1
|
Liu Z, Xue H, Wang Z, Zhao Y, Xu S, Dong X. Cyclin Y interacts with Chk1 to activate RRM2/STAT3 signaling and promotes radioresistance in non-small cell lung cancer. Int J Biol Sci 2025; 21:1999-2011. [PMID: 40083692 PMCID: PMC11900816 DOI: 10.7150/ijbs.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Radioresistance is one of the main reasons for the recurrence and metastasis of non-small cell lung cancer. Cyclin Y has been implicated in various cellular processes such as cell growth, proliferation, autophagy, and tumor progression. However, the function and regulatory mechanism of Cyclin Y in lung cancer radioresistance remain poorly understood. In this study, we find that Cyclin Y is overexpressed in non-small cell lung cancer and correlates with poor prognosis. Furthermore, knockdown of Cyclin Y results in inhibited cell growth and proliferation, increases DNA damage, impairs DNA damage repair, and enhances radiosensitivity in vitro and in vivo. Mechanistically, we uncover that Cyclin Y interacts with Chk1 and positively regulate both the mRNA and protein levels of RRM2, resulting in increased STAT3 phosphorylation. Rescue experiments confirm that the effects of Cyclin Y on lung cancer are mediated partially by RRM2. Collectively, we reveal for the first time that Cyclin Y promotes lung cancer radioresistance by binding to Chk1 to activate RRM2/STAT3 signaling, indicating that targeting Cyclin Y may be a promising strategy for enhancing the efficacy of radiotherapy in the treatment of non-small cell lung cancer.
Collapse
Affiliation(s)
- Zhiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Huichan Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Zhi Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Ahmad R, Barcellini A, Baumann K, Benje M, Bender T, Bragado P, Charalampopoulou A, Chowdhury R, Davis AJ, Ebner DK, Eley J, Kloeber JA, Mutter RW, Friedrich T, Gutierrez-Uzquiza A, Helm A, Ibáñez-Moragues M, Iturri L, Jansen J, Morcillo MÁ, Puerta D, Kokko AP, Sánchez-Parcerisa D, Scifoni E, Shimokawa T, Sokol O, Story MD, Thariat J, Tinganelli W, Tommasino F, Vandevoorde C, von Neubeck C. Particle Beam Radiobiology Status and Challenges: A PTCOG Radiobiology Subcommittee Report. Int J Part Ther 2024; 13:100626. [PMID: 39258166 PMCID: PMC11386331 DOI: 10.1016/j.ijpt.2024.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Particle therapy (PT) represents a significant advancement in cancer treatment, precisely targeting tumor cells while sparing surrounding healthy tissues thanks to the unique depth-dose profiles of the charged particles. Furthermore, their linear energy transfer and relative biological effectiveness enhance their capability to treat radioresistant tumors, including hypoxic ones. Over the years, extensive research has paved the way for PT's clinical application, and current efforts aim to refine its efficacy and precision, minimizing the toxicities. In this regard, radiobiology research is evolving toward integrating biotechnology to advance drug discovery and radiation therapy optimization. This shift from basic radiobiology to understanding the molecular mechanisms of PT aims to expand the therapeutic window through innovative dose delivery regimens and combined therapy approaches. This review, written by over 30 contributors from various countries, provides a comprehensive look at key research areas and new developments in PT radiobiology, emphasizing the innovations and techniques transforming the field, ranging from the radiobiology of new irradiation modalities to multimodal radiation therapy and modeling efforts. We highlight both advancements and knowledge gaps, with the aim of improving the understanding and application of PT in oncology.
Collapse
Affiliation(s)
- Reem Ahmad
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Amelia Barcellini
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- Clinical Department Radiation Oncology Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Kilian Baumann
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Giessen, Giessen, Germany
- Marburg Ion-Beam Therapy Center, Marburg, Germany
| | - Malte Benje
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tamara Bender
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Paloma Bragado
- Biochemistry and Molecular Biology Department, Complutense University of Madrid, Madrid, Spain
| | - Alexandra Charalampopoulou
- University School for Advanced Studies (IUSS), Pavia, Italy
- Radiobiology Unit, Development and Research Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Reema Chowdhury
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Anthony J. Davis
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel K. Ebner
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - John Eley
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jake A. Kloeber
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert W. Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas Friedrich
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Alexander Helm
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marta Ibáñez-Moragues
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Lorea Iturri
- Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Jeannette Jansen
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Miguel Ángel Morcillo
- Medical Applications of Ionizing Radiation Unit, Technology Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Daniel Puerta
- Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Granada, Spain
- Instituto de Investigación Biosanitaria (ibs.GRANADA), Complejo Hospitalario Universitario de Granada/Universidad de Granada, Granada, Spain
| | | | | | - Emanuele Scifoni
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Takashi Shimokawa
- National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Juliette Thariat
- Centre François Baclesse, Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, Caen, France
| | - Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Francesco Tommasino
- TIFPA-INFN - Trento Institute for Fundamental Physics and Applications, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Charlot Vandevoorde
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
3
|
Reuvers TGA, Grandia V, Brandt RMC, Arab M, Maas SLN, Bos EM, Nonnekens J. Investigating the Radiobiological Response to Peptide Receptor Radionuclide Therapy Using Patient-Derived Meningioma Spheroids. Cancers (Basel) 2024; 16:2515. [PMID: 39061156 PMCID: PMC11275064 DOI: 10.3390/cancers16142515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTA-TATE has recently been evaluated for the treatment of meningioma patients. However, current knowledge of the underlying radiation biology is limited, in part due to the lack of appropriate in vitro models. Here, we demonstrate proof-of-concept of a meningioma patient-derived 3D culture model to assess the short-term response to radiation therapies such as PRRT and external beam radiotherapy (EBRT). We established short-term cultures (1 week) for 16 meningiomas with high efficiency and yield. In general, meningioma spheroids retained characteristics of the parental tumor during the initial days of culturing. For a subset of tumors, clear changes towards a more aggressive phenotype were visible over time, indicating that the culture method induced dedifferentiation of meningioma cells. To assess PRRT efficacy, we demonstrated specific uptake of 177Lu-DOTA-TATE via somatostatin receptor subtype 2 (SSTR2), which was highly overexpressed in the majority of tumor samples. PRRT induced DNA damage which was detectable for an extended timeframe as compared to EBRT. Interestingly, levels of DNA damage in spheroids after PRRT correlated with SSTR2-expression levels of parental tumors. Our patient-derived meningioma culture model can be used to assess the short-term response to PRRT and EBRT in radiobiological studies. Further improvement of this model should pave the way towards the development of a relevant culture model for assessment of the long-term response to radiation and, potentially, individual patient responses to PRRT and EBRT.
Collapse
Affiliation(s)
- Thom G A Reuvers
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vivian Grandia
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Renata M C Brandt
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Majd Arab
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Sybren L N Maas
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Eelke M Bos
- Department of Neurosurgery, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
4
|
Liew H, Tessonnier T, Mein S, Magro G, Glimelius L, Coniavitis E, Held T, Haberer T, Abdollahi A, Debus J, Dokic I, Mairani A. Robustness of carbon-ion radiotherapy against DNA damage repair associated radiosensitivity variation based on a biophysical model. Med Phys 2024; 51:3782-3795. [PMID: 38569067 DOI: 10.1002/mp.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. PURPOSE To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. METHODS AND MATERIALS The "UNIfied and VERSatile bio response Engine" (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. RESULTS UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change ofD 50 ${{D}_{50}}$ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from aD 2 ${{D}_2}$ of 2.65 to 1.64 Gy, which lies below the level found for CIRT (D 2 ${{D}_2}$ = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT (D m e a n ${{D}_{mean}}$ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). CONCLUSIONS The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.
Collapse
Affiliation(s)
- Hans Liew
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Giuseppe Magro
- National Center for Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | | | - Thomas Held
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ) Heidelberg, Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
- National Center for Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Yang JH, Brandão HB, Hansen AS. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun 2023; 14:1913. [PMID: 37024496 PMCID: PMC10079674 DOI: 10.1038/s41467-023-37583-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA
| | - Hugo B Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
- Illumina Inc., San Diego, CA, 92122, USA.
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
| |
Collapse
|
6
|
Chitsike L, Bertucci A, Vazquez M, Lee S, Unternaehrer JJ, Duerksen-Hughes PJ. GA-OH enhances the cytotoxicity of photon and proton radiation in HPV + HNSCC cells. Front Oncol 2023; 13:1070485. [PMID: 36845698 PMCID: PMC9950506 DOI: 10.3389/fonc.2023.1070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Treatment-related toxicity following either chemo- or radiotherapy can create significant clinical challenges for HNSCC cancer patients, particularly those with HPV-associated oropharyngeal squamous cell carcinoma. Identifying and characterizing targeted therapy agents that enhance the efficacy of radiation is a reasonable approach for developing de-escalated radiation regimens that result in less radiation-induced sequelae. We evaluated the ability of our recently discovered, novel HPV E6 inhibitor (GA-OH) to radio-sensitize HPV+ and HPV- HNSCC cell lines to photon and proton radiation. Methods Radiosensitivity to either photon or proton beams was assessed using various assays such as colony formation assay, DNA damage markers, cell cycle and apoptosis, western blotting, and primary cells. Calculations for radiosensitivity indices and relative biological effectiveness (RBE) were based on the linear quadratic model. Results Our results showed that radiation derived from both X-ray photons and protons is effective in inhibiting colony formation in HNSCC cells, and that GA-OH potentiated radiosensitivity of the cells. This effect was stronger in HPV+ cells as compared to their HPV- counterparts. We also found that GA-OH was more effective than cetuximab but less effective than cisplatin (CDDP) in enhancing radiosensitivity of HSNCC cells. Further tests indicated that the effects of GA-OH on the response to radiation may be mediated through cell cycle arrest, particularly in HPV+ cell lines. Importantly, the results also showed that GA-OH increases the apoptotic induction of radiation as measured by several apoptotic markers, even though radiation alone had little effect on apoptosis. Conclusion The enhanced combinatorial cytotoxicity found in this study indicates the strong potential of E6 inhibition as a strategy to sensitize cells to radiation. Future research is warranted to further characterize the interaction of GA-OH derivatives and other E6-specific inhibitors with radiation, as well as its potential to improve the safety and effectiveness of radiation treatment for patients with oropharyngeal cancer.
Collapse
Affiliation(s)
- Lennox Chitsike
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Antonella Bertucci
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Marcelo Vazquez
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, United States
- Department of Radiation Medicine, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Steve Lee
- Department of Otolaryngology & Head/Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | | |
Collapse
|
7
|
Yao JJ, Jin YN, Lin YJ, Zhang WJ, Marks T, Ryan I, Zhang HY, Xia LP. The feasibility of reduced-dose radiotherapy in childhood nasopharyngeal carcinoma with favorable response to neoadjuvant chemotherapy. Radiother Oncol 2023; 178:109414. [PMID: 36375563 DOI: 10.1016/j.radonc.2022.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND To assess the feasibility of adjusting radiation dose (RD) in childhood NPC with favorable tumor response after neoadjuvant chemotherapy (NAC). PATIENTS AND METHODS Using an NPC-specific database, children and adolescents (≤18 years) with locoregionally advanced NPC (CA-LANPC) were retrospectively analyzed. Enrolled patients were those who received favorable tumor response after 2-4 cycles of NAC followed by concurrent chemoradiotherapy. Survival outcomes and treatment-related toxicities were compared for the standard RD on primary tumors (PT-RDstandard, 66-72 Gy) and the reduced RD on primary tumors (PT-RDreduced, 60-65.9 Gy). RESULTS A total of 132 patients were included, and the median follow-up time was 75.2 months (IQR, 53.2-98.7 months) for the entire cohort. The PT-RDreduced group had a significantly decreased incidence of severe mucositis (51.3 % vs 32.1 %; P = 0.034) when compared to the PT-RDstandard group. The total incidence of severe sequela in the PT-RDstandard group were significantly higher than those in the PT-RDreduced group (31.8 % vs 13.7 %; P = 0.029). In the propensity-matched analysis, the PT-RDreduced group resulted in parallel 5-year survival with the PT-RDstandard group from the matched cohort (disease-free survival, 82.7 % vs 80.3 %, P = 0.841; overall survival, 91.7 % vs 91.3 %, P = 0.582; distant metastasis-free survival, 87.5 % vs 82.8 %, P = 0.573; and locoregional relapse-free survival, 95.6 % vs 97.3 %, P = 0.836). In multivariate analysis, the impact of PT-RDreduced on all survival end points remained insignificant. CONCLUSIONS Chemoradiotherapy with RD at levels of 60-65.9 Gy may be a reasonable strategy for CA-LANPC with favorable tumor response after NAC.
Collapse
Affiliation(s)
- Ji-Jin Yao
- VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China; The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Biomedical Imaging, Zhuhai, Guangdong 519000, China
| | - Ya-Nan Jin
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Biomedical Imaging, Zhuhai, Guangdong 519000, China
| | - Yu-Jing Lin
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Wang-Jian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tia Marks
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer 12144, USA
| | - Ian Ryan
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer 12144, USA
| | - Hong-Yu Zhang
- The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Biomedical Imaging, Zhuhai, Guangdong 519000, China.
| | - Liang-Ping Xia
- VIP Region, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy; Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
8
|
Pape K, Lößner AJ, William D, Czempiel T, Beyreuther E, Klimova A, Lehmann C, Schmäche T, Merker SR, Naumann M, Ada AM, Baenke F, Seidlitz T, Bütof R, Dietrich A, Krause M, Weitz J, Klink B, von Neubeck C, Stange DE. Sensitization of Patient-Derived Colorectal Cancer Organoids to Photon and Proton Radiation by Targeting DNA Damage Response Mechanisms. Cancers (Basel) 2022; 14:4984. [PMID: 36291768 PMCID: PMC9599341 DOI: 10.3390/cancers14204984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/04/2022] Open
Abstract
Pathological complete response (pCR) has been correlated with overall survival in several cancer entities including colorectal cancer. Novel total neoadjuvant treatment (TNT) in rectal cancer has achieved pathological complete response in one-third of the patients. To define better treatment options for nonresponding patients, we used patient-derived organoids (PDOs) as avatars of the patient's tumor to apply both photon- and proton-based irradiation as well as single and combined chemo(radio)therapeutic treatments. While response to photon and proton therapy was similar, PDOs revealed heterogeneous responses to irradiation and different chemotherapeutic drugs. Radiotherapeutic response of the PDOs was significantly correlated with their ability to repair irradiation-induced DNA damage. The classical combination of 5-FU and irradiation could not sensitize radioresistant tumor cells. Ataxia-telangiectasia mutated (ATM) kinase was activated upon radiation, and by inhibition of this central sensor of DNA damage, radioresistant PDOs were resensitized. The study underlined the capability of PDOs to define nonresponders to irradiation and could delineate therapeutic approaches for radioresistant patients.
Collapse
Affiliation(s)
- Kristin Pape
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Anna J. Lößner
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Doreen William
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Tabea Czempiel
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elke Beyreuther
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, 01307 Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Claudia Lehmann
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Tim Schmäche
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Sebastian R. Merker
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Max Naumann
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
| | - Anne-Marlen Ada
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Franziska Baenke
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Therese Seidlitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Rebecca Bütof
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Barbara Klink
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Hereditary Cancer Syndrome Center Dresden, ERN-GENTURIS, Institute for Clinical Genetics, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center of Genetics (NCG), Laboratoire National de Santé, 3555 Dudelange, Luxembourg
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- OncoRay–National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 1307 Dresden, Germany
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel E. Stange
- Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine Carl Gustav Carus, University Hospital, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| |
Collapse
|
9
|
Du S, Liu Y, Yuan Y, Wang Y, Chen Y, Wang S, Chi Y. Advances in the study of HSP70 inhibitors to enhance the sensitivity of tumor cells to radiotherapy. Front Cell Dev Biol 2022; 10:942828. [PMID: 36036010 PMCID: PMC9399644 DOI: 10.3389/fcell.2022.942828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
The 70 kDa heat shock protein (HSP70) is one of the most conserved proteins and a ubiquitous molecular chaperone that plays a role in the folding, remodeling, and degradation of various proteins to maintain proteostasis. It has been shown that HSP70 is abundantly expressed in cancer and enhances tumor resistance to radiotherapy by inhibiting multiple apoptotic pathways, such as interfering with the cellular senescence program, promoting angiogenesis, and supporting metastasis. Thus, HSP70 provides an effective target for enhancing the effects of radiation therapy in the clinical management of cancer patients. Inhibition of HSP70 enhances the radiation-induced tumor-killing effect and thus improves the efficacy of radiotherapy. This article reviews the sensitivity of Hsp70 and its related inhibitors to radiotherapy of tumor cells.
Collapse
Affiliation(s)
- Sihan Du
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Ying Liu
- School of Medical Imaging, Weifang Medical University, Weifang, Shandong, China
| | - Yuan Yuan
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuran Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanfang Chen
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shuai Wang
- Department of Radiotherapy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Shuai Wang, ; Yuhua Chi,
| | - Yuhua Chi
- Department of General Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
- *Correspondence: Shuai Wang, ; Yuhua Chi,
| |
Collapse
|
10
|
Pérez-Amor MÁ, Barrios L, Armengol G, Barquinero JF. Differential Radiosensitizing Effect of 50 nm Gold Nanoparticles in Two Cancer Cell Lines. BIOLOGY 2022; 11:1193. [PMID: 36009820 PMCID: PMC9404963 DOI: 10.3390/biology11081193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Radiation therapy is widely used as an anti-neoplastic treatment despite the adverse effects it can cause in non-tumoral tissues. Radiosensitizing agents, which can increase the effect of radiation in tumor cells, such as gold nanoparticles (GNPs), have been described. To evaluate the radiosensitizing effect of 50 nm GNPs, we carried out a series of studies in two neoplastic cell lines, Caco2 (colon adenocarcinoma) and SKBR3 (breast adenocarcinoma), qualitatively evaluating the internalization of the particles, determining with immunofluorescence the number of γ-H2AX foci after irradiation with ionizing radiation (3 Gy) and evaluating the viability rate of both cell lines after treatment by means of an MTT assay. Nanoparticle internalization varied between cell lines, though they both showed higher internalization degrees for functionalized GNPs. The γ-H2AX foci counts for the different times analyzed showed remarkable differences between cell lines, although they were always significantly higher for functionalized GNPs in both lines. Regarding cell viability, in most cases a statistically significant decreasing tendency was observed when treated with GNPs, especially those that were functionalized. Our results led us to conclude that, while 50 nm GNPs induce a clear radiosensitizing effect, it is highly difficult to describe the magnitude of this effect as universal because of the heterogeneity found between cell lines.
Collapse
Affiliation(s)
- Miguel Ángel Pérez-Amor
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Leonardo Barrios
- Unit of Cell Biology, Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Gemma Armengol
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Joan Francesc Barquinero
- Unit of Biological Anthropology, Department of Animal Biology, Plant Biology and Ecology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
11
|
CD44, γ-H2AX, and p-ATM Expressions in Short-Term Ex Vivo Culture of Tumour Slices Predict the Treatment Response in Patients with Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23020877. [PMID: 35055060 PMCID: PMC8775909 DOI: 10.3390/ijms23020877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Squamous cell carcinoma is the most common type of head and neck cancer (HNSCC) with a disease-free survival at 3 years that does not exceed 30%. Biomarkers able to predict clinical outcomes are clearly needed. The purpose of this study was to investigate whether a short-term culture of tumour fragments irradiated ex vivo could anticipate patient responses to chemo- and/or radiotherapies. Biopsies were collected prior to treatment from a cohort of 28 patients with non-operable tumours of the oral cavity or oropharynx, and then cultured ex vivo. Short-term biopsy slice culture is a robust method that keeps cells viable for 7 days. Different biomarkers involved in the stemness status (CD44) or the DNA damage response (pATM and γ-H2AX) were investigated for their potential to predict the treatment response. A higher expression of all these markers was predictive of a poor response to treatment. This allowed the stratification of responder or non-responder patients to treatment. Moreover, the ratio for the expression of the three markers 24 h after 4 Gy irradiation versus 0 Gy was higher in responder than in non-responder patients. Finally, combining these biomarkers greatly improved their predictive potential, especially when the γ-H2AX ratio was associated with the CD44 ratio or the pATM ratio. These results encourage further evaluation of these biomarkers in a larger cohort of patients.
Collapse
|
12
|
Yordanova M, Hubert A, Hassan S. Expanding the Use of PARP Inhibitors as Monotherapy and in Combination in Triple-Negative Breast Cancer. Pharmaceuticals (Basel) 2021; 14:1270. [PMID: 34959671 PMCID: PMC8709256 DOI: 10.3390/ph14121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and is known to be associated with a poor prognosis and limited therapeutic options. Poly (ADP-ribose) polymerase inhibitors (PARPi) are targeted therapeutics that have demonstrated efficacy as monotherapy in metastatic BRCA-mutant (BRCAMUT) TNBC patients. Improved efficacy of PARPi has been demonstrated in BRCAMUT breast cancer patients who have either received fewer lines of chemotherapy or in chemotherapy-naïve patients in the metastatic, adjuvant, and neoadjuvant settings. Moreover, recent trials in smaller cohorts have identified anti-tumor activity of PARPi in TNBC patients, regardless of BRCA-mutation status. While there have been concerns regarding the efficacy and toxicity of the use of PARPi in combination with chemotherapy, these challenges can be mitigated with careful attention to PARPi dosing strategies. To better identify a patient subpopulation that will best respond to PARPi, several genomic biomarkers of homologous recombination deficiency have been tested. However, gene expression signatures associated with PARPi response can integrate different pathways in addition to homologous recombination deficiency and can be implemented in the clinic more readily. Taken together, PARPi have great potential for use in TNBC patients beyond BRCAMUT status, both as a single-agent and in combination.
Collapse
Affiliation(s)
- Mariya Yordanova
- Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Audrey Hubert
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
| | - Saima Hassan
- Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3T5, Canada;
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), l’Institut de Cancer de Montreal, Montreal, QC H2X 0A9, Canada
- Division of Surgical Oncology, Department of Surgery, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0C1, Canada
| |
Collapse
|
13
|
Parsels LA, Zhang Q, Karnak D, Parsels JD, Lam K, Willers H, Green MD, Rehemtulla A, Lawrence TS, Morgan MA. Translation of DNA Damage Response Inhibitors as Chemoradiation Sensitizers From the Laboratory to the Clinic. Int J Radiat Oncol Biol Phys 2021; 111:e38-e53. [PMID: 34348175 PMCID: PMC8602768 DOI: 10.1016/j.ijrobp.2021.07.1708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022]
Abstract
Combination therapies with agents targeting the DNA damage response (DDR) offer an opportunity to selectively enhance the therapeutic index of chemoradiation or eliminate use of chemotherapy altogether. The successful translation of DDR inhibitors to clinical use requires investigating both their direct actions as (chemo)radiosensitizers and their potential to stimulate tumor immunogenicity. Beginning with high-throughput screening using both viability and DNA damage-reporter assays, followed by validation in gold-standard radiation colony-forming assays and in vitro assessment of mechanistic effects on the DDR, we describe proven strategies and methods leading to the clinical development of DDR inhibitors both with radiation alone and in combination with chemoradiation. Beyond these in vitro studies, we discuss the impact of key features of human xenograft and syngeneic mouse models on the relevance of in vivo tumor efficacy studies, particularly with regard to the immunogenic effects of combined therapy with radiation and DDR inhibitors. Finally, we describe recent technological advances in radiation delivery (using the small animal radiation research platform) that allow for conformal, clinically relevant radiation therapy in mouse models. This overall approach is critical to the successful clinical development and ultimate Food and Drug Administration approval of DDR inhibitors as (chemo)radiation sensitizers.
Collapse
Affiliation(s)
- Leslie A Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Qiang Zhang
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - David Karnak
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Joshua D Parsels
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Kwok Lam
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
14
|
Chandra RA, Keane FK, Voncken FEM, Thomas CR. Contemporary radiotherapy: present and future. Lancet 2021; 398:171-184. [PMID: 34166607 DOI: 10.1016/s0140-6736(21)00233-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/18/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
Abstract
Oncology care is increasingly a multidisciplinary endeavour, and radiation therapy continues to have a key role across the disease spectrum in nearly every cancer. However, the field of radiation oncology is still one of the most poorly understood of the cancer disciplines. In this Review, we attempt to summarise and contextualise developments within the field of radiation oncology for the non-radiation oncologist. We discuss advancements in treatment technologies and imaging, followed by an overview of the interplay with advancements in systemic therapy and surgical techniques. Finally, we review new frontiers in radiation oncology, including advances within the metastatic disease continuum, reirradiation, and emerging types of radiation therapy.
Collapse
Affiliation(s)
- Ravi A Chandra
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA.
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Francine E M Voncken
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
15
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
16
|
Chilimoniuk J, Gosiewska A, Słowik J, Weiss R, Deckert PM, Rödiger S, Burdukiewicz M. countfitteR: efficient selection of count distributions to assess DNA damage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:528. [PMID: 33987226 DOI: 10.21037/atm-20-6363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background DNA double-strand breaks can be counted as discrete foci by imaging techniques. In personalized medicine and pharmacology, the analysis of counting data is relevant for numerous applications, e.g., for cancer and aging research and the evaluation of drug efficacy. By default, it is assumed to follow the Poisson distribution. This assumption, however, may lead to biased results and faulty conclusions in datasets with excess zero values (zero-inflation), a variance larger than the mean (overdispersion), or both. In such cases, the assumption of a Poisson distribution would skew the estimation of mean and variance, and other models like the negative binomial (NB), zero-inflated Poisson or zero-inflated NB distributions should be employed. The model chosen has an influence on the parameter estimation (mean value and confidence interval). Yet the choice of the suitable distribution model is not trivial. Methods To support, simplify and objectify this process, we have developed the countfitteR software as an R package. We used a Bayesian approach for distribution model selection and the shiny web application framework for interactive data analysis. Results We show the application of our software based on examples of DNA double-strand break count data from phenotypic imaging by multiplex fluorescence microscopy. In analyzing numerous datasets of molecular pharmacological markers (phosphorylated histone H2AX and p53 binding protein), countfitteR demonstrated an equal or superior statistical performance compared to the usually employed two-step procedure, with an overall power of up to 98%. In addition, it still gave information in cases with no result at all from the two-step procedure. In our data sample we found that the NB distribution was the most frequent, with the Poisson distribution taking second place. Conclusions countfitteR can perform an automated distribution model selection and thus support the data analysis and lead to objective statistically verifiable estimated values. Originally designed for the analysis of foci in biomedical image data, countfitteR can be used in a variety of areas where non-Poisson distributed counting data is prevalent.
Collapse
Affiliation(s)
- Jarosław Chilimoniuk
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland.,Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Alicja Gosiewska
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Jadwiga Słowik
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Romano Weiss
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - P Markus Deckert
- Faculty of Medicine and Psychology, Brandenburg Medical School Theodor Fontane, and Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg, Germany
| | - Stefan Rödiger
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.,Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Michał Burdukiewicz
- Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.,Medical University of Białystok, Białystok, Poland
| |
Collapse
|
17
|
Derlin T, Bogdanova N, Ohlendorf F, Ramachandran D, Werner RA, Ross TL, Christiansen H, Bengel FM, Henkenberens C. Assessment of γ-H2AX and 53BP1 Foci in Peripheral Blood Lymphocytes to Predict Subclinical Hematotoxicity and Response in Somatostatin Receptor-Targeted Radionuclide Therapy for Advanced Gastroenteropancreatic Neuroendocrine Tumors. Cancers (Basel) 2021; 13:cancers13071516. [PMID: 33806081 PMCID: PMC8036952 DOI: 10.3390/cancers13071516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We aimed to characterize γ-H2AX and 53BP1 foci formation in patients receiving somatostatin receptor-targeted radioligand therapy, and explored its role for predicting treatment-related hematotoxicity, and treatment response. METHODS A prospective analysis of double-strand break (DSB) markers was performed in 21 patients with advanced gastroenteropancreatic neuroendocrine tumors. γ-H2AX and 53BP1 foci formation were evaluated in peripheral blood lymphocytes (PBLs) at baseline, +1 h and +24 h after administration of 7.4 GBq (177Lu)Lu-DOTA-TATE. Hematotoxicity was evaluated using standard hematology. Therapy response was assessed using (68Ga)Ga-DOTA-TATE PET/CT before enrollment and after 2 cycles of PRRT according to the volumetric modification of RECIST 1.1. RESULTS DSB marker kinetics were heterogeneous among patients. Subclinical hematotoxicity was associated with γ-H2AX and 53BP1 foci formation (e.g., change in platelet count vs change in γ-H2AX+ cells between baseline and +1 h (r = -0.6080; p = 0.0045). Patients showing early development of new metastases had less γ-H2AX (p = 0.0125) and less 53BP1 foci per cell at +1 h (p = 0.0289), and demonstrated a distinct kinetic pattern with an absence of DSB marker decrease at +24 h (γ-H2AX: p = 0.0025; 53BP1: p = 0.0008). CONCLUSIONS Assessment of γ-H2AX and 53BP1 foci formation in PBLs of patients receiving radioligand therapy may hold promise for predicting subclinical hematotoxicity and early treatment response.
Collapse
Affiliation(s)
- Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
- Correspondence: ; Tel.: +49-(0)5115322579; Fax: +49-(0)5115323761
| | - Natalia Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; (N.B.); (H.C.); (C.H.)
| | - Fiona Ohlendorf
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Dhanya Ramachandran
- Department of Radiation Oncology, and Gynaecology Research Unit, Hannover Medical School, 30625 Hannover, Germany;
| | - Rudolf A. Werner
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Tobias L. Ross
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Hans Christiansen
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; (N.B.); (H.C.); (C.H.)
| | - Frank M. Bengel
- Department of Nuclear Medicine, Hannover Medical School, 30625 Hannover, Germany; (F.O.); (R.A.W.); (T.L.R.); (F.M.B.)
| | - Christoph Henkenberens
- Department of Radiation Oncology, Hannover Medical School, 30625 Hannover, Germany; (N.B.); (H.C.); (C.H.)
| |
Collapse
|
18
|
Köcher S, Volquardsen J, Perugachi Heinsohn A, Petersen C, Roggenbuck D, Rothkamm K, Mansour WY. Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation. DNA Repair (Amst) 2021; 102:103100. [PMID: 33812230 DOI: 10.1016/j.dnarep.2021.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022]
Abstract
Analysis and quantification of residual, unrepaired DNA double-strand breaks by detecting damage-associated γH2AX or 53BP1 foci is a promising approach to evaluate radiosensitivity or radiosensitization in tumor cells. Manual foci quantification by eye is well-established but unsatisfactory due to inconsistent foci numbers between different observers, lack of information about foci size and intensity and the time-consuming scoring process. Therefore, automated foci counting is an important goal. Several software solutions for automated foci counting in separately acquired fluorescence microscopy images have been established. The AKLIDES NUK technology by Medipan combines automated microscopy and image processing/ counting, enabling affordable high throughput foci analysis as a routine application. Using this machine, automated foci counting is well established for lymphocytes but has not yet been reported for adherent tumor cells with their irregularly shaped nuclei and heterogeneous foci textures. Here we aimed to use the AKLIDES NUK system for adherent tumor cells growing in clusters. We identified cell separation as a critical step to ensure fast and reliable automated nuclei detection. We validated our protocol for the fully automated quantification of (i) the IR-dose dependent increase and (ii) the ATM as well as PARP inhibitor-induced radiosensitization. Collectively, with this protocol the AKLIDES NUK system facilitates cost effective, fast and high throughput quantitative fluorescence microscopic analysis of DNA damage induced foci such as γH2AX and 53BP1 in adherent tumor cells.
Collapse
Affiliation(s)
- S Köcher
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - J Volquardsen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Perugachi Heinsohn
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - C Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - D Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | - K Rothkamm
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - W Y Mansour
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Tumor Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt; Mildred-Scheel Cancer Career Center HATRICs4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
Zaarour RF, Prasad P, Venkatesh GH, Khouzam RA, Amirtharaj F, Zeinelabdin N, Rifath A, Terry S, Nawafleh H, El Sayed Y, Chouaib S. Waterpipe smoke condensate influences epithelial to mesenchymal transition and interferes with the cytotoxic immune response in non-small cell lung cancer cell lines. Oncol Rep 2021; 45:879-890. [PMID: 33469682 PMCID: PMC7859923 DOI: 10.3892/or.2021.7938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Waterpipe tobacco smoking (WPS) continues to spread globally and presents serious health hazards. The aim of the present study was to investigate the effects of treatment with WPS condensate (WPSC) on lung cell proliferation and plasticity as well as tumor cell recognition and killing by natural killer (NK) cells using cytotoxicity assays. The results indicated that exposure of normal and cancer lung cell lines to WPSC resulted in a decrease in their in vitro growth in a dose-dependent manner and it induced tumor senescence. In addition, WPSC selectively caused DNA damage as revealed by an increase in γH2AX and 53BP1 in tumor lung cells. To gain further insight into the molecular mechanisms altered by WPSC, we conducted a global comprehensive transcriptome analysis of WPSC-treated tumor cells. Data analysis identified an expression profile of genes that best distinguished treated and non-treated cells involving several pathways. Of these pathways, we focused on those involved in epithelial to mesenchymal transition (EMT) and stemness. Results showed that WPSC induced an increase in SNAI2 expression associated with EMT, ACTA2 and SERPINE2 were involved in invasion and CD44 was associated with stemness. Furthermore, WPSC exposure increased the expression of inflammatory response genes including CASP1, IL1B, IL6 and CCL2. While immune synapse formation between NK and WPSC-treated lung cancer target cells was not affected, the capacity of NK cells to kill these target cells was reduced. The data reported in the present study are, to the best of our knowledge, the first in vitro demonstration of WPSC effects on lung cellular parameters providing evidence of its potential involvement in tumor physiology and development.
Collapse
Affiliation(s)
- Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Prathibha Prasad
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | | | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Francis Amirtharaj
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Nagwa Zeinelabdin
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Ayesha Rifath
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Stephane Terry
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine - University of Paris-Sud, University of Paris-Saclay, F-94805 Villejuif, France
| | - Husam Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
| | - Yehya El Sayed
- Department of Biology, Chemistry and Environmental Sciences (BCE), American University of Sharjah, Sharjah 26666, UAE
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman 4184, UAE
- INSERM UMR 1186, Integrative Tumour Immunology and Immunotherapy, Gustave Roussy, Faculty of Medicine - University of Paris-Sud, University of Paris-Saclay, F-94805 Villejuif, France
| |
Collapse
|
20
|
Cohen E, Pena S, Mei C, Bracho O, Marples B, Elsayyad N, Goncalves S, Ivan M, Monje PV, Liu XZ, Fernandez-Valle C, Telischi F, Dinh CT. Merlin-Deficient Schwann Cells Are More Susceptible to Radiation Injury than Normal Schwann Cells In Vitro. Skull Base Surg 2021; 83:228-236. [DOI: 10.1055/s-0040-1722283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/29/2020] [Indexed: 10/22/2022]
Abstract
Abstract
Objectives Vestibular schwannomas (VS) are intracranial tumors, which are caused by NF2 gene mutations that lead to loss of merlin protein. A treatment for VS is stereotactic radiosurgery, a form of radiation. To better understand the radiobiology of VS and radiation toxicity to adjacent structures, our main objectives were (1) investigate effects of single fraction (SF) radiation on viability, cytotoxicity, and apoptosis in normal Schwann cells (SCs) and merlin-deficient Schwann cells (MD-SCs) in vitro, and (2) analyze expression of double strand DNA breaks (γ-H2AX) and DNA repair protein Rad51 following irradiation.
Study Design This is a basic science study.
Setting This study is conducted in a research laboratory.
Participants Patients did not participate in this study.
Main Outcome Measures In irradiated normal SCs and MD-SCs (0–18 Gy), we measured (1) viability, cytotoxicity, and apoptosis using cell-based assays, and (2) percentage of cells with γ-H2AX and Rad51 on immunofluorescence.
Results A high percentage of irradiated MD-SCs expressed γ-H2AX, which may explain the dose-dependent losses in viability in rodent and human cell lines. In comparison, the viabilities of normal SCs were only compromised at higher doses of radiation (>12 Gy, human SCs), which may be related to less Rad51 repair. There were no further reductions in viability in human MD-SCs beyond 9 Gy, suggesting that <9 Gy may be insufficient to initiate maximal tumor control.
Conclusion The MD-SCs are more susceptible to radiation than normal SCs, in part through differential expression of γ-H2AX and Rad51. Understanding the radiobiology of MD-SCs and normal SCs is important for optimizing radiation protocols to maximize tumor control while limiting radiation toxicity in VS patients.
Collapse
Affiliation(s)
- Erin Cohen
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Stefanie Pena
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Christine Mei
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Olena Bracho
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Brian Marples
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Nagy Elsayyad
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Michael Ivan
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Paula V. Monje
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Xue-Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Cristina Fernandez-Valle
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Miami, Florida, United States
| | - Fred Telischi
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Christine T. Dinh
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
21
|
Endo H, Kondo J, Onuma K, Ohue M, Inoue M. Small subset of Wnt-activated cells is an initiator of regrowth in colorectal cancer organoids after irradiation. Cancer Sci 2020; 111:4429-4441. [PMID: 33043499 PMCID: PMC7734167 DOI: 10.1111/cas.14683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Most colorectal cancers (CRCs) are differentiated adenocarcinomas, which maintain expression of both stemness and differentiation markers. This observation suggests that CRC cells could retain a regeneration system of normal cells upon injury. However, the role of stemness in cancer cell regeneration after irradiation is poorly understood. Here, we examined the effect of radiation on growth, stemness, and differentiation in organoids derived from differentiated adenocarcinomas. Following a sublethal dose of irradiation, proliferation and stemness markers, including Wnt target genes, were drastically reduced, but differentiation markers remained. After a static growth phase after high dose of radiation, regrowth foci appeared; these consisted of highly proliferating cells that expressed stem cell markers. Radiosensitivity and the ability to form foci differed among the cancer tissue‐originated spheroid (CTOS) lines examined and showed good correlation with in vivo radiation sensitivity. Pre‐treating organoids with histone deacetylase inhibitors increased radiation sensitivity; this increase was accompanied by the suppression of Wnt signal‐related gene expression. Accordingly, Wnt inhibitors increased organoid radiosensitivity. These results suggested that only a small subset of, but not all, cancer cells with high Wnt activity at the time of irradiation could give rise to foci formation. In conclusion, we established a radiation sensitivity assay using CRC organoids that could provide a novel platform for evaluating the effects of radiosensitizers on differentiated adenocarcinomas in CRC.
Collapse
Affiliation(s)
- Hiroko Endo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan
| | - Jumpei Kondo
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.,Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kunishige Onuma
- Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiro Inoue
- Department of Biochemistry, Osaka International Cancer Institute, Osaka, Japan.,Department of Clinical Bio-resource Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
22
|
Yang Y, Luo J, Chen X, Yang Z, Mei X, Ma J, Zhang Z, Guo X, Yu X. CDK4/6 inhibitors: a novel strategy for tumor radiosensitization. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:188. [PMID: 32933570 PMCID: PMC7490904 DOI: 10.1186/s13046-020-01693-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Recently, the focus of enhancing tumor radiosensitivity has shifted from chemotherapeutics to targeted therapies. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors are a novel class of selective cell cycle therapeutics that target the cyclin D-CDK4/6 complex and induce G1 phase arrest. These agents have demonstrated favorable effects when used as monotherapy or combined with endocrine therapy and targeted inhibitors, stimulating further explorations of other combination strategies. Multiple preclinical studies have indicated that CDK4/6 inhibitors exhibit a synergistic effect with radiotherapy both in vitro and in vivo. The principal mechanisms of radiosensitization effects include inhibition of DNA damage repair, enhancement of apoptosis, and blockade of cell cycle progression, which provide the rationale for clinical use. CDK4/6 inhibitors also induce cellular senescence and promote anti-tumor immunity, which might represent potential mechanisms for radiosensitization. Several small sample clinical studies have preliminarily indicated that the combination of CDK4/6 inhibitors and radiotherapy exhibited well-tolerated toxicity and promising efficacy. However, most clinical trials in combined therapy remain in the recruitment stage. Further work is required to seek optimal radiotherapy-drug combinations. In this review, we describe the effects and underlying mechanisms of CDK4/6 inhibitors as a radiosensitizer and discuss previous clinical studies to evaluate the prospects and challenges of this combination.
Collapse
Affiliation(s)
- Yilan Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jurui Luo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhaozhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Mei
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jinli Ma
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 DongAn Road, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Bryant J, White L, Coen N, Shields L, McClean B, Meade AD, Lyng FM, Howe O. MicroRNA Analysis of ATM-Deficient Cells Indicate PTEN and CCDN1 as Potential Biomarkers of Radiation Response. Radiat Res 2020; 193:520-530. [PMID: 32216710 DOI: 10.1667/rr15462.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/06/2020] [Indexed: 11/03/2022]
Abstract
Genetic and epigenetic profile changes associated with individual radiation sensitivity are well documented and have led to enhanced understanding of the mechanisms of the radiation-induced DNA damage response. However, the search continues to identify reliable biomarkers of individual radiation sensitivity. Herein, we report on a multi-biomarker approach using traditional cytogenetic biomarkers, DNA damage biomarkers and transcriptional microRNA (miR) biomarkers coupled with their potential gene targets to identify radiosensitivity in ataxia-telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines (LCL); ATM-proficient cell lines were used as controls. Cells were 0.05 and 0.5 Gy irradiated, using a linear accelerator, with sham-irradiated cells as controls. At 1 h postirradiation, cells were fixed for γ-H2AX analysis as a measurement of DNA damage, and cytogenetic analysis using the G2 chromosomal sensitivity assay, G-banding and FISH techniques. RNA was also isolated for genetic profiling by microRNA (miR) and RT-PCR analysis. A panel of 752 miR were analyzed, and potential target genes, phosphatase and tensin homolog (PTEN) and cyclin D1 (CCND1), were measured. The cytogenetic assays revealed that although the control cell line had functional cell cycle checkpoints, the radiosensitivity of the control and AT cell lines were similar. Analysis of DNA damage in all cell lines, including an additional control cell line, showed elevated γ-H2AX levels for only one AT cell line. Of the 752 miR analyzed, eight miR were upregulated, and six miR were downregulated in the AT cells compared to the control. Upregulated miR-152-3p, miR-24-5p and miR-92-15p and all downregulated miR were indicated as modulators of PTEN and CCDN1. Further measurement of both genes validated their potential role as radiation-response biomarkers. The multi-biomarker approach not only revealed potential candidates for radiation response, but provided additional mechanistic insights into the response in AT-deficient cells.
Collapse
Affiliation(s)
- Jane Bryant
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute
| | - Lisa White
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Natasha Coen
- Department of Clinical Genetics, Division of Cytogenetics, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Laura Shields
- Medical Physics Department, St Luke's Radiation Oncology Centre, Rathgar, Dublin 6, Ireland
| | - Brendan McClean
- Medical Physics Department, St Luke's Radiation Oncology Centre, Rathgar, Dublin 6, Ireland
| | - Aidan D Meade
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Fiona M Lyng
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Physics & Clinical & Optometric Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| | - Orla Howe
- Radiation and Environmental Science Centre (RESC), FOCAS Research Institute.,School of Biological and Health Sciences, Technological University Dublin, City Campus, Dublin 8, Ireland
| |
Collapse
|
24
|
Marcar L, Bardhan K, Gheorghiu L, Dinkelborg P, Pfäffle H, Liu Q, Wang M, Piotrowska Z, Sequist LV, Borgmann K, Settleman JE, Engelman JA, Hata AN, Willers H. Acquired Resistance of EGFR-Mutated Lung Cancer to Tyrosine Kinase Inhibitor Treatment Promotes PARP Inhibitor Sensitivity. Cell Rep 2020; 27:3422-3432.e4. [PMID: 31216465 PMCID: PMC6624074 DOI: 10.1016/j.celrep.2019.05.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 02/25/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Lung cancers with oncogenic mutations in the epidermal growth factor receptor (EGFR) invariably acquire resistance to tyrosine kinase inhibitor (TKI) treatment. Vulnerabilities of EGFR TKI-resistant cancer cells that could be therapeutically exploited are incompletely understood. Here, we describe a poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor-sensitive phenotype that is conferred by TKI treatment in vitro and in vivo and appears independent of any particular TKI resistance mechanism. We find that PARP-1 protects cells against cytotoxic reactive oxygen species (ROS) produced by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). Compared to TKI-naive cells, TKI-resistant cells exhibit signs of increased RAC1 activity. PARP-1 catalytic function is required for PARylation of RAC1 at evolutionarily conserved sites in TKI-resistant cells, which restricts NOX-mediated ROS production. Our data identify a role of PARP-1 in controlling ROS levels upon EGFR TKI treatment, with potentially broad implications for therapeutic targeting of the mechanisms that govern the survival of oncogene-driven cancer cells.
Collapse
Affiliation(s)
- Lynnette Marcar
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kankana Bardhan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Patrick Dinkelborg
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Heike Pfäffle
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qi Liu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zofia Piotrowska
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Hospital Eppendorf, Hamburg 20251, Germany
| | - Jeffrey E Settleman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey A Engelman
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aaron N Hata
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
25
|
Suckert T, Rassamegevanon T, Müller J, Dietrich A, Graja A, Reiche M, Löck S, Krause M, Beyreuther E, von Neubeck C. Applying Tissue Slice Culture in Cancer Research-Insights from Preclinical Proton Radiotherapy. Cancers (Basel) 2020; 12:E1589. [PMID: 32560230 PMCID: PMC7352770 DOI: 10.3390/cancers12061589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
A challenge in cancer research is the definition of reproducible, reliable, and practical models, which reflect the effects of complex treatment modalities and the heterogeneous response of patients. Proton beam radiotherapy (PBRT), relative to conventional photon-based radiotherapy, offers the potential for iso-effective tumor control, while protecting the normal tissue surrounding the tumor. However, the effects of PBRT on the tumor microenvironment and the interplay with newly developed chemo- and immunotherapeutic approaches are still open for investigation. This work evaluated thin-cut tumor slice cultures (TSC) of head and neck cancer and organotypic brain slice cultures (OBSC) of adult mice brain, regarding their relevance for translational radiooncology research. TSC and OBSC were treated with PBRT and investigated for cell survival with a lactate dehydrogenase (LDH) assay, DNA repair via the DNA double strand break marker γH2AX, as well as histology with regards to morphology. Adult OBSC failed to be an appropriate model for radiobiological research questions. However, histological analysis of TSC showed DNA damage and tumor morphological results, comparable to known in vivo and in vitro data, making them a promising model to study novel treatment approaches in patient-derived xenografts or primary tumor material.
Collapse
Affiliation(s)
- Theresa Suckert
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Treewut Rassamegevanon
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Johannes Müller
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
| | - Antje Dietrich
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Antonia Graja
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
| | - Michael Reiche
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
| | - Steffen Löck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Institute of Radiooncology—OncoRay, Helmholtz-Zentrum Dresden—Rossendorf, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, 01307 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01309 Dresden, Germany
| | - Elke Beyreuther
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiation Physics, 01328 Dresden, Germany
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (T.R.); (A.D.); (A.G.); (S.L.); (M.K.); (C.v.N.)
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01309 Dresden, Germany; (J.M.); (M.R.); (E.B.)
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
26
|
Willers H, Keane FK, Kamran SC. Toward a New Framework for Clinical Radiation Biology. Hematol Oncol Clin North Am 2019; 33:929-945. [PMID: 31668212 DOI: 10.1016/j.hoc.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiation biology has entered the era of precision oncology, and this article reviews time-tested factors that determine the effects of fractionated radiation therapy in a wide variety of tumor types and normal tissues: the association of tumor control with radiation dose, the importance of fractionation and overall treatment time, and the role of tumor hypoxia. Therapeutic gain can only be achieved if the increased tumor toxicity produced by biological treatment modifications is balanced against injury to early-responding and late-responding normal tissues. Developments in precision oncology and immuno-oncology will allow an emphasis on treatment individualization and predictive biomarker development.
Collapse
Affiliation(s)
- Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA. https://twitter.com/KatieKeaneMD
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA. https://twitter.com/sophia_kamran
| |
Collapse
|
27
|
Essers PBM, van der Heijden M, Verhagen CVM, Ploeg EM, de Roest RH, Leemans CR, Brakenhoff RH, van den Brekel MWM, Bartelink H, Verheij M, Vens C. Drug Sensitivity Prediction Models Reveal a Link between DNA Repair Defects and Poor Prognosis in HNSCC. Cancer Res 2019; 79:5597-5611. [PMID: 31515237 DOI: 10.1158/0008-5472.can-18-3388] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is characterized by the frequent manifestation of DNA crosslink repair defects. We established novel expression-based DNA repair defect markers to determine the clinical impact of such repair defects. Using hypersensitivity to the DNA crosslinking agents, mitomycin C and olaparib, as proxies for functional DNA repair defects in a panel of 25 HNSCC cell lines, we applied machine learning to define gene expression models that predict repair defects. The expression profiles established predicted hypersensitivity to DNA-damaging agents and were associated with mutations in crosslink repair genes, as well as downregulation of DNA damage response and repair genes, in two independent datasets. The prognostic value of the repair defect prediction profiles was assessed in two retrospective cohorts with a total of 180 patients with advanced HPV-negative HNSCC, who were treated with cisplatin-based chemoradiotherapy. DNA repair defects, as predicted by the profiles, were associated with poor outcome in both patient cohorts. The poor prognosis association was particularly strong in normoxic tumor samples and was linked to an increased risk of distant metastasis. In vitro, only crosslink repair-defective HNSCC cell lines are highly migratory and invasive. This phenotype could also be induced in cells by inhibiting rad51 in repair competent and reduced by DNA-PK inhibition. In conclusion, DNA crosslink repair prediction expression profiles reveal a poor prognosis association in HNSCC. SIGNIFICANCE: This study uses innovative machine learning-based approaches to derive models that predict the effect of DNA repair defects on treatment outcome in HNSCC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/21/5597/F1.large.jpg.
Collapse
Affiliation(s)
- Paul B M Essers
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Martijn van der Heijden
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Caroline V M Verhagen
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Emily M Ploeg
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reinout H de Roest
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - C René Leemans
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Department of Otolaryngology/Head and Neck Surgery, VUmc Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Harry Bartelink
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marcel Verheij
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Conchita Vens
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, the Netherlands. .,Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Liu Q, Lopez K, Murnane J, Humphrey T, Barcellos-Hoff MH. Misrepair in Context: TGFβ Regulation of DNA Repair. Front Oncol 2019; 9:799. [PMID: 31552165 PMCID: PMC6736563 DOI: 10.3389/fonc.2019.00799] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repair of DNA damage protects genomic integrity, which is key to tissue functional integrity. In cancer, the type and fidelity of DNA damage response is the fundamental basis for clinical response to cytotoxic therapy. Here we consider the contribution of transforming growth factor-beta (TGFβ), a ubiquitous, pleotropic cytokine that is abundant in the tumor microenvironment, to therapeutic response. The action of TGFβ is best illustrated in head and neck squamous cell carcinoma (HNSCC). Survival of HNSCC patients with human papilloma virus (HPV) positive cancer is more than double compared to those with HPV-negative HNSCC. Notably, HPV infection profoundly impairs TGFβ signaling. HPV blockade of TGFβ signaling, or pharmaceutical TGFβ inhibition that phenocopies HPV infection, shifts cancer cells from error-free homologous-recombination DNA double-strand-break (DSB) repair to error-prone alternative end-joining (altEJ). Cells using altEJ are more sensitive to standard of care radiotherapy and cisplatin, and are sensitized to PARP inhibitors. Hence, HPV-positive HNSCC is an experiment of nature that provides a strong rationale for the use of TGFβ inhibitors for optimal therapeutic combinations that improve patient outcome.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Kirsten Lopez
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - John Murnane
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy Humphrey
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Rassamegevanon T, Löck S, Baumann M, Krause M, von Neubeck C. Comparable radiation response of ex vivo and in vivo irradiated tumor samples determined by residual γH2AX. Radiother Oncol 2019; 139:94-100. [PMID: 31445839 DOI: 10.1016/j.radonc.2019.06.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/16/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE a) To investigate if an ex vivo cultured and irradiated tumor biopsy reflects and predicts the radiation response of the corresponding in vivo irradiated tumor measured with the DNA double strand break marker γH2AX foci. MATERIALS AND METHODS Five human head and neck squamous cell carcinoma (hHNSCC) xenograft models were used. Fine needle biopsies were taken from anesthetized tumor-bearing NMRI nude mice prior to in vivo single dose irradiation (0, 2, 4, or 8 Gy) under ambient blood flow. Biopsies were ex vivo reoxygenated and irradiated with equivalent doses. Tumors and biopsies were fixed 24 h post irradiation, and γH2AX foci were assessed in oxygenated tumor regions. RESULTS Linear regression analysis showed comparable slopes of the residual γH2AX foci dose-response curves in four out of five hHNSCC models when in vivo and ex vivo cohorts were compared. The slopes from ex vivo biopsies and in vivo tumors could classify the respective tumor model as sensitive or resistant according to the intrinsic radiation sensitivity (TCD50). CONCLUSION The ability of ex vivo irradiated tumor biopsies to reflect and predict the intrinsic radiation response of in vivo tumors increases the translational potential of the ex vivo γH2AX foci assay as a diagnostic tool for clinical practice.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany.
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and; Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Cläre von Neubeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Chen YH, Wang CW, Wei MF, Tzeng YS, Lan KH, Cheng AL, Kuo SH. Maintenance BEZ235 Treatment Prolongs the Therapeutic Effect of the Combination of BEZ235 and Radiotherapy for Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11081204. [PMID: 31430901 PMCID: PMC6721476 DOI: 10.3390/cancers11081204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Our previous study demonstrated that administration of NVP-BEZ235 (BEZ235), a dual PI3K/mTOR inhibitor, before radiotherapy (RT) enhanced the radiotherapeutic effect in colorectal cancer (CRC) cells both in vitro and in vivo. Here, we evaluated whether maintenance BEZ235 treatment, after combinatorial BEZ235 + RT therapy, prolonged the antitumor effect in CRC. K-RAS mutant CRC cells (HCT116 and SW480), wild-type CRC cells (HT29), and HCT116 xenograft tumors were separated into the following six study groups: (1) untreated (control); (2) RT alone; (3) BEZ235 alone; (4) RT + BEZ235; (5) maintenance BEZ235 following RT + BEZ235 (RT + BEZ235 + mBEZ235); and (6) maintenance BEZ235 following BEZ235 (BEZ235 + mBEZ235). RT + BEZ235 + mBEZ235 treatment significantly inhibited cell viability and increased apoptosis in three CRC cell lines compared to the other five treatments in vitro. In the HCT116 xenograft tumor model, RT + BEZ235 + mBEZ235 treatment significantly reduced the tumor size when compared to the other five treatments. Furthermore, the expression of mTOR signaling molecules (p-rpS6 and p-eIF4E), DNA double-strand break (DSB) repair-related molecules (p-ATM and p-DNA-PKcs), and angiogenesis-related molecules (VEGF-A and HIF-1α) was significantly downregulated after RT + BEZ235 + mBEZ235 treatment both in vitro and in vivo when compared to the RT + BEZ235, RT, BEZ235, BEZ235 + mBEZ235, and control treatments. Cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), 53BP1, and γ-H2AX expression in the HCT116 xenograft tissue and three CRC cell lines were significantly upregulated after RT + BEZ235 + mBEZ235 treatment. Maintenance BEZ235 treatment in CRC cells prolonged the inhibition of cell viability, enhancement of apoptosis, attenuation of mTOR signaling, impairment of the DNA-DSB repair mechanism, and downregulation of angiogenesis that occurred due to concurrent BEZ235 and RT treatment.
Collapse
Affiliation(s)
- Yu-Hsuan Chen
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Wei Wang
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Feng Wei
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Shin Tzeng
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Keng-Hsueh Lan
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Sung-Hsin Kuo
- Department of Oncology, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Cancer Research Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
- National Taiwan University Cancer Center, College of Medicine, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
31
|
IL-6 induced M1 type macrophage polarization increases radiosensitivity in HPV positive head and neck cancer. Cancer Lett 2019; 456:69-79. [DOI: 10.1016/j.canlet.2019.04.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 12/20/2022]
|
32
|
Bristow RG, Alexander B, Baumann M, Bratman SV, Brown JM, Camphausen K, Choyke P, Citrin D, Contessa JN, Dicker A, Kirsch DG, Krause M, Le QT, Milosevic M, Morris ZS, Sarkaria JN, Sondel PM, Tran PT, Wilson GD, Willers H, Wong RKS, Harari PM. Combining precision radiotherapy with molecular targeting and immunomodulatory agents: a guideline by the American Society for Radiation Oncology. Lancet Oncol 2019; 19:e240-e251. [PMID: 29726389 DOI: 10.1016/s1470-2045(18)30096-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/30/2017] [Accepted: 12/18/2017] [Indexed: 02/07/2023]
Abstract
The practice of radiation oncology is primarily based on precise technical delivery of highly conformal, image-guided external beam radiotherapy or brachytherapy. However, systematic research efforts are being made to facilitate individualised radiation dose prescriptions on the basis of gene-expressssion profiles that reflect the radiosensitivity of tumour and normal tissue. This advance in precision radiotherapy should complement those benefits made in precision cancer medicine that use molecularly targeted agents and immunotherapies. The personalisation of cancer therapy, predicated largely on genomic interrogation, is facilitating the selection of therapies that are directed against driver mutations, aberrant cell signalling, tumour microenvironments, and genetic susceptibilities. With the increasing technical power of radiotherapy to safely increase local tumour control for many solid tumours, it is an opportune time to rigorously explore the potential benefits of combining radiotherapy with molecular targeted agents and immunotherapies to increase cancer survival outcomes. This theme provides the basis and foundation for this American Society for Radiation Oncology guideline on combining radiotherapy with molecular targeting and immunotherapy agents.
Collapse
Affiliation(s)
- Robert G Bristow
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Brian Alexander
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Scott V Bratman
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - J Martin Brown
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kevin Camphausen
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Choyke
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Deborah Citrin
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joseph N Contessa
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Adam Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David G Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Quynh-Thu Le
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael Milosevic
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Paul M Sondel
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Department of Oncology, and Department of Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca K S Wong
- Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Paul M Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
33
|
Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:147. [PMID: 30953555 PMCID: PMC6451284 DOI: 10.1186/s13046-019-1151-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ionizing radiation (IR) therapy is the standard first-line treatment for newly diagnosed patients with glioblastoma (GBM), the most common and malignant primary brain tumor. However, the effects of IR are limited due to the aberrant radioresistance of GBM. METHODS Transcriptome analysis was performed using RNA-seq in radioresistant patient-derived glioma stem-like cells (GSCs). Survival of glioma patient and mice bearing-brain tumors was analyzed by Kaplan-Meier survival analysis. Lipid droplet and γ-H2AX foci-positive cells were evaluated using immunofluorescence staining. RESULTS Lipolytic inhibitor G0/G1 switch gene 2 (G0S2) is upregulated in radioresistant GSCs and elevated in clinical GBM. GBM patients with high G0S2 expression had significantly shorter overall survival compared with those with low expression of G0S2. Using genetic approaches targeting G0S2 in glioma cells and GSCs, we found that knockdown of G0S2 promoted lipid droplet turnover, inhibited GSC radioresistance, and extended survival of xenograft tumor mice with or without IR. In contrast, overexpression of G0S2 promoted glioma cell radiation resistance. Mechanistically, high expression of G0S2 reduced lipid droplet turnover and thereby attenuated E3 ligase RNF168-mediated 53BP1 ubiquitination through activated the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) signaling and increased 53BP1 protein stability in response to IR, leading to enhanced DNA repair and glioma radioresistance. CONCLUSIONS Our findings uncover a new function for lipolytic inhibitor G0S2 as an important regulator for GSC radioresistance, suggesting G0S2 as a potential therapeutic target for treating gliomas.
Collapse
|
34
|
Dinkelborg PH, Wang M, Gheorghiu L, Gurski JM, Hong TS, Benes CH, Juric D, Jimenez RB, Borgmann K, Willers H. A common Chk1-dependent phenotype of DNA double-strand break suppression in two distinct radioresistant cancer types. Breast Cancer Res Treat 2019; 174:605-613. [PMID: 30607635 PMCID: PMC6440812 DOI: 10.1007/s10549-018-05079-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/29/2018] [Indexed: 01/02/2023]
Abstract
PURPOSE Triple-negative breast cancers (TNBC) are often resistant to treatment with ionizing radiation (IR). We sought to investigate whether pharmacologic inhibition of Chk1 kinase, which is commonly overexpressed in TNBC, preferentially sensitizes TNBC cells to IR. METHODS Ten breast cancer cell lines were screened with small molecule inhibitors against Chk1 and other kinases. Chk1 inhibition was also tested in isogenic KRAS mutant or wild-type cancer cells. Cellular radiosensitization was measured by short-term and clonogenic survival assays and by staining for the DNA double-strand break (DSB) marker γ-H2AX. Radiosensitization was also assessed in breast cancer biopsies using an ex vivo assay. Aurora B kinase-dependent mitosis-like chromatin condensation, a marker of radioresistance, was detected using a specific antibody against co-localized phosphorylation of serine 10 and trimethylation of lysine 9 on histone 3 (H3K9me3/S10p). Expression of CHEK1 and associated genes was evaluated in TNBC and lung adenocarcinoma. RESULTS Inhibition of Chk1 kinase preferentially radiosensitized TNBC cells in vitro and in patient biopsies. Interestingly, TNBC cells displayed lower numbers of IR-induced DSBs than non-TNBC cells, correlating with their observed radioresistance. We found that Chk1 suppressed IR-induced DSBs in these cells, which was dependent on H3K9me3/S10p-a chromatin mark previously found to indicate radioresistance in KRAS mutant cancers. Accordingly, the effects of Chk1 inhibition in TNBC were reproduced in KRAS mutant but not wild-type cells. We also observed co-expression of genes in this Chk1 chromatin pathway in TNBC and KRAS mutant lung cancers. CONCLUSIONS Chk1 promotes an unexpected, common phenotype of chromatin-dependent DSB suppression in radioresistant TNBC and KRAS mutant cancer cells, providing a direction for future investigations into overcoming the treatment resistance of TNBC.
Collapse
Affiliation(s)
- Patrick H Dinkelborg
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
- Laboratory of Radiobiology and Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meng Wang
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Liliana Gheorghiu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Joseph M Gurski
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Cyril H Benes
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dejan Juric
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
35
|
Gentles L, Goranov B, Matheson E, Herriott A, Kaufmann A, Hall S, Mukhopadhyay A, Drew Y, Curtin NJ, O'Donnell RL. Exploring the Frequency of Homologous Recombination DNA Repair Dysfunction in Multiple Cancer Types. Cancers (Basel) 2019; 11:cancers11030354. [PMID: 30871186 PMCID: PMC6468835 DOI: 10.3390/cancers11030354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Dysfunctional homologous recombination DNA repair (HRR), frequently due to BRCA mutations, is a determinant of sensitivity to platinum chemotherapy and poly(ADP-ribose) polymerase inhibitors (PARPi). In cultures of ovarian cancer cells, we have previously shown that HRR function, based upon RAD51 foci quantification, correlated with growth inhibition ex vivo induced by rucaparib (a PARPi) and 12-month survival following platinum chemotherapy. The aim of this study was to determine the feasibility of measuring HRR dysfunction (HRD) in other tumours, in order to estimate the frequency and hence wider potential of PARPi. A total of 24 cultures were established from ascites sampled from 27 patients with colorectal, upper gastrointestinal, pancreatic, hepatobiliary, breast, mesothelioma, and non-epithelial ovarian cancers; 8 were HRD. Cell growth following continuous exposure to 10 μM of rucaparib was lower in HRD cultures compared to HRR-competent (HRC) cultures. Overall survival in the 10 patients who received platinum-based therapy was marginally higher in the 3 with HRD ascites (median overall survival of 17 months, range 10 to 90) compared to the 7 patients with HRC ascites (nine months, range 1 to 55). HRR functional assessment in primary cultures, from several tumour types, revealed that a third are HRD, justifying the further exploration of PARPi therapy in a broader range of tumours.
Collapse
Affiliation(s)
- Lucy Gentles
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Bojidar Goranov
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Elizabeth Matheson
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ashleigh Herriott
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Angelika Kaufmann
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK.
| | - Sally Hall
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Asima Mukhopadhyay
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Tata Medical Center, 14 MAR (E-W), New Town, Rajarhat, Kolkata 700 160, India.
| | - Yvette Drew
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
- Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK.
| | - Nicola J Curtin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Rachel L O'Donnell
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. rachel.o'
- Northern Gynecological Oncology Centre, Queen Elizabeth Hospital, Sherriff Hill, Gateshead NE9 6SX, UK. rachel.o'
| |
Collapse
|
36
|
Köcher S, Beyer B, Lange T, Nordquist L, Volquardsen J, Burdak‐Rothkamm S, Schlomm T, Petersen C, Rothkamm K, Mansour WY. A functional
ex vivo
assay to detect PARP1‐EJ repair and radiosensitization by PARP‐inhibitor in prostate cancer. Int J Cancer 2019; 144:1685-1696. [DOI: 10.1002/ijc.32018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Sabrina Köcher
- Laboratory of Radiobiology and Experimental RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Burkhard Beyer
- Martini‐Klinik, Prostate Cancer CenterUniversity Medical Hamburg Eppendorf Hamburg Germany
| | - Tobias Lange
- Institute of AnatomyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Lena Nordquist
- Laboratory of Radiobiology and Experimental RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Jennifer Volquardsen
- Laboratory of Radiobiology and Experimental RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Susanne Burdak‐Rothkamm
- Department of Radiotherapy and RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Thorsten Schlomm
- Martini‐Klinik, Prostate Cancer CenterUniversity Medical Hamburg Eppendorf Hamburg Germany
| | - Cordula Petersen
- Department of Radiotherapy and RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Wael Yassin Mansour
- Laboratory of Radiobiology and Experimental RadiooncologyUniversity Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Tumor BiologyNational Cancer Institute, Cairo University Cairo Egypt
| |
Collapse
|
37
|
|
38
|
Fei Z, Gu W, Xie R, Su H, Jiang Y. Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage. J Pharmacol Sci 2018; 138:131-137. [PMID: 30337244 DOI: 10.1016/j.jphs.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/16/2018] [Accepted: 09/20/2018] [Indexed: 01/24/2023] Open
Abstract
Radiotherapy plays an important therapeutic role in esophageal cancer (EC). However, acquired radioresistance impairs the efficacy of radiotherapy, often leading to treatment failure. Therefore, it is important to develop novel radiosensitizers to enhance the clinical treatment of EC. The purpose of this study was to investigate the role of artesunate (ART) on radiosensitivity of human EC cell line TE-1. We found that ART inhibited the proliferation of EC cells and enhanced the radiosensitivity of TE-1 cells (SER = 1.24). In vivo tumor growth of xenografts was inhibited markedly by irradiation (IR) combined with ART, with a tumor inhibition rate of 53.76% in IR + ART group vs. 41.13% in IR-alone group. Pretreatment with ART significantly prompted cell apoptosis and reversed the IR-induced G2/M arrest. ART treatment could aggravate DNA damage of EC cells and prolong the formation of γ-H2AX foci induced by IR. ART up-regulated P21 and down-regulated the expression of cyclin D1, RAD51, RAD54, Ku70 and Ku86 protein of irradiated TE-1 cells. These findings support that ART induce radiosensitivity of TE-1 cells in vitro and in vivo, and may prove to be a promising radiosensitizer for EC treatment.
Collapse
Affiliation(s)
- Zhenhua Fei
- Department of Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang, 325000, PR China
| | - Wenyue Gu
- Department of Pathology, Yancheng Hospital Affiliated Southeast University, No.2 Xingdu Road, Yancheng, Jiangsu, 224000, PR China
| | - Raoying Xie
- Department of Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang, 325000, PR China
| | - Huafang Su
- Department of Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang, 325000, PR China
| | - Yiyan Jiang
- Department of Tumor Rehabilitation, The 1st Affiliated Hospital of Wenzhou Medical University, No.2 Fuxue Lane, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
39
|
Rassamegevanon T, Löck S, Baumann M, Krause M, von Neubeck C. Heterogeneity of γH2AX Foci Increases in Ex Vivo Biopsies Relative to In Vivo Tumors. Int J Mol Sci 2018; 19:E2616. [PMID: 30181446 PMCID: PMC6163410 DOI: 10.3390/ijms19092616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
The biomarker for DNA double stand breaks, gammaH2AX (γH2AX), holds a high potential as an intrinsic radiosensitivity predictor of tumors in clinical practice. Here, two published γH2AX foci datasets from in and ex vivo exposed human head and neck squamous cell carcinoma (hHNSCC) xenografts were statistically re-evaluated for the effect of the assay setting (in or ex vivo) on cellular geometry and the degree of heterogeneity in γH2AX foci. Significant differences between the nucleus areas of in- and ex vivo exposed samples were found. However, the number of foci increased linearly with nucleus area in irradiated samples of both settings. Moreover, irradiated tumor cells showed changes of nucleus area distributions towards larger areas compared to unexposed samples, implying cell cycle alteration after radiation exposure. The number of residual γH2AX foci showed a higher degree of intra-tumoral heterogeneity in the ex vivo exposed samples relative to the in vivo exposed samples. In the in vivo setting, the highest intra-tumoral heterogeneity was observed in initial γH2AX foci numbers (foci detected 30 min following irradiation). These results suggest that the tumor microenvironment and the culture condition considerably influence cellular adaptation and DNA damage repair.
Collapse
Affiliation(s)
- Treewut Rassamegevanon
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Steffen Löck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Michael Baumann
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Mechthild Krause
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany.
| | - Cläre von Neubeck
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- OncoRay-National Center for Radiation Research in Oncology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
40
|
Minchom A, Aversa C, Lopez J. Dancing with the DNA damage response: next-generation anti-cancer therapeutic strategies. Ther Adv Med Oncol 2018; 10:1758835918786658. [PMID: 30023007 PMCID: PMC6047242 DOI: 10.1177/1758835918786658] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/08/2018] [Indexed: 01/01/2023] Open
Abstract
Maintenance of genomic stability is a critical determinant of cell survival and relies on the coordinated action of the DNA damage response (DDR), which orchestrates a network of cellular processes, including DNA replication, DNA repair and cell-cycle progression. In cancer, the critical balance between the loss of genomic stability in malignant cells and the DDR provides exciting therapeutic opportunities. Drugs targeting DDR pathways taking advantage of clinical synthetic lethality have already shown therapeutic benefit - for example, the PARP inhibitor olaparib has shown benefit in BRCA-mutant ovarian and breast cancer. Olaparib has also shown benefit in metastatic prostate cancer in DDR-defective patients, expanding the potential biomarker of response beyond BRCA. Other agents and combinations aiming to block the DDR while pushing damaged DNA through the cell cycle, including PARP, ATR, ATM, CHK and DNA-PK inhibitors, are in development. Emerging work is also uncovering how the DDR interacts intimately with the host immune response, including by activating the innate immune response, further suggesting that clinical applications together with immunotherapy may be beneficial. Here, we review recent considerations related to the DDR from a clinical standpoint, providing a framework to address future directions and clinical opportunities.
Collapse
Affiliation(s)
- Anna Minchom
- Drug Development Unit at Royal Marsden Hospital/ Institute of Cancer Research, Sutton, UK
| | - Caterina Aversa
- Drug Development Unit at Royal Marsden Hospital/ Institute of Cancer Research, Sutton, UK
| | - Juanita Lopez
- Drug Development Unit at Royal Marsden Hospital/Institute of Cancer Research, Downs Rd, Sutton, SM2 5PT, UK
| |
Collapse
|
41
|
Zhou ZR, Yang ZZ, Yu XL, Guo XM. Highlights on molecular targets for radiosensitization of breast cancer cells: Current research status and prospects. Cancer Med 2018; 7:3110-3117. [PMID: 29856131 PMCID: PMC6051209 DOI: 10.1002/cam4.1588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
In the past, searching for effective radiotherapy sensitization molecular targets and improving the radiation sensitivity of malignant tumors was the hot topic for the oncologists, but with little achievements. We will summarize the research results about breast cancer irradiation sensitization molecular targets over the past two decades; we mainly focus on the following aspects: DNA damage repair and radiation sensitization, cell cycle regulation and radiation sensitization, cell autophagy regulation and radiation sensitization, and radiation sensitivity prediction and breast cancer radiotherapy scheme making. And based on this summary, we will put forward some of our viewpoints.
Collapse
Affiliation(s)
- Zhi-Rui Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Zhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Li Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Mao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Guffanti F, Fratelli M, Ganzinelli M, Bolis M, Ricci F, Bizzaro F, Chilà R, Sina FP, Fruscio R, Lupia M, Cavallaro U, Cappelletti MR, Generali D, Giavazzi R, Damia G. Platinum sensitivity and DNA repair in a recently established panel of patient-derived ovarian carcinoma xenografts. Oncotarget 2018; 9:24707-24717. [PMID: 29872499 PMCID: PMC5973859 DOI: 10.18632/oncotarget.25185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023] Open
Abstract
A xenobank of patient-derived (PDX) ovarian tumor samples has been established consisting of tumors with different sensitivity to cisplatin (DDP), from very responsive to resistant. As the DNA repair pathway is an important driver in tumor response to DDP, we analyzed the mRNA expression of 20 genes involved in the nucleotide excision repair, fanconi anemia, homologous recombination, base excision repair, mismatch repair and translesion repair pathways and the methylation patterns of some of these genes. We also investigated the correlation with the response to platinum-based therapy. The mRNA levels of the selected genes were evaluated by Real Time-PCR (RT-PCR) with ad hoc validated primers and gene promoter methylation by pyrosequencing. All the DNA repair genes were variably expressed in all 42 PDX samples analyzed, with no particular histotype-specific pattern of expression. In high-grade serous/endometrioid PDXs, the CDK12 mRNA expression levels positively correlated with the expression of TP53BP1, PALB2, XPF and POLB. High-grade serous/endometrioid PDXs with TP53 mutations had significantly higher levels of POLQ, FANCD2, RAD51 and POLB than high-grade TP53 wild type PDXs. The mRNA levels of CDK12, PALB2 and XPF inversely associated with the in vivo DDP antitumor activity; higher CDK12 mRNA levels were associated with a higher recurrence rate in ovarian patients with low residual tumor. These data support the important role of CDK12 in the response to a platinum based therapy in ovarian patients.
Collapse
Affiliation(s)
- Federica Guffanti
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maddalena Fratelli
- Department of Biochemistry, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Monica Ganzinelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Bolis
- Department of Biochemistry, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Francesca Ricci
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Francesca Bizzaro
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Rosaria Chilà
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Federica Paola Sina
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, University of Milan-Bicocca, Department of Medicine and Surgery, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, University of Milan-Bicocca, Department of Medicine and Surgery, Milan, Italy
| | - Michela Lupia
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan, Italy
| | - Ugo Cavallaro
- Unit of Gynecological Oncology Research, European Institute of Oncology, Milan, Italy
| | | | - Daniele Generali
- Breast Cancer Unit and Translational Research Unit, ASST Cremona, Cremona, Italy.,Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Raffaella Giavazzi
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanna Damia
- Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
43
|
Kirsch DG, Diehn M, Kesarwala AH, Maity A, Morgan MA, Schwarz JK, Bristow R, Demaria S, Eke I, Griffin RJ, Haas-Kogan D, Higgins GS, Kimmelman AC, Kimple RJ, Lombaert IM, Ma L, Marples B, Pajonk F, Park CC, Schaue D, Tran PT, Willers H, Wouters BG, Bernhard EJ. The Future of Radiobiology. J Natl Cancer Inst 2018; 110:329-340. [PMID: 29126306 PMCID: PMC5928778 DOI: 10.1093/jnci/djx231] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 10/06/2017] [Indexed: 12/23/2022] Open
Abstract
Innovation and progress in radiation oncology depend on discovery and insights realized through research in radiation biology. Radiobiology research has led to fundamental scientific insights, from the discovery of stem/progenitor cells to the definition of signal transduction pathways activated by ionizing radiation that are now recognized as integral to the DNA damage response (DDR). Radiobiological discoveries are guiding clinical trials that test radiation therapy combined with inhibitors of the DDR kinases DNA-dependent protein kinase (DNA-PK), ataxia telangiectasia mutated (ATM), ataxia telangiectasia related (ATR), and immune or cell cycle checkpoint inhibitors. To maintain scientific and clinical relevance, the field of radiation biology must overcome challenges in research workforce, training, and funding. The National Cancer Institute convened a workshop to discuss the role of radiobiology research and radiation biologists in the future scientific enterprise. Here, we review the discussions of current radiation oncology research approaches and areas of scientific focus considered important for rapid progress in radiation sciences and the continued contribution of radiobiology to radiation oncology and the broader biomedical research community.
Collapse
Affiliation(s)
- David G Kirsch
- Department of Radiation Oncology and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC
| | - Max Diehn
- Department of Radiation Oncology, Stanford Cancer Institute, and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Amit Maity
- Department of Radiation Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Robert Bristow
- Department of Radiation Oncology, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Sandra Demaria
- Department of Radiation Oncology and Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Iris Eke
- Radiation Oncology Branch, National Institutes of Health, Bethesda, MD
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, MA
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Alec C Kimmelman
- Perlmutter Cancer Center and Department of Radiation Oncology, New York University Langone Medical Center, New York, NY
| | - Randall J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Isabelle M Lombaert
- Department of Biologic and Materials Sciences, Biointerfaces Institute, School of Dentistry, University of Michigan, Ann Arbor, MI
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brian Marples
- Department of Radiation Oncology, University of Miami, Miami, FL
| | - Frank Pajonk
- Department of Radiation Oncology, University of California, Los Angeles, CA
| | - Catherine C Park
- David Geffen School of Medicine, University of California, Los Angeles, CA
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - Dörthe Schaue
- Division of Molecular and Cellular Oncology, University of California, Los Angeles, CA
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Brad G. Wouters
- Department of Radiation Oncology (RB), Princess Margaret Cancer Center
| | - Eric J Bernhard
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
44
|
Proceedings of the National Cancer Institute Workshop on Charged Particle Radiobiology. Int J Radiat Oncol Biol Phys 2017; 100:816-831. [PMID: 29485053 DOI: 10.1016/j.ijrobp.2017.12.260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
In April 2016, the National Cancer Institute hosted a multidisciplinary workshop to discuss the current knowledge of the radiobiological aspects of charged particles used in cancer therapy to identify gaps in that knowledge that might hinder the effective clinical use of charged particles and to propose research that could help fill those gaps. The workshop was organized into 10 topics ranging from biophysical models to clinical trials and included treatment optimization, relative biological effectiveness of tumors and normal tissues, hypofractionation with particles, combination with immunotherapy, "omics," hypoxia, and particle-induced second malignancies. Given that the most commonly used charged particle in the clinic currently is protons, much of the discussion revolved around evaluating the state of knowledge and current practice of using a relative biological effectiveness of 1.1 for protons. Discussion also included the potential advantages of heavier ions, notably carbon ions, because of their increased biological effectiveness, especially for tumors frequently considered to be radiation resistant, increased effectiveness in hypoxic cells, and potential for differentially altering immune responses. The participants identified a large number of research areas in which information is needed to inform the most effective use of charged particles in the future in clinical radiation therapy. This unique form of radiation therapy holds great promise for improving cancer treatment.
Collapse
|
45
|
Wang D, Liu Y, Zhang R, Zhang F, Sui W, Chen L, Zheng R, Chen X, Wen F, Ouyang HW, Ji J. Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function. Oncotarget 2017; 7:28286-300. [PMID: 27056883 PMCID: PMC5053727 DOI: 10.18632/oncotarget.8536] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/06/2016] [Indexed: 12/20/2022] Open
Abstract
Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells.
Collapse
Affiliation(s)
- Danli Wang
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Liu
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Rui Zhang
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Zhang
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihao Sui
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chen
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ran Zheng
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaowen Chen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Feiqiu Wen
- Division of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hong-Wei Ouyang
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine, Hangzhou, China
| |
Collapse
|
46
|
Habash M, Bohorquez LC, Kyriakou E, Kron T, Martin OA, Blyth BJ. Clinical and Functional Assays of Radiosensitivity and Radiation-Induced Second Cancer. Cancers (Basel) 2017; 9:cancers9110147. [PMID: 29077012 PMCID: PMC5704165 DOI: 10.3390/cancers9110147] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 01/10/2023] Open
Abstract
Whilst the near instantaneous physical interaction of radiation energy with living cells leaves little opportunity for inter-individual variation in the initial yield of DNA damage, all the downstream processes in how damage is recognized, repaired or resolved and therefore the ultimate fate of cells can vary across the population. In the clinic, this variability is observed most readily as rare extreme sensitivity to radiotherapy with acute and late tissue toxic reactions. Though some radiosensitivity can be anticipated in individuals with known genetic predispositions manifest through recognizable phenotypes and clinical presentations, others exhibit unexpected radiosensitivity which nevertheless has an underlying genetic cause. Currently, functional assays for cellular radiosensitivity represent a strategy to identify patients with potential radiosensitivity before radiotherapy begins, without needing to discover or evaluate the impact of the precise genetic determinants. Yet, some of the genes responsible for extreme radiosensitivity would also be expected to confer susceptibility to radiation-induced cancer, which can be considered another late adverse event associated with radiotherapy. Here, the utility of functional assays of radiosensitivity for identifying individuals susceptible to radiotherapy-induced second cancer is discussed, considering both the common mechanisms and important differences between stochastic radiation carcinogenesis and the range of deterministic acute and late toxic effects of radiotherapy.
Collapse
Affiliation(s)
- Mohammad Habash
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Luis C Bohorquez
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Elizabeth Kyriakou
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Tomas Kron
- Physical Sciences, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| | - Olga A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Benjamin J Blyth
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
- Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC 3000, Australia.
| |
Collapse
|
47
|
Fahrig A, Koch T, Lenhart M, Rieckmann P, Fietkau R, Distel L, Schuster B. Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity : Case report and literature review. Strahlenther Onkol 2017; 194:60-66. [PMID: 28887683 DOI: 10.1007/s00066-017-1207-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 08/17/2017] [Indexed: 01/30/2023]
Abstract
BACKGROUND In general, late side effects after salvage radiotherapy (RT) for prostate cancer are below 10%. Patients with impaired DNA repair ability and genetic instability can have significantly increased reactions after RT. CASE, CLINICAL FOLLOW-UP, AND EXAMINATION We present a patient who experienced severe side effects after additive RT for prostate cancer and died from the complications 25 months after RT. Imaging (MR) is shown as well as three-color fluorescence in situ hybridization. The blood sample testing revealed that radiosensitivity was increased by 35-55%. We undertook a review of the literature to give an overview over the tests established that are currently considered useful. CONCLUSION This case highlights that the identification of patients with increased radiosensitivity is an important task in radiation protection. Groups of patients who should be screened have to be found and corresponding research facilities have to be set up.
Collapse
Affiliation(s)
- Antje Fahrig
- Klinik und Praxis für Radioonkologie und Strahlentherapie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany.
| | - T Koch
- Klinik und Praxis für Radioonkologie und Strahlentherapie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - M Lenhart
- Klinik für Diagnostische Radiologie, Interventionelle Radiologie und Neuroradiologie, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - P Rieckmann
- Neurologische Klinik, Klinikum Bamberg, Sozialstiftung Bamberg, Buger Straße 80, 96049, Bamberg, Germany
| | - R Fietkau
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| | - Luitpold Distel
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| | - B Schuster
- Strahlenklinik, Universitätsklinikum Erlangen, Universitätsstraße 27, 91054, Erlangen, Germany
| |
Collapse
|
48
|
Croco E, Marchionni S, Bocchini M, Angeloni C, Stamato T, Stefanelli C, Hrelia S, Sell C, Lorenzini A. DNA Damage Detection by 53BP1: Relationship to Species Longevity. J Gerontol A Biol Sci Med Sci 2017; 72:763-770. [PMID: 27573809 DOI: 10.1093/gerona/glw170] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/08/2016] [Indexed: 11/12/2022] Open
Abstract
In order to examine potential differences in genomic stability, we have challenged fibroblasts derived from five different mammalian species of variable longevity with the genotoxic agents, etoposide and neocarzinostatin. We report that cells from longer-lived species exhibit more tumor protein p53 binding protein 1 (53BP1) foci for a given degree of DNA damage relative to shorter-lived species. The presence of a greater number of 53BP1 foci was associated with decreased DNA fragmentation and a lower percentage of cells exhibiting micronuclei. These data suggest that cells from longer-lived species have an enhanced DNA damage response. We propose that the number of 53BP1 foci that form in response to damage reflects the intrinsic capacity of cells to detect and respond to DNA harms.
Collapse
Affiliation(s)
| | - Silvia Marchionni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Martine Bocchini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | | | - Thomas Stamato
- The Lankenau Institute for Medical Research, Wynnewood, Pennsylvania
| | | | | | - Christian Sell
- Department of Pathology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Antonello Lorenzini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
49
|
Tumor heterogeneity determined with a γH2AX foci assay: A study in human head and neck squamous cell carcinoma (hHNSCC) models. Radiother Oncol 2017; 124:379-385. [PMID: 28739384 DOI: 10.1016/j.radonc.2017.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022]
Abstract
PURPOSE This study aimed to analyze the intra-tumoral heterogeneity of γH2AX foci in tumor specimens following ex vivo radiation to evaluate the potential of γH2AX foci as predictors for radiosensitivity. MATERIAL AND METHODS γH2AX foci were quantified in tumor specimens of 3hHNSCC tumor models with known differences in radiosensitivity after reoxygenation in culture medium (10h, 24h), single dose exposure (0Gy, 4Gy), and fixation 24h post-irradiation. Multiple, equally treated samples of the same tumor were analyzed for foci, normalized and fitted in a linear mixed-effects model. RESULTS The ex vivo reoxygenation time had no significant effect on γH2AX foci counts. A significant intra model heterogeneity could be shown for FaDu (p=0.033) but not for SKX (p=0.167) and UT-SCC-5 (p=0.082) tumors, respectively. All tumor models showed a significant intra-tumoral heterogeneity between specimens of the same tumor (p<0.01) or among microscopic fields of a particular tumor specimen (p<0.0001). CONCLUSION Similar results for ex vivo γH2AX foci between 10h and 24h reoxygenation time support the applicability of the assay in a clinical setting. The high intra-tumoral heterogeneity underlines the necessity of multiple analyzable samples per patient and therewith the need for an automated foci analysis.
Collapse
|
50
|
Li L, Karanika S, Yang G, Wang J, Park S, Broom BM, Manyam GC, Wu W, Luo Y, Basourakos S, Song JH, Gallick GE, Karantanos T, Korentzelos D, Azad AK, Kim J, Corn PG, Aparicio AM, Logothetis CJ, Troncoso P, Heffernan T, Toniatti C, Lee HS, Lee JS, Zuo X, Chang W, Yin J, Thompson TC. Androgen receptor inhibitor-induced "BRCAness" and PARP inhibition are synthetically lethal for castration-resistant prostate cancer. Sci Signal 2017; 10:eaam7479. [PMID: 28536297 PMCID: PMC5855082 DOI: 10.1126/scisignal.aam7479] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancers with loss-of-function mutations in BRCA1 or BRCA2 are deficient in the DNA damage repair pathway called homologous recombination (HR), rendering these cancers exquisitely vulnerable to poly(ADP-ribose) polymerase (PARP) inhibitors. This functional state and therapeutic sensitivity is referred to as "BRCAness" and is most commonly associated with some breast cancer types. Pharmaceutical induction of BRCAness could expand the use of PARP inhibitors to other tumor types. For example, BRCA mutations are present in only ~20% of prostate cancer patients. We found that castration-resistant prostate cancer (CRPC) cells showed increased expression of a set of HR-associated genes, including BRCA1, RAD54L, and RMI2 Although androgen-targeted therapy is typically not effective in CRPC patients, the androgen receptor inhibitor enzalutamide suppressed the expression of those HR genes in CRPC cells, thus creating HR deficiency and BRCAness. A "lead-in" treatment strategy, in which enzalutamide was followed by the PARP inhibitor olaparib, promoted DNA damage-induced cell death and inhibited clonal proliferation of prostate cancer cells in culture and suppressed the growth of prostate cancer xenografts in mice. Thus, antiandrogen and PARP inhibitor combination therapy may be effective for CRPC patients and suggests that pharmaceutically inducing BRCAness may expand the clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Likun Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Styliani Karanika
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Jiangxiang Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Sanghee Park
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ganiraju C Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Wenhui Wu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Yong Luo
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Spyridon Basourakos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Theodoros Karantanos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Dimitrios Korentzelos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Abul Kalam Azad
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Ana M Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Patricia Troncoso
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Timothy Heffernan
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Carlo Toniatti
- ORBIT (Oncology Research for Biologics and Immunotherapy Translation), The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Hyun-Sung Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | - Xuemei Zuo
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Wenjun Chang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Jianhua Yin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA
| | - Timothy C Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA.
| |
Collapse
|