1
|
Koley S, Dash S, Khwairakpam M, Kalamdhad AS. Perspectives and understanding on the occurrence, toxicity and abatement technologies of disinfection by-products in drinking water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119770. [PMID: 38096765 DOI: 10.1016/j.jenvman.2023.119770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 01/14/2024]
Abstract
Disinfection by-products (DBPs) are one of the significant emerging contaminants that have caught the attention of researchers worldwide due to their pervasiveness. Their presence in drinking water, even in shallow concentrations (in levels of parts per billion), poses considerable health risks. Therefore, it is crucial to understand their kinetics to understand better their formation and persistence in the water supply systems. This manuscript demonstrates different aspects of research carried out on DBPs in the past. A systematic approach was adopted for the bibliographical research that started with choosing appropriate keywords and identifying the most relevant manuscripts through the screening process. This follows a quantitative assessment of the extracted literature sample, which included the most productive and influential journal sources, the most widely used keywords, the most influential authors active in the research domain, the most cited articles, and the countries most actively engaged in the research field. Critical observations on the literature sample led to the qualitative assessment, wherein the past and current research trends were observed and reported. Finally, we identified the essential gaps in the available literature, which further led to recommending the course ahead in the research domain. This study will prove fruitful for young and established researchers who are or wish to work in this emerging field of research.
Collapse
Affiliation(s)
- Sumona Koley
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Siddhant Dash
- Department of Civil Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, 522502, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Meena Khwairakpam
- School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ajay S Kalamdhad
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
2
|
Pi J, Gong T, He M, Zhu G. Aquatic plant root exudates: A source of disinfection byproduct precursors in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165590. [PMID: 37474067 DOI: 10.1016/j.scitotenv.2023.165590] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Aquatic plant-derived dissolved organic matter (DOM) in water bodies is an important source of disinfection byproduct (DBP) precursors. It is therefore very important to investigate DBP formation, and the main DBP precursors that enter drinking water during treatment processes. In this study, Lythrum salicaria root extract (LSRE) and Acorus calamus root extract (ACRE) were analyzed. The LSRE and ACRE were chlorinated and disinfected to generate trihalomethanes, haloacetic acids, haloketones, and haloacetaldehydes. The DBP formation potential of LSRE, dominated by humus, was higher than that of Suwannee River natural organic matter (SRNOM), and trichloroacetic acid was the main DBP. It was calculated that 2.09 % of the increased DOC brought by the surface flow wetland planted with emergent aquatic plants, and the contribution rates of TCMFP, DCAAFP and TCAAFP in effluent were 3.34 %, 3.23 % and 3.05 %, respectively. A total of 706 chlorinated-formula were detected by FTICR-MS, among which mono- and di-chlorinated formulae were the most abundant. Macromolecular hydrophobic organics and tannins were the main precursors for LSRE. Unlike LSRE, the DOM composition of ACRE was dominated by protein or aliphatic compounds; therefore, the risk of DBP formation was not as high as that for LSRE. This study is the first to determine the risk of DBP formation associated with aquatic plant root extracts, and confirmed that tannins in plant-derived DOM are more important DBP precursors than lignins.
Collapse
Affiliation(s)
- Jiachang Pi
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Min He
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Effect of Particle Concentration and Pipe Materials on the Formation of Biofilms in Drinking Water Distribution Systems. WATER 2022. [DOI: 10.3390/w14020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microorganism rebreeding and biofilm shedding enter the water body in the process of a drinking water distribution system (DWDS), which poses a threat to public health. Particles in water can gather pollutants as well as providing favorable growth conditions for bacteria. To date, there are a few studies which focus on the relationship between particles and biofilm formation. Therefore, the microbial diversity of biofilms in the different pipe materials and the effect on particle concentration on biofilm formation were investigated in this study. Experiments were carried out under a simulative DWDS (including iron (DI) and polyvinyl chloride (PVC) pipe). The results showed that the microbial diversity in biofilms followed this order: DI pipe > PVC pipe > DI pipe (upper). Moreover, the microbial biomass of biofilm and the fluorescence intensity of extracellular polymeric substances (EPS, produced by microorganisms) were the largest in the absence of particles. The amount of biofilm bacterial and the fluorescence intensity of EPS both showed first an increasing and then decreasing trend with particle concentration increasing. When particle concentration was relatively low, the absorption of particles and bacteria played a major role, however, with the increasing particle concentration, more stable particle–particle were formed and thus, EPS was easily extracted, resulting in the increase of fluorescence intensity of EPS.
Collapse
|
4
|
Fu J, Huang CH, Dang C, Wang Q. A review on treatment of disinfection byproduct precursors by biological activated carbon process. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Wang Y, Xu H, Shen Z, Liu C, Ding M, Lin T, Tao H, Chen W. Variation of carbonaceous disinfectants by-products precursors and their correlation with molecular characteristics of dissolved organic matter and microbial communities in a raw water distribution system. CHEMOSPHERE 2021; 283:131180. [PMID: 34467942 DOI: 10.1016/j.chemosphere.2021.131180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The raw water distribution systems (RWDSs) play key roles in urban water supply systems. The changes of disinfection byproducts (DBPs) precursors of trihalomethanes (THMs), haloacetic acids (HAAs) and halogenated acetaldehydes (HALs) in the RWDS in Taihu Basin were investigated by formation potentials. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) method and 454-pyrosequencing were employed to study the variation of molecular characteristics of low molecular weight-dissolved organic matter (LMW-DOM) and microbial communities of pipeline biofilms respectively, which played crucial roles in the variation of DBPs precursors. The results showed that both DBPs precursors and the molecular characteristics of LMW-DOM in the RWDS had changed. Moreover, the LMW-DOM could be an indicator due to the good positive correlation with precursors of HAAs and HALs. Specifically, the LMW-DOM showed continuous accumulation in the RWDS. The LMW-DOM tended to possess higher m/z and more CH2 or long alkyl chains while pre-chlorination controlled this trend. The LMW-DOM in the pre-chlorinated pipe section also possessed higher saturation. Additionally, lignins served as an important part of DBPs precursors and dominated the LMW-DOM. The microbial diversity decreased in the RWDS, and the abundance and diversity of the microbial community in the pre-chlorinated section were significantly lower than those in the no-chlorinated section. Finally, most DBPs precursors had positive correlation with dominant phylum and genus in RWDS. This study reveals variation of DBPs precursors, LMW-DOM and microbial pipeline biofilms as well, and provide important data for further research on raw water safety and stability in RWDSs.
Collapse
Affiliation(s)
- Yueting Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Zhen Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Chenwei Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Mingmei Ding
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Tao Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Hui Tao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| | - Wei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, No.1 Xikang Road, Nanjing, 210098, China.
| |
Collapse
|
6
|
Hu CY, Zhang JC, Lin YL, Ren SC, Zhu YY, Xiong C, Wang QB. Degradation kinetics of prometryn and formation of disinfection by-products during chlorination. CHEMOSPHERE 2021; 276:130089. [PMID: 33743417 DOI: 10.1016/j.chemosphere.2021.130089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Prometryn is a herbicide that is widely used and frequently detected in aqueous environment and soil. Prometryn is chemically stable, biologically toxic, and easily to accumulate in living bodies, which can cause accumulate in the environment and acute and chronic toxicity to living creatures. In this study, factors affecting the degradation kinetics of prometryn chlorination were studied, including solution pH, bromide and ammonium concentrations, and temperature. Prometryn reacted quickly with aqueous chlorine following the pseudo-first-order kinetics. The maximum pseudo-first-order rate constant (kapp) appeared at pH 5 with the observed rate constant (kobs) as 190. 08 h-1; the minimum value of kapp reached at pH 9 with kobs as 5.26 h-1. The presence of Br- and increase of temperature both accelerated the degradation rate of prometryn during chlorination. The activation energy was calculated as 31.80 kJ/mol. Meanwhile 6 disinfection by-products (DBPs) were detected, namely: chloroform (CF), trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN), dichloroacetone, trichloronitromethane (TCNM), and trichloroacetone. Solution pH significantly affected the formation and distribution of DBPs. CF was the most formed carbonated DBP (C-DBP) with the maximum of 217.9 μg/L at pH 8, and its formation was significantly higher in alkaline conditions. For nitrogenated DBPs (N-DBPs), the yields of DCAN and TCAN were significantly higher in acidic conditions, while the maximum of TCNM achieved in neutral conditions. Because the toxicity of N-DBPs is higher than that of C-DBPs, the pH should be controlled in neutral or slight alkaline conditions during prometryn chlorination to effectively control DBP formation and reduce the related toxicity.
Collapse
Affiliation(s)
- Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Ji-Chen Zhang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, ROC, Taiwan.
| | - Si-Cheng Ren
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Ye-Ye Zhu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Cun Xiong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| | - Qiang-Bing Wang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy- Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, 200090, PR China.
| |
Collapse
|
7
|
Srivastav AL, Patel N, Chaudhary VK. Disinfection by-products in drinking water: Occurrence, toxicity and abatement. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115474. [PMID: 32889516 DOI: 10.1016/j.envpol.2020.115474] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 05/05/2023]
Abstract
Disinfection means the killing of pathogenic organisms (e.g. bacteria and its spores, viruses, protozoa and their cysts, worms, and larvae) present in water to make it potable for other domestic works. The substances used in the disinfection of water are known as disinfectants. At municipal level, chlorine (Cl2), chloramines (NH2Cl, NHCl2), chlorine dioxide (ClO2), ozone (O3) and ultraviolet (UV) radiations, are the most commonly used disinfectants. Chlorination, because of its removal efficiency and cost effectiveness, has been widely used as method of disinfection of water. But, disinfection process may add several kinds of disinfection by-products (DBPs) (∼600-700 in numbers) in the treated water such as Trihalomethanes (THM), Haloacetic acids (HAA) etc. which are detrimental to the human beings in terms of cytotoxicity, mutagenicity, teratogenicity and carcinogenicity. In water, THMs and HAAs were observed in the range from 0.138 to 458 μg/L and 0.16-136 μg/L, respectively. Thus, several regulations have been specified by world authorities like WHO, USEPA and Bureau of Indian Standard to protect human health. Some techniques have also been developed to remove the DBPs as well as their precursors from the water. The popular techniques of DBPs removals are adsorption, advance oxidation process, coagulation, membrane based filtration, combined approaches etc. The efficiency of adsorption technique was found up to 90% for DBP removal from the water.
Collapse
Affiliation(s)
- Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Naveen Patel
- Department of Civil Engineering, Institute of Engineering & Technology, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| | - Vinod Kumar Chaudhary
- Department of Environmental Sciences, Dr. Ram Manohar Lohia Awadh University, Ayodhya, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhang S, Lin T, Chen H, Xu H, Chen W, Tao H. Precursors of typical nitrogenous disinfection byproducts: Characteristics, removal, and toxicity formation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140566. [PMID: 32721729 DOI: 10.1016/j.scitotenv.2020.140566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/20/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The emergence of nitrogenous disinfection byproducts (N-DBPs) in drinking water has become a widespread concern. In this study, dichloroacetonitrile (DCAN), dicholoacetamide (DCAcAm) and trichloronitromethane (TCNM) were chosen as representatives to clarify the characteristics of N-DBP precursors in the raw waters of Taihu Lake, the Yangtze River, and Gaoyou Lake. Removal of DCAN and DCAcAm precursors must focus on nonpolar and positively charged organics, but more attention should be paid to micromolecular, polar and non-positively charged organics as TCNM precursors. Compared to molecular weight (MW) and hydrophilicity fractionation, polarity and electrical classification have higher selectivity to intercept N-DBP precursors. The properties of N-DBP precursors are relatively fixed and traceable in water systems, which could contribute to their targeted removal. Based on investigation of their characteristics, the removal efficiency and preferences of organic precursors under different processes were studied in three drinking water treatment plants (DWTPs). The TCNM precursors produced in preozonation can be effectively removed during coagulation. The cumulative removal efficiency of conventional processes on N-DBP precursors was approximately 20-30%, but O3/BAC process improved removal by about 40%. The key to improving the removal efficiency of N-DBP precursors by O3/BAC is that it can significantly remove low-MW, nonpolar, positively charged, hydrophilic and transphilic organics. In combined toxicity trials, both cytotoxicity and genotoxicity showed a synergistic effect when DCAN, DCAcAm, and TCNM coexisted, which means that low-level toxicity enhancement in the actual water merits attention. DCAN precursors dominated in the toxicity formation potential (TFP), followed by TCNM precursors. In addition, the removal rate of total N-DBP precursors may be higher than that of TFP, leading to overly optimistic evaluation of precursor removal in water treatment practice. Therefore, the removal effect on TFP must also be considered.
Collapse
Affiliation(s)
- Shisheng Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Han Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hang Xu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hui Tao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
9
|
Qian Y, Hu Y, Chen Y, An D, Westerhoff P, Hanigan D, Chu W. Haloacetonitriles and haloacetamides precursors in filter backwash and sedimentation sludge water during drinking water treatment. WATER RESEARCH 2020; 186:116346. [PMID: 32866929 DOI: 10.1016/j.watres.2020.116346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/27/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Haloacetonitriles (HANs) and haloacetamides (HAMs) are nitrogenous disinfection byproducts that are present in filter backwash water (FBW) and sedimentation sludge water (SSW). In many cases FBW and SSW are recycled to the head of drinking water treatment plants. HAN and HAM concentrations in FBW and SSW, without additional oxidants, ranged from 6.8 to 11.6 nM and 2.9 to 3.6 nM of three HANs and four HAMs, respectively. Upon oxidant addition to FBW and SSW under formation potential conditions, concentrations for six HANs and six HAMs ranged from 92.2 to 190.4 nM and 42.2 to 95.5 nM, respectively. Therefore, at common FBW and SSW recycle rates (2 to 10% of treated water flows), the precursor levels in these recycle waters should not be ignored because they are comparable to levels present in finished water. Brominated HAN and chlorinated HAM were the dominant species in FBW and SSW, respectively. The lowest molecular weight ultrafiltration fraction (< 3 kDa) contributed the most to HAN and HAM formations. The hydrophilic (HPI) organic fraction contributed the greatest to HAN precursors in sand-FBW and SSW and were the most reactive HAM precursors in both sand- or carbon-FBWs. Fluorescence revealed that aromatic protein-like compounds were dominant HAN and HAM precursors. Therefore, strategies that remove low molecular weight hydrophilic organic matter and aromatic protein-like compounds will minimize HAN and HAM formations in recycled FBW and SSW.
Collapse
Affiliation(s)
- Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yue Hu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287-3005, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557-0258, United States
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, National Centre for International Research of Sustainable Urban Water System, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Liao XB, Cheng YS, Liu ZH, Shen LL, Zhao L, Chen C, Li F, Zhang XJ. Performance of BAC for DBPs precursors' removal for one year with micro-polluted lake water in East-China. ENVIRONMENTAL TECHNOLOGY 2020; 41:3554-3561. [PMID: 31072242 DOI: 10.1080/09593330.2019.1615132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/27/2019] [Indexed: 06/09/2023]
Abstract
Effectiveness of biological activated carbon (BAC) filter in removing disinfection byproducts (DBPs) precursors of micro-polluted lake water for one year was conducted. The formation potential (FP) of DBPs (trihalomethanes (THMs), haloacetic acids (HAAs) and Nitrosamines (NAs)), dissolved organic carbon (DOC), molecular weight (MW) distribution and excitation emission matrix fluorescence (EEM) of dissolved organic material (DOM) in the influent and effluent of BAC were determined. The results indicated that the removal efficiency (RE) of DOC ranged from 42.9-28.3%. Neither virgin GAC nor long-term operated BAC could efficiently dispose of THMs and HAAs precursors (RE from 35.2-18.8%, from 42 to 8.4%, respectively), however, BAC still showed good ability in removal of NAs precursors after a year operation, of which RE just dropped from 81.7-69.6%. There was strong correlation between RE of NAs precursors and DOC with small MW (<0.5 kDa). The removal of HAAs precursors showed relatively close relation to aromatic protein-like components and soluble microbial pollutants (SMPs). Weak direct relationship was found between the water quality parameters and THMs precursors.
Collapse
Affiliation(s)
- X B Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, People's Republic of China
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - Y S Cheng
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - Z H Liu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - L L Shen
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - L Zhao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - C Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| | - F Li
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, People's Republic of China
| | - X J Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Tian SQ, Wang L, Liu YL, Ma J. Degradation of organic pollutants by ferrate/biochar: Enhanced formation of strong intermediate oxidative iron species. WATER RESEARCH 2020; 183:116054. [PMID: 32668351 DOI: 10.1016/j.watres.2020.116054] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 05/22/2023]
Abstract
Biochar draws increasing attention as soil amendment, carbon sink, slow-release fertilizer, and adsorbent. Herein, it was interesting to find out that among 11 kinds of commercial biochar, 3 of them facilitated ferrate oxidation of sulfamethoxazole (SMX). With the addition of biochar, oxidation rates of 5 kinds of organic pollutants (including antibiotics, pharmaceuticals, and personal care product) increased by 3-14 times, and the total organic carbon (TOC) removal ratio increased by 2.4-8 times. Radical scavenging experiment, electron spin resonance (ESR) analysis, and probe compound (sulfoxide) oxidation experiment showed that no radical but intermediate iron species [Fe(IV) and Fe(V)] participated in the oxidation reactions. Redox-active moieties (phenolic hydroxyl) on biochar interact with ferrate as electron shuttle and enhance the formation of intermediate iron species through electron transfer. The intermediate iron species not only interacted with organic pollutants and accelerated their transformation, but also corrupted (oxidized) the physical structure of biochar and expanded its surface area and pore volume. Increase of surface area and pore volume of the spent biochar in turn resulted in the improved adsorption capacity. In addition to eliminating emerging organic pollutants, ferrate/biochar removed 8.7%-31.6% of TOC in authentic water and decreased the formation potential of 20 kinds of chlorinated disinfection by-products (DBPs) by 9.2%-23.9%.
Collapse
Affiliation(s)
- Shi-Qi Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yu-Lei Liu
- Technology R & D Center for Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
12
|
Ibn Abdul Hamid K, Sanciolo P, Gray S, Duke M, Muthukumaran S. Comparison of the effects of ozone, biological activated carbon (BAC) filtration and combined ozone-BAC pre-treatments on the microfiltration of secondary effluent. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chen Y, Lin T, Chen W. Enhanced removal of organic matter and typical disinfection byproduct precursors in combined iron-carbon micro electrolysis-UBAF process for drinking water pre-treatment. J Environ Sci (China) 2019; 78:315-327. [PMID: 30665651 DOI: 10.1016/j.jes.2018.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The organic matter and two types of disinfection byproduct (DBP) precursors in micro-polluted source water were removed using an iron-carbon micro-electrolysis (ICME) combined with up-flow biological aerated filter (UBAF) process. Two pilot-scale experiments (ICME-UBAF and UBAF alone) were used to investigate the effect of the ICME system on the removal of organic matter and DBP precursors. The results showed that ICME pretreatment removed 15.6% of dissolved organic matter (DOM) and significantly improved the removal rate in the subsequent UBAF process. The ICME system removed 31% of trichloromethane (TCM) precursors and 20% of dichloroacetonitrile (DCAN) precursors. The results of measurements of the molecular weight distribution and hydrophilic fractions of DOM and DBP precursors showed that ICME pretreatment played a key role in breaking large-molecular-weight organic matter into low-molecular-weight components, and the hydrophobic fraction into hydrophilic compounds, which was favorable for subsequent biodegradation by UBAF. Three-dimensional fluorescence spectroscopy (3D-EEM) further indicated that the ICME system improved the removal of TCM and DCAN precursors. The biomass analysis indicated the presence of a larger and more diverse microbial community in the ICME-UBAF system than for the UBAF alone. The high-throughput sequencing results revealed that domination of the genera Sphingomonas, Brevundimonas and Sphingorhabdus contributed to the better removal of organic matter and two types of DBP precursors. Also, Nitrosomonas and Pseudomonas were beneficial for ammonia removal.
Collapse
Affiliation(s)
- Yinghan Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
14
|
Tian FX, Ma SX, Xu B, Hu XJ, Xing HB, Liu J, Wang J, Li YY, Wang B, Jiang X. Photochemical degradation of iodate by UV/H 2O 2 process: Kinetics, parameters and enhanced formation of iodo-trihalomethanes during chloramination. CHEMOSPHERE 2019; 221:292-300. [PMID: 30640012 DOI: 10.1016/j.chemosphere.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
In this paper, it was demonstrated that UV/H2O2 process can not only obviously promote the degradation rate of IO3-, but also greatly enhance iodo-trihalomethanes (I-THMs) formation in sequential chloramination. UV/H2O2 exhibited much faster IO3- decomposition than either UV or H2O2 treatment alone due to the contribution of highly reactive species including O-, OH and eaq-. The degradation rate of IO3- was affected by H2O2 dosages, pH, UV intensity as well as the presence of natural organic matter (NOM). The calculated pseudo-first order rate constant gradually increased with H2O2 dosages and solution pH, but behaved directly proportional to the UV intensity. Although NOM remarkably reduced the degradation rate of IO3- in UV/H2O2 process, their presence greatly enhanced the formation of I-THMs during subsequent chloramination. The overwhelming majority of iodoform at high UV fluences was also observed, which indicated improved iodination degrees of the detected I-THMs. UV/H2O2 was proved to be more capable on the evolution of IO3- to I- as well as I-THMs than UV and thereby enhanced the toxicity of disinfected waters in the following chloramination process. This study was among the first to provide a comprehensive understanding on the transformation of IO3- as the emerging iodine precursor to form I-THMs via diverse advanced oxidation process technologies like UV/H2O2.
Collapse
Affiliation(s)
- Fu-Xiang Tian
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Shi-Xu Ma
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Xiao-Jun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| | - Hai-Bo Xing
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Juan Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Yuan-Yi Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Bo Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Xia Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| |
Collapse
|
15
|
Brezinski K, Gorczyca B. An overview of the uses of high performance size exclusion chromatography (HPSEC) in the characterization of natural organic matter (NOM) in potable water, and ion-exchange applications. CHEMOSPHERE 2019; 217:122-139. [PMID: 30414544 DOI: 10.1016/j.chemosphere.2018.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Natural organic matter (NOM) constitutes the terrestrial and aquatic sources of organic plant like material found in water bodies. As of recently, an ever-increasing amount of effort is being put towards developing better ways of unraveling the heterogeneous nature of NOM. This is important as NOM is responsible for a wide variety of both direct and indirect effects: ranging from aesthetic concerns related to taste and odor, to issues related to disinfection by-product formation and metal mobility. A better understanding of NOM can also provide a better appreciation for treatment design; lending a further understanding of potable water treatment impacts on specific fractions and constituents of NOM. The use of high performance size-exclusion chromatography has shown a growing promise in its various applications for NOM characterization, through the ability to partition ultraviolet absorbing moieties into ill-defined groups of humic acids, hydrolysates of humics, and low molecular weight acids. HPSEC also has the ability of simultaneously measuring absorbance in the UV-visible range (200-350 nm); further providing a spectroscopic fingerprint that is simply unavailable using surrogate measurements of NOM, such as total organic carbon (TOC), ultraviolet absorbance at 254 nm (UV254), excitation-emission matrices (EEM), and specific ultraviolet absorbance at 254 nm (SUVA254). This review mainly focuses on the use of HPSEC in the characterization of NOM in a potable water setting, with an additional focus on strong-base ion-exchangers specifically targeted for NOM constituents.
Collapse
Affiliation(s)
- Kenneth Brezinski
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Beata Gorczyca
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Huang Y, Li H, Zhou Q, Li A, Shuang C, Xian Q, Xu B, Pan Y. New phenolic halogenated disinfection byproducts in simulated chlorinated drinking water: Identification, decomposition, and control by ozone-activated carbon treatment. WATER RESEARCH 2018; 146:298-306. [PMID: 30292954 DOI: 10.1016/j.watres.2018.09.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 06/08/2023]
Abstract
Recently, 13 new phenolic halogenated disinfection byproducts (DBPs) were discovered and confirmed in chlorinated drinking water using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry (UPLC/ESI-tqMS), which have been attracting a growing concern due to their higher chronic cytotoxicity, developmental toxicity, and growth inhibition compared with commonly known aliphatic DBPs. In this study, another 12 new phenolic halogenated DBPs were detected and identified in simulated chlorinated drinking water samples, including two monohalo-4-hydroxybenzaldehydes, two monohalo-4-hydroxybenzoic acids, three monohalo-salicylic acids, and five mono/di/trihalo-phenols. Decomposition mechanisms of these new phenolic halogenated DBPs during chlorination were speculated and partially verified by identifying intermediate products. These new DBPs could undergo hydrolysis, halogenation, substitution, addition, decarboxylation, and rearrangement reactions to form a series of decomposition products, including dihaloacetic acids, 2-halomaleic acids, and a group of new heterocyclic DBPs (trihalo-hydroxy-cyclopentene-diones). A bench-scale ozone-granular activated carbon (GAC) treatment unit was designed and set up in the lab. It was found that ozonation and GAC filtration were effective in reducing dissolved organic carbon levels and aromaticity (DBP precursors) of simulated raw water samples, and thus were effective in decreasing the concentrations of these new phenolic DBPs by 82.5% and 88.6%, respectively. Furthermore, four different treatment scenarios (i.e., ozonation, GAC filtration, ozonation followed by GAC filtration, and GAC filtration followed by ozonation) were evaluated and compared. Results showed that ozonation followed by GAC filtration was most effective in precursor removal and could decrease the level of these new phenolic DBPs by up to 97.3%.
Collapse
Affiliation(s)
- Yan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chendong Shuang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Degradation kinetics and disinfection by-product formation of chlorimuron-ethyl during aqueous chlorination. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Arnold M, Batista J, Dickenson E, Gerrity D. Use of ozone-biofiltration for bulk organic removal and disinfection byproduct mitigation in potable reuse applications. CHEMOSPHERE 2018; 202:228-237. [PMID: 29571143 DOI: 10.1016/j.chemosphere.2018.03.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
The purpose of this research was to investigate the impacts of ozone dose and empty bed contact time (EBCT) in ozone-biofiltration systems on disinfection byproduct (DBP) formation potential. The data were used to evaluate the possibility of using DBP formation potential as an alternative guideline for total organic carbon (TOC) removal in potable reuse applications. A pilot-scale ozone-biofiltration system was operated with O3/TOC ratios ranging from 0.1 to 2.25 and EBCTs ranging from 2 to 20 min. The biofiltration columns contained anthracite or biological activated carbon (BAC). Bench-scale chlorination was performed using the uniform formation conditions (UFC) approach, and quenched samples were analyzed for total trihalomethanes (TTHMs) and regulated haloacetic acids (HAA5s). The data demonstrated that ozone-biofiltration achieved TOC removals ranging from ∼10 to 30%, depending on operational conditions, but biofiltration without ozone generally achieved <10% TOC removal. UFC testing demonstrated that ozone alone was efficient in transforming bulk organic matter and reducing DBP formation potential by 10-30%. The synergistic combination of ozone and biofiltration achieved average overall reductions in TTHM and HAA5 formation potential of 26% and 51%, respectively. Finally, a maximum TOC concentration of 2.0 mg/L was identified as a recommended treatment target for reliable compliance with TTHM and HAA5 regulations for potable reuse systems in the United States.
Collapse
Affiliation(s)
- Mayara Arnold
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States; Trussell Technologies, Inc., 232 North Lake Avenue, Suite 300, Pasadena, CA, 91101, United States
| | - Jacimaria Batista
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Daniel Gerrity
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Box 454015, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States.
| |
Collapse
|
19
|
Chen S, Deng J, Li L, Gao N. Evaluation of disinfection by-product formation during chlor(am)ination from algal organic matter after UV irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5994-6002. [PMID: 29236244 DOI: 10.1007/s11356-017-0918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
This study evaluated the effect of low-pressure ultraviolet (UV) irradiation on the formation of disinfection by-products (DBPs) from algal organic matter of Microcystis aeruginosa during subsequent chlorination and chloramination. The algal organic matter includes extracellular organic matter (EOM) and intracellular organic matter (IOM). The fluorescence excitation-emission matrix spectra indicated that the humic/fulvic acid-like organics of EOM and the protein-like organics of IOM may be preferentially degraded by UV treatment. UV irradiation with low specific UV absorbance values was effective in reducing the formation of trihalomethanes and dichloroacetic acid from EOM and IOM during the subsequent chlorination. During the UV-chloramine process, higher UV dose (1000 mJ/cm2) led to the decrease of the formation of dichloroacetic acid, trichloroacetic acid, and haloketones from IOM by an average of 24%. Furthermore, UV irradiation can slightly increase the bromine substitution factors (BSFs) of haloacetic acids from EOM during chlorination, including dihaloacetic acids and trihaloacetic acids in the presence of bromide (50 μg/L). However, UV irradiation did not shift the formation of DBPs from IOM to more brominated species, since the BSFs of trihalomethanes, dihaloacetic acids, trihaloacetic acids, and dihaloacetonitriles almost kept unchanged during UV-chlorine process. As for UV-chloramine process, UV irradiation decreased the BSFs of trihalomethanes, while increased the BSFs of dihaloacetic acid for both EOM and IOM. Overall, the UV pretreatment process is a potential technology in treating algae-rich water.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Yangpu District, Shanghai, 200092, China.
| |
Collapse
|
20
|
Liao X, Zou R, Chen C, Yuan B, Zhou Z, Zhang X. Evaluating the biosafety of conventional and O 3-BAC process and its relationship with NOM characteristics. ENVIRONMENTAL TECHNOLOGY 2018; 39:221-230. [PMID: 28274190 DOI: 10.1080/09593330.2017.1297850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/15/2017] [Indexed: 06/06/2023]
Abstract
It is the priority to guarantee biosafety for drinking water treatment. The objective of this study was to evaluate the impact of widely applied conventional and ozone-biological activated carbon (O3-BAC) advanced treatment technology on biosafety of drinking water. The items, including assimilable organic carbon (AOC), biodegradable dissolved organic carbon (BDOC), heterotrophic plate counts (HPCs) and the microorganism community structures, were used to evaluate the biosafety. Moreover, their relationships with molecular weights (MWs) and fluorescence intensity of dissolved organic matter were investigated. The results indicated that the technology provided a considerable gain in potable water quality by decreasing dissolved organic carbon (DOC, from 5.05 to 1.71 mg/L), AOC (from 298 to 131 μg/L), BDOC (from 1.39 to 0.24 mg/L) and HPCs (from 275 to 10 CFU/mL). Ozone brought an increase in DOC with low MW <1 kDa, which accompanies with an increase in AOC/BDOC concentration, which could be reduced effectively by subsequent BAC process. The formation of AOC/BDOC was closely related to DOC with low MWs and aromatic protein. Bacteria could be released from BAC filter, resulting in an increase in HPC and the presence of pathogenic bacteria in effluent, while the post sand filter could further guarantee the biosafety of finished water.
Collapse
Affiliation(s)
- Xiaobin Liao
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
- b State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| | - Rusen Zou
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
| | - Chao Chen
- b State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| | - Baoling Yuan
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
| | - Zhenming Zhou
- a Institute of Municipal and Environmental Engineering, College of Civil Engineering , Huaqiao University , Xiamen , People's Republic of China
| | - Xiaojian Zhang
- b State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing , People's Republic of China
| |
Collapse
|
21
|
Mohd Zainudin F, Abu Hasan H, Sheikh Abdullah SR. An overview of the technology used to remove trihalomethane (THM), trihalomethane precursors, and trihalomethane formation potential (THMFP) from water and wastewater. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Zazouli MA, Kalankesh LR. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water; a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2017; 15:25. [PMID: 29234499 PMCID: PMC5721515 DOI: 10.1186/s40201-017-0285-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 10/30/2017] [Indexed: 05/23/2023]
Abstract
Disinfection by-products (DBPs) have heterogeneous structures which are suspected carcinogens as a result of reactions between NOMs (Natural Organic Matter) and oxidants/disinfectants such as chlorine. Because of variability in DBPs characteristics, eliminate completely from drinking water by single technique is impossible. The current article reviews removal of the precursors and DBPs by different membrane filtration methods such as Microfiltration (MF), Ultrafiltration (UF), Nanofiltration (NF) and Reverse Osmosis (RO) techniques. Also, we provide an overview of existing and potentially Membrane filtration techniques, highlight their strengths and drawbacks. MF membranes are a suitable alternative to remove suspended solids and colloidal materials. However, NOMs fractions are effectively removed by negatively charged UF membrane. RO can remove both organic and inorganic DBPs and precursors simultaneously. NF can be used to remove compounds from macromolecular size to multivalent ions.
Collapse
Affiliation(s)
- Mohammad Ali Zazouli
- Department of Environmental Health Engineering, Health Sciences Research Center, Faculty of Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Laleh R. Kalankesh
- PhD student of Health Science, Student Research Committee, Department of Environmental Health Science, Health Sciences Research Center, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
23
|
Characterisation and removal of organic matter from a reverse osmosis concentrate by a PAC accumulative countercurrent four-stage adsorption-MF hybrid process. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Ibn Abdul Hamid K, Sanciolo P, Gray S, Duke M, Muthukumaran S. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling. WATER RESEARCH 2017; 126:308-318. [PMID: 28965033 DOI: 10.1016/j.watres.2017.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Ozone pre-treatment (ozonation, ozonisation) and biological activated carbon (BAC) filtration pre-treatment for the ceramic microfiltration (CMF) treatment of secondary effluent (SE) were studied. Ozone pre-treatment was found to result in higher overall removal of UV absorbance (UVA254) and colour, and higher permeability than BAC pre-treatment or the combined use of ozone and BAC (O3+BAC) pre-treatment. The overall removal of colour and UVA254 by ceramic filtration of the ozone pre-treated water was 97% and 63% respectively, compared to 86% and 48% respectively for BAC pre-treatment and 29% and 6% respectively for the untreated water. Ozone pre-treatment, however, was not effective in removal of dissolved organic carbon (DOC). The permeability of the ozone pre-treated water through the ceramic membrane was found to decrease to 50% of the original value after 200 min of operation, compared to approximately 10% of the original value for the BAC pre-treated, O3+BAC pre-treated water and the untreated water. The higher permeability of the ozone pre-treated water was attributed to the excellent removal of biopolymer particles (100%) and high removal of humic substances (84%). The inclusion of a BAC stage between ozone pre-treatment and ceramic filtration was detrimental. The O3+BAC+CMF process was found to yield higher biopolymer removal (96%), lower humic substance (HS) component removal (66%) and lower normalized permeability (0.1) after 200 min of operation than the O3+CMF process (86%, 84% and 0.5 respectively). This was tentatively attributed to the chemical oxidation effect of ozone on the BAC biofilm and adsorbed components, leading to the generation of foulants that are not generated in the O3+CMF process. This study demonstrated the potential of ozone pre-treatment for reducing organic fouling and thus improving flux for the CMF of SE compared to O3+BAC pre-treatment.
Collapse
Affiliation(s)
- Khaled Ibn Abdul Hamid
- College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Institute for Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Peter Sanciolo
- College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Institute for Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Stephen Gray
- College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Institute for Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Mikel Duke
- College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Institute for Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| | - Shobha Muthukumaran
- College of Engineering and Science, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia; Institute for Sustainability and Innovation, Victoria University, PO Box 14428, Melbourne, VIC 8001, Australia.
| |
Collapse
|
25
|
So SH, Choi IH, Kim HC, Maeng SK. Seasonally related effects on natural organic matter characteristics from source to tap in Korea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:584-592. [PMID: 28320524 DOI: 10.1016/j.scitotenv.2017.03.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
In this study, natural organic matter (NOM) characteristics were investigated over three years of monthly monitoring to determine the effect of seasonal variations on NOM levels from source to tap. Liquid chromatography with organic carbon detection (LC-OCD) was used to determine NOM characteristics and the level of reduction of biodegradable dissolved organic carbon (BDOC). The average dissolved organic matter concentration in the source water (Lake Paldang, Korea) was not significantly different between summer and winter. However, the distribution of NOM components, such as biopolymers, building blocks, low molecular weight (MW) neutrals and acids, identified by LC-OCD, varied seasonally. While high MW NOM was preferentially removed by coagulation/sedimentation/rapid sand filtration (CSR), no seasonal effects were observed on the removal of high MW NOM. CSR and biological activated carbon (BAC) filtration showed a better efficiency of BDOC removal in winter and summer, respectively. High concentrations of chlorine used in the treatment plants in summer resulted in 10% higher DOC concentrations during disinfection. Overall NOM removal efficiencies from source to tap were 45% and 35% for summer and winter, respectively. Principal component analysis also indicated that seasonal variations (principal component 1) showed the strongest positive correlation with the overall performance of water treatment. The long-term monitoring of drinking water treatment processes showed that seasonal variations were important factors affecting NOM characteristics during water treatment.
Collapse
Affiliation(s)
- S H So
- Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - I H Choi
- Water Analysis and Research Center, K-water, 560 Sintanjin-ro, Daedeok-gu, Daejeon, Republic of Korea
| | - H C Kim
- Water Resources Research Institute, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea
| | - S K Maeng
- Department of Civil and Environmental Engineering, Sejong University, 98 Gunja-Dong, Gwangjin-Gu, Seoul 143-747, Republic of Korea.
| |
Collapse
|
26
|
Chen J, Gao N, Li L, Zhu M, Yang J, Lu X, Zhang Y. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8469-8478. [PMID: 28188554 DOI: 10.1007/s11356-017-8515-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br- on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA254) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br-. When the concentration of Br- was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br- increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Juxiang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Mingqiu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Jing Yang
- College of Architecture and Civil Engineering, Xinjiang University, Urumqi, 830047, China
| | - Xian Lu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | - Yansen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| |
Collapse
|
27
|
Fu J, Lee WN, Coleman C, Meyer M, Carter J, Nowack K, Huang CH. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. CHEMOSPHERE 2017; 166:311-322. [PMID: 27700996 DOI: 10.1016/j.chemosphere.2016.09.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/31/2016] [Accepted: 09/22/2016] [Indexed: 06/06/2023]
Abstract
A pilot study employing two parallel trains of two-stage biofiltration, i.e., a sand/anthracite (SA) biofilter followed by a biologically-active granular activated carbon (GAC) contactor, was conducted to test the efficiency, feasibility and stability of biofiltration for removing natural organic matter (NOM) after coagulation in a drinking water treatment plant. Results showed the biofiltration process could effectively remove turbidity (<0.1 NTU in all effluents) and NOM (>24% of dissolved organic carbon (DOC), >57% of UV254, and >44% of SUVA254), where the SA biofilters showed a strong capacity for turbidity removal, while the GAC contactors played the dominant role in NOM removal. The vertical profile of water quality in the GAC contactors indicated the middle-upper portion was the critical zone for the removal of NOM, where relatively higher adsorption and enhanced biological removal were afforded. Fluorescence excitation-emission matrix (EEM) analysis of NOM showed that the GAC contactors effectively decreased the content of humic-like component, while protein-like component was refractory for the biofiltration process. Nutrients (NH4-N and PO4-P) supplementation applied upstream of one of the two-stage biofiltration trains (called engineered biofiltration) stimulated the growth of microorganisms, and showed a modest effect on promoting the biological removal of small non-aromatic compositions in NOM. Redundancy analysis (RDA) indicated influent UV254 was the most explanatory water quality parameter for GAC contactors' treatment performance, and a high load of UV254 would result in significantly reduced removals of UV254 and SUVA254.
Collapse
Affiliation(s)
- Jie Fu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Wan-Ning Lee
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Clark Coleman
- ARCADIS U.S., Inc, 2410 Paces Ferry Rd., Suite 400, Atlanta, GA 30339, United States
| | - Melissa Meyer
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jason Carter
- ARCADIS U.S., Inc, 2410 Paces Ferry Rd., Suite 400, Atlanta, GA 30339, United States
| | - Kirk Nowack
- ARCADIS U.S., Inc, 2410 Paces Ferry Rd., Suite 400, Atlanta, GA 30339, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
28
|
Performance improvement of raw water pretreatment process with pre-inoculation biofilm: feasibility and limiting factors. Biodegradation 2016; 28:111-123. [DOI: 10.1007/s10532-016-9781-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
|
29
|
Ma TF, Chen YP, Kang J, Gao X, Guo JS, Fang F, Zhang XT. Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23415-23421. [PMID: 27613624 DOI: 10.1007/s11356-016-7578-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).
Collapse
Affiliation(s)
- Teng-Fei Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Jia Kang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China
| | - Xu Gao
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jin-Song Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Xiao-Tian Zhang
- Chongqing Environmental Supervision Corps, Chongqing, 401147, China
| |
Collapse
|
30
|
Mao YQ, Wang XM, Guo XF, Yang HW, Xie YF. Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment. CHEMOSPHERE 2016; 159:378-384. [PMID: 27318452 DOI: 10.1016/j.chemosphere.2016.05.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
Haloacetaldehydes (HAs) are the third prevalent group of disinfection by-products (DBPs) of great health concern. In this study, their formation and speciation during chlorination were investigated for raw and process waters collected at three O3-biological activated carbon (BAC) advanced drinking water treatment plants. The results showed that all HA formation potentials (HAFPs) were highly enhanced whenever ozone was applied before or after conventional treatment. Sand filtration and BAC filtration could substantially reduce HAFPs. Trihalomethanes (THMs) were also measured to better understand the role of HAs in DBPs. Very different from HAFPs, THMFPs kept decreasing with the progress of treatment steps, which was mainly attributed to the different precursors for HAs and THMs. Brominated HAs were detected in bromide-containing waters. Chloral hydrate (CH) contributed from 25% to 48% to the total HAs formed in waters containing 100-150 μg L(-1) bromide, indicating the wide existence of other HAs after chlorination besides CH production. In addition, bromide incorporation factor (BIF) in HAs and THMs increased with the progress of treatment steps and the BIF values of THMs were generally higher than those of HAs. The BAC filtration following ozonation could significantly reduce HA precursors produced from ozonation but without complete removal. The brominated HAFPs in the outflow of BAC were still higher than their levels in the raw water. As a result, O3-BAC combined treatment was effective at controlling the total HAs, whereas it should be cautious for waters with high bromide levels.
Collapse
Affiliation(s)
- Yu-Qin Mao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xian-Fen Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing 100084, China.
| | - Yuefeng F Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Environmental Engineering Programs, The Pennsylvania State University, Middletown, PA 17057, USA
| |
Collapse
|
31
|
Zha XS, Ma LM, Wu J, Liu Y. The removal of organic precursors of DBPs during three advanced water treatment processes including ultrafiltration, biofiltration, and ozonation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16641-16652. [PMID: 27180835 DOI: 10.1007/s11356-016-6643-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
The removal efficiency of organic matter, the formation potential of trihalomethanes (THMFP), and the formation potential of haloacetic acids (HAAFP) in each unit of three advanced treatment processes were investigated in this paper. The molecular weight distribution and the components of organic matter in water samples were also determined to study the transformation of organic matter during these advanced treatments. Low-molecular-weight matter was the predominant fraction in raw water, and it could not be removed effectively by ultrafiltration and biofiltration. The dominant species of disinfection by-product formation potential (DBPFP) in raw water were chloroform and monochloroacetic acid (MCAA), with average concentrations of 107.3 and 125.9 μg/L, respectively. However, the formation potential of chloroform and MCAA decreased to 36.2 and 11.5 μg/L after ultrafiltration. Similarly, biological pretreatment obtained high removal efficiency for DBPFP. The total THMFP decreased from 173.8 to 81.8 μg/L, and the total HAAFP decreased from 211.9 to 84.2 μg/L. Separate ozonation had an adverse effect on DBPFP, especially for chlorinated HAAFP. Numerous low-molecular-weight compounds such as aldehydes, ketones, and alcohols were generated during the ozonation, which have been proven to be important precursors of HAAs. However, the ozonation/biological activated carbon (BAC) combined process had a better removal efficiency for DBPFP. The total DBPFP decreased remarkably from 338.7 to 113.3 μg/L after the O3/BAC process, far below the separated BAC of process B (189.1 μg/L).
Collapse
Affiliation(s)
- Xiao-Song Zha
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lu-Ming Ma
- College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jin Wu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yan Liu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
32
|
Phetrak A, Lohwacharin J, Takizawa S. Analysis of trihalomethane precursor removal from sub-tropical reservoir waters by a magnetic ion exchange resin using a combined method of chloride concentration variation and surrogate organic molecules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:165-174. [PMID: 26360458 DOI: 10.1016/j.scitotenv.2015.08.111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
In small reservoirs in tropical islands in Japan, the disinfection by-product formation potential is high due to elevated concentrations of dissolved organic matter (DOM) and bromide. We employed a combined method of variation of chloride concentrations and the use of DOM surrogates to investigate removal mechanisms of bromide and different fractions of DOM by chloride-based magnetic ion exchange (MIEX®) resin. The DOM in reservoir waters was fractionated by resins based on their hydrophobicity, and characterized by size-exclusion chromatography and fluorescence excitation-emission matrix spectrophotometry. The hydrophobic acid (HPO acid) fraction was found to be the largest contributor of the trihalomethane (THM) precursors, while hydrophilic acid (HPI acid) was the most reactive precursors of all the four THM species. Bromide and DOM with a molecular weight (MW) greater than 1kDa, representing HPO acid (MW 1-3kDa) and HPI acid (MW 1-2kDa), were effectively removed by MIEX® resin; however, DOM with a MW lower than 1kDa, representing HPI non-acid, was only moderately removed. The removal of THM precursors by MIEX® resin was interfered by high chloride concentrations, which was similar to the removal of glutamic acid (HPI acid surrogate) and bromide. However, elevated chloride concentrations had only a minor effect on tannic acid (HPO acid surrogate) removal, indicating that HPO acid fraction was removed by a combination of ion exchange and physical adsorption on MIEX® resin. Our study demonstrated that the combined use of DOM surrogates and elevated chloride concentrations is an effective method to estimate the removal mechanisms of various DOM fractions by MIEX® resin.
Collapse
Affiliation(s)
- Athit Phetrak
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Jenyuk Lohwacharin
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Satoshi Takizawa
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
33
|
Wang C, Liu S, Wang J, Zhang X, Chen C. Monthly survey of N-nitrosamine yield in a conventional water treatment plant in North China. J Environ Sci (China) 2015; 38:142-149. [PMID: 26702978 DOI: 10.1016/j.jes.2015.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 06/05/2023]
Abstract
A sampling campaign was conducted monthly to investigate the occurrence of N-nitrosamines at a conventional water treatment plant in one city in North China. The yield of N-nitrosamines in the treated water indicated precursors changed greatly after the source water switching. Average concentrations of N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMOR), and N-nitrosopyrrolidine (NPYR) in the finished water were 6.9, 3.3, and 3.1ng/L, respectively, from June to October when the Luan River water was used as source water, while those of NDMA, N-nitrosomethylethylamine (NMEA), and NPYR in the finished water were 10.1, 4.9, and 4.7ng/L, respectively, from November to next April when the Yellow River was used. NDMA concentration in the finished water was frequently over the 10ng/L, i.e., the notification level of California, USA, which indicated a considerable threat to public health. Weak correlations were observed between N-nitrosamine yield and typical water quality parameters except for the dissolved organic nitrogen.
Collapse
Affiliation(s)
- Chengkun Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuming Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaojian Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- School of Environment, Tsinghua University, Beijing 100084, China; State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing 100084, China.
| |
Collapse
|
34
|
Zhu M, Gao N, Chu W, Zhou S, Zhang Z, Xu Y, Dai Q. Impact of pre-ozonation on disinfection by-product formation and speciation from chlor(am)ination of algal organic matter of Microcystis aeruginosa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:256-262. [PMID: 26093107 DOI: 10.1016/j.ecoenv.2015.05.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
The increasing use of algal-impacted source waters is increasing concerns over exposure to disinfection byproducts (DBPs) in drinking water disinfection, due to the higher concentrations of DBP precursors in these waters. The impact of pre-ozonation on the formation and speciation of DBPs during subsequent chlorination and chloramination of algal organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), was investigated. During subsequent chlorination, ozonation pretreatment reduced the formation of haloacetonitriles from EOM, but increased the yields of trihalomethanes, dihaloacetic acid and trichloronitromethane from both EOM and IOM. While in chloramination, pre-ozonation remarkably enhanced the yields of several carbonaceous DBPs from IOM, and significantly minimized the nitrogenous DBP precursors. Also, the yield of 1,1-dichloro-2-propanone from IOM was decreased by 24.0% after pre-ozonation during chloramination. Both increases and decreases in the bromine substitution factors (BSF) of AOM were observed with ozone pretreatment at the low bromide level (50μg/L). However, pre-ozonation played little impact on the bromide substitution in DBPs at the high bromide level (500μg/L). This information was used to guide the design and practical operation of pre-ozonation in drinking water treatment plants using algae-rich waters.
Collapse
Affiliation(s)
- Mingqiu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environment Science and Engineering, Tongji University, Shanghai 200092, China; Jiangsu post & telecommunications planning and designing institute CO., LTD, Nanjing 210019, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environment Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environment Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Shiqing Zhou
- Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | | | - Yaqun Xu
- Yixing Jiubin Waterworks, Yixing 214200, China
| | - Qi Dai
- Yixing Jiubin Waterworks, Yixing 214200, China
| |
Collapse
|
35
|
Michael-Kordatou I, Michael C, Duan X, He X, Dionysiou DD, Mills MA, Fatta-Kassinos D. Dissolved effluent organic matter: Characteristics and potential implications in wastewater treatment and reuse applications. WATER RESEARCH 2015; 77:213-248. [PMID: 25917290 DOI: 10.1016/j.watres.2015.03.011] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 02/19/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
Wastewater reuse is currently considered globally as the most critical element of sustainable water management. The dissolved effluent organic matter (dEfOM) present in biologically treated urban wastewater, consists of a heterogeneous mixture of refractory organic compounds with diverse structures and varying origin, including dissolved natural organic matter, soluble microbial products, endocrine disrupting compounds, pharmaceuticals and personal care products residues, disinfection by-products, metabolites/transformation products and others, which can reach the aquatic environment through discharge and reuse applications. dEfOM constitutes the major fraction of the effluent organic matter (EfOM) and due to its chemical complexity, it is necessary to utilize a battery of complementary techniques to adequately describe its structural and functional character. dEfOM has been shown to exhibit contrasting effects towards various aquatic organisms. It decreases metal uptake, thus potentially reducing their bioavailability to exposed organisms. On the other hand, dEfOM can be adsorbed on cell membranes inducing toxic effects. This review paper evaluates the performance of various advanced treatment processes (i.e., membrane filtration and separation processes, activated carbon adsorption, ion-exchange resin process, and advanced chemical oxidation processes) in removing dEfOM from wastewater effluents. In general, the literature findings reveal that dEfOM removal by advanced treatment processes depends on the type and the amount of organic compounds present in the aqueous matrix, as well as the operational parameters and the removal mechanisms taking place during the application of each treatment technology.
Collapse
Affiliation(s)
- I Michael-Kordatou
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - C Michael
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - X Duan
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - X He
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - D D Dionysiou
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - M A Mills
- US EPA, Office of Research and Development, 26 W, Martin Luther King Drive, Cincinnati, OH 45268, USA
| | - D Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus.
| |
Collapse
|
36
|
Chu W, Li C, Gao N, Templeton MR, Zhang Y. Terminating pre-ozonation prior to biological activated carbon filtration results in increased formation of nitrogenous disinfection by-products upon subsequent chlorination. CHEMOSPHERE 2015; 121:33-8. [PMID: 25479807 DOI: 10.1016/j.chemosphere.2014.10.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/16/2014] [Accepted: 10/26/2014] [Indexed: 05/09/2023]
Abstract
Previous research demonstrated that ozone dosed before biological activated carbon (BAC) filtration reduces the formation of disinfection by-products (DBPs) upon subsequent chlorination. The current work aimed to evaluate the impact of terminating this pre-ozonation on the ability of the BAC to remove the precursors of N-DBPs. More N-DBP precursors passed into the post-BAC water when the pre-ozonation was terminated, resulting in greater formation of N-DBPs when the water was subsequently chlorinated, compared to a parallel BAC filter when the pre-ozonation was run continuously. Moreover, the N-DBP formation potential was significantly increased in the effluent of the BAC filter after terminating pre-ozonation, compared with the influent of the BAC filter (i.e. the effluent from the sand filter). Therefore, while selectively switching pre-ozonation on/off may have cost and other operational benefits for water suppliers, these should be weighed against the increased formation of N-DBPs and potential associated health risks.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Changjun Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Michael R Templeton
- Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yanshen Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
37
|
Yang GF, Feng LJ, Yang Q, Zhu L, Xu J, Xu XY. Startup pattern and performance enhancement of pilot-scale biofilm process for raw water pretreatment. BIORESOURCE TECHNOLOGY 2014; 172:22-31. [PMID: 25233473 DOI: 10.1016/j.biortech.2014.08.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 06/03/2023]
Abstract
The quality of raw water is getting worse in developing countries because of the inadequate treatment of municipal sewage, industrial wastewater and agricultural runoff. Aiming at the biofilm enrichment and pollutant removal, two pilot-scale biofilm reactors were built with different biological carriers. Results showed that compared with the blank carrier, the biofilm was easily enriched on the biofilm precoated carrier and less nitrite accumulation occurred. The removal efficiencies of NH4(+)-N, DOC and UV254 increased under the aeration condition, and a optimum DO level for the adequate nitrification was 1.0-2.6mgL(-1) with the suitable temperature range of 21-22°C. Study on the trihalomethane prediction model indicated that the presentence of algae increased the risk of disinfection by-products production, which could be effectively controlled via manual algae removing and light shading. In this study, the performance of biofilm pretreatment process could be enhanced under the optimized condition of DO level and biofilm carrier.
Collapse
Affiliation(s)
- Guang-Feng Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Li-Juan Feng
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Department of Environmental Engineering, Zhejiang Ocean University, No. 1 Haida South Road, Zhoushan 316022, China
| | - Qi Yang
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China.
| | - Jian Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiang-Yang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058, China
| |
Collapse
|
38
|
Liao X, Wang C, Wang J, Zhang X, Chen C, Krasner SW, Suffet IM. Nitrosamine precursor and DOM control in an effluent-affected drinking water. ACTA ACUST UNITED AC 2014. [DOI: 10.5942/jawwa.2014.106.0052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Jun Wang
- Tsinghua University; Beijing China
| | | | | | | | | |
Collapse
|
39
|
Wang L, Chu H, Dong B. Effects on the purification of tannic acid and natural dissolved organic matter by forward osmosis membrane. J Memb Sci 2014. [DOI: 10.1016/j.memsci.2013.10.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Fan Z, Gong S, Xu X, Zhang X, Zhang Y, Yu X. Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters. Int J Hyg Environ Health 2014; 217:300-6. [DOI: 10.1016/j.ijheh.2013.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
|
41
|
Hu J, Shang R, Deng H, Heijman SGJ, Rietveld LC. Effect of PAC dosage in a pilot-scale PAC-MBR treating micro-polluted surface water. BIORESOURCE TECHNOLOGY 2014; 154:290-296. [PMID: 24412856 DOI: 10.1016/j.biortech.2013.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
To address the water scarcity issue and advance the traditional drinking water treatment technique, a powdered activated carbon-amended membrane bioreactor (PAC-MBR) is proposed for micro-polluted surface water treatment. A pilot-scale study was carried out by initially dosing different amounts of PAC into the MBR. Comparative results showed that 2g/L performed the best among 0, 1, 2 and 3g/L PAC-MBR regarding organic matter and ammonia removal as well as membrane flux sustainability. 1g/L PAC-MBR exhibited a marginal improvement in pollutant removal compared to the non-PAC system. The accumulation of organic matter in the bulk mixture of 3g/L PAC-MBR led to poorer organic removal and severer membrane fouling. Molecular weight distribution of the bulk liquid in 2g/L PAC-MBR revealed the synergistic effects of PAC adsorption/biodegradation and membrane rejection on organic matter removal. Additionally, a lower amount of soluble extracellular polymer substances in the bulk can be secured in 21 days operation.
Collapse
Affiliation(s)
- Jingyi Hu
- Delft University of Technology, P. O. Box 5048, 2600 GA Delft, The Netherlands.
| | - Ran Shang
- Delft University of Technology, P. O. Box 5048, 2600 GA Delft, The Netherlands
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, 200092 Shanghai, China
| | | | - Luuk C Rietveld
- Delft University of Technology, P. O. Box 5048, 2600 GA Delft, The Netherlands
| |
Collapse
|
42
|
Wang Y, Yu J, Han P, Sha J, An T, Li W, Liu J, Yang M. Advanced oxidation of bromide-containing drinking water: a balance between bromate and trihalomethane formation control. J Environ Sci (China) 2013; 25:2169-2176. [PMID: 24552044 DOI: 10.1016/s1001-0742(12)60280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Addition of H202 has been employed to repress bromate formation during ozonation of bromide-containing source water. However, the addition of H2O2 will change the oxidation pathways of organic compounds due to the generation of abundant hydroxyl radicals, which could affect the removal efficacy of trihalomethane precursors via the combination of ozone and biological activated carbon (O3-BAC). In this study, we evaluated the effects of H2O2 addition on bromate formation and trihalomethane formation potential (THMFP) reduction during treatment of bromide-containing (97.6-129.1 microg/L) source water by the O3-BAC process. At an ozone dose of 4.2 mg/L, an H2O2/O3 (g/g) ratio of over 1.0 was required to maintain the bromate concentration below 10.0 microg/L, while a much lower H2O2/O3 ratio was sufficient for a lower ozone dose. An H2O2/O3 (g/g) ratio below 0.3 should be avoided since the bromate concentration will increase with increasing H2O2 dose below this ratio. However, the addition of H202 at an ozone dose of 3.2 mg/L and an H2O2/O3 ratio of 1.0 resulted in a 43% decrease in THMFP removal when comparedwith the O3-BAC process. The optimum H2O2/O3 (g/g) ratio for balancing bromate and trihalomethane control was about 0.7-1.0. Fractionation of organic materials showed that the addition of H2O2 decreased the removal efficacy of the hydrophilic matter fraction of DOC by ozonation and increased the reactivity of the hydrophobic fractions during formation of trihalomethane, which may be the two main reasons responsible for the decrease in THMFP reduction efficacy. Overall, this study clearly demonstrated that it is necessary to balance bromate reduction and THMFP control when adopting an H2O2 addition strategy.
Collapse
Affiliation(s)
- Yongjing Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jianwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Po Han
- Zhengzhou Water Supply Investment Holdings Co. Ltd., Zhengzhou 450007, China
| | - Jing Sha
- Zhengzhou Water Supply Investment Holdings Co. Ltd., Zhengzhou 450007, China
| | - Tao An
- Zhengzhou Water Supply Investment Holdings Co. Ltd., Zhengzhou 450007, China
| | - Wei Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
43
|
Characteristics of DOM and Removal of DBPs Precursors across O3-BAC Integrated Treatment for the Micro-Polluted Raw Water of the Huangpu River. WATER 2013. [DOI: 10.3390/w5041472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Han ZS, Tian JY, Liang H, Ma J, Yu HR, Li K, Ding A, Li GB. Measuring the activity of heterotrophic microorganism in membrane bioreactor for drinking water treatment. BIORESOURCE TECHNOLOGY 2013; 130:136-143. [PMID: 23306121 DOI: 10.1016/j.biortech.2012.11.151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/09/2012] [Accepted: 11/28/2012] [Indexed: 06/01/2023]
Abstract
In order to quantify the activity of heterotrophic microorganism in membrane bioreactor (MBR) for drinking water treatment, biomass respiration potential (BRP) test and 2,3,5-triphenyl tetrazolium chloride-dehydrogenase activity (TTC-DHA) test were introduced and modified. A sludge concentration ratio of 5:1, incubation time of 2h, an incubation temperature that was close to the real operational temperature, and using a mixture of main AOC components as the substrate were adopted as the optimum parameters for determination of DHA in drinking water MBR. A remarkable consistency among BDOC removal, BRP and DHA for assessing biological performance in different MBRs was achieved. Moreover, a significant correlation between the BRP and DHA results of different MBRs was obtained. However, the TTC-DHA test was expected to be inaccurate for quantifying the biomass activity in membrane adsorption bioreactor (MABR), while the BRP test turned out to be still feasible in that case.
Collapse
Affiliation(s)
- Zheng-Shuang Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Li L, Gao N, Deng Y, Yao J, Zhang K. Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds. WATER RESEARCH 2012; 46:1233-1240. [PMID: 22209198 DOI: 10.1016/j.watres.2011.12.026] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 12/07/2011] [Accepted: 12/10/2011] [Indexed: 05/31/2023]
Abstract
Algae organic matters (AOM), including intracellular organic matters (IOM) and extracellular organic matters (EOM), are causing numerous water quality issues, among which formation of disinfection byproducts (DBPs) and odor & taste (O&T) compounds are of particular concern. In this study, physiochemical properties of IOM and EOM of Microcystic aeruginosa under an exponential growth phase (2.01×10(11)/L) were comprehensively characterized. Moreover, the yields of DBPs during AOM disinfection and O&T-causing compounds were quantified. Hydrophilic organic matters accounted for 86% and 63% of DOC in IOM and EOM, respectively. Molecular weight (MW) fractions of IOM in <1 kDa, 40-800 kDa, and >800 kDa were 27%, 42%, and 31% of DOC, respectively, while EOM primarily contained 1-100 kDa molecules. Besides, a low SUVA (0.84 L/mg m) and the specific fluorescence spectra suggested that AOM (especially IOM) was principally comprised of protein-like substances, instead of humic-like matters. The formation potentials of chloroform, chloroacetic acid, and nitrosodimethylamine were 21.46, 68.29 and 0.0096 μg/mg C for IOM, and 32.44, 54.58 and 0.0189 μg/mg C for EOM, respectively. Furthermore, the dominant O&T compound produced from EOM and IOM were 2-MIB (68.75 ng/mg C) and β-cyclocitral (367.59 ng/mg C), respectively. Of note, dimethyltrisulfide became the prevailing O & T compound following anaerobic cultivation.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai City 200092, China
| | | | | | | | | |
Collapse
|
46
|
Chu W, Gao N, Yin D, Deng Y, Templeton MR. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products. CHEMOSPHERE 2012; 86:1087-1091. [PMID: 22205050 DOI: 10.1016/j.chemosphere.2011.11.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/25/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.
Collapse
Affiliation(s)
- Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
47
|
Wang Y, Zhang H, Chen L, Wang S, Zhang D. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2011.06.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Wang H, He F, Zhi Z, Gu P. The Effects of Pre-Treated Membrane Backwash Water on the Quality of Finished Water from a Membrane System. SEP SCI TECHNOL 2011. [DOI: 10.1080/01496395.2011.580306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Xu B, Tian FX, Hu CY, Lin YL, Xia SJ, Rong R, Li DP. Chlorination of chlortoluron: kinetics, pathways and chloroform formation. CHEMOSPHERE 2011; 83:909-916. [PMID: 21435681 DOI: 10.1016/j.chemosphere.2011.02.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/30/2023]
Abstract
Chlortoluron chlorination is studied in the pH range of 3-10 at 25 ± 1°C. The chlorination kinetics can be well described by a second-order kinetics model, first-order in chlorine and first-order in chlortoluron. The apparent rate constants were determined and found to be minimum at pH 6, maximum at pH 3 and medium at alkaline conditions. The rate constant of each predominant elementary reactions (i.e., the acid-catalyzed reaction of chlortoluron with HOCl, the reaction of chlortoluron with HOCl and the reaction of chlortoluron with OCl(-)) was calculated as 3.12 (± 0.10)×10(7)M(-2)h(-1), 3.11 (±0.39)×10(2)M(-1)h(-1) and 3.06 (±0.47)×10(3)M(-1)h(-1), respectively. The main chlortoluron chlorination by-products were identified by gas chromatography-mass spectrometry (GC-MS) with purge-and-trap pretreatment, ultra-performance liquid chromatography-electrospray ionization-MS and GC-electron capture detector. Six volatile disinfection by-products were identified including chloroform (CF), dichloroacetonitrile, 1,1-dichloropropanone, 1,1,1-trichloropropanone, dichloronitromethane and trichloronitromethane. Degradation pathways of chlortoluron chlorination were then proposed. High concentrations of CF were generated during chlortoluron chlorination, with maximum CF yield at circumneutral pH range in solution.
Collapse
Affiliation(s)
- Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | | | | | | | |
Collapse
|
50
|
Xu B, Ye T, Li DP, Hu CY, Lin YL, Xia SJ, Tian FX, Gao NY. Measurement of dissolved organic nitrogen in a drinking water treatment plant: size fraction, fate, and relation to water quality parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:1116-1122. [PMID: 21211825 DOI: 10.1016/j.scitotenv.2010.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/26/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
This paper investigates the characteristics of dissolved organic nitrogen (DON) in raw water from the Huangpu River and also in water undergoing treatment in the full-scale Yangshupu drinking water treatment plant (YDWTP) in Shanghai, China. The average DON concentration of the raw water was 0.34 mg/L, which comprised a relatively small portion (~5%) of the mass of total dissolved nitrogen (TDN). The molecular weight (MW) distribution of dissolved organic matter (DOM) was divided into five groups: >30, 10-30, 3-10, 1-3 and <1 kDa using a series of ultrafiltration membranes. Dissolved organic carbon (DOC), UV absorbance at wavelength of 254 nm (UV254) and DON of each MW fraction were analyzed. DON showed a similar fraction distribution as DOC and UV254. The <1 kDa fraction dominated the composition of DON, DOC and UV254 as well as the major N-nitrosodimethylamine formation potential (NDMAFP) in the raw water. However, this DON fraction cannot be effectively removed in the treatment line at the YDWTP including pre-ozonation, clarification and sand filtration processes. The results from linear regression analysis showed that DON is moderately correlated to DOC, UV254 and trihalomethane formation potential (FP), and strongly correlated to haloacetic acids FP and NDMAFP. Therefore, DON could serve as a surrogate parameter to evaluate the reactivity of DOM and disinfection by-products FP.
Collapse
Affiliation(s)
- Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | | | | | | | | | |
Collapse
|