Bordeaux, Bordeaux, France
| | - Arnaud Gaudin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Sevannah A Ellis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Alysee A Michaels
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Benjamin Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD, 4072, Australia.
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
19
|
Karger G, Berger J, Dringen R. Modulation of Cellular Levels of Adenosine Phosphates and Creatine Phosphate in Cultured Primary Astrocytes. Neurochem Res 2024; 49:402-414. [PMID: 37855866 PMCID: PMC10787699 DOI: 10.1007/s11064-023-04039-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023]
Abstract
Adenosine triphosphate (ATP) is the main energy currency of all cells, while creatine phosphate (CrP) is considered as a buffer of high energy-bond phosphate that facilitates rapid regeneration of ATP from adenosine diphosphate (ADP). Astrocyte-rich primary cultures contain ATP, ADP and adenosine monophosphate (AMP) in average specific contents of 36.0 ± 6.4 nmol/mg, 2.9 ± 2.1 nmol/mg and 1.7 ± 2.1 nmol/mg, respectively, which establish an adenylate energy charge of 0.92 ± 0.04. The average specific cellular CrP level was found to be 25.9 ± 10.8 nmol/mg and the CrP/ATP ratio was 0.74 ± 0.28. The specific cellular CrP content, but not the ATP content, declined with the age of the culture. Absence of fetal calf serum for 24 h caused a partial loss in the cellular contents of both CrP and ATP, while application of creatine for 24 h doubled the cellular CrP content and the CrP/ATP ratio, but did not affect ATP levels. In glucose-deprived astrocytes, the high cellular ATP and CrP contents were rapidly depleted within minutes after application of the glycolysis inhibitor 2-deoxyglucose and the respiratory chain inhibitor antimycin A. For those conditions, the decline in CrP levels always preceded that of ATP contents. In contrast, incubation of glucose-fed astrocytes for up to 30 min with antimycin A had little effect on the high cellular ATP content, while the CrP level was significantly lowered. These data demonstrate the importance of cellular CrP for maintaining a high cellular ATP content in astrocytes during episodes of impaired ATP regeneration.
Collapse
Affiliation(s)
- Gabriele Karger
- Faculty 2 (Biology/Chemistry), Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Julius Berger
- Faculty 2 (Biology/Chemistry), Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Faculty 2 (Biology/Chemistry), Centre for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
20
|
Pio T, Hill EJ, Kebede N, Andersen J, Sloan SA. Neuron-Astrocyte Interactions: A Human Perspective. ADVANCES IN NEUROBIOLOGY 2024; 39:69-93. [PMID: 39190072 DOI: 10.1007/978-3-031-64839-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This chapter explores the intricate interactions between neurons and astrocytes within the nervous system with a particular emphasis on studies conducted in human tissue or with human cells. We specifically explore how neuron-astrocyte interactions relate to processes of cellular development, morphology, migration, synapse formation, and metabolism. These findings enrich our understanding of basic neurobiology and how disruptions in these processes are relevant to human diseases.The study of human neuron-astrocyte interactions is made possible because of transformative in vitro advancements that have facilitated the generation and sustained culture of human neural cells. In addition, the rise of techniques like sequencing at single-cell resolution has enabled the exploration of numerous human cell atlases and their comparisons to other animal model systems. Thus, the innovations outlined in this chapter illuminate the convergence and divergence of neuron-astrocyte interactions across species. As technologies progress, continually more sophisticated in vitro systems will increasingly reflect in vivo environments and deepen our command of neuron-glial interactions in human biology.
Collapse
Affiliation(s)
- Taylor Pio
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Nardos Kebede
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jimena Andersen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
21
|
Gil-Jaramillo N, Aristizábal-Pachón AF, Luque Aleman MA, González Gómez V, Escobar Hurtado HD, Girón Pinto LC, Jaime Camacho JS, Rojas-Cruz AF, González-Giraldo Y, Pinzón A, González J. Competing endogenous RNAs in human astrocytes: crosstalk and interacting networks in response to lipotoxicity. Front Neurosci 2023; 17:1195840. [PMID: 38027526 PMCID: PMC10679742 DOI: 10.3389/fnins.2023.1195840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-β signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.
Collapse
Affiliation(s)
- Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - María Alejandra Luque Aleman
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina González Gómez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Hans Deyvy Escobar Hurtado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Camila Girón Pinto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Sebastian Jaime Camacho
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alexis Felipe Rojas-Cruz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
22
|
Alrouji M, Al-Kuraishy HM, Al-Mahammadawy AKAA, Al-Gareeb AI, Saad HM, Batiha GES. The potential role of cholesterol in Parkinson's disease neuropathology: perpetrator or victim. Neurol Sci 2023; 44:3781-3794. [PMID: 37428278 DOI: 10.1007/s10072-023-06926-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by deposition of α-synuclein and aggregation of Lewy bodies. Cholesterol is involved with PD neuropathology in bidirectional ways that could be protective or harmful. Thus, the objective of the present review was to verify the potential role of cholesterol in PD neuropathology. Deregulation of ion channels and receptors induced by cholesterol alteration suggests a possible mechanism for the neuroprotective effects of cholesterol against PD development. However, high serum cholesterol level increases PD risk indirectly by 27-hydroxycholesterol which induces oxidative stress, inflammation, and apoptosis. Besides, hypercholesterolemia triggers the accumulation of cholesterol in macrophages and immune cells leading to the release of pro-inflammatory cytokines with progression of neuroinflammation subsequently. Additionally, cholesterol increases aggregation of α-synuclein and induces degeneration of dopaminergic neurons (DN) in the substantia nigra (SN). Hypercholesterolemia may lead to cellular Ca2+ overload causing synaptic and the development of neurodegeneration. In conclusion, cholesterol has bidirectional effects on PD neuropathology and might be protective or harmful.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | | | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyah University, M.B.Ch.B, FRCP; Box, Baghdad, 14132, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al Beheira, 22511, Egypt.
| |
Collapse
|
23
|
Qin S, Zeng H, Wu Q, Li Q, Zeeshan M, Ye L, Jiang Y, Zhang R, Jiang X, Li M, Zhang R, Chen W, Chou WC, Dong GH, Li DC, Zeng XW. An integrative analysis of lipidomics and transcriptomics in various mouse brain regions in response to real-ambient PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165112. [PMID: 37364843 DOI: 10.1016/j.scitotenv.2023.165112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Exposure to Fine particulate matter (PM2.5) has been associated with various neurological disorders. However, the underlying mechanisms of PM2.5-induced adverse effects on the brain are still not fully defined. Multi-omics analyses could offer novel insights into the mechanisms of PM2.5-induced brain dysfunction. In this study, a real-ambient PM2.5 exposure system was applied to male C57BL/6 mice for 16 weeks, and lipidomics and transcriptomics analysis were performed in four brain regions. The findings revealed that PM2.5 exposure led to 548, 283, 304, and 174 differentially expressed genes (DEGs), as well as 184, 89, 228, and 49 distinctive lipids in the hippocampus, striatum, cerebellum, and olfactory bulb, respectively. Additionally, in most brain regions, PM2.5-induced DEGs were mainly involved in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, and calcium signaling pathway, while PM2.5-altered lipidomic profile were primarily enriched in retrograde endocannabinoid signaling and biosynthesis of unsaturated fatty acids. Importantly, mRNA-lipid correlation networks revealed that PM2.5-altered lipids and DEGs were obviously enriched in pathways involving in bile acid biosynthesis, De novo fatty acid biosynthesis, and saturated fatty acids beta-oxidation in brain regions. Furthermore, multi-omics analyses revealed that the hippocampus was the most sensitive part to PM2.5 exposure. Specifically, dysregulation of Pla2g1b, Pla2g, Alox12, Alox15, and Gpx4 induced by PM2.5 were closely correlated to the disruption of alpha-linolenic acid, arachidonic acid and linoleic acid metabolism in the hippocampus. In summary, our findings highlight differential lipidomic and transcriptional signatures of various brain regions by real-ambient PM2.5 exposure, which will advance our understanding of potential mechanisms of PM2.5-induecd neurotoxicity.
Collapse
Affiliation(s)
- Shuangjian Qin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingqing Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States
| | - Guang-Hui Dong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dao-Chuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao-Wen Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
24
|
Paryani F, Kwon JS, Ng CW, Madden N, Ofori K, Tang A, Lu H, Li J, Mahajan A, Davidson SM, Basile A, McHugh C, Vonsattel JP, Hickman R, Zody M, Houseman DE, Goldman JE, Yoo AS, Menon V, Al-Dalahmah O. Multi-OMIC analysis of Huntington disease reveals a neuroprotective astrocyte state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556867. [PMID: 37745577 PMCID: PMC10515780 DOI: 10.1101/2023.09.08.556867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Huntington disease (HD) is an incurable neurodegenerative disease characterized by neuronal loss and astrogliosis. One hallmark of HD is the selective neuronal vulnerability of striatal medium spiny neurons. To date, the underlying mechanisms of this selective vulnerability have not been fully defined. Here, we employed a multi-omic approach including single nucleus RNAseq (snRNAseq), bulk RNAseq, lipidomics, HTT gene CAG repeat length measurements, and multiplexed immunofluorescence on post-mortem brain tissue from multiple brain regions of HD and control donors. We defined a signature of genes that is driven by CAG repeat length and found it enriched in astrocytic and microglial genes. Moreover, weighted gene correlation network analysis showed loss of connectivity of astrocytic and microglial modules in HD and identified modules that correlated with CAG-repeat length which further implicated inflammatory pathways and metabolism. We performed lipidomic analysis of HD and control brains and identified several lipid species that correlate with HD grade, including ceramides and very long chain fatty acids. Integration of lipidomics and bulk transcriptomics identified a consensus gene signature that correlates with HD grade and HD lipidomic abnormalities and implicated the unfolded protein response pathway. Because astrocytes are critical for brain lipid metabolism and play important roles in regulating inflammation, we analyzed our snRNAseq dataset with an emphasis on astrocyte pathology. We found two main astrocyte types that spanned multiple brain regions; these types correspond to protoplasmic astrocytes, and fibrous-like - CD44-positive, astrocytes. HD pathology was differentially associated with these cell types in a region-specific manner. One protoplasmic astrocyte cluster showed high expression of metallothionein genes, the depletion of this cluster positively correlated with the depletion of vulnerable medium spiny neurons in the caudate nucleus. We confirmed that metallothioneins were increased in cingulate HD astrocytes but were unchanged or even decreased in caudate astrocytes. We combined existing genome-wide association studies (GWAS) with a GWA study conducted on HD patients from the original Venezuelan cohort and identified a single-nucleotide polymorphism in the metallothionein gene locus associated with delayed age of onset. Functional studies found that metallothionein overexpressing astrocytes are better able to buffer glutamate and were neuroprotective of patient-derived directly reprogrammed HD MSNs as well as against rotenone-induced neuronal death in vitro. Finally, we found that metallothionein-overexpressing astrocytes increased the phagocytic activity of microglia in vitro and increased the expression of genes involved in fatty acid binding. Together, we identified an astrocytic phenotype that is regionally-enriched in less vulnerable brain regions that can be leveraged to protect neurons in HD.
Collapse
Affiliation(s)
- Fahad Paryani
- Department of Neurology, Columbia University Irving Medical Center
| | - Ji-Sun Kwon
- Washington University School of Medicine in St. Louis
| | - Chris W Ng
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - Nacoya Madden
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Kenneth Ofori
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Alice Tang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Hong Lu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Juncheng Li
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Shawn M. Davidson
- Princeton University, Lewis-Sigler Institute for Integrative Genomics
| | | | | | - Jean Paul Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Richard Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | | | - David E. Houseman
- Massachusetts Institute of Technology, Department of Biological Engineering
| | - James E. Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| | - Andrew S. Yoo
- Washington University School of Medicine in St. Louis
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center
| |
Collapse
|
25
|
Yang LG, March ZM, Stephenson RA, Narayan PS. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol Metab 2023; 34:430-445. [PMID: 37357100 PMCID: PMC10365028 DOI: 10.1016/j.tem.2023.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023]
Abstract
Dysregulation of lipid metabolism has emerged as a central component of many neurodegenerative diseases. Variants of the lipid transport protein, apolipoprotein E (APOE), modulate risk and resilience in several neurodegenerative diseases including late-onset Alzheimer's disease (LOAD). Allelic variants of the gene, APOE, alter the lipid metabolism of cells and tissues and have been broadly associated with several other cellular and systemic phenotypes. Targeting APOE-associated metabolic pathways may offer opportunities to alter disease-related phenotypes and consequently, attenuate disease risk and impart resilience to multiple neurodegenerative diseases. We review the molecular, cellular, and tissue-level alterations to lipid metabolism that arise from different APOE isoforms. These changes in lipid metabolism could help to elucidate disease mechanisms and tune neurodegenerative disease risk and resilience.
Collapse
Affiliation(s)
- Linda G Yang
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Zachary M March
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Roxan A Stephenson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.; National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias (CARD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Cheng YJ, Fan F, Zhang Z, Zhang HJ. Lipid metabolism in malignant tumor brain metastasis: reprogramming and therapeutic potential. Expert Opin Ther Targets 2023; 27:861-878. [PMID: 37668244 DOI: 10.1080/14728222.2023.2255377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Brain metastasis is a highly traumatic event in the progression of malignant tumors, often symbolizing higher mortality. Metabolic alterations are hallmarks of cancer, and the mask of lipid metabolic program rearrangement in cancer progression is gradually being unraveled. AREAS COVERED In this work, we reviewed clinical and fundamental studies related to lipid expression and activity changes in brain metastases originating from lung, breast, and cutaneous melanomas, respectively. Novel roles of lipid metabolic reprogramming in the development of brain metastasis from malignant tumors were identified and its potential as a therapeutic target was evaluated. Published literature and clinical studies in databases consisting of PubMed, Embase, Scopus and www.ClinicalTrials.gov from 1990 to 2022 were searched. EXPERT OPINION Lipid metabolic reprogramming in brain metastasis is involved in de novo lipid synthesis within low lipid availability environments, regulation of lipid uptake and storage, metabolic interactions between brain tumors and the brain microenvironment, and membrane lipid remodeling, in addition to being a second messenger for signal transduction. Although some lipid metabolism modulators work efficiently in preclinical models, there is still a long way to go from laboratory to clinic. This area of research holds assurance for the organ-targeted treatment of brain metastases through drug-regulated metabolic targets and dietary interventions.
Collapse
Affiliation(s)
- Yan-Jie Cheng
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
- Department of Oncology, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Fan Fan
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Zhong Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Hai-Jun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Huang T, Fakurazi S, Cheah PS, Ling KH. REST Targets JAK-STAT and HIF-1 Signaling Pathways in Human Down Syndrome Brain and Neural Cells. Int J Mol Sci 2023; 24:9980. [PMID: 37373133 DOI: 10.3390/ijms24129980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome. Gene expression datasets generated from healthy controls and DS samples of human brain tissues, cerebral organoids, NPC, neurons, and astrocytes were retrieved from the Gene Ontology (GEO) and Sequence Read Archive (SRA) databases. Differential expression analysis was performed on all datasets to produce differential expression genes (DEGs) between DS and control groups. REST-targeted DEGs were subjected to functional ontologies, pathways, and network analyses. We found that REST-targeted DEGs in DS were enriched for the JAK-STAT and HIF-1 signaling pathways across multiple distinct brain regions, ages, and neural cell types. We also identified REST-targeted DEGs involved in nervous system development, cell differentiation, fatty acid metabolism and inflammation in the DS brain. Based on the findings, we propose REST as the critical regulator and a promising therapeutic target to modulate homeostatic gene expression in the DS brain.
Collapse
Affiliation(s)
- Tan Huang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Pike-See Cheah
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
28
|
Zhao H, Li X, Zheng Y, Zhu X, Qi X, Huang X, Bai S, Wu C, Sun G. Fasudil may alleviate alcohol-induced astrocyte damage by modifying lipid metabolism, as determined by metabonomics analysis. PeerJ 2023; 11:e15494. [PMID: 37304877 PMCID: PMC10252813 DOI: 10.7717/peerj.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Alcohol dependence is a chronic, relapsing encephalopathy characterized by compulsive craving for alcohol, loss of control over alcohol use, and the presence of negative emotions and physical discomfort when alcohol is unavailable. Harmful use of alcohol is one of the greatest risk factors for death, illness, and disability. Rho kinase inhibitors have neuroprotective effects. This study used metabonomics analysis to assess untreated astrocytes, astrocytes exposed to 75 mmol/L of alcohol, and astrocytes exposed to 75 mmol/L of alcohol and treated with 15 µg/mL fasudil for 24 h. One of the clearest differences between the alcohol-exposed and fasudil-treated alcohol-exposed groups was the abundance of lipids and lipid-like molecules, although glycerophospholipid metabolism was comparable in both groups. Our findings show that fasudil may alleviate alcohol-induced astrocyte damage by modifying lipid metabolism, providing a new approach for preventing and treating alcohol dependence.
Collapse
Affiliation(s)
- Huiying Zhao
- Department of Neurology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xintong Li
- Department of Neurology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yongqi Zheng
- Department of Internal Medicine, Yichun Forestry Administration Central Hospital, Yichun, Heilongjiang, China
| | - Xiaofeng Zhu
- Department of Neurology, Mudanjiang Medical College, Mudanjiang, Heilongjiang, China
| | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xinyan Huang
- Department of Neurology, The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Shunjie Bai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, Chongqing, China
| | - Chengji Wu
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| | - Guangtao Sun
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China
| |
Collapse
|
29
|
Windham IA, Ragusa JV, Wallace ED, Wagner CH, White KK, Cohen S. APOE traffics to astrocyte lipid droplets and modulates triglyceride saturation and droplet size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538740. [PMID: 37162939 PMCID: PMC10168303 DOI: 10.1101/2023.04.28.538740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The E4 variant of APOE strongly predisposes individuals to late-onset Alzheimer's disease. We demonstrate that in response to neutral lipid synthesis, apolipoprotein E (APOE) in astrocytes can avoid translocation into the ER lumen and traffic to lipid droplets (LDs) via membrane bridges at ER-LD contacts. APOE knockdown promotes fewer, larger LDs containing more unsaturated triglyceride. This LD size distribution phenotype was rescued by chimeric APOE that targets only LDs. APOE4 - expressing astrocytes also form a small number of large LDs enriched in unsaturated triglyceride. Additionally, the larger LDs in APOE4 cells exhibit impaired turnover and increased sensitivity to lipid peroxidation. Our data indicate that APOE plays a previously unrecognized role as an LD surface protein that regulates LD size and composition. APOE4 is a toxic gain of function variant that causes aberrant LD composition and morphology. We propose that APOE4 astrocytes with large, unsaturated LDs are sensitized to lipid peroxidation or lipotoxicity, which could contribute to Alzheimer's disease risk. Summary Windham et al . discover that APOE in astrocytes can traffic to lipid droplets (LDs), where it modulates LD composition and size. Astrocytes expressing the Alzheimer's risk variant APOE4 form large LDs with impaired turnover and increased peroxidation sensitivity.
Collapse
|
30
|
Cashikar AG, Toral-Rios D, Timm D, Romero J, Strickland M, Long JM, Han X, Holtzman DM, Paul SM. Regulation of astrocyte lipid metabolism and ApoE secretionby the microglial oxysterol, 25-hydroxycholesterol. J Lipid Res 2023; 64:100350. [PMID: 36849076 PMCID: PMC10060115 DOI: 10.1016/j.jlr.2023.100350] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Neuroinflammation, a major hallmark of Alzheimer's disease and several other neurological and psychiatric disorders, is often associated with dysregulated cholesterol metabolism. Relative to homeostatic microglia, activated microglia express higher levels of Ch25h, an enzyme that hydroxylates cholesterol to produce 25-hydroxycholesterol (25HC). 25HC is an oxysterol with interesting immune roles stemming from its ability to regulate cholesterol metabolism. Since astrocytes synthesize cholesterol in the brain and transport it to other cells via ApoE-containing lipoproteins, we hypothesized that secreted 25HC from microglia may influence lipid metabolism as well as extracellular ApoE derived from astrocytes. Here, we show that astrocytes take up externally added 25HC and respond with altered lipid metabolism. Extracellular levels of ApoE lipoprotein particles increased after treatment of astrocytes with 25HC without an increase in Apoe mRNA expression. In mouse astrocytes-expressing human ApoE3 or ApoE4, 25HC promoted extracellular ApoE3 better than ApoE4. Increased extracellular ApoE was due to elevated efflux from increased Abca1 expression via LXRs as well as decreased lipoprotein reuptake from suppressed Ldlr expression via inhibition of SREBP. 25HC also suppressed expression of Srebf2, but not Srebf1, leading to reduced cholesterol synthesis in astrocytes without affecting fatty acid levels. We further show that 25HC promoted the activity of sterol-o-acyl transferase that led to a doubling of the amount of cholesteryl esters and their concomitant storage in lipid droplets. Our results demonstrate an important role for 25HC in regulating astrocyte lipid metabolism.
Collapse
Affiliation(s)
- Anil G Cashikar
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.
| | - Danira Toral-Rios
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - David Timm
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Johnathan Romero
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael Strickland
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Justin M Long
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA; Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri, USA
| | - Steven M Paul
- Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
31
|
Harders AR, Arend C, Denieffe SC, Berger J, Dringen R. Endogenous Energy Stores Maintain a High ATP Concentration for Hours in Glucose-Depleted Cultured Primary Rat Astrocytes. Neurochem Res 2023; 48:2241-2252. [PMID: 36914795 PMCID: PMC10182151 DOI: 10.1007/s11064-023-03903-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Adenosine triphosphate (ATP) is the central energy currency of all cells. Cultured primary rat astrocytes contain a specific cellular ATP content of 27.9 ± 4.7 nmol/mg. During incubation in a glucose- and amino acid-free incubation buffer, this high cellular ATP content was maintained for at least 6 h, while within 24 h the levels of ATP declined to around 30% of the initial value without compromising cell viability. In contrast, cells exposed to 1 mM and 5 mM glucose maintained the initial high cellular ATP content for 24 and 72 h, respectively. The loss in cellular ATP content observed during a 24 h glucose-deprivation was fully prevented by the presence of glucose, fructose or mannose as well as by the mitochondrial substrates lactate, pyruvate, β-hydroxybutyrate or acetate. The high initial specific ATP content in glucose-starved astrocytes, was almost completely abolished within 30 min after application of the respiratory chain inhibitor antimycin A or the mitochondrial uncoupler BAM-15, while these inhibitors lowered in glucose-fed cells the ATP content only to 60% (BAM-15) and 40% (antimycin A) within 5 h. Inhibition of the mitochondrial pyruvate carrier by UK5099 alone or of mitochondrial fatty acid uptake by etomoxir alone hardly affected the high ATP content of glucose-deprived astrocytes during an incubation for 8 h, while the co-application of both inhibitors depleted cellular ATP levels almost completely within 5 h. These data underline the importance of mitochondrial metabolism for the ATP regeneration of astrocytes and demonstrate that the mitochondrial oxidation of pyruvate and fatty acids strongly contributes to the maintenance of a high ATP concentration in glucose-deprived astrocytes.
Collapse
Affiliation(s)
- Antonia Regina Harders
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany
| | - Sadhbh Cynth Denieffe
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Julius Berger
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technologies, University of Bremen, Bremen, Germany.
| |
Collapse
|
32
|
Galkina OV, Vetrovoy OV, Krasovskaya IE, Eschenko ND. Role of Lipids in Regulation of Neuroglial Interactions. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:337-352. [PMID: 37076281 DOI: 10.1134/s0006297923030045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 03/28/2023]
Abstract
Lipids comprise an extremely heterogeneous group of compounds that perform a wide variety of biological functions. Traditional view of lipids as important structural components of the cell and compounds playing a trophic role is currently being supplemented by information on the possible participation of lipids in signaling, not only intracellular, but also intercellular. The review article discusses current data on the role of lipids and their metabolites formed in glial cells (astrocytes, oligodendrocytes, microglia) in communication of these cells with neurons. In addition to metabolic transformations of lipids in each type of glial cells, special attention is paid to the lipid signal molecules (phosphatidic acid, arachidonic acid and its metabolites, cholesterol, etc.) and the possibility of their participation in realization of synaptic plasticity, as well as in other possible mechanisms associated with neuroplasticity. All these new data can significantly expand our knowledge about the regulatory functions of lipids in neuroglial relationships.
Collapse
Affiliation(s)
- Olga V Galkina
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia.
| | - Oleg V Vetrovoy
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, 199034, Russia
| | - Irina E Krasovskaya
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| | - Nataliya D Eschenko
- Biochemistry Department, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, 199034, Russia
| |
Collapse
|
33
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Stolze Larsen F. New Insight Into Mechanisms of Hepatic Encephalopathy: An Integrative Analysis Approach to Identify Molecular Markers and Therapeutic Targets. Bioinform Biol Insights 2023; 17:11779322231155068. [PMID: 36814683 PMCID: PMC9940182 DOI: 10.1177/11779322231155068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic encephalopathy (HE) is a set of complex neurological complications that arise from advanced liver disease. The precise molecular and cellular mechanism of HE is not fully understood. Differentially expressed genes (DEGs) from microarray technologies are powerful approaches to obtain new insight into the pathophysiology of HE. We analyzed microarray data sets of cirrhotic patients with HE from Gene Expression Omnibus to identify DEGs in postmortem cerebral tissues. Consequently, we uploaded significant DEGs into the STRING to specify protein-protein interactions. Cytoscape was used to reconstruct the genetic network and identify hub genes. Target genes were uploaded to different databases to perform comprehensive enrichment analysis and repurpose new therapeutic options for HE. A total of 457 DEGs were identified in 2 data sets totally from 12 cirrhotic patients with HE compared with 12 healthy subjects. We found that 274 genes were upregulated and 183 genes were downregulated. Network analyses on significant DEGs indicated 12 hub genes associated with HE. Enrichment analysis identified fatty acid beta-oxidation, cerebral organic acidurias, and regulation of actin cytoskeleton as main involved pathways associated with upregulated genes; serotonin receptor 2 and ELK-SRF/GATA4 signaling, GPCRs, class A rhodopsin-like, and p38 MAPK signaling pathway were related to downregulated genes. Finally, we predicted 39 probable effective drugs/agents for HE. This study not only confirms main important involved mechanisms of HE but also reveals some yet unknown activated molecular and cellular pathways in human HE. In addition, new targets were identified that could be of value in the future study of HE.
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
34
|
Chen Z, Yuan Z, Yang S, Zhu Y, Xue M, Zhang J, Leng L. Brain Energy Metabolism: Astrocytes in Neurodegenerative Diseases. CNS Neurosci Ther 2022; 29:24-36. [PMID: 36193573 PMCID: PMC9804080 DOI: 10.1111/cns.13982] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/23/2022] [Accepted: 09/11/2022] [Indexed: 02/06/2023] Open
Abstract
Astrocytes are the most abundant cells in the brain. They have many important functions in the central nervous system (CNS), including the maintenance of glutamate and ion homeostasis, the elimination of oxidative stress, energy storage in glycogen, tissue repair, regulating synaptic activity by releasing neurotransmitters, and participating in synaptic formation. Astrocytes have special highly ramified structure. Their branches contact with synapses of neurons inwardly, with fine structure and wrapping synapses; their feet contact with blood vessels of brain parenchyma outward, almost wrapping the whole brain. The adjacent astrocytes rarely overlap and communicate with each other through gap junction channels. The ideal location of astrocytes enables them to sense the weak changes of their surroundings and provide the structural basis for the energy supply of neurons. Neurons and astrocytes are closely coupled units of energy metabolism in the brain. Neurons consume a lot of ATPs in the process of neurotransmission. Astrocytes provide metabolic substrates for neurons, maintain high activity of neuron, and facilitate information transmission of neurons. This article reviews the characteristics of glucose metabolism, lipid metabolism, and amino acid metabolism of astrocytes. The metabolic interactions between astrocytes and neurons, astrocytes and microglia were also detailed discussed. Finally, we classified analyzed the role of metabolic disorder of astrocytes in the occurrence and development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhenlei Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Ziqi Yuan
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Shangchen Yang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Yufei Zhu
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Maoqiang Xue
- Department of Basic Medical Science, School of MedicineXiamen UniversityXiamenChina
| | - Jie Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| | - Lige Leng
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging ResearchInstitute of Neuroscience, School of Medicine, Xiamen UniversityXiamenChina
| |
Collapse
|
35
|
Liu J, Wu Y, Liu S, Gao Z, Fan W, Ding C, Tang Z, Zhang S, Shi X, Tan L, Luo Y, Song S. Bromoacetic acid induces neurogenic injury in the chicken brain by activating oxidative stress and NF-κB inflammatory pathway. Chem Biol Interact 2022; 365:110115. [PMID: 35988748 DOI: 10.1016/j.cbi.2022.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
Abstract
The bromoacetic acid (BAA) is one of the most teratogenic and neurotoxic disinfection byproducts. Birds take environmental water as their habitat and are inevitably affected by BAA in the environment. However, the neurotoxicity caused by BAA in birds has not been reported and the mechanism remains unclear. In this study, we chose chickens as the avian model to explore the effects of different concentrations of BAA on the brain tissues. Here, we selected the 3 μg/L dose of BAA detected in Tai Lake basin as a reference, and designed 1-, 100-, and 1000-fold of the environmental exposure dose as the experimental doses to explore the neurotoxicity of BAA in birds. Results showed that BAA increased the number of pyknotic nuclear neurons, deformed vascular sheaths, and glial cells in the brain. BAA inhibited the activity of antioxidant enzymes and the expression of antioxidant genes. With the increase of BAA concentration, the oxidative stress-responsive transcription factor NF-κB was activated. Furthermore, BAA remarkably changed the expression of lipid metabolism related genes (i.e., acc, gpat, hmgr, pparα, cpt1, and ampkα). Importantly, BAA decreased the mRNA and protein expression levels of autophagy-related genes (i.e., atg5, ulk1, beclin1, and lc3). Meantime, BAA increased the mRNA and protein levels of apoptotic and pro-apoptotic genes, such as p53, bax, cytochrome c, caspase-9, and caspase-3. Overall, our study provided new insights into the potential neurotoxic effects of BAA in birds, which was important for the clinical monitoring and prevention of BAA.
Collapse
Affiliation(s)
- Jiwen Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yuting Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuhui Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chenchen Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhihui Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shuo Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Lei Tan
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Jiangsu Detection Center of Terrestrial Wildlife Disease, Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
36
|
Relationship between thyroid hormones and central nervous system metabolism in physiological and pathological conditions. Pharmacol Rep 2022; 74:847-858. [PMID: 35771431 DOI: 10.1007/s43440-022-00377-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 11/08/2022]
Abstract
Thyroid hormones (THs) play an important role in the regulation of energy metabolism. They also take part in processes associated with the central nervous system (CNS), including survival and differentiation of neurons and energy expenditure. It has been reported that a correlation exists between the functioning of the thyroid gland and the symptoms of CNS such as cognitive impairment, depression, and dementia. Literature data also indicate the influence of THs on the pathogenesis of CNS diseases, such as Alzheimer's disease, epilepsy, depression, and Parkinson's disease. This review describes the relationship between THs and metabolism in the CNS, the effect of THs on the pathological conditions of the CNS, and novel options for treating these conditions with TH derivatives.
Collapse
|
37
|
Popov A, Brazhe N, Fedotova A, Tiaglik A, Bychkov M, Morozova K, Brazhe A, Aronov D, Lyukmanova E, Lazareva N, Li L, Ponimaskin E, Verkhratsky A, Semyanov A. A high-fat diet changes astrocytic metabolism to promote synaptic plasticity and behavior. Acta Physiol (Oxf) 2022; 236:e13847. [PMID: 35653278 DOI: 10.1111/apha.13847] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022]
Abstract
AIM A high-fat diet (HFD) is generally considered to negatively influence the body, the brain, and cognition. Nonetheless, fat and fatty acids are essential for nourishing and constructing brain tissue. Astrocytes are central for lipolysis and fatty acids metabolism. We tested how HFD affects astrocyte metabolism, morphology, and physiology. METHODS We used Raman microspectroscopy to assess the redox state of mitochondria and lipid content in astrocytes and neurons in hippocampal slices of mice subjected to HFD. Astrocytes were loaded with fluorescent dye through patch pipette for morphological analysis. Whole-cell voltage-clamp recordings were performed to measure transporter and potassium currents. Western blot analysis quantified the expression of astrocyte-specific proteins. Field potential recordings measured the magnitude of long-term potentiation (LTP). Open filed test was performed to evaluate the effect of HFD on animal behavior. RESULTS We found that exposure of young mice to 1 month of HFD increases lipid content and relative amount of reduced cytochromes in astrocytes but not in neurons. Metabolic changes were paralleled with an enlargement of astrocytic territorial domains due to an increased outgrowth of branches and leaflets. Astrocyte remodeling was associated with an increase in expression of ezrin and with no changes in glial fibrillary acidic protein (GFAP), glutamate transporter-1 (GLT-1), and glutamine synthetase (GS). Such physiological (non-reactive) enlargement of astrocytes in the brain active milieu promoted glutamate clearance and LTP and translated into behavioral changes. CONCLUSION Dietary fat intake is not invariably harmful and might exert beneficial effects depending on the biological context.
Collapse
Affiliation(s)
- Alexander Popov
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Nadezda Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Anna Fedotova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Alisa Tiaglik
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Maxim Bychkov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | | | - Alexey Brazhe
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
| | - Dmitry Aronov
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Ekaterina Lyukmanova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
- Moscow Institute of Physics and Technology (State University) Dolgoprudny Russia
| | | | - Li Li
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health The University of Manchester Manchester UK
- Achucarro Center for Neuroscience IKERBASQUE, Basque Foundation for Science Bilbao Spain
- Department of Neurosciences University of the Basque Country UPV/EHU and CIBERNED Leioa Spain
| | - Alexey Semyanov
- Department of Physiology Jiaxing University College of Medicine Jiaxing China
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Moscow Russia
- Faculty of Biology Moscow State University Moscow Russia
- Sechenov First Moscow State Medical University Moscow Russia
| |
Collapse
|
38
|
Islimye E, Girard V, Gould AP. Functions of Stress-Induced Lipid Droplets in the Nervous System. Front Cell Dev Biol 2022; 10:863907. [PMID: 35493070 PMCID: PMC9047859 DOI: 10.3389/fcell.2022.863907] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets are highly dynamic intracellular organelles that store neutral lipids such as cholesteryl esters and triacylglycerols. They have recently emerged as key stress response components in many different cell types. Lipid droplets in the nervous system are mostly observed in vivo in glia, ependymal cells and microglia. They tend to become more numerous in these cell types and can also form in neurons as a consequence of ageing or stresses involving redox imbalance and lipotoxicity. Abundant lipid droplets are also a characteristic feature of several neurodegenerative diseases. In this minireview, we take a cell-type perspective on recent advances in our understanding of lipid droplet metabolism in glia, neurons and neural stem cells during health and disease. We highlight that a given lipid droplet subfunction, such as triacylglycerol lipolysis, can be physiologically beneficial or harmful to the functions of the nervous system depending upon cellular context. The mechanistic understanding of context-dependent lipid droplet functions in the nervous system is progressing apace, aided by new technologies for probing the lipid droplet proteome and lipidome with single-cell type precision.
Collapse
|
39
|
Cabezas R, Martin-Jiménez C, Zuluaga M, Pinzón A, Barreto GE, González J. Integrated Metabolomics and Lipidomics Reveal High Accumulation of Glycerophospholipids in Human Astrocytes under the Lipotoxic Effect of Palmitic Acid and Tibolone Protection. Int J Mol Sci 2022; 23:ijms23052474. [PMID: 35269616 PMCID: PMC8910245 DOI: 10.3390/ijms23052474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/03/2022] Open
Abstract
Lipotoxicity is a metabolic condition resulting from the accumulation of free fatty acids in non-adipose tissues which involves a series of pathological responses triggered after chronic exposure to high levels of fatty acids, severely detrimental to cellular homeostasis and viability. In brain, lipotoxicity affects both neurons and other cell types, notably astrocytes, leading to neurodegenerative processes, such as Alzheimer (AD) and Parkinson diseases (PD). In this study, we performed for the first time, a whole lipidomic characterization of Normal Human Astrocytes cultures exposed to toxic concentrations of palmitic acid and the protective compound tibolone, to establish and identify the set of potential metabolites that are modulated under these experimental treatments. The study covered 3843 features involved in the exo- and endo-metabolome extracts obtained from astrocytes with the mentioned treatments. Through multivariate statistical analysis such as PCA (principal component analysis), partial least squares (PLS-DA), clustering analysis, and machine learning enrichment analysis, it was possible to determine the specific metabolites that were affected by palmitic acid insult, such as phosphoethanolamines, phosphoserines phosphocholines and glycerophosphocholines, with their respective metabolic pathways impact. Moreover, our results suggest the importance of tibolone in the generation of neuroprotective metabolites by astrocytes and may be relevant to the development of neurodegenerative processes.
Collapse
Affiliation(s)
- Ricardo Cabezas
- Grupo de Investigación en Ciencias Biomédicas GRINCIBIO, Facultad de Medicina, Universidad Antonio Nariño, Bogota 110231, Colombia
- Correspondence: (R.C.); (J.G.); Tel.: +571-3159273304 (J.G.)
| | - Cynthia Martin-Jiménez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30301, USA;
| | - Martha Zuluaga
- Escuela de Ciencias Básicas Tecnologías e Ingenierías, Universidad Nacional Abierta y a Distancia, Bogota 111511, Colombia;
- Grupo de Investigación en Cromatografía y Técnicas Afines, Universidad de Caldas, Manizales 170002, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia-Bogotá, Bogota 111321, Colombia;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Bogota 110231, Colombia
- Correspondence: (R.C.); (J.G.); Tel.: +571-3159273304 (J.G.)
| |
Collapse
|
40
|
Smolič T, Zorec R, Vardjan N. Pathophysiology of Lipid Droplets in Neuroglia. Antioxidants (Basel) 2021; 11:22. [PMID: 35052526 PMCID: PMC8773017 DOI: 10.3390/antiox11010022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing evidence regarding the functional importance of lipid droplets (LDs), cytoplasmic storage organelles in the central nervous system (CNS), has emerged. Although not abundantly present in the CNS under normal conditions in adulthood, LDs accumulate in the CNS during development and aging, as well as in some neurologic disorders. LDs are actively involved in cellular lipid turnover and stress response. By regulating the storage of excess fatty acids, cholesterol, and ceramides in addition to their subsequent release in response to cell needs and/or environmental stressors, LDs are involved in energy production, in the synthesis of membranes and signaling molecules, and in the protection of cells against lipotoxicity and free radicals. Accumulation of LDs in the CNS appears predominantly in neuroglia (astrocytes, microglia, oligodendrocytes, ependymal cells), which provide trophic, metabolic, and immune support to neuronal networks. Here we review the most recent findings on the characteristics and functions of LDs in neuroglia, focusing on astrocytes, the key homeostasis-providing cells in the CNS. We discuss the molecular mechanisms affecting LD turnover in neuroglia under stress and how this may protect neural cell function. We also highlight the role (and potential contribution) of neuroglial LDs in aging and in neurologic disorders.
Collapse
Affiliation(s)
- Tina Smolič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (T.S.); (R.Z.)
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
42
|
Du S, Jin F, Maneix L, Gedam M, Xu Y, Catic A, Wang MC, Zheng H. FoxO3 deficiency in cortical astrocytes leads to impaired lipid metabolism and aggravated amyloid pathology. Aging Cell 2021; 20:e13432. [PMID: 34247441 PMCID: PMC8373366 DOI: 10.1111/acel.13432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of life expectancy of the human population is accompanied by the drastic increases of age‐associated diseases, in particular Alzheimer's disease (AD), and underscores the need to understand how aging influences AD development. The Forkhead box O transcription factor 3 (FoxO3) is known to mediate aging and longevity downstream of insulin/insulin‐like growth factor signaling across species. However, its function in the adult brain under physiological and pathological conditions is less understood. Here, we report a region and cell‐type‐specific regulation of FoxO3 in the central nervous system (CNS). We found that FoxO3 protein levels were reduced in the cortex, but not hippocampus, of aged mice. FoxO3 was responsive to insulin/AKT signaling in astrocytes, but not neurons. Using CNS Foxo3‐deficient mice, we reveal that loss of FoxO3 led to cortical astrogliosis and altered lipid metabolism. This is associated with impaired metabolic homoeostasis and β‐amyloid (Aβ) uptake in primary astrocyte cultures. These phenotypes can be reversed by expressing a constitutively active FOXO3 but not a FOXO3 mutant lacking the transactivation domain. Loss of FoxO3 in 5xFAD mice led to exacerbated Aβ pathology and synapse loss and altered local response of astrocytes and microglia in the vicinity of Aβ plaques. Astrocyte‐specific overexpression of FOXO3 displayed opposite effects, suggesting that FoxO3 functions cell autonomously to mediate astrocyte activity and also interacts with microglia to address Aβ pathology. Our studies support a protective role of astroglial FoxO3 against brain aging and AD.
Collapse
Affiliation(s)
- Shuqi Du
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA
| | - Feng Jin
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
| | - Laure Maneix
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Stem Cells and Regenerative Medicine Center Baylor College of Medicine Houston TX USA
| | - Manasee Gedam
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Graduate Program in Translational Biology and Molecular Medicine Baylor College of Medicine Houston TX USA
| | - Yin Xu
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
| | - Andre Catic
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA
- Stem Cells and Regenerative Medicine Center Baylor College of Medicine Houston TX USA
| | - Meng C. Wang
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA
- Department of Pharmacology and Chemical Biology Baylor College of Medicine Houston TX USA
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
- Howard Hughes Medical Institute Baylor College of Medicine Houston TX USA
| | - Hui Zheng
- Huffington Center on Aging Baylor College of Medicine Houston TX USA
- Department of Molecular and Cellular Biology Baylor College of Medicine Houston TX USA
- Department of Molecular and Human Genetics Baylor College of Medicine Houston TX USA
| |
Collapse
|
43
|
Threlfell S, Mohammadi AS, Ryan BJ, Connor-Robson N, Platt NJ, Anand R, Serres F, Sharp T, Bengoa-Vergniory N, Wade-Martins R, Ewing A, Cragg SJ, Brimblecombe KR. Striatal Dopamine Transporter Function Is Facilitated by Converging Biology of α-Synuclein and Cholesterol. Front Cell Neurosci 2021; 15:658244. [PMID: 33935654 PMCID: PMC8081845 DOI: 10.3389/fncel.2021.658244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022] Open
Abstract
Striatal dopamine transporters (DAT) powerfully regulate dopamine signaling, and can contribute risk to degeneration in Parkinson's disease (PD). DATs can interact with the neuronal protein α-synuclein, which is associated with the etiology and molecular pathology of idiopathic and familial PD. Here, we tested whether DAT function in governing dopamine (DA) uptake and release is modified in a human-α-synuclein-overexpressing (SNCA-OVX) transgenic mouse model of early PD. Using fast-scan cyclic voltammetry (FCV) in ex vivo acute striatal slices to detect DA release, and biochemical assays, we show that several aspects of DAT function are promoted in SNCA-OVX mice. Compared to background control α-synuclein-null mice (Snca-null), the SNCA-OVX mice have elevated DA uptake rates, and more pronounced effects of DAT inhibitors on evoked extracellular DA concentrations ([DA]o) and on short-term plasticity (STP) in DA release, indicating DATs play a greater role in limiting DA release and in driving STP. We found that DAT membrane levels and radioligand binding sites correlated with α-synuclein level. Furthermore, DAT function in Snca-null and SNCA-OVX mice could also be promoted by applying cholesterol, and using Tof-SIMS we found genotype-differences in striatal lipids, with lower striatal cholesterol in SNCA-OVX mice. An inhibitor of cholesterol efflux transporter ABCA1 or a cholesterol chelator in SNCA-OVX mice reduced the effects of DAT-inhibitors on evoked [DA]o. Together these data indicate that human α-synuclein in a mouse model of PD promotes striatal DAT function, in a manner supported by extracellular cholesterol, suggesting converging biology of α-synuclein and cholesterol that regulates DAT function and could impact DA function and PD pathophysiology.
Collapse
Affiliation(s)
- Sarah Threlfell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Amir Saeid Mohammadi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Brent J. Ryan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Nicola J. Platt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rishi Anand
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Florence Serres
- University Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Trevor Sharp
- University Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nora Bengoa-Vergniory
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Andrew Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie J. Cragg
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Katherine R. Brimblecombe
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Parkinson’s Disease Centre, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Cassina P, Miquel E, Martínez-Palma L, Cassina A. Glial Metabolic Reprogramming in Amyotrophic Lateral Sclerosis. Neuroimmunomodulation 2021; 28:204-212. [PMID: 34175843 DOI: 10.1159/000516926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
ALS is a human neurodegenerative disorder that induces a progressive paralysis of voluntary muscles due to motor neuron loss. The causes are unknown, and there is no curative treatment available. Mitochondrial dysfunction is a hallmark of ALS pathology; however, it is currently unknown whether it is a cause or a consequence of disease progression. Recent evidence indicates that glial mitochondrial function changes to cope with energy demands and critically influences neuronal death and disease progression. Aberrant glial cells detected in the spinal cord of diseased animals are characterized by increased proliferation rate and reduced mitochondrial bioenergetics. These features can be compared with cancer cell behavior of adapting to nutrient microenvironment by altering energy metabolism, a concept known as metabolic reprogramming. We focus on data that suggest that aberrant glial cells in ALS undergo metabolic reprogramming and profound changes in glial mitochondrial activity, which are associated with motor neuron death in ALS. This review article emphasizes on the association between metabolic reprogramming and glial reactivity, bringing new paradigms from the area of cancer research into neurodegenerative diseases. Targeting glial mitochondrial function and metabolic reprogramming may result in promising therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Patricia Cassina
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Miquel
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Laura Martínez-Palma
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Adriana Cassina
- Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|