1
|
Huang L, Chen H, Nie J, Zhao Y, Miao J. Advanced dressings based on novel biological targets for diabetic wound healing: A review. Eur J Pharmacol 2025; 987:177201. [PMID: 39667426 DOI: 10.1016/j.ejphar.2024.177201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The diabetic wound is one of the most common complications of diabetes in clinic. The existing diabetic wound dressings all have bottlenecks in decreasing inflammation, stopping peripheral neuropathy, relieving local ischemia and hypoxia in diabetic wounds. These challenges are intricately linked to the roles of various growth factors, as well as matrix metalloproteinases. Thus, a comprehensive understanding of growth factors-particularly their dynamic interactions with the extracellular matrix (ECM) and cellular components-is essential. Cells and proteins that influence the synthesis of growth factors and matrix metalloproteinases emerge as potential therapeutic targets for diabetic wound management. This review discusses the latest advancements in the pathophysiology of diabetic wound healing, highlights novel biological targets, and evaluates new wound dressing strategies designed for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hangbo Chen
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Li C, Xie R, Zhang S, Yun J, Zhao T, Zhong A, Zhang J, Chen J. Selective inhibition of HSF1 expression in the heat shock pathway of keloid fibroblasts reduces excessive fibrosis in keloid. Arch Dermatol Res 2025; 317:204. [PMID: 39776250 DOI: 10.1007/s00403-024-03747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/02/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The stress response following burns may be a crucial factor in keloid formation, yet the underlying pathological mechanisms remain to be elucidated. This study initially investigated how heat shock factor 1 (HSF1) and heat shock proteins (HSPs) within the heat shock pathway influence keloid fibrosis, providing insights into the role of the heat shock response in keloid development. This study aims to further elucidate the role of the heat shock pathway in keloid fibrosis and investigate the specific function of HSF1 within this pathway. This study focused on human keloid fibroblasts, examining the expression and regulatory role of HSF1 on HSPs under heat stress using immunohistochemistry, RNA interference, real-time fluorescent PCR, and Western blotting techniques. HSF1 was overexpressed in keloid fibroblasts and tissues compared to normal skin, and heat stress could further enhance HSF1 expression in both keloid tissues and fibroblasts. Functional inhibition of HSF1 significantly affected the expression of downstream HSPs in keloid fibroblasts, ultimately leading to the inhibition of keloid fibrosis. The heat shock pathway plays a crucial role in keloid fibrosis, with HSF1 as a key regulator influencing the expression of HSPs. Heat stress treatment of keloid fibroblasts offers an approach for investigating keloid formation.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Ruxin Xie
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Shiwei Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jiao Yun
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Tian Zhao
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Ai Zhong
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Jinjue Zhang
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China
| | - Junjie Chen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Daugaard ND, Tholstrup R, Tornby JR, Bendixen SM, Larsen FT, De Zio D, Barnkob MB, Ravnskjaer K, Brewer JR. Characterization of human melanoma skin cancer models: A step towards model-based melanoma research. Acta Biomater 2025; 191:308-324. [PMID: 39549863 DOI: 10.1016/j.actbio.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Advancing 3D in vitro human tissue models is crucial for biomedical research and drug development to address the ethical and biological limitations of animal testing. Recently, 3D skin models have proven to be effective for studying serious skin conditions, such as melanoma. For these advanced models to be applicable in preclinical studies, thorough characterization is essential to understand their applicability and limitations. In this study, we used bioimaging and RNA sequencing to assess the architecture and transcriptomic profiles of skin models, including models with melanoma. Our results indicated that these models closely mimicked skin morphology and gene expression patterns. The full-thickness (FT) model shows a superior resemblance to the human skin, particularly in basement membrane formation and cellular interactions. The integrity of the skin-like properties and gene expression signatures of both skin and melanoma cells were preserved upon the integration of melanoma cells, establishing these models as robust platforms for cancer research. The responsiveness of the FT melanoma models to vemurafenib treatment was successfully monitored, demonstrating their validity as a reliable, reproducible, and humane tool for pharmacological testing and drug development. Furthermore, the transcriptomic data showed that skin models with cancer spheroids had upregulated genes linked to aggressive and resilient cancer behavior compared to spheroids alone. This emphasizes the importance of the microenvironment in cancer progression and suggests that 3D skin models can serve to uncover mechanisms and therapeutic targets that are not detectable in simpler systems. STATEMENT OF SIGNIFICANCE: This study introduces advanced, ethically sound skin and melanoma models as alternatives to animal testing in drug discovery. By thoroughly characterizing these models using bioimaging and RNA sequencing, we demonstrate their close resemblance to human skin, particularly in full-thickness models. These models not only replicate the complex cellular interactions and gene expression patterns of human tissue but also maintain robustness after melanoma integration. Our findings highlight the potential of these models in revealing cancer mechanisms and therapeutic targets, offering a significant impact on melanoma research and preclinical testing.
Collapse
Affiliation(s)
- Nicoline Dorothea Daugaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Rikke Tholstrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jakob Rask Tornby
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sofie Marchsteiner Bendixen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Frederik Tibert Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniela De Zio
- Melanoma Research Team, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Institute, Copenhagen, Denmark; Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
4
|
Katayama S. [Anti-skin Aging Effects of Kale-derived Exosome-like Nanoparticles]. YAKUGAKU ZASSHI 2025; 145:29-33. [PMID: 39756921 DOI: 10.1248/yakushi.24-00173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
In an aging society, there is a growing interest in functional foods that offer anti-aging benefits. Food-derived bioactive compounds such as carotenoids and polyphenols can enhance skin elasticity and delay aging. However, the mechanisms by which these orally ingested compounds directly impact the skin are not fully understood. Recent studies on exosomes have suggested significant physiological functions, including their potential for intercellular communication. Similar to mammalian exosomes, plant-derived exosomes are known for their functional roles, including cross-kingdom communication, and their ability to target specific organs in animal models as delivery vehicles. The authors have been investigating the anti-aging effects of kale and have previously reported its benefits on cognitive function and skin aging in mouse models. Long-term oral administration of glucoraphanin-enriched kale suppresses the senescence symptoms in skin and hair and increases type I collagen and antioxidant enzyme expression in skin tissues, indicating its role in promoting skin health. Exosome-like nanoparticles (ELNs) from glucoraphanin-enriched kale appear to modulate the expression of extracellular matrix-related genes. Kale-derived ELNs exhibit great potential for ameliorating skin aging, suggesting their ability to promote skin health through targeted cellular mechanisms and supporting their use as an active natural compound in nutraceuticals and functional beverages.
Collapse
Affiliation(s)
- Shigeru Katayama
- Department of Agriculture, Graduate School of Science and Technology, Shinshu University
| |
Collapse
|
5
|
Lin X, Zhang X, Wang Y, Chen W, Zhu Z, Wang S. Hydrogels and hydrogel-based drug delivery systems for promoting refractory wound healing: Applications and prospects. Int J Biol Macromol 2025; 285:138098. [PMID: 39608543 DOI: 10.1016/j.ijbiomac.2024.138098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Refractory wounds represent a significant health concern that presents considerable challenges within clinical practice. The healing process of refractory wounds, which involves various cell types and biologically active molecules, is dynamically influenced by multiple factors, including diabetes, infections, and inflammation. Owing to their hydrophilicity, biocompatibility, and capacity for drug loading, hydrogels have emerged as promising and innovative biomaterials for enhancing wound healing. In recent decades, hydrogels with inherent therapeutic properties have been identified. Moreover, advanced hydrogel-based drug delivery systems have been developed to facilitate the sustained and controlled release of therapeutic agents at the site of refractory wounds. This review aims to summarize recent advancements and applications of hydrogels, including those with intrinsic therapeutic properties and hydrogel-based drug delivery systems, in the treatment of refractory wounds. Additionally, we discuss the limitations associated with hydrogel applications and propose future perspectives, which will lead to ongoing efforts to optimize hydrogels as ideal biomaterials for refractory wound healing.
Collapse
Affiliation(s)
- Xuran Lin
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Xinge Zhang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yuechen Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Zhikang Zhu
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China.
| | - Shoujie Wang
- Department of Plastic Surgery, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu 322000, China; Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Choi YJ, Wu X, Lee S, Pyo JS, Cho J, Cao S, Kang KS. Protective effects of methylnissolin and methylnissolin-3-O-β-d-glucopyranoside on TNF-α-induced inflammation in human dermal fibroblasts. Toxicol In Vitro 2024; 104:106005. [PMID: 39746385 DOI: 10.1016/j.tiv.2024.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Methylnissolin-3-O-β-d-glucopyranoside (MNG) and methylnissolin (MN) are pterocarpan derivatives that are found in plants, such as Astragalus membranaceus. There are limited existing studies on the potential health benefits of MNG, and currently there is no evidence to suggest that MNG has any impact on skin-aging. Tumor necrosis factor-alpha (TNF-α) plays a significant role in skin aging by promoting chronic inflammation, damaging skin cells, and impairing the skin's natural repair mechanisms. Targeting TNF-α or its downstream signaling pathways may be a promising strategy for preventing or reversing skin-aging. We tested the effect of MNG and MN on skin-aging by inducing cell inflammation and oxidative stress with TNF-α in HDFs. MNG and MN significantly reduced the TNF-α-induced secretion of matrix metalloproteinase-1 (MMP-1). However, MNG has more beneficial compound for oral administration than MN in pharmacokinetics analysis. The mechanism underlying the anti-skin-aging effect of MNG is related to the suppression of TNF-α-induced reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPKs) phosphorylation. Our results suggest that MNG is a potential candidate for preventing skin-aging induced by TNF-α.
Collapse
Affiliation(s)
- Yea Jung Choi
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States
| | - Sullim Lee
- Department of Life Science, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jae Sung Pyo
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea; Brain Busan 21 Plus Research Project Group, Kyungsung University, Busan 48434, Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry Seoul national University, Seoul, Republic of Korea
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, United States; Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, United States.
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
7
|
Villata S, Baruffaldi D, Cue Lopez R, Paoletti C, Bosch P, Napione L, Giovannozzi AM, Pirri CF, Martinez-Campos E, Frascella F. Broadly Accessible 3D In Vitro Skin Model as a Comprehensive Platform for Antibacterial Therapy Screening. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70284-70296. [PMID: 39667725 DOI: 10.1021/acsami.4c16397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Skin infections are currently a worldwide emergency as antibiotic-resistant bacteria are spreading, leading to the ineffectiveness of most antibiotics and antibacterial strategies. Consequently, there is an urgency of developing and testing innovative antibacterial therapies. As traditional 2D cell culture and planktonic bacteria culture can be obsolete due to their incapability of resembling the complex infection environment, 3D in vitro skin models can be a powerful tool to test and validate therapies. In this article, a 3D in vitro epidermis-dermis skin model has been developed and biofabricated to be broadly available, reaching a balance between the simplicity and reproducibility of the model and its complexity in terms of wound, infection, and treatment response. The results are really promising, as the skin model developed a comprehensive physical barrier. To further investigate the skin model, controlled wounding, infection, and antibiotic treatments were performed. The results were remarkable: Not only was the unwounded epidermal barrier able to partially stop the bacterial proliferation, but the entire system reacted to both wound and infection in a complex and complete way. Extracellular matrix deposition and remodeling, inflammatory response, antimicrobial peptide production, and change in cellular behaviors, from epithelial to mesenchymal and from fibroblasts to myofibroblasts, were witnessed, with different extents depending on the bacterial strain. In addition, the inflammatory response to the antibiotic administration was opposite for the two bacterial infections, probably revealing the release of inflammatory endotoxins during Escherichia coli death. In conclusion, the presented 3D in vitro skin model has all the characteristics to be a future landmark as a platform for antibacterial strategy therapy testing.
Collapse
Affiliation(s)
- Simona Villata
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Désirée Baruffaldi
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Raquel Cue Lopez
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Camilla Paoletti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Politecnico di Torino, Turin 10129, Italy
| | - Paula Bosch
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28006, Spain
| | - Lucia Napione
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| | - Andrea M Giovannozzi
- Quantum Metrology and Nano Technologies Division, National Institute of Metrological Research, Turin 10135, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
- Center for Sustainable Futures, Istituto Italiano di Tecnologia, Turin 10144, Italy
| | - Enrique Martinez-Campos
- Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28006, Spain
- Grupo de Síntesis Orgánica y Bioevaluación, Instituto Pluridisciplinar (UCM), Madrid 28040, Spain
| | - Francesca Frascella
- Dipartimento di Scienza Applicata e Tecnologia, PolitoBIOMed Lab, Politecnico di Torino, Turin 10129, Italy
| |
Collapse
|
8
|
Kim DY, Kang YH, Kang MK. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins. J Mol Med (Berl) 2024; 102:1457-1470. [PMID: 39363131 PMCID: PMC11579180 DOI: 10.1007/s00109-024-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea.
| |
Collapse
|
9
|
Zang S, Chen J, Chevalier C, Zhang J, Li S, Wang H, Li J, Chen Y, Xu H, Sheng L, Zhang Z, Qiu J. Holistic investigation of the anti-wrinkle and repair efficacy of a facial cream enriched with C-xyloside. J Cosmet Dermatol 2024; 23:4017-4028. [PMID: 39107974 PMCID: PMC11626324 DOI: 10.1111/jocd.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 12/10/2024]
Abstract
OBJECTIVE To investigate the repairing and anti-wrinkle efficacy of the facial cream enriched with C-xyloside, aiming at comprehensively evaluating its skin anti- aging effect and clarify its potential mechanism of action. METHODS The repairing efficacy was studied on 3D epidermis skin model and the antiaging efficacy was studied on ex-vivo human skin. Two clinical studies were conducted with Chinese females. In the first study, 49 subjects aged between 30 and 50 with wrinkle concerns were recruited and instructed to apply the investigational cream containing C-xyloside for 8 weeks. Wrinkles attributes were assessed by dermatologist. Instrumental measurements on skin hydration, trans-epidermal water loss (TEWL), and skin elasticity were also conducted. In the second study, 30 subjects aged between 25 and 60 with self-declared sensitive skin and facial redness were recruited and instructed to apply the cream for 4 weeks. Biomarker analysis of the stratum corneum was conducted through facial tape strips. RESULTS The cream improved the histomorphology of the 3D epidermis skin model after SLS stimulation, and significantly increase the expression of LOR and FLG. On human skin, the cream improved the histopathology induced by UV, and significantly increased the protein content of COL I and COL III, collagen density and the number of Ki-67 positive cell of skin compared with model group (n = 3, p < 0.01). The results from the first clinical study demonstrate a significant increased the skin hydration and elasticity by 21.90%, 13.08% (R2) and 12.30% (R5), respectively (n = 49, p < 0.05), and the TEWL values decreased by 33.94% (n = 49, p < 0.05), after 8 weeks application of the cream. In addition, the scores for nasolabial folds, glabellar wrinkle, underneath eye wrinkles, crow's feet wrinkle and forehead wrinkle in the volunteers exhibited a significant reduction of 34.02%, 43.34%, 50.03%, 33.64% and 55.81% respectively (n = 49, p < 0.05). The (rCE)/(fCE) ratio of volunteers based on tape stripping significant increased after using the sample cream (n = 30, p < 0.05). CONCLUSION The cream containing C-xyloside showed improvement of skin wrinkles and enhancement of skin barrier function. These efficacies may be attributed to the fact that the sample cream can increase the expression of skin barrier related proteins LOR and FLG, promote the maturation of cornified envelope, enhance collagen I and III protein expression and stimulate skin cell proliferation, to provide sufficient evidence supporting its antiaging efficacy of skin.
Collapse
Affiliation(s)
- Shanshan Zang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Juanjuan Chen
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Cyril Chevalier
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Ji Zhang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Shumei Li
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Hequn Wang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Jing Li
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Yangdong Chen
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Hongling Xu
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Le Sheng
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Zhiming Zhang
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| | - Jie Qiu
- L' Oreal (China) Research and Innovation CenterShanghaiChina
| |
Collapse
|
10
|
Avelino TM, Harb SV, Adamoski D, Oliveira LCM, Horinouchi CDS, Azevedo RJD, Azoubel RA, Thomaz VK, Batista FAH, d'Ávila MA, Granja PL, Figueira ACM. Unveiling the impact of hypodermis on gene expression for advancing bioprinted full-thickness 3D skin models. Commun Biol 2024; 7:1437. [PMID: 39528562 PMCID: PMC11555214 DOI: 10.1038/s42003-024-07106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
3D skin models have been explored as an alternative method to the use of animals in research and development. Usually, human skin equivalents comprise only epidermis or epidermis/dermis layers. Herein, we leverage 3D bioprinting technology to fabricate a full-thickness human skin equivalent with hypodermis (HSEH). The collagen hydrogel-based structure provides a mimetic environment for skin cells to adhere, proliferate and differentiate. The effective incorporation of the hypodermis layer is evidenced by scanning electron microscopy, immunofluorescence, and hematoxylin and eosin staining. The transcriptome results underscore the pivotal role of the hypodermis in orchestrating the genetic expression of a multitude of genes vital for skin functionality, including hydration, development and differentiation. Accordingly, we evidence the paramount significance of full-thickness human skin equivalents with hypodermis layer to provide an accurate in vitro platform for disease modeling and toxicology studies.
Collapse
Affiliation(s)
- Thayná M Avelino
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Samarah V Harb
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Douglas Adamoski
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Larissa C M Oliveira
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Cintia D S Horinouchi
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Rafael J de Azevedo
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Rafael A Azoubel
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Vanessa K Thomaz
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
| | - Fernanda A H Batista
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil
- Molecular Research Laboratory in Cardiology, Dante Pazzanese Institute of Cardiology (IDPC), São Paulo, Brazil
| | - Marcos Akira d'Ávila
- Department of Manufacturing and Materials Engineering, School of Mechanical Engineering, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Pedro L Granja
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Ana Carolina M Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), OKNational Laboratory of Bioscience (LNBio), Campinas, Brazil.
| |
Collapse
|
11
|
Kang W, Ha Y, Jung Y, Lee H, Park T. Nerol mitigates dexamethasone-induced skin aging by activating the Nrf2 signaling pathway in human dermal fibroblasts. Life Sci 2024; 356:123034. [PMID: 39236900 DOI: 10.1016/j.lfs.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Collagen and hyaluronic acid are essential components of the dermis that collaborate to maintain skin elasticity and hydration due to their unique biochemical properties and interactions within the extracellular matrix. Prolonged exposure to glucocorticoids can induce skin aging, which manifests as diminished collagen content and hyaluronic acid levels in the dermis. Nerol, a monoterpene alcohol found in essential oils, was examined in this study for its potential to counteract glucocorticoid-induced skin aging and the underlying mechanism behind its effects. Our findings reveal that non-toxic concentrations of nerol treatment can reinstate collagen content and hyaluronic acid levels in human dermal fibroblasts treated with dexamethasone. Mechanistically, nerol mitigates dexamethasone-induced oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. The protective effects of nerol were significantly abrogated when the Nrf2 pathway was inhibited using the specific inhibitor ML385. In conclusion, nerol protects human dermal fibroblasts against glucocorticoid-induced skin aging by ameliorating oxidative stress via activation of the Nrf2 pathway, thereby highlighting its potential as a therapeutic agent for preventing and treating glucocorticoid-induced skin aging.
Collapse
Affiliation(s)
- Wesuk Kang
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoojeong Ha
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yearim Jung
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyunbin Lee
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Taesun Park
- Department of Food and Nutrition, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
12
|
Kim KM, Im AR, Shim KS, Lee AY, Kim T, Choi SA, Nam KW, Lee S, Hyun JW, Chae S. Clerodendrum trichotomum Extract Attenuates UV-B-Induced Skin Impairment in Hairless Mice by Inhibiting MAPK Signaling. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e13011. [PMID: 39541388 DOI: 10.1111/phpp.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Exposure to solar ultraviolet-B (UV-B) radiation significantly accelerates skin aging by inducing the expression of matrix metalloproteinases (MMPs) such as MMP-1, leading to alterations in the extracellular matrix and consequent photoaging. Some plant components, renowned for their UV-absorbing and antioxidative properties, show potential for mitigating photoaging by reducing UV-B-induced MMP levels. In this context, we explored the inhibitory effects of Clerodendrum trichotomum extract (CTE) on UV-B-induced skin damage. METHODS The mechanism of CTE was predicted using network pharmacology approach. Also, antiaging efficacy was evaluated by mouse model and cellular system using human epidermal keratinocytes (HEKa), including its modulation of mitogen-activated protein kinase (MAPK) signaling pathways. RESULTS CTE effectively counters UV-B-induced skin damage, as evidenced by the suppression of MMP-9 and MMP-1 expression in mice. We found that each fraction and chemical constituents of CTE suppressed UV-B-induced MMP-1 secretion in HEKa cells. CONCLUSION CTE inhibits UV-B-induced skin aging by partially suppressing MMP-1 and MMP-9 secretion via the modulation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Ki Mo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Korean Convergence Medical Science, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| | - A-Rang Im
- Research Laboratories, Ildong Pharmaceutical Co. Ltd, Gyeononggi-do, Republic of Korea
| | - Ki-Shuk Shim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - A Yeong Lee
- KM Data Division, Korea Institute of Oriental Medicine, Yuseong-daero1672, Daejeon, Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sung-A Choi
- Department of Bioinformatics and Biosystems, Seongnam Campus of Korea Polytechnics, Gyeonggi-do, Republic of Korea
| | - Kung-Woo Nam
- Soonchunhyang University Industry-Academic Cooperation Foundation, Asan, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Won Hyun
- Department of Biochemistry, College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju City, Republic of Korea
| | - Sungwook Chae
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Department of Korean Convergence Medical Science, Korea National University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
13
|
Luca A, Cojocaru FD, Pascal MS, Vlad T, Nacu I, Peptu CA, Butnaru M, Verestiuc L. Decellularized Macroalgae as Complex Hydrophilic Structures for Skin Tissue Engineering and Drug Delivery. Gels 2024; 10:704. [PMID: 39590060 PMCID: PMC11593777 DOI: 10.3390/gels10110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Due to their indisputable biocompatibility and abundant source, biopolymers are widely used to prepare hydrogels for skin tissue engineering. Among them, cellulose is a great option for this challenging application due to its increased water retention capacity, mechanical strength, versatility and unlimited availability. Since algae are an unexploited source of cellulose, the novelty of this study is the decellularization of two different species, freshly collected from the Black Sea coast, using two different chemical surfactants (sodium dodecyl sulphate and Triton X-100), and characterisation of the resulted complex biopolymeric 3D matrices. The algae nature and decellularization agent significantly influenced the matrices porosity, while the values obtained for the hydration degree included them in hydrogel class. Moreover, their capacity to retain and then controllably release an anti-inflammatory drug, ibuprofen, led us to recommend the obtained structures as drug delivery systems. The decellularized macroalgae hydrogels are bioadhesive and cytocompatible in direct contact with human keratinocytes and represent a great support for cells. Finally, it was noticed that human keratinocytes (HaCaT cell line) adhered and populated the structures during a monitoring period of 14 days.
Collapse
Affiliation(s)
- Andreea Luca
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Maria Stella Pascal
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Teodora Vlad
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Isabella Nacu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Catalina Anisoara Peptu
- Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iaşi, 700050 Iasi, Romania;
| | - Maria Butnaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (A.L.); (F.-D.C.); (M.S.P.); (T.V.); (I.N.); (M.B.)
| |
Collapse
|
14
|
Urbanczyk M, Abuhelou A, Köninger M, Jeyagaran A, Carvajal-Berrio D, Kim E, Marzi J, Loskill P, Layland SL, Schenke-Layland K. Heterogeneity of Endothelial Cells Impacts the Functionality of Human Pancreatic In Vitro Models. Tissue Eng Part A 2024. [PMID: 39453887 DOI: 10.1089/ten.tea.2024.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Abstract
Endothelial cells (ECs) play a crucial role in maintaining tissue homeostasis and functionality. Depending on their tissue of origin, ECs can be highly heterogeneous regarding their morphology, gene and protein expression, functionality, and signaling pathways. Understanding the interaction between organ-specific ECs and their surrounding tissue is therefore critical when investigating tissue homeostasis, disease development, and progression. In vitro models often lack organ-specific ECs, potentially limiting the translatability and validity of the obtained results. The goal of this study was to assess the differences between commonly used EC sources in tissue engineering applications, including human umbilical vein ECs (HUVECs), human dermal microvascular ECs (hdmvECs), and human foreskin microvascular ECs (hfmvECs), and organ-specific human pancreatic microvascular ECs (hpmvECs), and test their impact on functionality within an in vitro pancreas test system used for diabetes research. Utilizing high-resolution Raman microspectroscopy and Raman imaging in combination with established protein and gene expression analyses and exposure to defined physical signals within microfluidic cultures, we identified that ECs exhibit significant differences in their biochemical composition, relevant protein expression, angiogenic potential, and response to the application of mechanical shear stress. Proof-of-concept results showed that the coculture of isolated human islets of Langerhans with hpmvECs significantly increased the functionality when compared with control islets and islets cocultured with HUVECs. Our study demonstrates that the choice of EC type significantly impacts the experimental results, which needs to be considered when implementing ECs into in vitro models.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Athar Abuhelou
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Marie Köninger
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Carvajal-Berrio
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ellie Kim
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
- Institute of Biomedical Engineering, Department for Microphysiological Systems, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R Center Tübingen for In Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Women's Health Tübingen, University of Tübingen, Tübingen, Germany
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany, Reutlingen, Germany
| |
Collapse
|
15
|
Dorf N, Maciejczyk M. Skin senescence-from basic research to clinical practice. Front Med (Lausanne) 2024; 11:1484345. [PMID: 39493718 PMCID: PMC11527680 DOI: 10.3389/fmed.2024.1484345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
The most recognizable implications of tissue aging manifest themselves on the skin. Skin laxity, roughness, pigmentation disorders, age spots, wrinkles, telangiectasia or hair graying are symptoms of physiological aging. Development of the senescent phenotype depends on the interaction between aging cells and remodeling of the skin's extracellular matrix (ECM) that contains collagen and elastic fiber. Aging changes occur due to the combination of both endogenous (gene mutation, cellular metabolism or hormonal agents) and exogenous factors (ultraviolet light, environmental pollutants, and unsuitable diet). However, overproduction of mitochondrial reactive oxygen species (ROS) is a key factor driving cellular senescence. Aging theories have disclosed a range of diverse molecular mechanisms that are associated with cellular senescence of the body. Theories best supported by evidence include protein glycation, oxidative stress, telomere shortening, cell cycle arrest, and a limited number of cell divisions. Accumulation of the ECM damage is suggested to be a key factor in skin aging. Every cell indicates a functional and morphological change that may be used as a biomarker of senescence. Senescence-associated β-galactosidase (SA-β-gal), cell cycle inhibitors (p16INK4a, p21CIP1, p27, p53), DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS), senescence-associated heterochromatin foci (SAHF), shortening of telomeres or downregulation of lamina B1 constitute just an example of aging biomarkers known so far. Aging may also be assessed non-invasively through measuring the skin fluorescence of advanced glycation end-products (AGEs). This review summarizes the recent knowledge on the pathogenesis and clinical conditions of skin aging as well as biomarkers of skin senescence.
Collapse
Affiliation(s)
- Natalia Dorf
- Independent Laboratory of Cosmetology, Medical University of Białystok, Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Białystok, Bialystok, Poland
| |
Collapse
|
16
|
Wang E, Jiang Y, Zhao C. Structural and physiological functions of Caenorhabditis elegans epidermis. Heliyon 2024; 10:e38680. [PMID: 39397934 PMCID: PMC11471208 DOI: 10.1016/j.heliyon.2024.e38680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024] Open
Abstract
Research on the skin is continuously evolving, and it is imperative to select a streamlined and efficient research model. Caenorhabditis elegans is a free-leaving nematode whose epidermis serves as the primary barrier epithelium, composed of a collagen matrix. Differentiation of the epidermis begins in the middle of embryonic development, including polarization of the cytoskeleton and formation of cell junctions. Cuticle secretion is one of the main developmental and physiological features of the epidermis. Mutations in the collagen genes of individual worms lead to cuticle defects, thereby changing the shape of the animals. The complete genome sequence of C. elegans indicates that more than 170 different collagen genes may be related to this structure. Collagen is a structural protein that plays an important role in the development of extracellular matrix. Different collagen genes are expressed at different stages of matrix synthesis, which may help form specific interactions between different collagens. The differentiated epidermis also plays a key role in the transmission of hormonal signals, fat storage, and ion homeostasis and is closely related to the development and function of the nervous system. The epidermis also provides passive and active defenses against pathogens that penetrate the skin and can repair wounds. In addition, age-dependent epidermal degeneration is a prominent feature of aging and may affect aging and lifespan. This review we highlight recent findings of the structure and related physiological functions of the cuticle of C. elegans. In contrast to previous studies, we offer novel insights into the utilization of C. elegans as valuable models for skin-related investigations. It also encourages the use of C. elegans as a skin model, and its high-throughput screening properties facilitate the acceleration of fundamental research in skin-related diseases.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., Ltd, No.8, Hangfeng Road, Fengtai District, Beijing, China
| |
Collapse
|
17
|
Sol S, Boncimino F, Todorova K, Mandinova A. Unraveling the Functional Heterogeneity of Human Skin at Single-Cell Resolution. Hematol Oncol Clin North Am 2024; 38:921-938. [PMID: 38839486 DOI: 10.1016/j.hoc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The skin consists of several cell populations, including epithelial, immune, and stromal cells. Recently, there has been a significant increase in single-cell RNA-sequencing studies, contributing to the development of a consensus Human Skin Cell Atlas. The aim is to understand skin biology better and identify potential therapeutic targets. The present review utilized previously published single-cell RNA-sequencing datasets to explore human skin's cellular and functional heterogeneity. Additionally, it summarizes the functional significance of newly identified cell subpopulations in processes such as wound healing and aging.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 7 Cambridge Center, MA 02142, USA; Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Luo P, Wang F, Li J, Liu G, Xiong Q, Yan B, Cao X, Liu B, Wang Y, Wu G, Shi C. The stress-responsive gene ATF3 drives fibroblast activation and collagen production through transcriptionally activating TGF-β receptor Ⅱ in skin wound healing. Arch Biochem Biophys 2024; 760:110134. [PMID: 39181381 DOI: 10.1016/j.abb.2024.110134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Skin wound is an emerging health challenge on account of the high-frequency trauma, surgery and chronic refractory ulcer. Further study on the disease biology will help to develop new effective approaches for wound healing. Here, we identified a wound-stress responsive gene, activating transcription factor 3 (ATF3), and then investigated its biological action and mechanism in wound healing. In the full-thickness skin wound model, ATF3 was found to promote fibroblast activation and collagen production, resulted in accelerated wound healing. Mechanically, ATF3 transcriptionally activated TGF-β receptor Ⅱ via directly binding to its specific promoter motif, followed by the enhanced TGF-β/Smad pathway in fibroblasts. Moreover, the increased ATF3 upon skin injury was partly resulted from hypoxia stimulation with Hif-1α dependent manner. Altogether, this work gives novel insights into the biology and mechanism of stress-responsive gene ATF3 in wound healing, and provides a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Peng Luo
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Fulong Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Jialun Li
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Gaoyu Liu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Qin Xiong
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Benhuang Yan
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Xiaohui Cao
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, Key Laboratory of Extreme Environmental Medicine of Ministry of Education, Army Medical University, Chongqing, 400038, China
| | - Yang Wang
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China
| | - Gang Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China; Institute of Medicine and Equipment for High Altitude Region, Key Laboratory of Extreme Environmental Medicine of Ministry of Education, Army Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
19
|
Reiter L, Niehoff N, Weiland D, Helbig D, Eming SA, Krieg T, Etich J, Brachvogel B, Wiesner RJ, Knuever J. Mitochondrial DNA mutations attenuate Bleomycin-induced dermal fibrosis by inhibiting differentiation into myofibroblasts. Matrix Biol 2024; 132:72-86. [PMID: 39009171 DOI: 10.1016/j.matbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.
Collapse
Affiliation(s)
- Lena Reiter
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Nadine Niehoff
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Daniela Weiland
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Doris Helbig
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Translational Matrix Biology, University of Cologne, Medical Faculty, 50931 Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Bent Brachvogel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jana Knuever
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
20
|
Liu Y, Yin M, Mao X, Wu S, Wei S, Heng S, Yang Y, Huang J, Guo Z, Li C, Ji C, Hu L, Liu W, Zhang LJ. Defining cell type-specific immune responses in a mouse model of allergic contact dermatitis by single-cell transcriptomics. eLife 2024; 13:RP94698. [PMID: 39213029 PMCID: PMC11364439 DOI: 10.7554/elife.94698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Allergic contact dermatitis (ACD), a prevalent inflammatory skin disease, is elicited upon repeated skin contact with protein-reactive chemicals through a complex and poorly characterized cellular network between immune cells and skin resident cells. Here, single-cell transcriptomic analysis of the murine hapten-elicited model of ACD reveals that upon elicitation of ACD, infiltrated CD4+ or CD8+ lymphocytes were primarily the IFNγ-producing type 1 central memory phenotype. In contrast, type 2 cytokines (IL4 and IL13) were dominantly expressed by basophils, IL17A was primarily expressed by δγ T cells, and IL1β was identified as the primary cytokine expressed by activated neutrophils/monocytes and macrophages. Furthermore, analysis of skin resident cells identified a sub-cluster of dermal fibroblasts with preadipocyte signature as a prominent target for IFNγ+ lymphocytes and dermal source for key T cell chemokines CXCL9/10. IFNγ treatment shifted dermal fibroblasts from collagen-producing to CXCL9/10-producing, which promoted T cell polarization toward the type-1 phenotype through a CXCR3-dependent mechanism. Furthermore, targeted deletion of Ifngr1 in dermal fibroblasts in mice reduced Cxcl9/10 expression, dermal infiltration of CD8+ T cell, and alleviated ACD inflammation in mice. Finally, we showed that IFNγ+ CD8+ T cells and CXCL10-producing dermal fibroblasts co-enriched in the dermis of human ACD skin. Together, our results define the cell type-specific immune responses in ACD, and recognize an indispensable role of dermal fibroblasts in shaping the development of type-1 skin inflammation through the IFNGR-CXCR3 signaling circuit during ACD pathogenesis.
Collapse
Affiliation(s)
- Youxi Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen UniversityXiamenChina
| | - Meimei Yin
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen UniversityXiamenChina
| | - Xiaoting Mao
- Zhejiang Yangshengtang Institute of Natural Medication Co LtdHangzhouChina
| | - Shuai Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen UniversityXiamenChina
| | - Shuangping Wei
- Zhejiang Yangshengtang Institute of Natural Medication Co LtdHangzhouChina
- Yang Sheng Tang (Anji) Cosmetics Co LtdZhejiangChina
| | - Shujun Heng
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen UniversityXiamenChina
| | - Yichun Yang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen UniversityXiamenChina
| | - Jinwen Huang
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Zhuolin Guo
- Department of Dermatology, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghaiChina
| | - Chuan Li
- Zhejiang Yangshengtang Institute of Natural Medication Co LtdHangzhouChina
| | - Chao Ji
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical UniversityFuzhouChina
| | - Liu Hu
- Zhejiang Yangshengtang Institute of Natural Medication Co LtdHangzhouChina
| | - Wenjie Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen UniversityXiamenChina
| | - Ling-juan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen UniversityXiamenChina
| |
Collapse
|
21
|
Machaliński B, Oszutowska-Mazurek D, Mazurek P, Parafiniuk M, Szumilas P, Zawiślak A, Zaremba M, Stecewicz I, Zawodny P, Wiszniewska B. Assessment of Extracellular Matrix Fibrous Elements in Male Dermal Aging: A Ten-Year Follow-Up Preliminary Case Study. BIOLOGY 2024; 13:636. [PMID: 39194575 DOI: 10.3390/biology13080636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Skin aging is a complex phenomenon influenced by multiple internal and external factors that can lead to significant changes in skin structure, particularly the degradation of key extracellular matrix (ECM) components such as collagen and elastic fibers in the dermis. In this study, we aimed to meticulously assess the morphological changes within these critical fibrous ECM elements in the dermis of the same volunteer at age 47 and 10 years later (2012 to 2022). Using advanced histological staining techniques, we examined the distribution and characteristics of ECM components, including type I collagen, type III collagen, and elastic fibers. Morphological analysis, facilitated by hematoxylin and eosin staining, allowed for an accurate assessment of fiber bundle thickness and a quantification of collagen and elastic fiber areas. In addition, we used the generalized Pareto distribution for histogram modeling to refine our statistical analyses. This research represents a pioneering effort to examine changes in ECM fiber material, specifically within the male dermis over a decade-long period. Our findings reveal substantial changes in the organization of type I collagen within the ECM, providing insight into the dynamic processes underlying skin aging.
Collapse
Affiliation(s)
- Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Dorota Oszutowska-Mazurek
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Przemyslaw Mazurek
- Department of Signal Processing and Multimedia Engineering, West Pomeranian University of Technology in Szczecin, 70-310 Szczecin, Poland
| | - Mirosław Parafiniuk
- Department of Forensic Medicine, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Paweł Szumilas
- Department of Social Medicine and Public Health, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Alicja Zawiślak
- Department of Interdisciplinary Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Zaremba
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research (CBP), Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Iwona Stecewicz
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Piotr Zawodny
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Barbara Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
22
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
23
|
Quílez C, Jeon EY, Pappalardo A, Pathak P, Abaci HE. Efficient Generation of Skin Organoids from Pluripotent Cells via Defined Extracellular Matrix Cues and Morphogen Gradients in a Spindle-Shaped Microfluidic Device. Adv Healthc Mater 2024; 13:e2400405. [PMID: 38452278 PMCID: PMC11305970 DOI: 10.1002/adhm.202400405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Indexed: 03/09/2024]
Abstract
Pluripotent stem cell-derived skin organoids (PSOs) emerge as a developmental skin model that is self-organized into multiple components, such as hair follicles. Despite their impressive complexity, PSOs are currently generated in the absence of 3D extracellular matrix (ECM) signals and have several major limitations, including an inverted anatomy (e.g., epidermis inside/dermis outside). In this work, a method is established to generate PSOs effectively in a chemically-defined 3D ECM environment. After examining various dermal ECM molecules, it is found that PSOs generated in collagen -type I (COLI) supplemented with laminin 511 (LAM511) exhibit increased growth compared to conventional free-floating conditions, but fail to induce complete skin differentiation due in part to necrosis. This problem is addressed by generating the PSOs in a 3D bioprinted spindle-shaped hydrogel device, which constrains organoid growth longitudinally. This culture system significantly reduces organoid necrosis and leads to a twofold increase in keratinocyte differentiation and an eightfold increase in hair follicle formation. Finally, the system is adapted as a microfluidic device to create asymmetrical gradients of differentiation factors and improves the spatial organization of dermal and epidermal cells. This study highlights the pivotal role of ECM and morphogen gradients in promoting and spatially-controlling skin differentiation in the PSO framework.
Collapse
Affiliation(s)
- Cristina Quílez
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, 28911 Spain
- Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Eun Y. Jeon
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alberto Pappalardo
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Pooja Pathak
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hasan E. Abaci
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
24
|
Sirois JP, Heinz A. Matrikines in the skin: Origin, effects, and therapeutic potential. Pharmacol Ther 2024; 260:108682. [PMID: 38917886 DOI: 10.1016/j.pharmthera.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
The extracellular matrix (ECM) represents a complex multi-component environment that has a decisive influence on the biomechanical properties of tissues and organs. Depending on the tissue, ECM components are subject to a homeostasis of synthesis and degradation, a subtle interplay that is influenced by external factors and the intrinsic aging process and is often disturbed in pathologies. Upon proteolytic cleavage of ECM proteins, small bioactive peptides termed matrikines can be formed. These bioactive peptides play a crucial role in cell signaling and contribute to the dynamic regulation of both physiological and pathological processes such as tissue remodeling and repair as well as inflammatory responses. In the skin, matrikines exert an influence for instance on cell adhesion, migration, and proliferation as well as vasodilation, angiogenesis and protein expression. Due to their manifold functions, matrikines represent promising leads for developing new therapeutic options for the treatment of skin diseases. This review article gives a comprehensive overview on matrikines in the skin, including their origin in the dermal ECM, their biological effects and therapeutic potential for the treatment of skin pathologies such as melanoma, chronic wounds and inflammatory skin diseases or for their use in anti-aging cosmeceuticals.
Collapse
Affiliation(s)
- Jonathan P Sirois
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Heinz
- Department of Pharmacy, LEO Foundation Center for Cutaneous Drug Delivery, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: a literature review. Front Endocrinol (Lausanne) 2024; 15:1430543. [PMID: 39129915 PMCID: PMC11309995 DOI: 10.3389/fendo.2024.1430543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.
Collapse
Affiliation(s)
- Lilin Yan
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Li Y, Guo M, Li L, Yang F, Xiong L. Effects of rice fermentation and its bioactive components on UVA-induced oxidative stress and senescence in dermal fibroblasts. Photochem Photobiol 2024. [PMID: 39030789 DOI: 10.1111/php.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Photoaging, caused by ultraviolet (UV) radiation, is characterized by the senescence of skin cells and reduction of collagens. Although rice fermentation is widely used in the cosmetics, its impact on skin photoaging is still not well understood. Herein, we investigated the possible effectiveness of Maifuyin, a fermented rice product, and its components, succinic acid (SA), and choline, for safeguarding UVA-exposed human dermal fibroblasts (HDFs) against photoaging. In this study, the effects of Maifuyin, SA, and choline on UVA-induced cell death and senescence in fibroblasts were evaluated in cell counting kit-8 (CCK-8), expression of β-galactosidase (β-GAL), and matrix metalloproteinases (MMP)-1. To identify oxidative stress, the investigation focused on reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde. Additionally, a mRNA sequencing technology (RNA-seq) was applied to study the underlying mechanisms of these components on UVA-induced photoaging. Meanwhile, the level of C-X-C motif chemokine ligand 2 (CXCL2) in the cell supernatant was confirmed to assess the autocrine chemokine level. To reassess the involvement of CXCL2, the expression of β-GAL was evaluated in fibroblasts treated with or without CXCL2. The results indicated that 1 mg/mL Maifuyin and SA inhibited UVA-induced senescence in fibroblasts, MMP-1 expression, and oxidative damage. The RNA-seq revealed 1 mg/mL Maifuyin and SA might be recruited chemokine CXCLs to inhibit MMPs production and fibroblast senescence via TNFα, MAPK, and NF-κB pathways. ELISA results showed a significant reduction of autocrine CXCL2 in UVA-irradiated HDFs by pretreating Maifuyin and SA. The β-GAL staining assay revealed that CXCL2 treatment increased β-GAL activity, while the administration of Maifuyin and SA counteracted this effect in HDFs. These results highlighted the potential use of Maifuyin and SA as promising candidates for anti-photoaging applications.
Collapse
Affiliation(s)
- Yu Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Guo
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Fan Yang
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| |
Collapse
|
27
|
Khan MUA, Aslam MA, Yasin T, Abdullah MFB, Stojanović GM, Siddiqui HM, Hasan A. Metal-organic frameworks: synthesis, properties, wound dressing, challenges and scopes in advanced wound dressing. Biomed Mater 2024; 19:052001. [PMID: 38976990 DOI: 10.1088/1748-605x/ad6070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Wound healing is a critical but complex biological process of skin tissue repair and regeneration resulting from various systems working together at the cellular and molecular levels. Quick wound healing and the problems associated with traditional wound repair techniques are being overcome with multifunctional materials. Over time, this research area has drawn significant attention. Metal-organic frameworks (MOFs), owning to their peculiar physicochemical characteristics, are now considered a promising class of well-suited porous materials for wound healing in addition to their other biological applications. This detailed literature review provides an overview of the latest developments in MOFs for wound healing applications. We have discussed the synthesis, essential biomedical properties, wound-healing mechanism, MOF-based dressing materials, and their wound-healing applications. The possible major challenges and limitations of MOFs have been discussed, along with conclusions and future perspectives. This overview of the literature review addresses MOFs-based wound healing from several angles and covers the most current developments in the subject. The readers may discover how the MOFs advanced this discipline by producing more inventive, useful, and successful dressings. It influences the development of future generations of biomaterials for the healing and regeneration of skin wounds.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Tooba Yasin
- Polymer Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
28
|
Le HP, Hassan K, Ramezanpour M, Campbell JA, Tung TT, Vreugde S, Losic D. Development of novel iron(III) crosslinked bioinks comprising carboxymethyl cellulose, xanthan gum, and hyaluronic acid for soft tissue engineering applications. J Mater Chem B 2024; 12:6627-6642. [PMID: 38752707 DOI: 10.1039/d4tb00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The advent of three-dimensional (3D) bioprinting offers a feasible approach to construct complex structures for soft tissue regeneration. Carboxymethyl cellulose (CMC) has been emerging as a very promising biomaterial for 3D bioprinting. However, due to the inability to maintain the post-printed stability, CMC needs to be physically blended and/or chemically crosslinked with other polymers. In this context, this study presents the combination of CMC with xanthan gum (XG) and hyaluronic acid (HA) to formulate a multicomponent bioink, leveraging the printability of CMC and XG, as well as the cellular support properties of HA. The ionic crosslinking of printed constructs with iron(III) via the metal-ion coordination between ferric cations and carboxylate groups of the three polymers was introduced to induce improved mechanical strength and long-term stability. Moreover, immortalized human epidermal keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) encapsulated within iron-crosslinked printed hydrogels exhibited excellent cell viability (more than 95%) and preserved morphology. Overall, the presented study highlights that the combination of these three biopolymers and the ionic crosslinking with ferric ions is a valuable strategy to be considered for the development of new and advanced hydrogel-based bioinks for soft tissue engineering applications.
Collapse
Affiliation(s)
- Hien-Phuong Le
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| | - Kamrul Hassan
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Jonathan A Campbell
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia, 5041, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, The University of Adelaide, Woodville South, Australia
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
29
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
30
|
Xiao S, Wang W, Zhao C, Ren P, Dong L, Zhang H, Ma F, Li X, Bian Y. A new mechanism in negative pressure wound therapy: interleukin-17 alters chromatin accessibility profiling. Am J Physiol Cell Physiol 2024; 327:C193-C204. [PMID: 38682240 DOI: 10.1152/ajpcell.00650.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Negative pressure wound therapy (NPWT) is extensively used in clinical settings to enhance the healing of wounds. Despite its widespread use, the molecular mechanisms driving the efficacy of NPWT have not been fully elucidated. In this study, skin wound-healing models were established, with administration of NPWT. Vimentin, collagen I, and MMP9 of skin tissues were detected by immunofluorescence (IF). Gene expression analysis of skin wound tissues was performed by RNA-sequencing (RNA-seq). Protein expression was assayed by a Western blotting or IF assay, and mRNA levels were quantified by quantitative PCR. Chromatin accessibility profiles of fibroblasts following NPWT or IL-17 exposure were analyzed by ATAC-seq. In rat wound-healing models, NPWT promoted wound repair by promoting reepithelialization, extracellular matrix (ECM) synthesis, and proliferation, which mainly occurred in the early stage of wound healing. These differentially expressed genes (DEGs) in NPWT wounds versus control wounds were enriched in the IL-17 signaling pathway. IL-17 was identified as an upregulated factor following NPWT in skin wounds. Moreover, the IL-17 inhibitor secukinumab (SEC) could abolish the promoting effect of NPWT on wound healing. Importantly, chromatin accessibility profiles were altered following NPWT and IL-17 stimulation in skin fibroblasts. Our findings suggest that NPWT upregulates IL-17 to promote wound healing by altering chromatin accessibility, which is a novel mechanism for NPWT's efficacy in wound healing.NEW & NOTEWORTHY To our knowledge, this is the first report of the efficacy of negative pressure wound therapy (NPWT) in promoting wound healing via IL-17. Moreover, NPWT and IL-17 can alter chromatin accessibility. Our study identifies a novel mechanism for NPWT's efficacy in wound healing.
Collapse
Affiliation(s)
- Shuao Xiao
- Department of Plastic and Burn Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Wenxuan Wang
- Department of Burn Plastic and Wound Repair, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, People's Republic of China
| | - Congying Zhao
- Department of Plastic and Burn Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Pan Ren
- Department of Plastic and Burn Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Liwei Dong
- Department of Plastic Surgery, First Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Hao Zhang
- Department of Plastic and Burn Surgery, Joint Logistics Support Force of Chinese PLA, Puer, People's Republic of China
| | - Fuxin Ma
- Department of Plastic and Burn Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Xueyong Li
- Department of Plastic and Burn Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| | - Yongqian Bian
- Department of Plastic and Burn Surgery, Second Affiliated Hospital of Air Force Medical University, Xi'an, People's Republic of China
| |
Collapse
|
31
|
Ngan Giang N, Le LTT, Ngoc Chien P, Trinh TTT, Thi Nga P, Zhang XR, Jin YX, Zhou SY, Han J, Nam SY, Heo CY. Assessment of inflammatory suppression and fibroblast infiltration in tissue remodelling by supercritical CO 2 acellular dermal matrix (scADM) utilizing Sprague Dawley models. Front Bioeng Biotechnol 2024; 12:1407797. [PMID: 38978716 PMCID: PMC11228881 DOI: 10.3389/fbioe.2024.1407797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Human skin-derived ECM aids cell functions but can trigger immune reactions; therefore it is addressed through decellularization. Acellular dermal matrices (ADMs), known for their regenerative properties, are used in tissue and organ regeneration. ADMs now play a key role in plastic and reconstructive surgery, enhancing aesthetics and reducing capsular contracture risk. Innovative decellularization with supercritical carbon dioxide preserves ECM quality for clinical use. The study investigated the cytotoxicity, biocompatibility, and anti-inflammatory properties of supercritical CO2 acellular dermal matrix (scADM) in vivo based on Sprague Dawley rat models. Initial experiments in vitro with fibroblast cells confirmed the non-toxic nature of scADM and demonstrated cell infiltration into scADMs after incubation. Subsequent tests in vitro revealed the ability of scADM to suppress inflammation induced by lipopolysaccharides (LPS) presenting by the reduction of pro-inflammatory cytokines TNF-α, IL-6, IL-1β, and MCP-1. In the in vivo model, histological assessment of implanted scADMs in 6 months revealed a decrease in inflammatory cells, confirmed further by the biomarkers of inflammation in immunofluorescence staining. Besides, an increase in fibroblast infiltration and collagen formation was observed in histological staining, which was supported by various biomarkers of fibroblasts. Moreover, the study demonstrated vascularization and macrophage polarization, depicting increased endothelial cell formation. Alteration of matrix metalloproteinases (MMPs) was analyzed by RT-PCR, indicating the reduction of MMP2, MMP3, and MMP9 levels over time. Simultaneously, an increase in collagen deposition of collagen I and collagen III was observed, verified in immunofluorescent staining, RT-PCR, and western blotting. Overall, the findings suggested that scADMs offer significant benefits in improving outcomes in implant-based procedures as well as soft tissue substitution.
Collapse
Affiliation(s)
- Nguyen Ngan Giang
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Linh Thi Thuy Le
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Faculty of Medical Technology, Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Shu Yi Zhou
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Korean Institute of Nonclinical Study, H&Bio Co., Ltd., Seongnam, Republic of Korea
- Department of Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Xu J, Chen X, Wang J, Zhang B, Ge W, Wang J, Yang P, Liu Y. An ADSC-loaded dermal regeneration template promotes full-thickness wound healing. Regen Ther 2024; 26:800-810. [PMID: 39309394 PMCID: PMC11415530 DOI: 10.1016/j.reth.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/18/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Full-thickness wounds lead to delayed wound healing and scarring. Adipose-derived stem cell (ADSC) grafting promotes wound healing and minimizes scarring, but the low efficiency of grafting has been a challenge. We hypothesized that loading ADSCs onto a clinically widely used dermal regeneration template (DRT) would improve the efficacy of ADSC grafting and promote full-thickness wound healing. Methods ADSCs from human adipose tissue were isolated, expanded, and labeled with a cell tracker. Labeled ADSCs were loaded onto the DRT. The viability, the location of ADSCs on the DRT, and the abundance of ADSCs in the wound area were confirmed using CCK8 and fluorescence microscopy. Full-thickness wounds were created on Bama minipigs, which were applied with sham, ADSC, DRT, and ADSC-DRT. Wounds from the four groups were collected at the indicated time and histological analysis was performed. RNA-seq analysis was also conducted to identify transcriptional differences among the four groups. The identified genes by RNA-seq were verified by qPCR. Immunohistochemistry and western blotting were used to assess collagen deposition. In vitro, the supernatant of ADSCs was used to culture fibroblasts to investigate the effect of ADSCs on fibroblast transformation into myofibroblasts. Results ADSCs were successfully isolated, marked, and loaded onto the DRT. The abundance of ADSCs in the wound area was significantly greater in the ADSC-DRT group than in the ADSC group. Moreover, the ADSC-DRT group exhibited better wound healing with improved re-epithelialization and denser collagen deposition than the other three groups. The RNA-seq results suggested that the application of the integrated ADSC-DRT system resulted in the differential expression of genes mainly associated with extracellular matrix remodeling. In vivo, wounds from the ADSC-DRT group exhibited an earlier increase in type III collagen deposition and alleviated scar formation. ADSCs inhibited the transformation of fibroblasts into myofibroblasts, along with increased levels of CTGF, FGF, and HGF in the supernatant of ADSCs. Wounds from the ADSC-DRT group had up-regulated expressions of CTGF, HGF, FGF, and MMP3. Conclusion The integral of ADSC-DRT increased the efficacy of ADSC grafting, and promoted full-thickness wound healing with better extracellular matrix remodeling and alleviated scar formation.
Collapse
Affiliation(s)
- Jin Xu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beibei Zhang
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjia Ge
- Department of Plastic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Burn Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Xu Y, Yao Y, Gao J. Cell-Derived Matrix: Production, Decellularization, and Application of Wound Repair. Stem Cells Int 2024; 2024:7398473. [PMID: 38882595 PMCID: PMC11178417 DOI: 10.1155/2024/7398473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Chronic nonhealing wounds significantly reduce patients' quality of life and are a major burden on healthcare systems. Over the past few decades, tissue engineering materials have emerged as a viable option for wound healing, with cell-derived extracellular matrix (CDM) showing remarkable results. The CDM's compatibility and resemblance to the natural tissue microenvironment confer distinct advantages to tissue-engineered scaffolds in wound repair. This review summarizes the current processes for CDM preparation, various cell decellularization protocols, and common characterization methods. Furthermore, it discusses the applications of CDM in wound healing, including skin defect and wound repair, angiogenesis, and engineered vessels, and offers perspectives on future developments.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yao Yao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery Nanfang Hospital Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| |
Collapse
|
34
|
Zhong Y, Zhou L, Guo Y, Wang F, He F, Cheng Y, Meng X, Xie H, Zhang Y, Li J. Downregulated SPESP1-driven fibroblast senescence decreases wound healing in aged mice. Clin Transl Med 2024; 14:e1660. [PMID: 38764260 PMCID: PMC11103130 DOI: 10.1002/ctm2.1660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDFs) are essential in the processes of skin ageing and wound healing. However, the underlying mechanism of HDFs in skin healing of the elderly has not been well defined. This study aims to elucidate the mechanisms of HDFs senescence and how senescent HDFs affect wound healing in aged skin. METHODS The expression and function of sperm equatorial segment protein 1 (SPESP1) in skin ageing were evaluated via in vivo and in vitro experiments. To delve into the potential molecular mechanisms by which SPESP1 influences skin ageing, a combination of techniques was employed, including proteomics, RNA sequencing, immunoprecipitation, chromatin immunoprecipitation and liquid chromatography-mass spectrometry analyses. Clearance of senescent cells by dasatinib plus quercetin (D+Q) was investigated to explore the role of SPESP1-induced senescent HDFs in wound healing. RESULTS Here, we define the critical role of SPESP1 in ameliorating HDFs senescence and retarding the skin ageing process. Mechanistic studies demonstrate that SPESP1 directly binds to methyl-binding protein, leading to Decorin demethylation and subsequently upregulation of its expression. Moreover, SPESP1 knockdown delays wound healing in young mice and SPESP1 overexpression induces wound healing in old mice. Notably, pharmacogenetic clearance of senescent cells by D+Q improved wound healing in SPESP1 knockdown skin. CONCLUSIONS Taken together, these findings reveal the critical role of SPESP1 in skin ageing and wound healing, expecting to facilitate the development of anti-ageing strategies and improve wound healing in the elderly.
Collapse
Affiliation(s)
- Yun Zhong
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Lei Zhou
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Department of DermatologyThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhouPeoples Republic of China
| | - Yi Guo
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Fan Wang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Fanping He
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Yufan Cheng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Xin Meng
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Hongfu Xie
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
| | - Yiya Zhang
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanPeoples Republic of China
| | - Ji Li
- Department of DermatologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- Hunan Key Laboratory of Aging BiologyXiangya HospitalCentral South UniversityChangshaPeoples Republic of China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunanPeoples Republic of China
| |
Collapse
|
35
|
Fernandez-Carro E, Remacha AR, Orera I, Lattanzio G, Garcia-Barrios A, del Barrio J, Alcaine C, Ciriza J. Human Dermal Decellularized ECM Hydrogels as Scaffolds for 3D In Vitro Skin Aging Models. Int J Mol Sci 2024; 25:4020. [PMID: 38612828 PMCID: PMC11011913 DOI: 10.3390/ijms25074020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Biomaterials play an important role in the development of advancing three dimensional (3D) in vitro skin models, providing valuable insights for drug testing and tissue-specific modeling. Commercial materials, such as collagen, fibrin or alginate, have been widely used in skin modeling. However, they do not adequately represent the molecular complexity of skin components. On this regard, the development of novel biomaterials that represent the complexity of tissues is becoming more important in the design of advanced models. In this study, we have obtained aged human decellularized dermal extracellular matrix (dECM) hydrogels extracted from cadaveric human skin and demonstrated their potential as scaffold for advanced skin models. These dECM hydrogels effectively reproduce the complex fibrillar structure of other common scaffolds, exhibiting similar mechanical properties, while preserving the molecular composition of the native dermis. It is worth noting that fibroblasts embedded within human dECM hydrogels exhibit a behavior more representative of natural skin compared to commercial collagen hydrogels, where uncontrolled cell proliferation leads to material shrinkage. The described human dECM hydrogel is able to be used as scaffold for dermal fibroblasts in a skin aging-on-a-chip model. These results demonstrate that dECM hydrogels preserve essential components of the native human dermis making them a suitable option for the development of 3D skin aging models that accurately represent the cellular microenvironment, improving existing in vitro skin models and allowing for more reliable results in dermatopathological studies.
Collapse
Affiliation(s)
- Estibaliz Fernandez-Carro
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Ana Rosa Remacha
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
| | - Irene Orera
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Giuseppe Lattanzio
- Proteomics Research Core Facility, Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain; (I.O.)
| | - Alberto Garcia-Barrios
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Jesús del Barrio
- Departamento de Química Orgánica, Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Clara Alcaine
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab, Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 500018 Zaragoza, Spain; (E.F.-C.); (C.A.)
- Institute for Health Research Aragón (IIS Aragón), Avda. San Juan Bosco, 13, 50009 Zaragoza, Spain
- Department of Anatomy and Histology, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
36
|
Zhang J, Xiang Y, Yang Q, Chen J, Liu L, Jin J, Zhu S. Adipose-derived stem cells derived decellularized extracellular matrix enabled skin regeneration and remodeling. Front Bioeng Biotechnol 2024; 12:1347995. [PMID: 38628439 PMCID: PMC11019001 DOI: 10.3389/fbioe.2024.1347995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
The tissues or organs derived decellularized extracellular matrix carry immunogenicity and the risk of pathogen transmission, resulting in limited therapeutic effects. The cell derived dECM cultured in vitro can address these potential risks, but its impact on wound remodeling is still unclear. This study aimed to explore the role of decellularized extracellular matrix (dECM) extracted from adipose derived stem cells (ADSCs) in skin regeneration. Methods: ADSCs were extracted from human adipose tissue. Then we cultivated adipose-derived stem cell cells and decellularized ADSC-dECM for freeze-drying. Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) were conducted to analyzed the main protein components in ADSC-dECM. The cell counting assay (CCK-8) and scratch assay were used to explore the effects of different concentrations of ADSC-dECM on the proliferation and migration of human keratinocytes cells (HaCaT), human umbilical vein endothelia cells (HUVEC) and human fibroblasts (HFB), respectively. Moreover, we designed a novel ADSC-dECM-CMC patch which used carboxymethylcellulose (CMC) to load with ADSC-dECM; and we further investigated its effect on a mouse full thickness skin wound model. Results: ADSC-dECM was obtained after decellularization of in vitro cultured human ADSCs. Western blot, ELISA and mass spectrometry results showed that ADSC-dECM contained various bioactive molecules, including collagen, elastin, laminin, and various growth factors. CCK-8 and scratch assay showed that ADSC-dECM treatment could significantly promote the proliferation and migration of HaCaT, human umbilical vein endothelia cells, and human fibroblasts, respectively. To evaluate the therapeutic effect on wound healing in vivo, we developed a novel ADSC-dECM-CMC patch and transplanted it into a mouse full-thickness skin wound model. And we found that ADSC-dECM-CMC patch treatment significantly accelerated the wound closure with time. Further histology and immunohistochemistry indicated that ADSC-dECM-CMC patch could promote tissue regeneration, as confirmed via enhanced angiogenesis and high cell proliferative activity. Conclusion: In this study, we developed a novel ADSC-dECM-CMC patch containing multiple bioactive molecules and exhibiting good biocompatibility for skin reconstruction and regeneration. This patch provides a new approach for the use of adipose stem cells in skin tissue engineering.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yang Xiang
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Quyang Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jiqiu Chen
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Lei Liu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Jin
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shihui Zhu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Li Y, Leng Y, Liu Y, Zhong J, Li J, Zhang S, Li Z, Yang K, Kong X, Lao W, Bi C, Zhai A. Advanced multifunctional hydrogels for diabetic foot ulcer healing: Active substances and biological functions. J Diabetes 2024; 16:e13537. [PMID: 38599855 PMCID: PMC11006623 DOI: 10.1111/1753-0407.13537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 04/12/2024] Open
Abstract
AIM Hydrogels with excellent biocompatibility and biodegradability can be used as the desirable dressings for the therapy of diabetic foot ulcer (DFU). This review aimed to summarize the biological functions of hydrogels, combining with the pathogenesis of DFU. METHODS The studies in the last 10 years were searched and summarized from the online database PubMed using a combination of keywords such as hydrogel and diabetes. The biological functions of hydrogels and their healing mechanism on DFU were elaborated. RESULTS In this review, hydrogels were classified by their active substances such as drugs, cytokines, photosensitizers, and biomimetic peptide. Based on this, the biological functions of hydrogels were summarized by associating the pathogenesis of DFU, including oxidative stress, chronic inflammation, cell phenotype change, vasculopathy, and infection. This review also pointed out some of the shortcomings of hydrogels in present researches. CONCLUSIONS Hydrogels were classified into carrier hydrogels and self-functioning hydrogels in this review. Besides, the functions and components of existing hydrogels were clarified to provide assistance for future researches and clinical applications.
Collapse
Affiliation(s)
- Yuetong Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Yuxin Leng
- Department of Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yang Liu
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jianhua Zhong
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Jiaxin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Shitong Zhang
- Department of General Practice, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Zhenlin Li
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Kaming Yang
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Xinyi Kong
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Wanwen Lao
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Changlong Bi
- Department of Endocrinology, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| |
Collapse
|
38
|
Yan X, Bao X, Cheng S, Ba Q, Chang J, Zhou K, Yan X. Anti-aging and rejuvenating effects and mechanism of Dead Sea water in skin. Int J Cosmet Sci 2024; 46:307-317. [PMID: 38212954 DOI: 10.1111/ics.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE External environmental stressors and internal factors have a significant impact on the skin, causing inflammation, aging, reduced immunity and other adverse responses. Dead Sea Water (DSW) is well known for its dermatological benefits and has been widely used in dermatological therapy and skin care for conditions such as psoriasis, atopic dermatitis and photoaging. However, the anti-aging and rejuvenating effects of DSW and the related biological pathways involved, which have attracted increasing attention, are not fully understood. The aim of this study is to investigate the anti-aging and rejuvenating effects of DSW and to explore the related potential biological mechanisms of DSW under different environmental conditions. METHODS The effects of DSW were investigated using in vitro human dermal cells and reconstructed skin models. Extracellular matrix (ECM) components and the morphological changes at the dermal-epidermal junction (DEJ) in a 3D human skin model were evaluated after DSW treatment. RNA sequencing (RNA-seq) analysis of human dermal fibroblast models after DSW treatment was performed to explore the potential mechanisms of action of DSW under normal and UV stress conditions. RESULTS The novel findings in this work present the biological functions of DSW, including procollagen-1 and elastin secretion, hemidesmosome increase and the epidermal basal cell regeneration. In addition, GO, KEGG and Reactome analyses reveal the activation of pathways related to ion transmembrane transporter activity, ECM component biosynthesis, senescence-associated secretory phenotype (SASP), DNA repair and autophagy, which are associated with the anti-aging activities of DSW. CONCLUSION Our work provides new perspectives for understanding the anti-aging and rejuvenating effects and mechanisms of DSW. The new findings also provide a theoretical basis for the further development of age-related strategies.
Collapse
Affiliation(s)
- Xiaojuan Yan
- Department of Fundamental Research, Fosun Cosmetics (Shanghai) Bio-Technology Co., Ltd, Shanghai, China
| | - Xijun Bao
- Department of Fundamental Research, Fosun Cosmetics (Shanghai) Bio-Technology Co., Ltd, Shanghai, China
| | - Shujun Cheng
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qian Ba
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junzhuang Chang
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kanghui Zhou
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiufang Yan
- Department of Fundamental Research, Fosun Cosmetics (Shanghai) Bio-Technology Co., Ltd, Shanghai, China
| |
Collapse
|
39
|
Bour F, Khalilollah S, Omraninava M, Mirzaie MS, Taghiloo S, Mehrparvar S, Nasiry D, Raoofi A. Three-dimensional bioengineered dermal derived matrix scaffold in combination with adipose-derived stem cells accelerate diabetic wound healing. Tissue Cell 2024; 87:102302. [PMID: 38219451 DOI: 10.1016/j.tice.2024.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Due to the multifactorial nature of diabetic wounds, the most effective treatments require combinatorial approach. Herein we investigated whether engraftment of a bioengineered three-dimensional dermal derived matrix scaffold (DDMS) in combination with adipose-derived stem cells (ADSs), could accelerate diabetic wound healing. Diabetic animals were randomly planned into the control group, DDMS group, ADS group, and DDMS+ADS group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. We found that the wound contraction rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts and blood vessels, collagen density, and tensiometrical parameters were meaningfully greater in the treated groups than in the control group, and these changes were more obvious in the DDMS+ADS ones (p < 0.05). Moreover, the expression of TGF-β, bFGF, and VEGF genes were considerably upregulated in treated groups compared to the control group and were greater in the DDMS+ADS group (p < 0.05). This is while expression of TNF-α and IL-1β, as well as the numerical densities of neutrophils and macrophages decreased more considerably in the DDMS+ADS group than in the other groups (p < 0.05). Overall, it was found that using both DDMS engraftment and ADS transplantation has more impact on diabetic wound healing.
Collapse
Affiliation(s)
- Fatemeh Bour
- Babol University of Medical Sciences, Babol, Iran
| | - Shayan Khalilollah
- School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melody Omraninava
- Health Reproductive Research Center, Islamic Azad University, Sari, Iran
| | | | - Saeid Taghiloo
- School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sophia Mehrparvar
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
40
|
Huang Y, Li S, Pan J, Song C, Chen W, Zhang Y. Liquiritin Carbomer Gel Cold Paste Promotes Healing of Solar Dermatitis in Mice. Int J Mol Sci 2024; 25:3767. [PMID: 38612578 PMCID: PMC11011678 DOI: 10.3390/ijms25073767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 μg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1β, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.
Collapse
Affiliation(s)
- Yanfang Huang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Sijia Li
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinghua Pan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Congjing Song
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiqiang Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yun Zhang
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
41
|
Zhang X, Zhang M, Li Y, Jiang Y. Comprehensive transcriptional analysis of early dorsal skin development in pigs. Gene 2024; 899:148141. [PMID: 38184019 DOI: 10.1016/j.gene.2024.148141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Porcine skin is similar to human skin in physiology, anatomy and histology and is often used as a model animal for human skin research. There are few studies on the transcriptome aspects of pig skin during the embryonic period. In this study, RNA sequencing was performed on the dorsal skin of Chenghua sows at embryonic day 56 (E56), embryonic day 76 (E76), embryonic day 105 (E105), and 3 days after birth (D3) to explore RNA changes in pig dorsal skin at four ages. A number of skin-related differential genes were identified by intercomparison between RNAs at four time points, and KEGG functional analysis showed that these differential genes were mainly enriched in metabolic and developmental, immune, and disease pathways, and the pathways enriched in GO analysis were highly overlapping. Collagen is an important part of the skin, with type I collagen making up the largest portion. In this study, collagen type I alpha 1 (COL1A1) and collagen type I alpha 2 (COL1A2) were significantly upregulated at four time points. In addition, lncRNA-miRNA-mRNA and miRNA-circRNA coexpression networks were constructed. The data obtained may help to explain age-related changes in transcriptional patterns during skin development and provide further references for understanding human skin development at the molecular level.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Mei Zhang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yujing Li
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Yanzhi Jiang
- Department of Zoology, College of Life Science, Sichuan Agricultural University, Ya'an 625014, Sichuan, China.
| |
Collapse
|
42
|
Zhou Z, Zhang Y, Zeng Y, Yang D, Mo J, Zheng Z, Zhang Y, Xiao P, Zhong X, Yan W. Effects of Nanomaterials on Synthesis and Degradation of the Extracellular Matrix. ACS NANO 2024; 18:7688-7710. [PMID: 38436232 DOI: 10.1021/acsnano.3c09954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) remodeling is accompanied by the continuous synthesis and degradation of the ECM components. This dynamic process plays an important role in guiding cell adhesion, migration, proliferation, and differentiation, as well as in tissue development, body repair, and maintenance of homeostasis. Nanomaterials, due to their photoelectric and catalytic properties and special structure, have garnered much attention in biomedical fields for use in processes such as tissue engineering and disease treatment. Nanomaterials can reshape the cell microenvironment by changing the synthesis and degradation of ECM-related proteins, thereby indirectly changing the behavior of the surrounding cells. This review focuses on the regulatory role of nanomaterials in the process of cell synthesis of different ECM-related proteins and extracellular protease. We discuss influencing factors and possible related mechanisms of nanomaterials in ECM remodeling, which may provide different insights into the design and development of nanomaterials for the treatment of ECM disorder-related diseases.
Collapse
Affiliation(s)
- Zhiyan Zhou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510260, China
| | - Yuting Zeng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dehong Yang
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayao Mo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ziting Zheng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuxin Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ping Xiao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xincen Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wenjuan Yan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
43
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
44
|
Wu D, Chen S, Huang D, Huang Z, Zhen N, Zhou Z, Chen J. circ-Amotl1 in extracellular vesicles derived from ADSCs improves wound healing by upregulating SPARC translation. Regen Ther 2024; 25:290-301. [PMID: 38318480 PMCID: PMC10839578 DOI: 10.1016/j.reth.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
Aim This study aims to explore the mechanism of circ- AMOT-like protein 1 (Amotl1) in extracellular vesicles (Evs) derived from adipose-derived stromal cells (ADSCs) regulating SPARC translation in wound healing process. Methods The morphology, wound healing rate of the wounds and Ki67 positive rate in mouse wound healing models were assessed by H&E staining and immunohistochemistry (IHC). The binding of IGF2BP2 and SPARC was verified by RNA pull-down. Adipose-derived stromal cells (ADSCs) were isolated and verified. The Evs from ADSCs (ADSC-Evs) were analyzed. Results Overexpression of SPARC can promote the wound healing process in mouse models. IGF2BP2 can elevate SPARC expression to promote the proliferation and migration of HSFs. circ-Amotl1 in ADSC-Evs can increase SPARC expression by binding IGF2BP2 to promote the proliferation and migration of HSFs. Conclusion ADSC-Evs derived circ-Amotl1 can bind IGF2BP2 to increase SPARC expression and further promote wound healing process.
Collapse
Affiliation(s)
- Dazhou Wu
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Shengyi Chen
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Dongdong Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Zhipeng Huang
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Na Zhen
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| | - Jicai Chen
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, PR China
| |
Collapse
|
45
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
46
|
Chang CT, Huang CH. Effects of various cross-linked collagen scaffolds on wound healing in rats model by deep-learning CNN. Comput Methods Biomech Biomed Engin 2024:1-17. [PMID: 38357717 DOI: 10.1080/10255842.2024.2315141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
Scar tissue is connective tissue formed on the wound during the wound-healing process. The most significant distinction between scar tissue and normal tissue is the appearance of covalent cross-linking and the amount of collagen fibers in the tissue. This study investigates the efficacy of four types of collagen scaffolds in promoting wound healing and regeneration in a Sprague-Dawley murine model-the histomorphology analysis of collagen scaffolds and developing a deep learning model for accurate tissue classification. Four female rats (n = 24) groups received collagen scaffolds prepared through physical and chemical crosslinking. Wound healing progress was evaluated by monitoring granulation tissue formation, collagen matrix organization, and collagen fiber deposition, with histological scoring for quantification-the EDC and HA groups demonstrated enhanced tissue regeneration. The EDC and HA groups observed significant differences in wound regeneration outcomes. Deep-learning CNN models with data augmentation techniques were used for image analysis to enhance objectivity. The CNN architecture featured pre-trained VGG16 layers and global average pooling (GAP) layers. Feature visualization using Grad-CAM heatmaps provided insights into the neural network's focus on specific wound features. The model's AUC score of 0.982 attests to its precision. In summary, collagen scaffolds can promote wound healing in mice, and the deep learning image analysis method we proposed may be a new method for wound healing assessment.
Collapse
Affiliation(s)
- Chih-Tsung Chang
- Department of Electronic Engineering, Lunghwa University of Science and Technology, Guishan, Taoyuan County, Taiwan
| | - Chun-Hui Huang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
47
|
Franzetti J, Durante S, Mastroleo F, Volpe S, De Lorenzi F, Rotondi M, Lorubbio C, Vitullo A, Frassoni S, Bagnardi V, Cambria R, Cattani F, Vavassori A, Jereczek-Fossa BA. Post-operative KEloids iRradiation (POKER): does the surgery/high-dose interventional radiotherapy association make a winning hand? LA RADIOLOGIA MEDICA 2024; 129:328-334. [PMID: 38280971 PMCID: PMC10879234 DOI: 10.1007/s11547-024-01756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
PURPOSE To report the results involving post-operative interventional radiotherapy (POIRT) in a homogenous cohort of patients affected by keloid and treated at a single institution with the same fractionation schedule. PATIENTS AND METHODS Inclusion criteria were: surgery with a histopathological diagnosis of keloid, subsequent high-dose rate interventional radiotherapy (HDR-IRT)-12 Gy in 4 fractions (3 Gy/fr) twice a day-and follow-up period ≥ 24 months. RESULTS One-hundred and two patients and a total of 135 keloids were eligible for the analyses. Median follow-up was 64 [IQR: 25-103] months. Thirty-six (26.7%) recurrences were observed, 12-months and 36-months cumulative incidence of recurrence were 20.7% (95% CI 12.2-28.5) and 23.8% (95% CI 14.9-31.7) respectively. History of spontaneous keloids (HR = 7.00, 95% CI 2.79-17.6, p < 0.001), spontaneous cheloid as keloid cause (HR = 6.97, 95% CI 2.05-23.7, p = 0.002) and sternal (HR = 10.6, 95% CI 3.08-36.8, p < 0.001), ear (HR = 6.03, 95% CI 1.71-21.3, p = 0.005) or limb (HR = 18.8, 95% CI 5.14-68.7, p < 0.001) keloid sites were significantly associated to a higher risk of recurrence. CONCLUSIONS The findings support the use of surgery and POIRT as an effective strategy for controlling keloid relapses. Further studies should focus on determining the optimal Biologically Effective Dose and on establishing a scoring system for patient selection.
Collapse
Affiliation(s)
- Jessica Franzetti
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Stefano Durante
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy.
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100, Novara, Italy.
| | - Stefania Volpe
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Francesca De Lorenzi
- Department of Plastic and Reconstructive Surgery, European Institute of Oncology, IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
| | - Marco Rotondi
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Chiara Lorubbio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Angelo Vitullo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | - Raffaella Cambria
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology IRCCS, Milan, Italy
| | - Andrea Vavassori
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Ripamonti, 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| |
Collapse
|
48
|
Mao J, Chen L, Qian S, Wang Y, Zhao B, Zhao Q, Lu B, Mao X, Zhai P, Zhang Y, Zhang L, Sun X. Transcriptome network analysis of inflammation and fibrosis in keloids. J Dermatol Sci 2024; 113:62-73. [PMID: 38242738 DOI: 10.1016/j.jdermsci.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 01/21/2024]
Abstract
BACKGROUND Keloid (KL) is a common benign skin tumor. KL is typically characterized by significant fibrosis and an intensive inflammatory response. Therefore, a comprehensive understanding of the interactions between cellular inflammation and fibrotic cells is essential to elucidate the mechanisms driving the progression of KL and to develop therapeutics. OBJECTIVE Investigate the transcriptome landscape of inflammation and fibrosis in keloid scars. METHODS In this paper, we performed transcriptome sequencing and microRNA (miRNA) sequencing on unselected live cells from six human keloid tissues and normal skin tissues to elucidate a comprehensive transcriptome landscape. In addition, we used single-cell RNA sequencing (scRNA-seq) analysis to analyze intercellular communication networks and enrich fibroblast populations in two additional keloid and normal skin samples to study fibroblast diversity. RESULTS By RNA sequencing and a miRNA-mRNA-PPI network analysis, we identified miR-615-5p and miR-122b-3p as possible miRNAs associated with keloids, as they differed most significantly in keloids. Similarly, COL3A1, COL1A2, THBS2, TNC, IGTA, THBS4, TGFB3 as genes with significant differences in keloid may be associated with keloid development. Using single-cell RNA sequencing data from 24,086 cells collected from normal or keloid, we report reconstructed intercellular signaling network analysis and aggregation to modules associated with specific cell subpopulations at the cellular level for keloid alterations. CONCLUSIONS Our multitranscriptomic dataset delineates inflammatory and fibro heterogeneity of human keloids, underlining the importance of intercellular crosstalk between inflammatory cells and fibro cells and revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Chen
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhuan Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binfan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peisong Zhai
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Cao G, Yin S, Ma J, Lu Y, Song R, Wu Z, Liu C, Liu J, Wu P, Sun R, Chen A, Wang Y. YAP promotes the healing of ischemic wounds by reducing ferroptosis in skin fibroblasts through inhibition of ferritinophagy. Heliyon 2024; 10:e24602. [PMID: 38298641 PMCID: PMC10828694 DOI: 10.1016/j.heliyon.2024.e24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
The impaired healing of chronic wounds is often attributed to the ischemic and hypoxic microenvironment, leading to increased cell death. Ferroptosis, a novel form of cell death unveiled in recent years, could potentially be linked with the process of wound healing. In this study, we explored the significance and mechanism of ferroptosis in ischemic wounds. Using transmission electron microscopy, Western blot, flow cytometry, immunofluorescence, and glutathione (GSH) assay, we observed that the death of primary mouse skin fibroblasts induced by oxygen and glucose deprivation (OGD) was associated with ferroptosis. Specifically, we observed elevated intracellular Fe2+ and lipid peroxidation levels and decreased GSH levels in vitro, indicative of ferroptosis. Importantly, we found that ferroptosis in OGD-treated skin fibroblasts was dependent on autophagy, as the autophagy inhibitor chloroquine phosphate (CHQ) significantly reduced ferroptosis induced by OGD. Moreover, our study revealed that NCOA4-mediated ferritinophagy significantly contributed to the occurrence of ferroptosis induced by OGD in skin fibroblasts. Additionally, we identified the involvement of YAP in the regulation of ferritinophagy, with YAP suppressing NCOA4 expression in OGD-treated skin fibroblasts, thereby reducing ferroptosis. Furthermore, in ischemic wound models in mice, both inhibitors of ferroptosis and autophagy promoted wound healing, while a YAP inhibitor, verteporfin, delayed wound healing. In conclusion, these findings indicate that ferroptosis, regulated by YAP through ferritinophagy inhibition, presents a novel mechanism responsible for the delayed healing of ischemic wounds. Understanding this process could offer promising therapeutic targets to improve wound healing in ischemic conditions.
Collapse
Affiliation(s)
- Guoqi Cao
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
| | - Siyuan Yin
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Jiaxu Ma
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Yongpan Lu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Ru Song
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Zhenjie Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Chunyan Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Jian Liu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Peng Wu
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Rui Sun
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
| | - Aoyu Chen
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| | - Yibing Wang
- Department of Plastic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250012, PR China
- Jinan Clinical Research Center for Tissue Engineering Skin Regeneration and Wound Repair, Jinan, Shandong, 250014, PR China
- Department of Plastic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, PR China
| |
Collapse
|
50
|
Hussain H, Paidas MJ, Rajalakshmi R, Fadel A, Ali M, Chen P, Jayakumar AR. Dermatologic Changes in Experimental Model of Long COVID. Microorganisms 2024; 12:272. [PMID: 38399677 PMCID: PMC10892887 DOI: 10.3390/microorganisms12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic, declared in early 2020, has left an indelible mark on global health, with over 7.0 million deaths and persistent challenges. While the pharmaceutical industry raced to develop vaccines, the emergence of mutant severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) strains continues to pose a significant threat. Beyond the immediate concerns, the long-term health repercussions of COVID-19 survivors are garnering attention, particularly due to documented cases of cardiovascular issues, liver dysfunction, pulmonary complications, kidney impairments, and notable neurocognitive deficits. Recent studies have delved into the pathophysiological changes in various organs following post-acute infection with murine hepatitis virus-1 (MHV-1), a coronavirus, in mice. One aspect that stands out is the impact on the skin, a previously underexplored facet of long-term COVID-19 effects. The research reveals significant cutaneous findings during both the acute and long-term phases post-MHV-1 infection, mirroring certain alterations observed in humans post-SARS-CoV-2 infection. In the acute stages, mice exhibited destruction of the epidermal layer, increased hair follicles, extensive collagen deposition in the dermal layer, and hyperplasticity of sebaceous glands. Moreover, the thinning of the panniculus carnosus and adventitial layer was noted, consistent with human studies. A long-term investigation revealed the absence of hair follicles, destruction of adipose tissues, and further damage to the epidermal layer. Remarkably, treatment with a synthetic peptide, SPIKENET (SPK), designed to prevent Spike glycoprotein-1 binding with host receptors and elicit a potent anti-inflammatory response, showed protection against MHV-1 infection. Precisely, SPK treatment restored hair follicle loss in MHV-1 infection, re-architected the epidermal and dermal layers, and successfully overhauled fatty tissue destruction. These promising findings underscore the potential of SPK as a therapeutic intervention to prevent long-term skin alterations initiated by SARS-CoV-2, providing a glimmer of hope in the battle against the lingering effects of the pandemic.
Collapse
Affiliation(s)
- Hussain Hussain
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
- Department of Internal Medicine and Infectious Disease, Larkin Community Hospital, Miami, FL 33143, USA
| | - Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramamoorthy Rajalakshmi
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
| | - Aya Fadel
- Department of Internal Medicine, Ocean University Medical Center—Hackensack Meridian Health, Brick Township, NJ 08724, USA;
| | - Misha Ali
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Pingping Chen
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.H.); (R.R.)
| |
Collapse
|