1
|
Salazar Ariza JF, Lux F, Da Cruz-Boisson F, Resende de Azevedo J, Vera R, Tillement O, Montembault A, David L. Chitosan based hydrogel for iron (III) chelation in biological conditions. Carbohydr Polym 2025; 347:122670. [PMID: 39486926 DOI: 10.1016/j.carbpol.2024.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 08/27/2024] [Indexed: 11/04/2024]
Abstract
In this study, a chitosan derivative with strong iron (III) chelating capabilities was developed by grafting the Deferoxamine (DFO) chelator to achieve a substitution degree of 3.8 ± 0.2 %. Through blending with ungrafted chitosan of low degree of acetylation (DA), a formulation able to form a physical hydrogels was formed in aqueous media, without the requirement of a cross-linking agent. The functionalization of chitosan with DFO led to xerogels exhibiting superior iron (III) chelation capacity and higher swelling when exposed to aqueous solutions, in comparison with to an unmodified chitosan xerogel. Notably, this material extracts iron (III) even against the strong iron chelator deferiprone. Furthermore, the material demonstrates selectivity for iron (III) chelation even in the presence of competing cations like copper (II) and zinc (II).
Collapse
Affiliation(s)
- Juan Felipe Salazar Ariza
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière-Matière (ILM), UMR 5306, 2 rue Victor Grignard, F-69622 Villeurbanne Cedex, France; Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France
| | - François Lux
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière-Matière (ILM), UMR 5306, 2 rue Victor Grignard, F-69622 Villeurbanne Cedex, France; Institut Universitaire de France (IUF), 75231 Paris, France
| | - Fernande Da Cruz-Boisson
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France
| | - Jacqueline Resende de Azevedo
- Universite Claude Bernard Lyon 1, CNRS, Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), UMR5007, 3, rue Victor Grignard, Bâtiment CPE, F-69100 Villeurbanne Cedex, France
| | - Ruben Vera
- Universite Claude Bernard Lyon 1, Centre de Diffractométrie Henri Longchambon, 5 rue de La Doua, F-69100 Villeurbanne, France
| | - Olivier Tillement
- Universite Claude Bernard Lyon 1, CNRS, Institut Lumière-Matière (ILM), UMR 5306, 2 rue Victor Grignard, F-69622 Villeurbanne Cedex, France
| | - Alexandra Montembault
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France
| | - Laurent David
- Universite Claude Bernard Lyon 1, INSA de Lyon, Universite Jean Monnet, CNRS, Ingénierie des Matériaux Polymères (IMP), UMR 5223, 15 bd Latarjet, F-69622 Villeurbanne, France.
| |
Collapse
|
2
|
Xu Q, Ren L, Ren N, Yang Y, Pan J, Zheng Y, Wang G. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem 2024; 479:2615-2636. [PMID: 38051404 DOI: 10.1007/s11010-023-04893-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.
Collapse
Affiliation(s)
- Qiaoping Xu
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China
| | - Lanqi Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Ning Ren
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yibei Yang
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Junjie Pan
- Fourth Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Yu Zheng
- Second Clinical Medical College of Zhejiang, Chinese Medical University, Hangzhou, 310051, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Westlake University School of Medical, Hangzhou, 310006, China.
| |
Collapse
|
3
|
Yang SQ, Zhao X, Zhang J, Liao DY, Wang YH, Wang YG. Ferroptosis in renal fibrosis: a mini-review. J Drug Target 2024; 32:785-793. [PMID: 38721679 DOI: 10.1080/1061186x.2024.2353363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Ferroptosis is a novel form of programmed cell death that is iron-dependent and distinct from autophagy, apoptosis, and necroptosis. It is primarily characterised by a decrease in glutathione peroxidase 4 (GPX4) activity, or by the accumulation of lipid peroxidation and reactive oxygen species (ROS). Renal fibrosis is a common pathological change in the progression of various primary and secondary renal diseases to end-stage renal disease and poses a serious threat to human health with high morbidity and mortality. Multiple pathways contribute to the development of renal fibrosis, with ferroptosis playing a crucial role in renal fibrosis pathogenesis due to its involvement in the production of ROS. Ferroptosis is related to several signalling pathways, including System Xc-/GPX4, abnormal iron metabolism and lipid peroxidation. A number of studies have indicated that ferroptosis is closely involved in the process of renal fibrosis caused by various kidney diseases such as glomerulonephritis, renal ischaemia-reperfusion injury, diabetic nephropathy and renal calculus. Identifying the underlying molecular mechanisms that determine cell death would open up new insights to address a therapeutic strategy to renal fibrosis. The review aimed to browse and summarise the known mechanisms of ferroptosis that may be associated with biological reactions of renal fibrosis.
Collapse
Affiliation(s)
- Si-Qi Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Xi Zhao
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Jing Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Dong-Ying Liao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
| | - Yu-Han Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| | - Yao-Guang Wang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, TianJin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, TianJin, China
| |
Collapse
|
4
|
Pei J, Wei Y, Lv L, Tao H, Zhang H, Ma Y, Han L. Preliminary evidence for the presence of programmed cell death in pressure injuries. J Tissue Viability 2024:S0965-206X(24)00117-7. [PMID: 39095251 DOI: 10.1016/j.jtv.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Pressure injuries (PIs) are a common healthcare problem worldwide and are considered to be the most expensive chronic wounds after arterial ulcers. Although the gross factors including ischemia-reperfusion (I/R) have been identified in the etiology of PIs, the precise cellular and molecular mechanisms contributing to PIs development remain unclear. Various forms of programmed cell death including apoptosis, autophagy, pyroptosis, necroptosis and ferroptosis have been identified in PIs. In this paper, we present a detailed overview on various forms of cell death; discuss the recent advances in the roles of cell death in the occurrence and development of PIs and found much of the evidence is novel and based on animal experiments. Herein, we also state critical evaluation of the existing data and future perspective in the field. A better understanding of the programmed cell death mechanism in PIs may have important implications in driving the development of new preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Juhong Pei
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Yuting Wei
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Hongxia Tao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - HongYan Zhang
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - YuXia Ma
- School of Nursing, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China; School of Nursing, Lanzhou University, Lanzhou, Gansu, China; Department of Nursing, Gansu Provincial Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
5
|
Chu J, Wang K, Lu L, Zhao H, Hu J, Xiao W, Wu Q. Advances of Iron and Ferroptosis in Diabetic Kidney Disease. Kidney Int Rep 2024; 9:1972-1985. [PMID: 39081773 PMCID: PMC11284386 DOI: 10.1016/j.ekir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 08/02/2024] Open
Abstract
Diabetes mellitus presents a significant threat to human health because it disrupts energy metabolism and gives rise to various complications, including diabetic kidney disease (DKD). Metabolic adaptations occurring in the kidney in response to diabetes contribute to the pathogenesis of DKD. Iron metabolism and ferroptosis, a recently defined form of cell death resulting from iron-dependent excessive accumulation of lipid peroxides, have emerged as crucial players in the progression of DKD. In this comprehensive review, we highlight the profound impact of adaptive and maladaptive responses regulating iron metabolism on the progression of kidney damage in diabetes. We summarize the current understanding of iron homeostasis and ferroptosis in DKD. Finally, we propose that precise manipulation of iron metabolism and ferroptosis may serve as potential strategies for kidney management in diabetes.
Collapse
Affiliation(s)
- Jiayi Chu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Kewu Wang
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Lulu Lu
- Department of Nutrition and Toxicology, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Hui Zhao
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Jibo Hu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Qian Wu
- Department of Radiology, Center of Regenerative and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
6
|
Sivaprasad M, Shalini T, Sahay M, Sahay R, Satyanarayanan M, Reddy GB. Plasma levels and dietary intake of minerals in patients with type 2 diabetes and chronic kidney disease: A case-control study. J Trace Elem Med Biol 2024; 84:127425. [PMID: 38484635 DOI: 10.1016/j.jtemb.2024.127425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND AND AIM Diabetic kidney disease (DKD) is the primary cause of chronic kidney disease (CKD) worldwide. Altered mineral levels leading to adverse outcomes are widely reported in diabetes but limited in DKD, in the Indian scenario, hence this study was taken up to address this issue. METHODS A hospital-based case-control study was taken up with 54 healthy controls (C) and 140 subjects with type 2 diabetes wherein 74 subjects with diabetes and CKD formed the DKD group, and 66 subjects with diabetes but no CKD formed the diabetic no-chronic kidney disease (DNCKD) group. High-resolution inductively coupled plasma mass spectrometry was used to evaluate the blood levels of minerals (calcium (Ca), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), and selenium (Se)), and a raw food-based food frequency questionnaire for dietary intakes. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation (mL/min/1.73 m2) and albuminuria. Spearman's rank correlation was used to evaluate the relationship between the categorical variables. RESULTS The median values of plasma Ca in the DKD group were significantly lower compared with the DNCKD and C groups (10.5 mg/dL vs. 11.0 mg/dL and 11.7 mg/dL, p<0.001). Furthermore, plasma Ca levels lowered with declining kidney function, as evidenced by the eGFR and albuminuria segregation. Dietary intake of minerals did not correlate with the corresponding plasma levels. However, in the DKD group, eGFR correlated positively with the plasma levels of Ca (r= 0.422, p=0.001), Cr (r= 0.351, p=0.008), Mn (r= 0.338, p=0.011), Fe (r= 0.403, p=0.002), Cu (r= 0.274, p=0.041) and negatively with Se (r= -0.486, p<0.001). CONCLUSION Plasma Ca levels are lower in the DKD group with a strong positive association with eGFR, indicating its role in predicting the onset and progression of kidney function decline.
Collapse
Affiliation(s)
- Mudili Sivaprasad
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Tattari Shalini
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Manisha Sahay
- Nephrology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | - Rakesh Sahay
- Endocrinology Division, Osmania General Hospital and Medical College, Hyderabad, India
| | | | | |
Collapse
|
7
|
Ren X, Jiang Z, Liu F, Wang Q, Chen H, Yu L, Ma C, Wang R. Association of serum ferritin and all-cause mortality in AKI patients: a retrospective cohort study. Front Med (Lausanne) 2024; 11:1368719. [PMID: 38938379 PMCID: PMC11208335 DOI: 10.3389/fmed.2024.1368719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Background Serum ferritin (SF) is clinically found to be elevated in many disease conditions, and our research examines serum ferritin in patients with acute kidney injury (AKI) and its implication on the risk of short-term mortality in AKI. Methods Data were extracted from the Medical Information Mart for Intensive Care IV 2.2 (MIMIC-IV 2.2) database. Adult patients with AKI who had serum ferritin tested on the first day of ICU admission were included. The primary outcome was 28-day mortality. Kaplan-Meier survival curves and Cox proportional hazards models were used to test the relationship between SF and clinical outcomes. Subgroup analyses based on the Cox model were further conducted. Results Kaplan-Meier survival curves showed that a higher SF value was significantly associated with an enhanced risk of 28-day mortality, 90-day mortality, ICU mortality and hospital mortality (log-rank test: p < 0.001 for all clinical outcomes). In multivariate Cox regression analysis, high level of SF with mortality was significantly positive in all four outcome events (all p < 0.001). This result remains robust after adjusting for all variables. Subgroup analysis of SF with 28-day mortality based on Cox model-4 showed that high level of SF was associated with high risk of 28-day mortality in patients regardless of the presence or absence of sepsis (p for interaction = 0.730). Positive correlations of SF and 28-day mortality were confirmed in all other subgroups (p for interaction>0.05). Conclusion High level of SF is an independent prognostic predictor of 28-day mortality in patients with AKI.
Collapse
Affiliation(s)
- Xiaoxu Ren
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Zhiming Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Quanzhen Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Hairong Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Chaoqun Ma
- Department of Emergency Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Olinder J, Stjernqvist MJ, Lindén A, Salomonsson ET, Annborn M, Herwald H, Rydén C. Hepcidin, in contrast to heparin binding protein, does not portend acute kidney injury in patients with community acquired septic shock. PLoS One 2024; 19:e0299257. [PMID: 38696394 PMCID: PMC11065221 DOI: 10.1371/journal.pone.0299257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/07/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and severe complication in patients treated at an Intensive Care Unit (ICU). The pathogenesis of AKI has been reported to involve hypoperfusion, diminished oxygenation, systemic inflammation, and damage by increased intracellular iron concentration. Hepcidin, a regulator of iron metabolism, has been shown to be associated with sepsis and septic shock, conditions that can result in AKI. Heparin binding protein (HBP) has been reported to be associated with sepsis and AKI. The aim of the present study was to compare serum hepcidin and heparin binding protein (HBP) levels in relation to AKI in patients admitted to the ICU. METHODS One hundred and forty patients with community acquired illness admitted to the ICU within 24 hours after first arrival to the hospital were included in the study. Eighty five of these patients were diagnosed with sepsis and 55 with other severe non-septic conditions. Logistic and linear regression models were created to evaluate possible correlations between circulating hepcidin and heparin-binding protein (HBP), stage 2-3 AKI, peak serum creatinine levels, and the need for renal replacement therapy (RRT). RESULTS During the 7-day study period, 52% of the 85 sepsis and 33% of the 55 non-sepsis patients had been diagnosed with AKI stage 2-3 already at inclusion. The need for RRT was 20% and 15%, respectively, in the groups. Hepcidin levels at admission were significantly higher in the sepsis group compared to the non-sepsis group but these levels did not significantly correlate to the development of stage 2-3 AKI in the sepsis group (p = 0.189) nor in the non-sepsis group (p = 0.910). No significant correlation between hepcidin and peak creatinine levels, nor with the need for RRT was observed. Stage 2-3 AKI correlated, as expected, significantly with HBP levels at admission in both groups (Odds Ratio 1.008 (CI 1.003-1.014, p = 0.005), the need for RRT, as well as with peak creatinine in septic patients. CONCLUSION Initial serum hepcidin, and HBP levels in patients admitted to the ICU are biomarkers for septic shock but in contrast to HBP, hepcidin does not portend progression of disease into AKI or a later need for RRT. Since hepcidin is a key regulator of iron metabolism our present data do not support a decisive role of initial iron levels in the progression of septic shock into AKI.
Collapse
Affiliation(s)
- Jon Olinder
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Albin Lindén
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Martin Annborn
- Department of Clinical Sciences, Sections of Anesthesiology and Intensive Care, Lund University, Lund, Sweden
- Department of Anesthesiology and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Cecilia Rydén
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Zhang Y, Zeng Y, Huang M, Cao G, Lin L, Wang X, Cheng Q. Andrographolide attenuates sepsis-induced acute kidney injury by inhibiting ferroptosis through the Nrf2/FSP1 pathway. Free Radic Res 2024; 58:156-169. [PMID: 38478853 DOI: 10.1080/10715762.2024.2330413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, which causes renal dysfunction known as sepsis-associated acute kidney injury (S-AKI). Ferroptosis is a form of lipid peroxidation dependent on iron and reactive oxygen species that differs from other forms of programmed cell death at the morphological and biochemical levels. Andrographolide (AG), a natural diterpenoid lactone compound extracted from Andrographis paniculata, has been shown to have therapeutic effects in kidney disease. In this study, we investigated the novel mechanism by which AG attenuates septic acute kidney injury by inhibiting ferroptosis in renal tubular epithelial cells (HK-2) through the Nrf2/FSP1 pathway. Cecum ligation and puncture (CLP)-induced septic rats and lipopolysaccharide (LPS)-induced HK-2 cells were used for in vivo and in vitro experiments. Firstly, in septic rats and HK-2 cells, AG effectively decreased the levels of kidney injury indicators, including blood creatinine, urea nitrogen, and markers of kidney injury such as neutrophil gelatinase-associated lipid transport protein and kidney injury molecule-1 (KIM-1). In addition, AG prevented ferroptotosis, by avoiding the accumulation of iron and lipid peroxidation, and an increase in SLC7A11 and GPX4 in AG-treated HK-2 cells. Furthermore, AG attenuated mitochondrial damage, including mitochondrial swelling, outer membrane rupture, and a reduction in mitochondrial cristae in LPS-treated HK-2 cells. Ferrostatin-1 (Fer-1), a ferroptosis inhibitor, significantly inhibited LPS-induced ferroptosis in HK-2 cells. Importantly, our results confirm that Nrf2/FSP1 is an important pathway for ferroptosis resistance. Nrf2 siRNA hindered the effect of AG in attenuating acute kidney injury and inhibiting ferroptosis. These findings demonstrate that Nrf2/FSP1-mediated HK-2 ferroptosis is associated with AG, alleviates septic acute kidney injury, and indicates a novel avenue for therapeutic interventions in the treatment of acute kidney injury in sepsis.
Collapse
Affiliation(s)
- Yixin Zhang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | | | - Ming Huang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | | | - Liang Lin
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Xiaoyue Wang
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| | - Qinghong Cheng
- The First Affiliated Hospital of Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Zhang CH, Yan YJ, Luo Q. The molecular mechanisms and potential drug targets of ferroptosis in myocardial ischemia-reperfusion injury. Life Sci 2024; 340:122439. [PMID: 38278348 DOI: 10.1016/j.lfs.2024.122439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI), caused by the initial interruption and subsequent restoration of coronary artery blood, results in further damage to cardiac function, affecting the prognosis of patients with acute myocardial infarction. Ferroptosis is an iron-dependent, superoxide-driven, non-apoptotic form of regulated cell death that is involved in the pathogenesis of MIRI. Ferroptosis is characterized by the accumulation of lipid peroxides (LOOH) and redox disequilibrium. Free iron ions can induce lipid oxidative stress as a substrate of the Fenton reaction and lipoxygenase (LOX) and participate in the inactivation of a variety of lipid antioxidants including CoQ10 and GPX4, destroying the redox balance and causing cell death. The metabolism of amino acid, iron, and lipids, including associated pathways, is considered as a specific hallmark of ferroptosis. This review systematically summarizes the latest research progress on the mechanisms of ferroptosis and discusses and analyzes the therapeutic approaches targeting ferroptosis to alleviate MIRI.
Collapse
Affiliation(s)
- Chen-Hua Zhang
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yu-Jie Yan
- School of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Qi Luo
- School of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
11
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
12
|
Long H, Zhang H, Ran L, Xiang L, Xie P, Zou L, Yi L, Tang X, Chen L, Li Q, Zhao H. Bioinformatics analysis and experimental validation reveal the anti-ferroptosis effect of FZD7 in acute kidney injury. Biochem Biophys Res Commun 2024; 692:149359. [PMID: 38071893 DOI: 10.1016/j.bbrc.2023.149359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ferroptosis plays an important role in acute kidney injury (AKI), but the specific regulatory mechanism of ferroptosis in AKI remains unclear. This study is expected to analyze ferroptosis-related genes (FRGs) in AKI and explore their underlying mechanisms. RESULTS A total of 479 differentially expressed genes (DEGs), including 196 up-regulated genes and 283 down-regulated genes were identified in the AKI chip GSE30718. 341 FRGs were obtained from the Genecard, OMIM and NCBI database. Totally 11 ferroptosis-related DEGs in AKI were found, in which 7 genes (CD44, TIGAR, RB1, LCN2, JUN, ARNTL, ACSL4) were up-regulated and 4 genes (FZD7, EP300, FOXC1, DLST) were down-regulated. Three core genes (FZD7, JUN, EP300) were obtained by PPI and KEGG analysis, among which the function of FZD7 in AKI is unclear. The WGCNA analysis found that FZD7 belongs to a module that was negatively correlated with AKI. Further basic experiments confirmed that FZD7 is down-regulated in mouse model of ischemia-reperfusion-AKI and cellular model of hypoxia-reoxygenation(H/R). In addition, knockdown of FZD7 could further aggravate the down-regulation of cell viability induced by H/R and Erastin, while overexpression of FZD7 can rescue its down-regulation to some extent. Furthermore, we verified that knockdown of FZD7 decreased the expression of GPX4 and overexpression of FZD7 increased the expression of GPX4, suggesting that FZD7 may inhibit ferroptosis by regulating the expression of GPX4 and plays a vital role in the onset and development of AKI. CONCLUSIONS This article revealed the anti-ferroptosis effect of FZD7 in acute kidney injury through bioinformatics analysis and experimental validation, suggesting that FZD7 is a promising target for AKI and provided more evidence about the vital role of ferroptosis in AKI.
Collapse
Affiliation(s)
- Huanping Long
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Huhai Zhang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lingyu Ran
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Lunli Xiang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Pan Xie
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liying Zou
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Li Yi
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Xiaopeng Tang
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Liping Chen
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Qixuan Li
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China
| | - Hongwen Zhao
- Department of Kidney, The First Affiliated Hospital of Army Medical University, Gaotanyan Zhengjie, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
13
|
Liu G, Xie X, Liao W, Chen S, Zhong R, Qin J, He P, Xie J. Ferroptosis in cardiovascular disease. Biomed Pharmacother 2024; 170:116057. [PMID: 38159373 DOI: 10.1016/j.biopha.2023.116057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
In the 21st century, cardiovascular disease (CVD) has become one of the leading causes of death worldwide. The prevention and treatment of CVD remain pressing scientific issues. Several recent studies have suggested that ferroptosis may play a key role in CVD. Most studies conducted thus far on ferroptosis and CVD have supported the link. Ferroptosis mediated by different signaling and metabolic pathways can lead to ischemic heart disease, myocarditis, heart failure, ischemia-reperfusion injury, and cardiomyopathy. Still, the specific mechanism of ferroptosis in CVD, the particular organ areas affected, and the stage of disease involved need to be further studied. Therefore, understanding the mechanisms regulating ferroptosis in CVD may improve disease management. Throughout this review, we summarized the mechanism of ferroptosis and its effect on the pathogenesis of CVD. We also predicted and discussed future research directions, aiming to provide new ideas and strategies for preventing and treating CVD.
Collapse
Affiliation(s)
- Guoqing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoyong Xie
- Departments of Pathophysiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Wang Liao
- Department of Cardiology, The First People's Hospital of Yulin, Yulin, Guangxi, China
| | - Siyuan Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Rumao Zhong
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiahui Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Peichun He
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Xie
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
14
|
Tang Z, Chen K, Sun C, Ying X, Li M. Cordycepin inhibits kidney injury by regulating GSK-3β-mediated Nrf2 activation. J Biochem Mol Toxicol 2024; 38:e23600. [PMID: 38014886 DOI: 10.1002/jbt.23600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
We explored the role and mechanism of cordycepin (COR) in inhibiting kidney injury. A mouse model of kidney injury was established using cisplatin (CDDP), and the kidney function, histopathology, and ferroptosis indices in mice were detected after intervening with COR. The targets of COR-ferroptosis-kidney injury were analyzed by network pharmacology, based on which the association between glycogen synthase kinase-3 beta (GSK-3β) and COR was determined. HK-2 cells were cultured in vitro and treated separately with ferroptosis inducers erastin and CDDP. After the COR intervention, the level of ferroptosis was monitored. In vitro experiments found that COR could inhibit ferroptosis and CDDP-induced kidney injury. Network pharmacological analysis revealed that GSK-3β was the target of COR. After inhibiting GSK-3β expression, COR could not further inhibit the occurrence of ferroptosis. In vitro results also indicated that COR could inhibit ferroptosis in HK-2 cells. According to our findings, COR can ameliorate CDDP-induced kidney injury through GSK-3β-mediated ferroptosis signaling. We identify new pharmacological effect and target for COR, the major component of Cordyceps sinensis.
Collapse
Affiliation(s)
- Zhiling Tang
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Kean Chen
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Chun Sun
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Xiangjun Ying
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Ming Li
- Department of Urology Surgery, The Second Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
15
|
Ríos-Silva M, Cárdenas Y, Ortega-Macías AG, Trujillo X, Murillo-Zamora E, Mendoza-Cano O, Bricio-Barrios JA, Ibarra I, Huerta M. Animal models of kidney iron overload and ferroptosis: a review of the literature. Biometals 2023; 36:1173-1187. [PMID: 37356039 DOI: 10.1007/s10534-023-00518-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
In recent years, it has been identified that excess iron contributes to the development of various pathologies and their complications. Kidney diseases do not escape the toxic effects of iron, and ferroptosis is identified as a pathophysiological mechanism that could be a therapeutic target to avoid damage or progression of kidney disease. Ferroptosis is cell death associated with iron-dependent oxidative stress. To study the effects of iron overload (IOL) in the kidney, numerous animal models have been developed. The methodological differences between these models should reflect the IOL-generating mechanisms associated with human IOL diseases. A careful choice of animal model should be considered for translational purposes.
Collapse
Affiliation(s)
- Mónica Ríos-Silva
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Mexico City, Mexico City, Mexico
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | | | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Villa de Álvarez, Colima, Mexico
| | - Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Coquimatlán, Colima, Mexico
| | | | - Isabel Ibarra
- Facultad de Medicina, Universidad de Colima, Colima, Colima, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico.
| |
Collapse
|
16
|
Ma Y, Peng T, Yao X, Sun C, Wang X. KLF2 reduces dexamethasone-induced injury to growth plate chondrocytes by inhibiting the Runx2-mediated PI3K/AKT and ERK signalling pathways. Autoimmunity 2023; 56:1-7. [PMID: 36343159 DOI: 10.1080/08916934.2022.2141233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dexamethasone (Dex) is a type of glucocorticoid drug. Long term use can induce growth plate chondrocytes (GPCs) apoptosis, impair differentiation, and inhibit cell proliferation and bone growth. It has been reported that Krüppel-like factor 2 (KLF2) inhibits osteoblast damage induced by Dex, but the role in Dex-induced GPCs remains unclear. Dex was used to construct a model of growth plate injury in vitro. CCK-8 and TUNEL kits were used to determine cell viability and apoptosis. A model of growth plate injury was established by intraperitoneal injection of Dex. Immunohistochemistry was used to investigate the expression of KLF2 in rats. The results showed that KLF2 expression of rat tibial GPCs was down-regulated after Dex stimulation. Overexpression of KLF2 promoted cell viability and cell cycle, while inhibited apoptosis of growth plate Dex-induced chondrocytes. Moreover, KLF2 inhibited Runx2-mediated PI3K/AKT and ERK signalling pathways. And PI3K/AKT and ERK signalling pathways, which were involved in the regulation of KLF2 on GPCs. Further studies showed that KLF2 alleviated growth plate injury in vivo. In conclusion, our study found that KLF2 promoted proliferation and inhibited apoptosis of Dex-induced GPCs by targeting the Runx2-mediated PI3K/AKT and ERK signalling pathways.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Tao Peng
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xudong Yao
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Chaonan Sun
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Xiaowei Wang
- Department of Orthopedics, Xi'an Children's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Han L, Pei J, Tao H, Guo X, Wei Y, Yang Z, Zhang H. The potential role of ferroptosis in the physiopathology of deep tissue injuries. Int Wound J 2023; 21:e14466. [PMID: 37905685 PMCID: PMC10828531 DOI: 10.1111/iwj.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Deep tissue injuries (DTIs) are a serious type of pressure injuries that mainly occur at the bony prominences and can develop rapidly, making prevention and treatment more difficult. Although consistent research efforts have been made over the years, the cellular and molecular mechanisms contributing to the development of DTIs remain unclear. More recently, ferroptosis, a novel regulatory cell death (RCD) type, has been identified that is morphological, biochemical and genetic criteria distinct from apoptosis, autophagy and other known cell death pathways. Ferroptosis is characterized by iron overload, iron-dependent lipid peroxidation and shrunken mitochondria. We also note that some of the pathological features of DTI are known to be key features of the ferroptosis pathway. Numerous studies have confirmed that ferroptosis may be involved in chronic wounds, including DTIs. Here, we elaborate on the basic pathological features of ferroptosis. We also present the evidence that ferroptosis is involved in the pathology of DTIs and highlight a future perspective on this emerging field, desiring to provide more possibilities for the prevention and treatment of DTIs.
Collapse
Affiliation(s)
- Lin Han
- Department of NursingGansu Provincial HospitalLanzhouChina
- School of NursingLanzhou UniversityLanzhouChina
| | - Juhong Pei
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Hongxia Tao
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | | | - Yuting Wei
- School of NursingLanzhou UniversityLanzhouChina
| | - Zhuang Yang
- School of NursingLanzhou UniversityLanzhouChina
| | - Hongyan Zhang
- Department of NursingGansu Provincial HospitalLanzhouChina
| |
Collapse
|
18
|
Zhao Y, Jiang B, Huang D, Lou J, Li G, Liu J, Duan F, Yuan Y, Su X. Ferrostatin-1 post-treatment attenuates acute kidney injury in mice by inhibiting ferritin production and regulating iron uptake-related proteins. PeerJ 2023; 11:e15786. [PMID: 37701828 PMCID: PMC10494833 DOI: 10.7717/peerj.15786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/04/2023] [Indexed: 09/14/2023] Open
Abstract
Background Acute kidney injury (AKI) is a common and serious medical condition with high morbidity and mortality. Recent research has highlighted ferroptosis, a novel form of programmed cell death, as a potential therapeutic target in mitigating renal tubular injury in AKI. Ferrostatin-1, a specific ferroptosis inhibitor, has been demonstrated to prevent renal injury through ferroptosis inhibition. Methods Utilizing a murine AKI model, we investigated the effects of Ferrostatin-1 by administering it post-injury. Through high-throughput sequencing and pathological analysis, we focused on the critical role of ferroptosis-related pathways in the treatment. Results Ferrostatin-1 post-conditioning effectively mitigated oxidative damage and reduced iron content associated with AKI. Additionally, critical ferroptosis-related proteins, such as GPX4, SLC7A11, NRF2, and FTH1, exhibited increased expression levels. In vitro, Ferrostatin-1 treatment of HK-2 cells significantly diminished lipid peroxidation and iron accumulation. Furthermore, Ferrostatin-1 was found to downregulate the PI3K signalling pathway. Conclusion Ferrostatin-1 acted as a potential ferroptosis inhibitor with the capacity to enhance antioxidant defences. This study suggests that Ferrostatin-1 could serve as a promising novel strategy for improving the treatment of AKI and promoting recovery from the condition.
Collapse
Affiliation(s)
- Yanxiu Zhao
- Department of Nephrology, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Binhua Jiang
- Department of Obstetrics, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Dinghui Huang
- Department of Pediatrics, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Juxiang Lou
- Department of Nephrology, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Guoshun Li
- Department of Nephrology, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Jianqi Liu
- Department of Nephrology, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Fuhui Duan
- Department of Nephrology, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| | - Yuan Yuan
- Intensive Care Unit, Ningbo Medical Center Lihuili Hospital, Ningbo, People’s Republic of China
| | - Xiaoyan Su
- Department of Nephrology, Baoshan People’s Hospital, Baoshan, People’s Republic of China
| |
Collapse
|
19
|
Qi Y, Hu M, Wang Z, Shang W. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation. Biochem Pharmacol 2023; 215:115725. [PMID: 37524207 DOI: 10.1016/j.bcp.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The injury caused by ischemia and subsequent reperfusion (I/R) is inevitable during kidney transplantation and its current management remains unsatisfactory. Iron is considered to play a remarkable pathologic role in the initiation or progression of tissue damage induced by I/R, whereas the effects of iron-related therapy remain controversial owing to the complicated nature of iron's involvement in multiple biological processes. A significant portion of the cellular iron is located in the mitochondria, which exerts a central role in the development and progression of I/R injury. Recent studies of iron regulation associated with mitochondrial function represents a unique opportunity to improve our knowledge on the pathophysiology of I/R injury. However, the molecular mechanisms linking mitochondria to the iron homeostasis remain unclear. In this review, we provide a comprehensive analysis of the alterations to iron metabolism in I/R injury during kidney transplantation, analyze the current understanding of mitochondrial regulation of iron homeostasis and discussed its potential application in I/R injury. The elucidation of regulatory mechanisms regulating mitochondrial iron homeostasis will offer valuable insights into potential therapeutic targets for alleviating I/R injury with the ultimate aim of improving kidney graft outcomes, with potential implications that could also extend to acute kidney injury or other I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Wenjun Shang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
20
|
Harris AS, Aratani S, Johmura Y, Suzuki N, Dan L, Nakanishi M. In vivo dynamics of senescence in rhabdomyolysis-induced acute kidney injury. Biochem Biophys Res Commun 2023; 673:121-130. [PMID: 37385006 DOI: 10.1016/j.bbrc.2023.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is involved in the pathogenesis of various diseases, including acute kidney injury (AKI). AKI is defined as a sudden loss of kidney function. In severe AKI, irreversible loss of kidney cells can occur. Cellular senescence might contribute to this maladaptive tubular repair, though, its pathophysiological role in vivo is incompletely understood. In this study, we used p16-CreERT2-tdTomato mice in which cells with high p16 expression, a prototypical senescent marker, are labeled with tdTomato fluorescence. Then, we induced AKI by rhabdomyolysis and traced the cells with high p16 expression following AKI. We proved that the induction of senescence was observed predominantly in proximal tubular epithelial cells (PTECs) and occurred in a relatively acute phase within 1-3 days after AKI. These acute senescent PTECs were spontaneously eliminated by day 15. On the contrary, the generation of senescence in PTECs persisted during the chronic recovery phase. We also confirmed that the kidney function did not fully recover on day 15. These results suggest that the chronic generation of senescent PTECs might contribute to maladaptive recovery from AKI and lead to chronic kidney disease progression.
Collapse
Affiliation(s)
- Alexander S Harris
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sae Aratani
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Yoshikazu Johmura
- Division of Cancer and Senescence Biology, Cancer Research Institute, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Narumi Suzuki
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Li Dan
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
21
|
Guo XX, Pu Q, Hu JJ, Chang XJ, Li AL, Li XY. The role of regulated necrosis in inflammation and ocular surface diseases. Exp Eye Res 2023:109537. [PMID: 37302745 DOI: 10.1016/j.exer.2023.109537] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
In recent decades, numerous types of regulated cell death have been identified, including pyroptosis, ferroptosis and necroptosis. Regulated necrosis is characterized by a series of amplified inflammatory responses that result in cell death. Therefore, it has been suggested to play an essential role in the pathogenesis of ocular surface diseases. The cell morphological features and molecular mechanisms of regulated necrosis are discussed in this review. Furthermore, it summarizes the role of ocular surface diseases, such as dry eye, keratitis, and cornea alkali burn, as potential disease prevention and treatment targets.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jing-Jie Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xue-Jiao Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ao-Ling Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
22
|
Vokshi BH, Davidson G, Tawanaie Pour Sedehi N, Helleux A, Rippinger M, Haller AR, Gantzer J, Thouvenin J, Baltzinger P, Bouarich R, Manriquez V, Zaidi S, Rao P, Msaouel P, Su X, Lang H, Tricard T, Lindner V, Surdez D, Kurtz JE, Bourdeaut F, Tannir NM, Davidson I, Malouf GG. SMARCB1 regulates a TFCP2L1-MYC transcriptional switch promoting renal medullary carcinoma transformation and ferroptosis resistance. Nat Commun 2023; 14:3034. [PMID: 37236926 DOI: 10.1038/s41467-023-38472-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Renal medullary carcinoma (RMC) is an aggressive tumour driven by bi-allelic loss of SMARCB1 and tightly associated with sickle cell trait. However, the cell-of-origin and oncogenic mechanism remain poorly understood. Using single-cell sequencing of human RMC, we defined transformation of thick ascending limb (TAL) cells into an epithelial-mesenchymal gradient of RMC cells associated with loss of renal epithelial transcription factors TFCP2L1, HOXB9 and MITF and gain of MYC and NFE2L2-associated oncogenic and ferroptosis resistance programs. We describe the molecular basis for this transcriptional switch that is reversed by SMARCB1 re-expression repressing the oncogenic and ferroptosis resistance programs leading to ferroptotic cell death. Ferroptosis resistance links TAL cell survival with the high extracellular medullar iron concentrations associated with sickle cell trait, an environment propitious to the mutagenic events associated with RMC development. This unique environment may explain why RMC is the only SMARCB1-deficient tumour arising from epithelial cells, differentiating RMC from rhabdoid tumours arising from neural crest cells.
Collapse
Affiliation(s)
- Bujamin H Vokshi
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Guillaume Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Nassim Tawanaie Pour Sedehi
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Alexandra Helleux
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Marc Rippinger
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Alexandre R Haller
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Justine Gantzer
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Jonathan Thouvenin
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Philippe Baltzinger
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France
| | - Rachida Bouarich
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Valeria Manriquez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Sakina Zaidi
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Priya Rao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hervé Lang
- Department of Urology, CHRU Strasbourg, Strasbourg University, 67000, Strasbourg, France
| | - Thibault Tricard
- Department of Urology, CHRU Strasbourg, Strasbourg University, 67000, Strasbourg, France
| | - Véronique Lindner
- Department of Pathology, CHRU Strasbourg, Strasbourg University, 67200, Strasbourg, France
| | - Didier Surdez
- Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- INSERM, U830, Pediatric Translational Research, PSL Research University, SIREDO Oncology Center, Institut Curie, Paris, France
| | - Jean-Emmanuel Kurtz
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France
| | - Franck Bourdeaut
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, Institut Curie Research Centre, 75005, Paris, France
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Irwin Davidson
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France.
- 'Équipe Labellisée' Ligue National contre le Cancer, Paris, France.
| | - Gabriel G Malouf
- Department of Cancer and Functional Genomics, Institute of Genetics and Molecular and Cellular Biology, CNRS/INSERM/UNISTRA, 67400, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie Strasbourg Europe, 67200, Strasbourg, France.
- 'Équipe Labellisée' Ligue National contre le Cancer, Paris, France.
| |
Collapse
|
23
|
Zhu Z, Liu X, Li P, Wang H, Zhang Y, Liu M, Ren J. Renal Clearable Quantum Dot-Drug Conjugates Modulate Labile Iron Species and Scavenge Free Radicals for Attenuating Chemotherapeutic Drug-Induced Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21854-21865. [PMID: 37115671 DOI: 10.1021/acsami.3c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemotherapeutic drug-induced acute kidney injury (AKI) involves pathologically increased labile iron species in the kidneys that mediate the excessive generation of reactive oxygen species (ROS) to induce ferroptosis and apoptosis, subsequently driving renal dysfunction. Herein, we report renal clearable quantum dot-drug conjugates (QDCs) composed of carbon quantum dot (CDs), deferoxamine (DFO), and poly(ethylene glycol) (PEG) for attenuating chemotherapeutic drug-induced AKI. The CDs component in QDCs can not only provide DFO with high renal specificity to effectively remove the pathological labile iron species in the kidneys to block the source of ROS generation but also exert high antioxidative effects to avoid renal oxidative damage caused by the ROS that have been overproduced. In cisplatin-induced AKI mice, QDCs can inhibit ferroptosis and apoptosis with high efficacy for AKI treatment. This study will provide a new paradigm to realize enhanced therapeutic efficacy for AKI by simultaneously removing the pathological labile iron species and eliminating overproduced ROS in the kidneys to achieve the goal of addressing both symptoms and root causes.
Collapse
Affiliation(s)
- Zitong Zhu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, P. R. China
| | - Penghui Li
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanjie Zhang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Mengmeng Liu
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinsong Ren
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
24
|
Wang Y, He X, Xue M, Sun W, He Q, Jin J. Germacrone protects renal tubular cells against ferroptotic death and ROS release by re-activating mitophagy in diabetic nephropathy. Free Radic Res 2023; 57:413-429. [PMID: 37897414 DOI: 10.1080/10715762.2023.2277143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/28/2023] [Indexed: 10/30/2023]
Abstract
Mitophagy is a critical intracellular event during the progression of diabetic nephropathy (DN). Our previous study demonstrated that germacrone has anti-ferroptotic properties and is a potential therapeutic agent for DN. However, the relationship among germacrone, mitophagy, and ferroptosis in DN remains unclear. In this study, the data confirmed that germacrone ameliorates high glucose (HG)-induced ferroptosis through limiting Fe (2+) content and lipid reactive oxygen species (ROS) accumulation in human kidney 2 (HK-2) cells. Germacrone reversed HG-mediated inhibition of mitophagy. Mitophagy inhibition and anabatic mitochondrial ROS abrogate germacrone-mediated protective effects against ferroptotic death, resulting in the subsequent activation of mitochondrial DNA (mtDNA) cytosolic leakage-induced stimulator of interferon response CGAMP interactor 1 (STING) signaling. The combination of a mitochondrial ROS antagonist and germacrone acts synergistically to alleviate the ferroptotic death of tubular cells and DN symptoms. In summary, germacrone ameliorated ferroptotic death in tubular cells by reactivating mitophagy and inhibiting mtDNA-STING signaling in DN. This study provides a novel insight into germacrone-mediated protection against DN progression and further confirms that antioxidant pharmacological strategies facilitate the treatment of DN.
Collapse
Affiliation(s)
- Yunguang Wang
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| | - Xinxin He
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Mengjiao Xue
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wenbo Sun
- Graduate School, Bengbu Medical College, Bengbu, Anhui, P.R. China
| | - Qiang He
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| | - Juan Jin
- Department of Nephrology, the First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
25
|
Bi M, Li D, Zhang J. Role of curcumin in ischemia and reperfusion injury. Front Pharmacol 2023; 14:1057144. [PMID: 37021057 PMCID: PMC10067738 DOI: 10.3389/fphar.2023.1057144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/23/2023] [Indexed: 03/22/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is an inevitable pathological process after organic transplantations. Although traditional treatments restore the blood supply of ischemic organs, the damage caused by IRI is always ignored. Therefore, the ideal and effective therapeutic strategy to mitigate IRI is warrented. Curcumin is a type of polyphenols, processing such properties as anti-oxidative stress, anti-inflammation and anti-apoptosis. However, although many researches have been confirmed that curcumin can exert great effects on the mitigation of IRI, there are still some controversies about its underlying mechanisms among these researches. Thus, this review is to summarize the protective role of curcumin against IRI as well as the controversies of current researches, so as to clarify its underlying mechanisms clearly and provide clinicians a novel idea of the therapy for IRI.
Collapse
Affiliation(s)
- Minglei Bi
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Danyi Li
- Department of Ophthalmology, Jiading District Central Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jin Zhang
- Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- *Correspondence: Jin Zhang,
| |
Collapse
|
26
|
Shi L, Song Z, Li Y, Huang J, Zhao F, Luo Y, Wang J, Deng F, Shadekejiang H, Zhang M, Dong S, Wu X, Zhu J. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am J Transplant 2023; 23:11-25. [PMID: 36695612 DOI: 10.1016/j.ajt.2022.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023]
Abstract
Ischemia/reperfusion injury (IRI) is prone to occur after kidney transplantation, leading to delayed graft function (DGF). MicroRNAs play a crucial role in the pathogenesis of ischemia/reperfusion-induced acute kidney injury, and miR-20a-5p was found to be the most significantly upregulated gene in a DGF patient cohort. However, the roles of microRNAs in transplanted kidneys remain largely unknown. In this study, we found that miR-20a-5p was upregulated in the kidneys of acute kidney injury mice and in patients with DGF. We identified early growth response-1 as a critical upstream target and verified the binding of early growth response-1 to a predicted sequence in the promoter region of the miR-20a-5p gene. Functionally, the miR-20a-5p mimic attenuated IRI and postischemic renal fibrosis, whereas the miR-20a-5p inhibitor delivery aggravated IRI and fibrosis. Importantly, delivery of the miR-20a-5p mimic or inhibitor in the donor kidneys attenuated or aggravated renal loss and structural damage in cold storage transplantation injury. Furthermore, our study identified miR-20a-5p as a negative regulator of acyl-CoA synthetase long-chain family member 4 (ACSL4) by targeting the 3' untranslated region of ACSL4 mRNA, thereby inhibiting ACSL4-dependent ferroptosis. Our results suggest a potential therapeutic application of miR-20a-5p in kidney transplantation through the inhibition of ACSL4-dependent ferroptosis.
Collapse
Affiliation(s)
- Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei, China
| | - Yuzhen Li
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jing Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fan Zhao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanwen Luo
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Juan Wang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Fangjing Deng
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Halinuer Shadekejiang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingjiao Zhang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Shengyu Dong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiongfei Wu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| |
Collapse
|
27
|
Ghaith MM, El-Boshy M, Almasmoum H, Abdelghany AH, Azzeh FS, Almaimani RA, Idris S, Ahmad J, Mahbub AA, BaSalamah MA, Elzubeir ME, Refaat B. Deferasirox and vitamin D 3 co-therapy mitigates iron-induced renal injury by enhanced modulation of cellular anti-inflammatory, anti-oxidative stress, and iron regulatory pathways in rat. J Trace Elem Med Biol 2022; 74:127085. [PMID: 36179462 DOI: 10.1016/j.jtemb.2022.127085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Chronic iron overload could induce nephropathy via oxidative stress and inflammation, and chelating therapy has limited efficacy in removing excess intracellular iron. Although vitamin D (VD) has shown potent antioxidant and anti-inflammatory effects, as well contribute to iron homeostasis, none of the previous studies measured its potential remedial effects against chronic iron toxicity. AIMS To measure the alleviating effects of deferasirox (DFX) and/or vitamin D (VD) single and combined therapies against nephrotoxicity induced by chronic iron overload. METHODS Forty male rats were divided into negative (NC) and positive (PC) controls, DFX, VD, and DFX/VD groups. The designated groups received iron for six weeks followed by DFX and/or VD for another six weeks. Then, the expression pattern of renal genes and proteins including hepcidin, ferroportin (FPN), megalin, transferrin receptor 1 (TfR1), ferritin heavy and light chains, VD receptor (VDR), VD synthesizing (Cyp27b1) and catabolizing (Cyp24a1) enzymes were measured alongside serum markers of renal function and iron biochemical parameters. Additionally, several markers of oxidative stress (MDA/H2O2/GSH/SOD1/CAT/GPx4) and inflammation (IL-1β/IL-6/TNF-α/IL-10) together with renal cell apoptosis and expression of caspase-3 (Casp-3) were measured. RESULTS The PC rats showed pathological iron and renal biochemical markers, hypovitaminosis D, increased renal tissue iron contents with increased Cyp24a1/Megalin/ferritin-chains/hepcidin, and decreased Cyp27b1/VDR/TfR1/FPN expression than the NC group. The PC renal tissues also showed abnormal histology, increased inflammatory (IL-1β/IL-6/TNF-α), oxidative stress (MDA/H2O2), and apoptosis markers with decreased IL-10/GSH/SOD1/CAT/GPx4. Although DFX monotherapy reduced serum iron levels, it was comparable to the PC group in renal iron concentrations, VD and iron-homeostatic molecules, alongside markers of oxidative stress, inflammation, and apoptosis. On the other hand, VD monotherapy markedly modulated renal iron and VD-related molecules, reduced renal tissue iron concentrations, and preserved renal tissue relative to the PC and DFX groups. However, serum iron levels were equal in the VD and PC groups. In contrast, the best significant improvements in serum and renal iron levels, expression of renal iron-homeostatic molecules, oxidative stress, inflammation, and apoptosis were seen in the co-therapy group. CONCLUSIONS iron-induced nephrotoxicity was associated with dysregulations in renal VD-system together with renal oxidative stress, inflammation, and apoptosis. While DFX reduced systemic iron, VD monotherapy showed better attenuation of renal iron concentrations and tissue damage. Nonetheless, the co-therapy approach exhibited the maximal remedial effects, possibly by enhanced modulation of renal iron-homeostatic molecules alongside reducing systemic iron levels. AVAILABILITY OF DATA AND MATERIALS All data generated or analysed during this study are included in this published article [and its Supplementary information files].
Collapse
Affiliation(s)
- Mazen M Ghaith
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia; Clinical Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hussain Almasmoum
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Abdelghany H Abdelghany
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Firas S Azzeh
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Amani A Mahbub
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Mohammad A BaSalamah
- Pathology Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Mohamed E Elzubeir
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia
| | - Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al Abdeyah, PO Box 7607 Makkah, Saudi Arabia.
| |
Collapse
|
28
|
Nath KA, Singh RD, Croatt AJ, Adams CM. Heme Proteins and Kidney Injury: Beyond Rhabdomyolysis. KIDNEY360 2022; 3:1969-1979. [PMID: 36514409 PMCID: PMC9717624 DOI: 10.34067/kid.0005442022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Heme proteins, the stuff of life, represent an ingenious biologic strategy that capitalizes on the biochemical versatility of heme, and yet is one that avoids the inherent risks to cellular vitality posed by unfettered and promiscuously reactive heme. Heme proteins, however, may be a double-edged sword because they can damage the kidney in certain settings. Although such injury is often viewed mainly within the context of rhabdomyolysis and the nephrotoxicity of myoglobin, an increasing literature now attests to the fact that involvement of heme proteins in renal injury ranges well beyond the confines of this single disease (and its analog, hemolysis); indeed, through the release of the defining heme motif, destabilization of intracellular heme proteins may be a common pathway for acute kidney injury, in general, and irrespective of the underlying insult. This brief review outlines current understanding regarding processes underlying such heme protein-induced acute kidney injury (AKI) and chronic kidney disease (CKD). Topics covered include, among others, the basis for renal injury after the exposure of the kidney to and its incorporation of myoglobin and hemoglobin; auto-oxidation of myoglobin and hemoglobin; destabilization of heme proteins and the release of heme; heme/iron/oxidant pathways of renal injury; generation of reactive oxygen species and reactive nitrogen species by NOX, iNOS, and myeloperoxidase; and the role of circulating cell-free hemoglobin in AKI and CKD. Also covered are the characteristics of the kidney that render this organ uniquely vulnerable to injury after myolysis and hemolysis, and pathobiologic effects emanating from free, labile heme. Mechanisms that defend against the toxicity of heme proteins are discussed, and the review concludes by outlining the therapeutic strategies that have arisen from current understanding of mechanisms of renal injury caused by heme proteins and how such mechanisms may be interrupted.
Collapse
Affiliation(s)
- Karl A. Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Raman Deep Singh
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Anthony J. Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Christopher M. Adams
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
29
|
Zhang Y, Zhang J, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Wang Z, Wang Z, Gu M, Tan R. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radic Biol Med 2022; 193:579-594. [PMID: 36356714 DOI: 10.1016/j.freeradbiomed.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Renal interstitial fibrosis and tubular atrophy are essential pathological characteristics of chronic renal allograft dysfunction (CAD). Herein, we revealed that ferroptosis of renal tubular epithelial cells (RTECs) might contribute to renal tubular injury in CAD. Mechanistically, TNF-α induced ferroptosis by inhibiting GPX4 transcription through upregulating IRF1 in RTECs. IRF1 could bind with ZNF350 to form a transcription factor complex, which directly binds to the GPX4 promoter region to inhibit GPX4 transcription. Ferroptotic RTECs might secrete profibrotic factors, including PDGF-BB and IL-6, to activate neighboring fibroblasts to transform into myofibroblasts or induce EMT in adjacent RTECs. In conclusion, our results confirmed a novel role of ferroptosis in renal tubular injury and interstitial fibrosis, thereby providing insights into the pathogenesis of chronic renal allograft interstitial fibrosis during CAD.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeping Gui
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhou Hang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Zhou Y, Zhang J, Guan Q, Tao X, Wang J, Li W. The role of ferroptosis in the development of acute and chronic kidney diseases. J Cell Physiol 2022; 237:4412-4427. [PMID: 36260516 DOI: 10.1002/jcp.30901] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022]
Abstract
Ferroptosis, a novel form of regulated cell death, is characterized by imbalance of intracellular iron and redox systems, resulting from overgeneration of toxic lipid peroxidation products. In recent years, the verified crucial role of ferroptosis has been widely concerned in rudimentary pathogenesis and development of various acute and chronic kidney disease (CKD), comprehending the potential patterns of cell death can afford more reliable bases and principles for treatment and prevention of renal disease. In this review, the regulatory mechanisms of ferroptosis were introduced and the important roles of ferroptosis in diverse renal diseases such as acute kidney injury, CKD, and renal fibrosis were outlined to illuminate the potential of restraining ferroptosis in treatment and prevention of kidney disease.
Collapse
Affiliation(s)
- Yijun Zhou
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Junlan Zhang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Qingyan Guan
- School of Nursing, Weifang Medical University, Weifang, Shandong Province, China
| | - Xun Tao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong Province, China
| | - Jinling Wang
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, Shandong Province, China
| | - Wentong Li
- Department of Pathology, Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
31
|
Ye J, Peng J, Liu K, Zhang T, Huang W. MCTR1 inhibits ferroptosis by promoting NRF2 expression to attenuate hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2022; 323:G283-G293. [PMID: 35916424 DOI: 10.1152/ajpgi.00354.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) can lead to poor prognosis in patients undergoing liver transplantation or extensive liver resection. Maresin conjugate in tissue regeneration 1 (MCTR1) exerts a protective effect in several inflammatory disease models, but its role in HIRI remains unknown. In this study, we examined the effect of MCTR1 on HIRI and its underlying mechanism. HIRI mice and oxygen-glucose deprivation/reperfusion (OGD/R) AML12 cell models were used to evaluate the effects of MCTR1 at different doses on HIRI. Histological changes, inflammatory mediators, and ferroptosis-associated markers including iron content, oxidative stress and antioxidant activity, cell death marker (LDH), and the expression of Nuclear factor erythroid-derived 2-like 2 (NRF2) were analyzed. The results showed that MCTR1 treatment significantly ameliorated liver tissue damage and AST/ALT levels in HIRI mice. It also ameliorated ferroptosis in both HIRI mice and OGD/R AML12 cells, including a decrease in iron content, serum LDH release levels, reactive oxygen species (ROS), MDA, IL-1β levels, and COX2 and transferrin receptor (TFRC) expression. In addition, it increased the levels of IL-10, the antioxidant stress markers SOD and GSH, and the expression of GPX4. With respect to the underlying mechanism, the expression of NRF2 in HIRI mice and OGD/R AML12 cells was significantly inhibited. MCTR1 treatment restored the inhibition of NRF2 expression caused by ischemia-reperfusion, and NRF2 inhibitors significantly inhibited nuclear aggregation of NRF2 promoted by MCTR1. In conclusion, the MCTR1 ameliorates ferroptosis-induced hepatic ischemia-reperfusion injury by promoting NRF2 expression and may represent a therapeutic strategy for treating HIRI.NEW & NOTEWORTHY MCTR1 exerts a protective effect in several inflammatory disease models, but its role in hepatic HIRI remains unknown. We confirm that the MCTR1 ameliorates ferroptosis-induced hepatic ischemia-reperfusion injury by promoting NRF2 expression. Our study illustrates the mechanism that MCTR1 protects from HIRI and identifies a therapeutic target for liver transplantation ischemia-reperfusion injury from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Jianhong Ye
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuanzhi Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Wang Z, He Z, Xuan Q, Zhang Y, Xu J, Lin J, Li H, Chen W, Jiang T. Analysis of the potential ferroptosis mechanism and multitemporal expression change of central ferroptosis-related genes in cardiac ischemia–reperfusion injury. Front Physiol 2022; 13:934901. [PMID: 36091399 PMCID: PMC9461145 DOI: 10.3389/fphys.2022.934901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myocardial infraction is the most severe type of coronary artery disease and remains a substantial burden to the health care system globally. Although myocardial reperfusion is critical for ischemic cardiac tissue survival, the reperfusion itself could cause paradoxical injury. This paradoxical phenomenon is known as ischemia–reperfusion injury (IRI), and the exact molecular mechanism of IRI is still far from being elucidated and is a topic of controversy. Meanwhile, ferroptosis is a nonapoptotic form of cell death that has been reported to be associated with various cardiovascular diseases. Thus, we explored the potential ferroptosis mechanism and target in cardiac IRI via bioinformatics analysis and experiment. GSE4105 data were obtained from the GEO database and consist of a rat IRI model and control. After identifying differentially expressed ferroptosis-related genes (DEFRGs) and hub genes of cardiac IRI, we performed enrichment analysis, coexpression analysis, drug–gene interaction prediction, and mRNA–miRNA regulatory network construction. Moreover, we validated and explored the multitemporal expression of hub genes in a hypoxia/reoxygenation (H/R)-induced H9C2 cell injury model under different conditions via RT-qPCR. A total of 43 DEFRGs and 7 hub genes (tumor protein p53 [Tp53], tumor necrosis factor [Tnf], hypoxia-inducible factor 1 subunit alpha [Hif1a], interleukin 6 [Il6], heme oxygenase 1 [Hmox1], X-box binding protein 1 [Xbp1], and caspase 8 [Casp8]) were screened based on bioinformatics analysis. The functional annotation of these genes revealed apoptosis, and the related signaling pathways could have association with the pathogenesis of ferroptosis in cardiac IRI. In addition, the expression of the seven hub genes in IRI models were found higher than that of control under different H/R conditions and time points. In conclusion, the analysis of 43 DEFRGs and 7 hub genes could reveal the potential biological pathway and mechanism of ferroptosis in cardiac IRI. In addition, the multitemporal expression change of hub genes in H9C2 cells under different H/R conditions could provide clues for further ferroptosis mechanism exploring, and the seven hub genes could be potential biomarkers or therapeutic targets in cardiac IRI.
Collapse
Affiliation(s)
- Zuoxiang Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Medicine, Soochow University, Suzhou, Jiangsu, China
| | - Zhisong He
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinkao Xuan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yue Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jialiang Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia Lin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weixiang Chen
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Weixiang Chen, ; Tingbo Jiang,
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Weixiang Chen, ; Tingbo Jiang,
| |
Collapse
|
33
|
Aggarwal A, Dinda AK, Mukhopadhyay CK. Effect of Cisplatin on Renal Iron Homeostasis Components: Implication in Nephropathy. ACS OMEGA 2022; 7:27804-27817. [PMID: 35990481 PMCID: PMC9386824 DOI: 10.1021/acsomega.1c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cisplatin is an important chemotherapeutic drug for the treatment of solid tumors but often causes nephropathy as part of the off-target toxicity. Iron accumulation and related damage were implicated in cisplatin-induced kidney injury. However, the role of cisplatin in the renal iron sensing mechanism and its target genes responsible for iron uptake, storage, and release have not been investigated. Cellular iron homeostasis is controlled by the interaction of iron regulatory proteins (IRP1 and IRP2) and iron-responsive elements (IREs) present in the untranslated regions of iron transport and storage components. Here, we report that cisplatin does not influence the expressions of IRP targets such as transferrin receptor-1 (TfR1), divalent metal transporter-1 (DMT1), and ferroportin in renal cells despite the increased heme oxygenase-1 (HO-1) level. Ferritin subunits (Ft-H and Ft-L) are elevated in different magnitudes due to the increased mRNA expression. Intriguingly, a higher expression of Ft-L mRNA is detected than that of Ft-H mRNA. The inability of cisplatin in altering the IRE-IRP interaction is confirmed by examining IRE-containing luciferase activity, RNA electrophoretic mobility shift assay, and activation of IRPs. The labile iron pool is depleted but reversed by silencing of either Ft-H or Ft-L, suggesting increased iron storage by ferritin. Silencing of Ft-H or Ft-L promotes cell death, suggesting that ferritin acts to protect the renal cells from cisplatin-mediated toxicity. A differential increase of transcripts and equivalent increase of proteins of Ft-H and Ft-L and unaltered TfR1 and DMT1 transcripts are found in the kidneys of cisplatin-treated rats along with iron accumulation. Our results reveal that cisplatin does not influence the IRE-IRP interaction despite alteration of the cellular iron pool in renal cells. This insensitivity of the IRE-IRP system may be implicated in the accumulation of iron to contribute to cisplatin-induced nephropathy.
Collapse
Affiliation(s)
- Ayushi Aggarwal
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Amit K. Dinda
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | | |
Collapse
|
34
|
Ferroptosis and Its Multifaceted Role in Cancer: Mechanisms and Therapeutic Approach. Antioxidants (Basel) 2022; 11:antiox11081504. [PMID: 36009223 PMCID: PMC9405274 DOI: 10.3390/antiox11081504] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ferroptosis, a new type of non-apoptotic cell death modality, is different from other modes of cell death and has been primarily found in tumor cells. Previous studies have reported that ferroptosis can be triggered by specific modulators (e.g., drugs, nutrients, and iron chelators), leading to increased intracellular lipid reactive oxygen species (ROS) accumulation and iron overload. Recent reports have shown that ferroptosis at the cellular and organism levels can prevent an inflammatory storm and cancer development. Emerging evidence suggests potential mechanisms (e.g., system Xc-, glutathione peroxidase 4 (GPX4), lipid peroxidation, glutathione (GSH), and iron chelators) are involved in ferroptosis, which may mediate biological processes such as oxidative stress and iron overload to treat cancer. To date, there are at least three pathways that mediate ferroptosis in cancer cells: system Xc-/GSH/GPX4, FSP1/CoQ10/NAD(P)H, and ATG5/ATG7/NCOA4. Here, we summarize recent advances in the occurrence and development of ferroptosis in the context of cancer, the associations between ferroptosis and various modulators, and the potential mechanisms and therapeutic strategies targeting ferroptosis for the treatment of cancer.
Collapse
|
35
|
Zhang Y, Mou Y, Zhang J, Suo C, Zhou H, Gu M, Wang Z, Tan R. Therapeutic Implications of Ferroptosis in Renal Fibrosis. Front Mol Biosci 2022; 9:890766. [PMID: 35655759 PMCID: PMC9152458 DOI: 10.3389/fmolb.2022.890766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease (CKD), and can lead to the destruction of normal renal structure and loss of kidney function. Little progress has been made in reversing fibrosis in recent years. Ferroptosis is more immunogenic than apoptosis due to the release and activation of damage-related molecular patterns (DAMPs) signals. In this paper, the relationship between renal fibrosis and ferroptosis was reviewed from the perspective of iron metabolism and lipid peroxidation, and some pharmaceuticals or chemicals associated with both ferroptosis and renal fibrosis were summarized. Other programmed cell death and ferroptosis in renal fibrosis were also firstly reviewed for comparison and further investigation.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanhua Mou
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jianjian Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanjian Suo
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hai Zhou
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ruoyun Tan,
| |
Collapse
|
36
|
Thévenod F, Schreiber T, Lee WK. Renal hypoxia-HIF-PHD-EPO signaling in transition metal nephrotoxicity: friend or foe? Arch Toxicol 2022; 96:1573-1607. [PMID: 35445830 PMCID: PMC9095554 DOI: 10.1007/s00204-022-03285-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
The kidney is the main organ that senses changes in systemic oxygen tension, but it is also the key detoxification, transit and excretion site of transition metals (TMs). Pivotal to oxygen sensing are prolyl-hydroxylases (PHDs), which hydroxylate specific residues in hypoxia-inducible factors (HIFs), key transcription factors that orchestrate responses to hypoxia, such as induction of erythropoietin (EPO). The essential TM ion Fe is a key component and regulator of the hypoxia–PHD–HIF–EPO (HPHE) signaling axis, which governs erythropoiesis, angiogenesis, anaerobic metabolism, adaptation, survival and proliferation, and hence cell and body homeostasis. However, inadequate concentrations of essential TMs or entry of non-essential TMs in organisms cause toxicity and disrupt health. Non-essential TMs are toxic because they enter cells and displace essential TMs by ionic and molecular mimicry, e. g. in metalloproteins. Here, we review the molecular mechanisms of HPHE interactions with TMs (Fe, Co, Ni, Cd, Cr, and Pt) as well as their implications in renal physiology, pathophysiology and toxicology. Some TMs, such as Fe and Co, may activate renal HPHE signaling, which may be beneficial under some circumstances, for example, by mitigating renal injuries from other causes, but may also promote pathologies, such as renal cancer development and metastasis. Yet some other TMs appear to disrupt renal HPHE signaling, contributing to the complex picture of TM (nephro-)toxicity. Strikingly, despite a wealth of literature on the topic, current knowledge lacks a deeper molecular understanding of TM interaction with HPHE signaling, in particular in the kidney. This precludes rationale preventive and therapeutic approaches to TM nephrotoxicity, although recently activators of HPHE signaling have become available for therapy.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany.
| | - Timm Schreiber
- Institute for Physiology, Pathophysiology and Toxicology, ZBAF, Witten/Herdecke University, Stockumer Strasse 12, 58453, Witten, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School EWL, Bielefeld University, R.1 B2-13, Morgenbreede 1, 33615 Bielefeld, Germany
| |
Collapse
|
37
|
Piesanen J, Valjakka J, Niemelä S, Borgenström M, Nikkari S, Hytönen V, Määttä J, Kunnas T. Hepcidin is potential regulator for renin activity. PLoS One 2022; 17:e0267343. [PMID: 35442992 PMCID: PMC9020709 DOI: 10.1371/journal.pone.0267343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
An association between genetic variants in the genes HFE, HJV, BMP4 and arterial hypertension has been shown earlier. Proteins encoded by these genes participate in the signalling routes leading eventually to the production of the peptide hormone hepcidin. Mutations in these genes have been associated with the abnormal production of hepcidin in the body. This finding led to studies exploring the possible role of hepcidin in regulating the activity of blood pressure related renin-angiotensin system enzymes. We used molecular modelling to find out if it is possible for hepcidin to bind to the active site of the renin-angiotensin system enzymes, especially renin. Fluorometric assays were used to evaluate the inhibitory effect of hepcidin on renin as well as angiotensin converting enzymes 1 and 2. Finally, bio-layer interferometry technique was used to study hepcidin binding to renin. The molecular modelling showed that hepcidin seems to have similar binding properties to the renin active site as angiotensinogen does. Based on fluorometric enzyme activity assay, hepcidin has an inhibitory effect on renin in vitro, too. However, angiotensin converting enzymes 1 and 2 were not inhibited remarkably by hepcidin-25. In bio-layer interferometry analysis hepcidin-renin binding was concentration dependent. Our results suggest that hepcidin could act as an inhibitor to the renin. Nowadays, there is no known biological inhibitor for renin in vivo and our finding may thus have important clinical implications.
Collapse
Affiliation(s)
- Jaakko Piesanen
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jarkko Valjakka
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sanna Niemelä
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Seppo Nikkari
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Määttä
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Kunnas
- Facult of Medicine and Health Technology, Tampere University, Tampere, Finland
- * E-mail:
| |
Collapse
|
38
|
Qiongyue Z, Xin Y, Meng P, Sulin M, Yanlin W, Xinyi L, Xuemin S. Post-treatment With Irisin Attenuates Acute Kidney Injury in Sepsis Mice Through Anti-Ferroptosis via the SIRT1/Nrf2 Pathway. Front Pharmacol 2022; 13:857067. [PMID: 35370723 PMCID: PMC8970707 DOI: 10.3389/fphar.2022.857067] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Kidney is one of the most vulnerable organs in sepsis, resulting in sepsis-associated acute kidney injury (SA-AKI), which brings about not only morbidity but also mortality of sepsis. Ferroptosis is a new kind of death type of cells elicited by iron-dependent lipid peroxidation, which participates in pathogenesis of sepsis. The aim of this study was to verify the occurrence of ferroptosis in the SA-AKI pathogenesis and demonstrate that post-treatment with irisin could restrain ferroptosis and alleviate SA-AKI via activating the SIRT1/Nrf2 signaling pathway. We established a SA-AKI model by cecal ligation and puncture (CLP) operation and an in vitro model in LPS-induced HK2 cells, respectively. Our result exhibited that irisin inhibited the level of ferroptosis and ameliorated kidney injury in CLP mice, as evidenced by reducing the ROS production, iron content, and MDA level and increasing the GSH level, as well as the alteration of ferroptosis-related protein (GPX4 and ACSL4) expressions in renal, which was consistent with the ferroptosis inhibitor ferrostatin-1 (Fer-1). Additionally, we consistently observed that irisin inhibited ROS accumulation, iron production, and ameliorated mitochondrial dysfunction in LPS-stimulated HK-2 cells. Furthermore, our result also revealed that irisin could activate SIRT1/Nrf2 signaling pathways both in vivo and vitro. However, the beneficial effects of irisin were weakened by EX527 (an inhibitor of SIRT1) in vivo and by SIRT1 siRNA in vitro. In conclusion, irisin could protect against SA-AKI through ferroptotic resistance via activating the SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Zhang Qiongyue
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Xin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Meng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mi Sulin
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wang Yanlin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Xinyi
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Song Xuemin
- Research Centre of Anesthesiology and Critical Care Medicine, Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Patino E, Akchurin O. Erythropoiesis-independent effects of iron in chronic kidney disease. Pediatr Nephrol 2022; 37:777-788. [PMID: 34244852 DOI: 10.1007/s00467-021-05191-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease (CKD) leads to alterations of iron metabolism, which contribute to the development of anemia and necessitates iron supplementation in patients with CKD. Elevated hepcidin accounts for a significant iron redistribution in CKD. Recent data indicate that these alterations in iron homeostasis coupled with therapeutic iron supplementation have pleiotropic effects on many organ systems in patients with CKD, far beyond the traditional hematologic effects of iron; these include effects of iron on inflammation, oxidative stress, kidney fibrosis, cardiovascular disease, CKD-mineral and bone disorder, and skeletal growth in children. The effects of iron supplementation appear to be largely dependent on the route of administration and on the specific iron preparation. Iron-based phosphate binders exemplify the opportunity for using iron for both traditional (anemia) and novel (hyperphosphatemia) indications. Further optimization of iron therapy in patients with CKD may inform new approaches to the treatment of CKD complications and potentially allow modification of disease progression.
Collapse
Affiliation(s)
- Edwin Patino
- Department of Medicine, Division of Nephrology and Hypertension, Weill Cornell Medical College, New York, NY, USA
| | - Oleh Akchurin
- Department of Pediatrics, Division of Pediatric Nephrology, Weill Cornell Medical College, New York, NY, USA. .,New York-Presbyterian Hospital, New York-Presbyterian Phyllis and David Komansky Children's Hospital, Weill Cornell Medicine, 505 East 70th Street - HT 388, New York, NY, 10021, USA.
| |
Collapse
|
40
|
Abstract
Ferroptosis is a novel form of cell death characterized by the iron-dependent accumulation of lipid peroxides and is different from other types of cell death. The mechanisms of ferroptosis are discussed in the review, including System Xc-, Glutathione Peroxidase 4 pathway, Ferroptosis Suppressor Protein 1 and Dihydroorotate Dehydrogenase pathway. Ferroptosis is associated with the occurrence of various diseases, including sepsis. Research in recent years has displayed that ferroptosis is involved in sepsis occurrence and development. Iron chelators can inhibit the development of sepsis and improve the survival rate of septic mice. The ferroptotic cells can release damage-associated molecular patterns and lipid peroxidation, which further mediate inflammatory responses. Ferroptosis inhibitors can resist sepsis-induced multiple organ dysfunction and inflammation. Finally, we reviewed ferroptosis, an iron-dependent form of cell death that is different from other types of cell death in biochemistry, morphology, and major regulatory mechanisms, which is involved in multiple organ injuries caused by sepsis. Exploring the relationship between sepsis and ferroptosis may yield new treatment targets for sepsis.
Collapse
Affiliation(s)
- Yanting Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sichuang Tan
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yongbin Wu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| | - Sipin Tan
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, People's Republic of China
| |
Collapse
|
41
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
42
|
Wei XB, Jiang WQ, Zeng JH, Huang LQ, Ding HG, Jing YW, Han YL, Li YC, Chen SL. Exosome-Derived lncRNA NEAT1 Exacerbates Sepsis-Associated Encephalopathy by Promoting Ferroptosis Through Regulating miR-9-5p/TFRC and GOT1 Axis. Mol Neurobiol 2022; 59:1954-1969. [PMID: 35038133 PMCID: PMC8882117 DOI: 10.1007/s12035-022-02738-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023]
Abstract
Sepsis can cause sepsis-associated encephalopathy (SAE), but whether SAE was induced or exacerbated by ferroptosis remains unknown. In this study, the rat sepsis model was constructed using the cecal ligation and puncture method. The blood-brain barrier (BBB) permeability was measured by Evans blue dye (EBD) in vivo. The levels of ROS, Fe ion, MDA, GSH, and GPX4 were assessed by enzyme-linked immunosorbent assay (ELISA). The exosomes isolated from serum were cultured with bEnd.3 cells for the in vitro analysis. Moreover, bEnd.3 cells cultured with 100 μM FeCl3 (iron-rich) were to simulate ferroptosis stress. The cell viability was evaluated by Cell Counting Kit-8 (CCK-8) assay. A dual-luciferase reporter gene assay was performed to confirm the relationship between miR-9-5p with NEAT1, TFRC, and GOT1. In vivo, it is found that BBB permeability was damaged in model rats. Level of ROS, Fe ion, and MDA was increased, and level of GSH and GPX4 was decreased, which means ferroptosis was induced by sepsis. Exosome-packaged NEAT1 in serum was significantly upregulated in model rats. In vitro, it is found that NEAT1 functions as a ceRNA for miR-9-5p to facilitate TFRC and GOT1 expression. Overexpression of NEAT1 enhanced ferroptosis stress in bEnd.3 cells. Increased miR-9-5p alleviated sepsis-induced ferroptosis by suppressing the expression of TFRC and GOT1 both in vivo and in vitro. In conclusion, these findings suggest that sepsis induced high expression of serous exosome-derived NEAT1, and it might exacerbate SAE by promoting ferroptosis through regulating miR-9-5p/TFRC and GOT1 axis.
Collapse
Affiliation(s)
- Xue-Biao Wei
- Department of Geriatric Intensive Care Unit, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Wen-Qiang Jiang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Ju-Hao Zeng
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Lin-Qiang Huang
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Hong-Guang Ding
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yuan-Wen Jing
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yong-Li Han
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Yi-Chen Li
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China
| | - Sheng-Long Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
43
|
Deng L, Xiao M, Wu A, He D, Huang S, Deng T, Xiao J, Chen X, Peng Y, Cao K. Se/Albumin Nanoparticles for Inhibition of Ferroptosis in Tubular Epithelial Cells during Acute Kidney Injury. ACS APPLIED NANO MATERIALS 2022; 5:227-236. [DOI: 10.1021/acsanm.1c02706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Anshan Wu
- Zhuzhou Hospital of Xiangya School of Medicine, Central South University, Zhuzhou 412007, China
| | - Dong He
- Department of Respiration, The Second People’s Hospital of Hunan Province, Changsha 410021, China
| | - Sanqian Huang
- Department of Pathology, Hunan Cancer Hospital, Changsha 410000, China
| | - Tanggang Deng
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Jiawei Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xinyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yongbo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
44
|
Targeting Ferroptosis: Pathological Mechanism and Treatment of Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1587922. [PMID: 34745412 PMCID: PMC8568519 DOI: 10.1155/2021/1587922] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
Ischemia-reperfusion (I/R) is a pathological process that occurs in many organs and diseases. Reperfusion, recovery of blood flow, and reoxygenation often lead to reperfusion injury. Drug therapy and early reperfusion therapy can reduce tissue injury and cell necrosis caused by ischemia, leading to irreversible I/R injury. Ferroptosis was clearly defined in 2012 as a newly discovered iron-dependent, peroxide-driven, nonapoptotic form of regulated cell death. Ferroptosis is considered the cause of reperfusion injury. This discovery provides new avenues for the recognition and treatment of diseases. Ferroptosis is a key factor that leads to I/R injury and organ failure. Given the important role of ferroptosis in I/R injury, there is considerable interest in the potential role of ferroptosis as a targeted treatment for a wide range of I/R injury-related diseases. Recently, substantial progress has been made in applying ferroptosis to I/R injury in various organs and diseases. The development of ferroptosis regulators is expected to provide new opportunities for the treatment of I/R injury. Herein, we analytically review the pathological mechanism and targeted treatment of ferroptosis in I/R and related diseases from the perspectives of myocardial I/R injury, cerebral I/R injury, and ischemic renal injury.
Collapse
|
45
|
Bai Y, Kim JY, Bisunke B, Jayne LA, Silvaroli JA, Balzer MS, Gandhi M, Huang KM, Sander V, Prosek J, Cianciolo RE, Baker SD, Sparreboom A, Jhaveri KD, Susztak K, Bajwa A, Pabla NS. Kidney toxicity of the BRAF-kinase inhibitor vemurafenib is driven by off-target ferrochelatase inhibition. Kidney Int 2021; 100:1214-1226. [PMID: 34534550 DOI: 10.1016/j.kint.2021.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022]
Abstract
A multitude of disease and therapy related factors drive the frequent development of kidney disorders in cancer patients. Along with chemotherapy, the newer targeted therapeutics can also cause kidney dysfunction through on and off-target mechanisms. Interestingly, among the small molecule inhibitors approved for the treatment of cancers that harbor BRAF-kinase activating mutations, vemurafenib can trigger tubular damage and acute kidney injury. BRAF is a proto-oncogene involved in cell growth. To investigate the underlying mechanisms, we developed cell culture and mouse models of vemurafenib kidney toxicity. At clinically relevant concentrations vemurafenib induces cell-death in transformed and primary mouse and human kidney tubular epithelial cells. In mice, two weeks of daily vemurafenib treatment causes moderate acute kidney injury with histopathological characteristics of kidney tubular epithelial cells injury. Importantly, kidney tubular epithelial cell-specific BRAF gene deletion did not influence kidney function under normal conditions or alter the severity of vemurafenib-associated kidney impairment. Instead, we found that inhibition of ferrochelatase, an enzyme involved in heme biosynthesis contributes to vemurafenib kidney toxicity. Ferrochelatase overexpression protected kidney tubular epithelial cells and conversely ferrochelatase knockdown increased the sensitivity to vemurafenib-induced kidney toxicity. Thus, our studies suggest that vemurafenib-associated kidney tubular epithelial cell dysfunction and kidney toxicity is BRAF-independent and caused, in part, by off-target ferrochelatase inhibition.
Collapse
Affiliation(s)
- Yuntao Bai
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Bijay Bisunke
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Laura A Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Michael S Balzer
- Department of Medicine and Genetics, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Megha Gandhi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kevin M Huang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jason Prosek
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Kenar D Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Northwell Health, Great Neck, New York, USA
| | - Katalin Susztak
- Department of Medicine and Genetics, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amandeep Bajwa
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
46
|
Qiu ZL, Yan BQ, Zhao R, Xu DW, Shen K, Deng XQ, Lu SQ. Combination of hepcidin with neutrophil gelatinase-associated lipocalin for prediction of the development of sepsis-induced acute kidney injury. Clin Chim Acta 2021; 523:38-44. [PMID: 34480953 DOI: 10.1016/j.cca.2021.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIMS The early prediction of the development of acute kidney injury (AKI) in critically ill patients with sepsis would facilitate early effective intervention. Recently, interest has focused on the biomarkers for AKI-linked iron metabolism. This study aimed to assess the early predictive values of hepcidin, neutrophil gelatinase-associated lipocalin (NGAL), and their combination for secondary AKI in patients with sepsis. MATERIALS AND METHODS A prospective cohort study was performed in septic patients. Serum and urine hepcidin, and urine NGAL were analyzed at admission. The primary outcome measure was occurrence of sepsis-induced AKI based on 2011 Kidney Disease: Improving Global Outcomes (KDIGO) criteria during the first week of ICU stay. RESULTS Of the 90 patients analyzed finally in the study, 44 (48.9%) patients developed AKI. Patients with AKI occurrence were more likely than those without AKI to have higher serum hepcidin and urine NGAL levels at admission (P < 0.01). Higher concentrations of these biomarkers were each independent predictor of the development of AKI in critically septic patients within the first week of their ICU stay. Serum hepcidin and urine NGAL (AUROC 0.787, 95% CI 0.688 to 0.8660 and AUROC 0.729, 95% CI 0.625 to 0.818, respectively) were comparable predictive indicators of AKI occurrence (P = 0.43 for DeLong's test). Combining both biomarkers increased the AUROC to 0.828(95% CI 0.733 to 0.899), and this performance was statistically significantly better than urine NGAL alone (P = 0.03 for DeLong's test). CONCLUSION Serum hepcidin measured at admission predicts the development of AKI similarly to urine NGAL. However, serum hepcidin adds significant accuracy to this prediction in combination with urine NGAL alone and has a good predictive value in patients with sepsis. Larger studies are needed to validate and explain these findings.
Collapse
Affiliation(s)
- Ze-Liang Qiu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Bi-Qing Yan
- Intensive Care Unit, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Rui Zhao
- Department of Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Dong-Wei Xu
- Department of Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Kan Shen
- Department of Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xing-Qi Deng
- Department of Critical Care Medicine, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Shi-Qi Lu
- Department of Emergency, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
47
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
48
|
Balas M, Popescu Din IM, Hermenean A, Cinteza LO, Dinischiotu A. Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Renal Transitory Biochemical and Histopathological Changes in Mice. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2605. [PMID: 34067676 PMCID: PMC8156474 DOI: 10.3390/ma14102605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 11/18/2022]
Abstract
The renal toxicity induced by the intravenously injected iron oxide nanoparticles (IONPs) encapsulated in phospholipid-based polymeric micelles was studied in CD1 mice for 2 weeks. Two doses of 5 and 15 mg of Fe/kg bodyweight of NPs or saline solution (control) were tested, and the levels of antioxidant enzyme activities, oxidative stress parameters, and the expressions of kidney fibrosis biomarkers were analyzed. The enzymatic activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and glucose-6-phosphate dehydrogenase in the kidney were significantly decreased compared to the control in the first 3 days followed by a recovery up to 14 days. Concomitantly, a significant increase in lipid peroxidation (malondialdehyde) levels and a decrease in protein thiol groups were recorded. Moreover, increases in the expressions of T cell immunoglobulin and mucin domain 1 (TIM-1) and transforming growth factor-β (TGF-β) were observed in mouse tissue samples in the first week, which were more pronounced for the higher dose. The results suggested the role of oxidative stress as a mechanism for induced toxicity in mice kidneys after the IV administration of IONPs encapsulated in phospholipid-based polymeric micelles but also the capacity of the kidneys' defense systems to revert efficiently the biochemical modifications that were moderate and for short duration.
Collapse
Affiliation(s)
- Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului Street, 310396 Arad, Romania
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (M.B.); (I.M.P.D.)
| |
Collapse
|
49
|
On Iron Metabolism and Its Regulation. Int J Mol Sci 2021; 22:ijms22094591. [PMID: 33925597 PMCID: PMC8123811 DOI: 10.3390/ijms22094591] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is a critical metal for several vital biological processes. Most of the body’s iron is bound to hemoglobin in erythrocytes. Iron from senescent red blood cells is recycled by macrophages in the spleen, liver and bone marrow. Dietary iron is taken up by the divalent metal transporter 1 (DMT1) in enterocytes and transported to portal blood via ferroportin (FPN), where it is bound to transferrin and taken up by hepatocytes, macrophages and bone marrow cells via transferrin receptor 1 (TfR1). While most of the physiologically active iron is bound hemoglobin, the major storage of most iron occurs in the liver in a ferritin-bound fashion. In response to an increased iron load, hepatocytes secrete the peptide hormone hepcidin, which binds to and induces internalization and degradation of the iron transporter FPN, thus controlling the amount of iron released from the cells into the blood. This review summarizes the key mechanisms and players involved in cellular and systemic iron regulation.
Collapse
|
50
|
DeRosa A, Leftin A. The Iron Curtain: Macrophages at the Interface of Systemic and Microenvironmental Iron Metabolism and Immune Response in Cancer. Front Immunol 2021; 12:614294. [PMID: 33986740 PMCID: PMC8110925 DOI: 10.3389/fimmu.2021.614294] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages fulfill central functions in systemic iron metabolism and immune response. Infiltration and polarization of macrophages in the tumor microenvironment is associated with differential cancer prognosis. Distinct metabolic iron and immune phenotypes in tumor associated macrophages have been observed in most cancers. While this prompts the hypothesis that macroenvironmental manifestations of dysfunctional iron metabolism have direct associations with microenvironmental tumor immune response, these functional connections are still emerging. We review our current understanding of the role of macrophages in systemic and microenvironmental immune response and iron metabolism and discuss these functions in the context of cancer and immunometabolic precision therapy approaches. Accumulation of tumor associated macrophages with distinct iron pathologies at the invasive tumor front suggests an "Iron Curtain" presenting as an innate functional interface between systemic and microenvironmental iron metabolism and immune response that can be harnessed therapeutically to further our goal of treating and eliminating cancer.
Collapse
Affiliation(s)
- Angela DeRosa
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
| | - Avigdor Leftin
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, NY, United States
- Department of Radiology, Stony Brook University School of Medicine, Stony Brook, NY, United States
| |
Collapse
|